On the heavy-tailedness of Student's t-statistic

FREDRIK JONSSON

Department of Mathematics, Uppsala University, Box 480, SE-751 06 Uppsala, Sweden.
E-mail: jonsson@math.uu.se
Let $\left\{X_{i}\right\}_{i \geq 1}$ be an i.i.d. sequence of random variables and define, for $n \geq 2$,

$$
T_{n}=\left\{\begin{array}{ll}
n^{-1 / 2} \hat{\sigma}_{n}^{-1} S_{n}, & \hat{\sigma}_{n}>0, \\
0, & \hat{\sigma}_{n}=0,
\end{array} \quad \text { with } S_{n}=\sum_{i=1}^{n} X_{i}, \hat{\sigma}_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-n^{-1} S_{n}\right)^{2} .\right.
$$

We investigate the connection between the distribution of an observation X_{i} and finiteness of $\mathrm{E}\left|T_{n}\right|^{r}$ for $(n, r) \in \mathbb{N}_{\geq 2} \times \mathbb{R}^{+}$. Moreover, assuming $T_{n} \xrightarrow{d} T$, we prove that for any $r>0, \lim _{n \rightarrow \infty} \mathrm{E}\left|T_{n}\right|^{r}=\mathrm{E}|T|^{r}<$ ∞, provided there is an integer n_{0} such that $\mathrm{E}\left|T_{n_{0}}\right|^{r}$ is finite.

Keywords: finiteness of moments; robustness; Student's t-statistic; t-distributions; t-test

1. Introduction

Assume, in the following, that $\left\{X_{i}\right\}_{i \geq 1}$ is a sequence of independent random variables, each with distribution F. Then, for $n \geq 2$, define the t-statistic random variables

$$
T_{n}=\left\{\begin{array}{ll}
n^{-1 / 2} \hat{\sigma}_{n}^{-1} S_{n}, & \hat{\sigma}_{n}>0, \\
0, & \hat{\sigma}_{n}=0,
\end{array} \quad \text { with } S_{n}=\sum_{i=1}^{n} X_{i}, \hat{\sigma}_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-n^{-1} S_{n}\right)^{2} .\right.
$$

In the case where F is a normal distribution with mean zero, the distribution of T_{n} is the wellknown t-distribution with $n-1$ degrees of freedom. The effect of non-normality of F on the distribution of T_{n} has received considerable attention in the statistical literature. For a review, see [7]. t-distributions do not only occur in the inference of means, but also sometimes in models of data in the economic sciences; see [6]. There seem to be two characteristic properties which, in comparison with the normal distribution, make these distributions convenient in certain modeling situations: a higher degree of heavy-tailedness (moments are finite only below the degree of freedom) and a higher degree of so-called kurtosis.

This paper investigates the tail behaviour of T_{n} and the related issue of the existence of moments $\mathrm{E}\left|T_{n}\right|^{r}$, for a parameter $r>0$, under more general conditions than the normal assumption. Motivating questions were the following: Is it generally true that $\mathrm{E}\left|T_{n}\right|^{r}$ can only be finite for $r<n-1$? For which kinds of distributions is the converse implication false? Assuming the often encountered $T_{n} \xrightarrow{d} T$, is it then generally true that $\mathrm{E}\left|T_{n}\right|^{r} \rightarrow \mathrm{E}|T|^{r}$?

2. Summary

The fundamental result is Theorem 3.1, which presents two conditions, each equivalent to finiteness of $\mathrm{E}\left|T_{n}\right|^{r}$. The result is based on a connection between the tail behaviour of T_{n} and probabilities of having almost identical observations X_{1}, \ldots, X_{n}. Theorem 4.1 states that finiteness of $\mathrm{E}\left|T_{n}\right|^{r}$ implies finiteness of $\mathrm{E}\left|T_{n+1}\right|^{r}$, and is followed by Theorem 4.2 which states that t-statistic random variables never possess moments above the degree of freedom unless F is discrete. It is established in Section 5, under the assumption that F is continuous, that regularity, referring to the degree of heavy-tailedness of t-statistic random variables, is measurable in terms of the behaviour of certain concentration functions related to F. Theorem 6.2 states that $\lim _{n \rightarrow \infty} \mathrm{E}\left|T_{n}\right|^{r}=\mathrm{E}|T|^{r}$ whenever there is an integer n_{0} such that $\mathrm{E}\left|T_{n_{0}}\right|^{r}$ is finite and $\left\{T_{n}\right\}$ converges in distribution.

Remark. This paper is an abridged version of [5]. The results found in Section 5 here are there generalized beyond the continuity assumption. We also refer to [5] for a discussion of related results previously obtained by H. Hotelling.

3. Characterizing $\mathrm{E}\left|T_{n}\right|^{r}<\infty$ through bounds on $\mathrm{P}\left(\left|T_{n}\right|>x\right)$

A close connection exists between T_{n} and the self-normalized sum S_{n} / V_{n}; see Lemma 3.1 (whose elementary proof we omit). The connection allows $\mathrm{E}\left|T_{n}\right|^{r}$ to be expressed with probabilities relating to S_{n} / V_{n}, as in Lemma 3.2, revealing that finiteness of $\mathrm{E}\left|T_{n}\right|^{r}$ depends on the magnitude of the probabilities of having S_{n} / V_{n} close to $\pm \sqrt{n}$. Some geometric relations between S_{n} / V_{n} close to $\pm \sqrt{n}$ and almost identical observations X_{1}, \ldots, X_{n} are then given in Lemmas 3.3 and 3.4.

Lemma 3.1. Define

$$
V_{n}=\left(\sum_{i=1}^{n} X_{i}^{2}\right)^{1 / 2}, \quad U_{n}^{*}= \begin{cases}0, & S_{n} / V_{n}=n \text { or } V_{n}=0 \\ \left(S_{n} / V_{n}\right)^{2}, & \text { otherwise } .\end{cases}
$$

It then holds, for any $x \geq 0$, that $T_{n}^{2}>x$ if and only if $U_{n}^{*}>n x /(n+x-1)$.
Lemma 3.2. For $r>0$ and U_{n}^{*} as in Lemma 3.1,

$$
\mathrm{E}\left|T_{n}\right|^{r}=\frac{r}{2} n(n-1)^{r / 2} \int_{0}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}^{*}>z\right)(n-z)^{-(r / 2+1)} \mathrm{d} z
$$

Lemma 3.3. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $h \in(0,1)$ be given such that $x_{1} \neq 0$ and $n-u_{n}<h^{2}$ with $u_{n}=\left(\sum_{i=1}^{n} x_{i}\right)^{2} / \sum_{i=1}^{n} x_{i}^{2}$. Then, with $C_{1}=\sqrt{5}$,

$$
\left|x_{i}-x_{1}\right|<h C_{1}\left|x_{1}\right| \quad \text { for all } i \neq 1
$$

Moreover, $C_{1}=C_{1}(n, h)=\sqrt{2+2 h+h^{2}}$ is optimal for the conclusion to be valid for all \mathbf{x}.

Lemma 3.4. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $h \in(0,1)$ be given such that, with $C_{2}=1$,

$$
\left|x_{i}-x_{1}\right|<C_{2} h\left|x_{1}\right| / \sqrt{n-1} \quad \text { for all } i \neq 1
$$

Then $n-u_{n}<h^{2}$ with $u_{n}=\left(\sum_{i=1}^{n} x_{i}\right)^{2} / \sum_{i=1}^{n} x_{i}^{2}$. Moreover, in the case where n is odd, $C_{2}=$ $C_{2}(n, h)$ must satisfy $C_{2} \leq \sqrt{n /\left(n-h^{2}\right)}$ for the conclusion to be valid for all \mathbf{x}.

Theorem 3.1. The following three quantities are either all finite or all infinite:
(i) $\mathrm{E}\left|T_{n}\right|^{r}$;
(ii) $\mathrm{E}\left(\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I\left\{\left|X_{i}-X_{1}\right|>0\right.\right.$, some $\left.\left.i \leq n\right\}\right)$;
(iii) $\int_{x \neq 0} \int_{0}^{1} h^{-(r+1)}\left((\mathrm{P}(|X-x|<h|x|))^{n-1}-p_{x}^{n-1}\right) \mathrm{d} h \mathrm{~d} F(x) \quad$ with $p_{x}=\mathrm{P}(X=x)$.

Proof of Lemma 3.2. By [4], Theorem 12.1, Chapter 2, together with Lemma 3.1 and a change of variables, we have

$$
\begin{aligned}
\mathrm{E}\left|T_{n}\right|^{r} & =\frac{r}{2} \int_{0}^{\infty} y^{r / 2-1} \mathrm{P}\left(T_{n}^{2}>y\right) \mathrm{d} y \\
& =\frac{r}{2} \int_{0}^{\infty} y^{r / 2-1} \mathrm{P}\left(U_{n}^{*}>n y /(n+y-1)\right) \mathrm{d} y \\
& =\frac{r}{2} n(n-1)^{r / 2} \int_{0}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}^{*}>z\right)(n-z)^{-(r / 2+1)} \mathrm{d} z .
\end{aligned}
$$

Proof of Lemma 3.3. We argue by contraposition. Due to the invariance with respect to scaling of \mathbf{x} and permutation of the coordinates x_{2}, \ldots, x_{n}, it suffices to prove that

$$
\left|x_{2}-x_{1}\right| \geq h\left|x_{1}\right| \quad \Longrightarrow \quad n-u_{n} \geq h^{2} / C_{1}^{2}
$$

with $C_{1}=\sqrt{2+2 h+h^{2}}$ and that equalities are simultaneously attained. Set $x_{2}=x_{1}+\varepsilon$ and $\underline{x}=\left(x_{3}, \ldots, x_{n}\right)$. We then minimize $n-u_{n}$ with respect to \underline{x} and ε. Note that

$$
\begin{equation*}
\frac{\partial\left(n-u_{n}\right)}{\partial x_{j}}=\frac{-2 \sum_{i=1}^{n} x_{i}\left(\sum_{i=1}^{n} x_{i}^{2}-x_{j} \sum_{i=1}^{n} x_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \tag{1}
\end{equation*}
$$

First, set (1) to zero for $j=3, \ldots, n$. Since $\sum x_{i}=0$ corresponds to $u_{n}=0$, which is noninteresting with respect to the minimization of $n-u_{n}$, these equations reduce to

$$
\begin{equation*}
\sum_{i=3}^{n} x_{i}^{2}-x_{j} \sum_{i=3}^{n} x_{i}=x_{j}\left(x_{1}+x_{2}\right)-\left(x_{1}^{2}+x_{2}^{2}\right) \quad \text { for } j=3, \ldots, n \tag{2}
\end{equation*}
$$

We claim that (2) has the unique solution

$$
\begin{equation*}
x_{j}=\left(x_{1}^{2}+x_{2}^{2}\right) /\left(x_{1}+x_{2}\right)=\left(2 x_{1}^{2}+2 x_{1} \varepsilon+\varepsilon^{2}\right) /\left(2 x_{1}+\varepsilon\right) \quad \text { for } j=3, \ldots, n . \tag{3}
\end{equation*}
$$

To verify this, assume that \underline{x} is a solution of (2). Since $\sum_{i=3}^{n} x_{i}^{2}$ and $\sum_{i=3}^{n} x_{i}$ do not vary with j, \underline{x} must be of the form $x_{j}=$ const., $j=3, \ldots, n$. However, the left-hand side of (2) then vanishes for all j, which gives (3) as the unique solution. Inserting the solution into $n-u_{n}$ gives

$$
\begin{equation*}
\left(n-u_{n}\right)_{\min }(\varepsilon)=\varepsilon^{2} /\left(x_{1}^{2}+x_{2}^{2}\right)=\varepsilon^{2} /\left(2 x_{1}^{2}+2 x_{1} \varepsilon+\varepsilon^{2}\right) \tag{4}
\end{equation*}
$$

It remains to minimize with respect to ε with $\varepsilon \notin\left(-h\left|x_{1}\right|, h\left|x_{1}\right|\right)$. The equation

$$
\frac{\partial}{\partial \varepsilon}\left(\frac{\varepsilon^{2}}{2 x_{1}^{2}+2 x_{1} \varepsilon+\varepsilon^{2}}\right)=0
$$

has the unique solution $\varepsilon=-2 x_{1}$ which cannot be a minimum since a minimum must satisfy $\operatorname{sign}(\varepsilon)=\operatorname{sign}\left(x_{1}\right)$, by the representation (4). The solution is hence obtained for $\varepsilon=$ $\operatorname{sign}\left(x_{1}\right) h\left|x_{1}\right|$,

$$
\left(n-u_{n}\right)_{\min }=\left(h x_{1}\right)^{2} /\left(x_{1}^{2}\left(2+2 h+h^{2}\right)\right)=h^{2} /\left(2+2 h+h^{2}\right) .
$$

It follows that $C_{1}=C_{1}(h)=\sqrt{2+2 h+h^{2}} \leq \sqrt{5}$ is an optimal constant, as claimed.
Proof of Lemma 3.4. Assume that

$$
\begin{equation*}
\left|x_{i}-x_{1}\right|<C_{2} h\left|x_{1}\right| / \sqrt{n-1} \quad \text { for all } i=2, \ldots, n \tag{5}
\end{equation*}
$$

The aim is to verify that $n-u_{n}<h^{2}$ with $C_{2}=C_{2}(n, h)$ optimally large. We therefore maximize $n-u_{n}$ over the rectangular region (5) with $x_{1} \neq 0, C_{2}$ and h fixed. It suffices to consider the restriction of $n-u_{n}$ to the corners of the region (5) since the maximum attained at a point $y=\left(y_{1}, \ldots, y_{n}\right)$ in the interior of the region, or in the interior of an edge, would mean that, for some $j=2, \ldots, n$ and some $\eta>0$,

$$
\begin{align*}
& \frac{\partial\left(n-u_{n}\right)}{\partial x_{j}}(y)=0, \tag{6}\\
& \frac{\partial\left(n-u_{n}\right)}{\partial x_{j}}\left(y_{1}, \ldots, y_{j-1}, y_{j}-h, y_{j+1}, \ldots, y_{n}\right) \geq 0 \text { for all } 0<h<\eta, \tag{7}\\
& \frac{\partial\left(n-u_{n}\right)}{\partial x_{j}}\left(y_{1}, \ldots, y_{j-1}, y_{j}+h, y_{j+1}, \ldots, y_{n}\right) \leq 0 \text { for all } 0<h<\eta . \tag{8}
\end{align*}
$$

Recall, from the proof of Lemma 3.3, that

$$
\frac{\partial\left(n-u_{n}\right)}{\partial x_{j}}=\frac{-2 \sum_{i=1}^{n} x_{i}\left(\sum_{i \neq j} x_{i}^{2}-x_{j} \sum_{i \neq j} x_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}}
$$

We may assume that $C_{2} h<\sqrt{n-1}$ since the point $x_{i} \equiv 0$ would otherwise belong to the region yielding $u_{n}=1$, in which case $n-u_{n}<h^{2}$ cannot hold. This implies that $\operatorname{sign}\left(x_{i}\right)=\operatorname{sign}\left(x_{1}\right)$ for all $i=2, \ldots, n$ so that neither $\sum x_{i}$ nor $\sum_{i \neq j} x_{i}$ change sign within the region. Assume, due to invariance with respect to scaling, that $x_{1}>0$. Conditions (6)-(8) may then be reformulated as

$$
\sum_{i \neq j} y_{i}^{2}-y_{j} \sum_{i \neq j} y_{i}=0, \quad \sum_{i \neq j} y_{i}^{2}-\left(y_{j}-h\right) \sum_{i \neq j} y_{i}<0, \quad \sum_{i \neq j} y_{i}^{2}-\left(y_{j}+h\right) \sum_{i \neq j} y_{i}>0
$$

which is contradictory since $h>0$ and $\sum_{i \neq j} y_{i}>0$.
Now, consider the restriction of $n-u_{n}$ to the corners of the region (5). Set $k:=\mid\left\{i: x_{i}=\right.$ $\left.x_{1}+\varepsilon\right\}\left|-\left|\left\{i: x_{i}=x_{1}-\varepsilon\right\}\right|\right.$ so that

$$
\begin{align*}
n-u_{n} & =\frac{n\left(n x_{1}^{2}+(n-1) \varepsilon^{2}+2 k \varepsilon x_{1}\right)-\left(n x_{1}+k \varepsilon\right)^{2}}{n x_{1}^{2}+(n-1) \varepsilon^{2}+2 k \varepsilon x_{1}} \\
& =\frac{\varepsilon^{2}\left(n(n-1)-k^{2}\right)}{n x_{1}^{2}+(n-1) \varepsilon^{2}+2 k \varepsilon x_{1}}=\frac{h^{2} C_{2}^{2}\left(n-k^{2} /(n-1)\right)}{n+C_{2}^{2} h^{2}+2 k C_{2} h / \sqrt{n-1}} . \tag{9}
\end{align*}
$$

Take $C_{2}=1$ in (9) and $z=k(n-1)^{-1 / 2}$. Algebraic manipulations yield

$$
\frac{n-k^{2} /(n-1)}{n+h^{2}+2 k h / \sqrt{n-1}} \leq 1 \quad \Longleftrightarrow \quad(h+z)^{2} \geq 0
$$

so that $C_{2}=1$ is sufficiently small for the desired bound $n-u_{n}<h^{2}$. We find, by taking $k=0$ in (9) (which is possible when n is odd) that

$$
C_{2}^{2} n /\left(n+C_{2}^{2} h^{2}\right) \leq 1 \quad \Longleftrightarrow \quad C_{2}^{2} \leq n /\left(n-h^{2}\right)
$$

so that $C_{2} \leq \sqrt{n /\left(n-h^{2}\right)}$ is then necessary for $n-u_{n}<h^{2}$ to hold.
Proof of Theorem 3.1. We first deduce the equivalence between (i) and (iii). By Lemma 3.2, we find that $E\left|T_{n}\right|^{r}<\infty$ is equivalent to, for some $\delta<1$,

$$
\int_{n-\delta}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}^{*}>z\right)(n-z)^{-(r / 2+1)} \mathrm{d} z<\infty \quad \Longleftrightarrow \quad \int_{0}^{\delta} h^{-(r+1)} \mathrm{P}\left(n-U_{n}^{*}<h^{2}\right) \mathrm{d} h<\infty
$$

which, in turn, is equivalent to

$$
\begin{equation*}
\iint_{0}^{\delta} h^{-(r+1)} \mathrm{P}\left(0<n-U_{n}<h^{2} \mid X_{1}=x\right) \mathrm{d} h \mathrm{~d} F(x)<\infty . \tag{10}
\end{equation*}
$$

The event $X_{1}=0$ implies $U_{n} \leq n-1$ by the Cauchy-Schwarz inequality so that (10) reduces to

$$
\int_{x \neq 0} \int_{0}^{\delta} h^{-(r+1)} \mathrm{P}\left(0<n-U_{n}<h^{2} \mid X_{1}=x\right) \mathrm{d} h \mathrm{~d} F(x)<\infty
$$

which is equivalent to

$$
\int_{x \neq 0} \int_{0}^{\delta} h^{-(r+1)} \mathrm{P}\left(n-U_{n}<h^{2} \mid X_{1}=x\right)-p_{x}^{n-1} \mathrm{~d} h \mathrm{~d} F(x)<\infty
$$

since $U_{n}=n$ corresponds to $X_{i}=X_{1}$ with $p_{x}=\mathrm{P}(X=x)$. Finally, apply Lemmas 3.3 and 3.4, and set $\delta=1$ to arrive at condition (iii).

For the equivalence between (ii) and (iii), define $A_{n}=\left\{\left|X_{i}-X_{1}\right|>0\right.$, some $\left.i \leq n\right\}$. Condition on X_{1} and convert expectation into integration of tail probabilities (cf. [4], Theorem 12.1, Chapter 2):

$$
\begin{aligned}
\mathrm{E}\left(\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}}\right) & =\int_{x \neq 0} \mathrm{E}\left(\bigwedge_{i=2}^{n}\left(\left|X_{i}-x\right||x|^{-1}\right)^{-r} I_{A_{n}}\right) \mathrm{d} F(x) \\
& =r \int_{x \neq 0} \int_{0}^{\infty} h^{-(r+1)}\left(\mathrm{P}(|X-x|<h|x|)^{n-1}-p_{x}^{n-1} \mathrm{~d} h \mathrm{~d} F(x)\right.
\end{aligned}
$$

The equivalence between (ii) and (iii) then follows from the fact that

$$
\begin{aligned}
& \int_{x \neq 0} \int_{1}^{\infty} h^{-(r+1)}(\mathrm{P}(|X-x|<h|x|))^{n-1} \mathrm{~d} h \mathrm{~d} F(x) \\
& \leq \int_{x \neq 0} \int_{1}^{\infty} h^{-(r+1)} \mathrm{d} h \mathrm{~d} F(x)<\infty .
\end{aligned}
$$

4. Two general facts regarding finiteness of $\mathrm{E}\left|T_{\boldsymbol{n}}\right|^{\boldsymbol{r}}$

Theorem 4.1. For any couple $(n, r) \in \mathbb{N}_{\geq 2} \times \mathbb{R}^{+}$, if $\mathrm{E}\left|T_{n}\right|^{r}$ is finite, then so is $\mathrm{E}\left|T_{n+1}\right|^{r}$.
Proof. Due to Theorem 3.1, it suffices to show that

$$
\begin{equation*}
\mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}}\right]<\infty \Longrightarrow \mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n+1}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n+1}}\right]<\infty \tag{11}
\end{equation*}
$$

where $A_{k}:=\left\{\left|X_{i}-X_{1}\right|>0\right.$, some $\left.i \leq k\right\}$. Define $A_{n}^{\prime}=\left\{\left|X_{i}-X_{1}\right|>0\right.$, some $\left.3 \leq i \leq n+1\right\}$. It follows that $A_{n+1}=A_{n} \cup A_{n}^{\prime}$ so that $I_{A_{n+1}} \leq I_{A_{n}}+I_{A_{n}^{\prime}}$, which gives

$$
\begin{aligned}
& \mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n+1}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n+1}}\right] \\
& \quad \leq \mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n+1}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}}\right]+\mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n+1}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}^{\prime}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}}\right]+\mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=3}^{n+1}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}^{\prime}}\right] \\
& =2 \mathrm{E}\left[\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I_{A_{n}}\right] .
\end{aligned}
$$

The conclusion follows.

Theorem 4.2. Assume that F decomposes into $F_{d}+F_{c}$, with discrete and continuous measures F_{d} and F_{c}, respectively, and that $F_{c} \not \equiv 0$. It is then necessary that $r<n-1$ for $\mathrm{E}\left|T_{n}\right|^{r}$ to be finite.

Proof. Let F_{c} have total mass $\varepsilon>0$. It suffices to verify that $\mathrm{E}\left|T_{n}\right|^{n-1}$ is infinite, which, by Theorem 3.1, is equivalent to

$$
\int_{x \neq 0} \int_{0}^{1} h^{-n}\left((\mathrm{P}(|X-x|<h|x|))^{n-1}-p_{x}^{n-1}\right) \mathrm{d} h \mathrm{~d} F(x)=\infty .
$$

The last identity is a consequence of

$$
\begin{equation*}
\iint_{0}^{1} h^{-n}(\mathrm{P}(|X-x|<h|x|))^{n-1} \mathrm{~d} h \mathrm{~d} F_{c}(x)=\infty \tag{12}
\end{equation*}
$$

To verify (12), consider the restriction of F_{c} to a set $[-C,-1 / C] \cup[1 / C, C]$ with C sufficiently large so that the restricted measure still has positive mass. It then suffices to establish the condition

$$
\begin{equation*}
\int\left(\mathrm{P}(|X-x|<h) h^{-1}\right)^{n-1} \mathrm{~d} F_{c}(x)>\eta_{n} \quad \text { for all } h \text { and some constant } \eta_{n}=\eta_{n}\left(F_{c}, n\right) \tag{13}
\end{equation*}
$$

First, consider $n=2$. Discretize $[-C, C]$ uniformly with interval length h, that is, put $x_{k}=h k$ for $k \in[-N, N]$ and $N=\left\lceil C h^{-1}\right\rceil$. Then

$$
\begin{aligned}
\int \mathrm{P}\left(\left|X_{c}-x\right|<h\right) \mathrm{d} F_{c}(x) & =\sum_{k=-N}^{k=N} \int_{x_{k-1}}^{x_{k}} \mathrm{P}\left(\left|X_{c}-x\right|<h\right) \mathrm{d} F_{c}(x) \\
& \geq \sum_{k=-N}^{k=N} \int_{x_{k-1}}^{x_{k}} \mathrm{P}\left(X_{c} \in\left(x_{k-1}, x_{k}\right]\right) \mathrm{d} F_{c}(x) \\
& =\sum_{k=-N}^{k=N}\left(\mathrm{P}\left(X_{c} \in\left(x_{k-1}, x_{k}\right]\right)\right)^{2} .
\end{aligned}
$$

Applying the Cauchy-Schwarz inequality, we obtain

$$
\sum_{k=-N}^{k=N}\left(\mathrm{P}\left(X_{c} \in\left(x_{k-1}, x_{k}\right]\right)\right)^{2} \geq\left(\sum_{k=-N}^{k=N} \mathrm{P}\left(X_{c} \in\left(x_{k-1}, x_{k}\right]\right)\right)^{2}(2 N)^{-1}=\varepsilon^{2}(2 N)^{-1} \geq C^{-1} \varepsilon^{2} h
$$

Conclusion (13) follows with $\eta_{2}=C^{-1} \varepsilon^{2}$. For $n>2$, an application of the Hölder inequality yields

$$
\eta_{2}^{n-1} \leq\left(\int \mathrm{P}\left(\left|X_{c}-x\right|<h\right) h^{-1} \mathrm{~d} F_{c}(x)\right)^{n-1} \leq \varepsilon^{n-2} \int\left(\mathrm{P}\left(\left|X_{c}-x\right|<h\right) h^{-1}\right)^{n-1} \mathrm{~d} F_{c}(x)
$$

The desired conclusion (13) follows with $\eta_{n}=\eta_{2}^{n-1} \varepsilon^{2-n}$.

5. Regularity and concentration functions

Definition 5.1. Given the distribution of a random variable X, define the concentration functions q and Q,for real-valued arguments $h \geq 0$, by

$$
Q(h)=\sup _{x} \mathrm{P}(|X-x| \leq h), \quad q(h)=\sup _{x} \mathrm{P}(|X-x| \leq|x| h) .
$$

Q is known as the Lévy concentration function. Theorem 5.1 below characterizes finiteness of $\mathrm{E}\left|T_{n}\right|^{r}$ in terms of the limiting behaviour of $q(h)$ as h tends to zero. Note that a statement of the kind " $Q(h)=\mathcal{O}\left(h^{\lambda}\right)$ " (for some $\lambda \leq 1$) refers to the local behaviour of the distribution. The most regular behaviour in this respect is that of an absolutely continuous distribution with bounded density function, in which case $Q(h)=\mathcal{O}(h)$, while $\lambda<1$ typically corresponds to one or several "explosions" of the density function. The Cantor distributions also form fundamental examples of such irregularity (cf. [5], pages 29-31). The parameter λ has, in this sense, a meaning of "degree of irregularity" concerning the distribution, with smaller values of λ indicating higher degrees of irregularity. A statement $q(h)=\mathcal{O}\left(h^{\lambda}\right)$, on the other hand, also has a global component. It requires more regularity of the distribution "at infinity" compared with $Q(h)=\mathcal{O}\left(h^{\lambda}\right)$, while, at the same time, being less restrictive regarding the local behaviour of the distribution at the origin.

Theorem 5.1. The following two implications hold for any continuous probability measure F :
(i) $\quad q(h)=\mathcal{O}\left(h^{\lambda}\right)$ for some $\lambda>r /(n-1) \Longrightarrow \mathrm{E}\left|T_{n}\right|^{r}<\infty$;
(ii) $\mathrm{E}\left|T_{n}\right|^{r}<\infty \Longrightarrow q(h)=\mathcal{O}\left(h^{\lambda}\right)$ with $\lambda=r / n$.

A simple criterion guaranteeing the optimal $q(h)=\mathcal{O}(h)$ is given by the following proposition.

Proposition 5.1. The property $q(h)=\mathcal{O}(h)$ is obtained for any absolutely continuous distribution F with bounded density function f satisfying the assumption of a positive constant N such that

$$
\begin{equation*}
f\left(x_{2}\right) \leq f\left(x_{1}\right) \quad \text { for any } x_{1}, x_{2} \text { such that } N \leq x_{1} \leq x_{2} \text { or }-N \geq x_{1} \geq x_{2} \tag{14}
\end{equation*}
$$

Proof of Theorem 5.1. For (i), condition (iii) of Theorem 3.1 reads, by continuity,

$$
\begin{equation*}
\int_{x \neq 0} \int_{0}^{1} h^{-(r+1)}(\mathrm{P}(|X-x|<h|x|))^{n-1} \mathrm{~d} h \mathrm{~d} F(x)<\infty . \tag{15}
\end{equation*}
$$

Applying the assumption on q to the integrand yields

$$
\begin{aligned}
& \int_{x \neq 0} \int_{0}^{1} h^{-(r+1)}(\mathrm{P}(|X-x|<h|x|))^{n-1} \mathrm{~d} h \mathrm{~d} F(x) \\
& \quad \leq C \int_{x \neq 0} \int_{0}^{1} h^{-(r+1)} h^{\lambda(n-1)} \mathrm{d} h \mathrm{~d} F(x)=C \int_{0}^{1} h^{-(r+1)} h^{\lambda(n-1)} \mathrm{d} h \\
& \quad=C /(\lambda(n-1)-r)
\end{aligned}
$$

which proves (15). To verify the second implication, we argue by contraposition. Assume that

$$
\begin{equation*}
q(h) \neq \mathcal{O}\left(h^{\lambda}\right) \quad \text { with } \lambda=r / n . \tag{16}
\end{equation*}
$$

It suffices, by condition (ii) of Theorem 3.1 and the assumption of continuity, to prove that

$$
\begin{equation*}
\mathrm{E}\left(\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r}\right)=\infty \tag{17}
\end{equation*}
$$

Statement (16) is equivalent to the existence of sequences $\left\{x_{k}\right\}_{k \geq 1}$ and $\left\{h_{k}\right\}_{k \geq 1}$ such that

$$
\begin{equation*}
1 / 2>h_{k}>0, \quad \lim _{k \rightarrow \infty} h_{k}=0, \quad \lim _{k \rightarrow \infty} h_{k}^{-r / n} \mathrm{P}\left(\left|X-x_{k}\right| \leq\left|x_{k}\right| h_{k}\right)=\infty . \tag{18}
\end{equation*}
$$

Define intervals $I_{k}=\left(x_{k}-\left|x_{k}\right| h_{k}, x_{k}+\left|x_{k}\right| h_{k}\right)$. It then follows that for some K and all $k \geq K$,

$$
\begin{aligned}
\mathrm{E}\left(\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r}\right) & \geq \mathrm{E}\left(\left|X_{1}\right|^{r} \bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I\left\{X_{i} \in I_{k}, \text { all } i\right\}\right) \\
& \geq 2^{-1}\left|x_{k}\right|^{r} \mathrm{E}\left(\bigwedge_{i=2}^{n}\left|X_{i}-X_{1}\right|^{-r} I\left\{X_{i} \in I_{k}, \text { all } i\right\}\right) \\
& \geq 2^{-(r+1)}\left|x_{k}\right|^{r} h_{k}^{-r}\left|x_{k}\right|^{-r} \mathrm{E}\left(I\left\{X_{i} \in I_{k}, \text { all } i\right\}\right) \\
& =2^{-(r+1)} h_{k}^{-r}\left(\mathrm{P}\left(\left|X-x_{k}\right| \leq\left|x_{k}\right| h_{k}\right)\right)^{n} .
\end{aligned}
$$

We conclude from (18) that (17) holds.
Proof of Proposition 5.1. It follows that, for $x>N$,

$$
f(x)(x-N) \leq \int_{N}^{x} f(y) \mathrm{d} y \leq 1, \quad f(-x)(x-N) \leq \int_{-x}^{-N} f(y) \mathrm{d} y \leq 1
$$

so that $f(x)|x| \leq C$. Consequently, assuming that $x>2 N$ and $h \leq 1 / 2$, we have

$$
\begin{equation*}
\mathrm{P}(|X-x| \leq|x| h)=\int_{|x|(1-h)}^{|x|(1+h)} f(y) \mathrm{d} y \leq \frac{2 C}{|x|} \int_{|x|(1-h)}^{|x|(1+h)} \mathrm{d} y=4 C h . \tag{19}
\end{equation*}
$$

Regarding $0 \leq x \leq 2 N$, we use the fact that f is bounded, $f \leq M$, so that

$$
\begin{equation*}
\mathrm{P}(|X-x| \leq|x| h)=\int_{|x|(1-h)}^{|x|(1+h)} f(y) \mathrm{d} y \leq M \int_{2 N(1-h)}^{2 N(1+h)} \mathrm{d} y=4 M N h . \tag{20}
\end{equation*}
$$

Bounds analogous to (19) and (20) follow for negative x, which proves that $q(h)=\mathcal{O}(h)$.

6. Convergence

Convergence in distribution of $\left\{T_{n}\right\}$ to a random variable T (e.g., standard normally distributed) is, due to Lemma 3.2, equivalent to convergence of $\left\{S_{n} / V_{n}\right\}$ to T. A complete classification in terms of possible limit distributions with corresponding conditions on F was given recently by Chistyakov and Götze (see [1]). The following interesting property was derived somewhat earlier by Giné, Götze and Mason in [3].

Theorem 6.1. Let a distribution F be given such that $S_{n} / V_{n} \rightarrow{ }^{d} T$. The sequence $\left\{S_{n} / V_{n}\right\}$ is then sub-Gaussian, in the sense that, for some constant $C, \sup _{n} \mathrm{E}\left[\exp \left(t S_{n} / V_{n}\right)\right] \leq 2 \exp \left(C t^{2}\right)$.

Corollary 6.1. For any F satisfying the condition of Theorem 6.1 with respect to a random variable T and any $r>0, \lim _{n \rightarrow \infty} \mathrm{E}\left|S_{n} / V_{n}\right|^{r}=\mathrm{E}|T|^{r}<\infty$.

Proof. The result follows from Theorem 6.1 and general properties of integration; see, for example, [4], Theorem 5.9, Chapter 5, or [4], Corollary 4.1, Chapter 5.

We are now ready for the main result of this section.
Theorem 6.2. Let F, T and r be given as in Corollary 6.1. If $\mathrm{E}\left|T_{n_{0}}\right|^{r}$ is finite for some $n_{0} \geq 2$, then $\lim _{n \rightarrow \infty} \mathrm{E}\left|T_{n}\right|^{r}=\mathrm{E}|T|^{r}$.

Proof. The case " $X=$ constant", which leads to $T_{n} \equiv 0$, is degenerate and is henceforth excluded. Recall, from Lemma 3.2, that

$$
\mathrm{E}\left|T_{n}\right|^{r}=\frac{r}{2} n(n-1)^{r / 2} \int_{0}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}^{*}>z\right)(n-z)^{-(r / 2+1)} \mathrm{d} z .
$$

We split the desired conclusion $\lim _{n \rightarrow \infty} \mathrm{E}\left|T_{n}\right|^{r}=\mathrm{E}|T|^{r}$ into the two conditions

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{r}{2} n^{r / 2+1} & \int_{0}^{n-\delta} z^{r / 2-1} \mathrm{P}\left(U_{n}^{*}>z\right)(n-z)^{-(r / 2+1)} \mathrm{d} z=\mathrm{E}|T|^{r} \quad \text { for any } 0<\delta<1, \tag{21}\\
& \lim _{n \rightarrow \infty} n^{r} \int_{n-\delta}^{n} \mathrm{P}\left(U_{n}^{*}>z\right)(n-z)^{-(r / 2+1)} \mathrm{d} z=0 \quad \text { for some } 0<\delta<1 . \tag{22}
\end{align*}
$$

Replace (22), via a change of variables $n-z=h^{2}$, by the condition

$$
\lim _{n \rightarrow \infty} n^{r} \int_{0}^{\delta} h^{-(r+1)} \mathrm{P}\left(n-U_{n}^{*}<h^{2}\right) \mathrm{d} z=0 \quad \text { for some } 0<\delta<1,
$$

which, in turn, by the same steps as in the proof of Theorem 3.1, we find to be equivalent to

$$
\begin{align*}
& \lim _{n \rightarrow \infty} R_{n, \delta}=0 \\
& R_{n, \delta}:=\int_{x \neq 0} \int_{0}^{\delta} n^{r} h^{-(r+1)}\left((\mathrm{P}(|X-x|<h|x|))^{n-1}-p_{x}^{n-1}\right) \mathrm{d} h \mathrm{~d} F(x) \tag{23}
\end{align*}
$$

for some $0<\delta<1$ (with $p_{x}=\mathrm{P}(X=x)$). We separate the verifications of (21) and (23) into Lemmas 6.2 and 6.1, respectively. Note that the assumption $\mathrm{E}\left|T_{n_{0}}\right|^{r}<\infty$, via Theorems 3.1 and 4.1, implies that $R_{n, \varepsilon}<\infty$ for all $(n, \varepsilon) \in \mathbb{N}_{\geq n_{0}} \times \mathbb{R}^{+}$. The proof of Theorem 6.2 is hence completed by applying Lemmas 6.1 and 6.2.

Lemma 6.1. Assume that there exists $n_{0} \geq 2$ such that $R_{n, \varepsilon}<\infty$ for all $(n, \varepsilon) \in \mathbb{N}_{\geq n_{0}} \times \mathbb{R}^{+}$. There then also exists $\delta>0$ such that $\lim _{n \rightarrow \infty} R_{n, \delta}=0$.

Lemma 6.2. Statement (21) is a consequence of Corollary 6.1.
Proof of Lemma 6.1. We arrive at the conclusion from Lebesgue's dominated convergence theorem, [2], Theorem 2.4.4, page 72, by establishing that the integrand

$$
\begin{equation*}
n^{r} h^{-(r+1)}\left((\mathrm{P}(|X-x|<h|x|))^{n-1}-p_{x}^{n-1}\right) \tag{24}
\end{equation*}
$$

for some choice of δ and all $h \leq \delta$, is pointwise decreasing in n for sufficiently large n and pointwise converging to 0 as n tends to infinity. To this end, define $\pi_{x}=\mathrm{P}(|X-x|<h|x|)$, $g_{x}(y)=y^{r}\left(\pi_{x}^{y}-p_{x}^{y}\right), \lambda_{1}=-\log \pi_{x}, \lambda_{2}=-\log p_{x}$. To see that pointwise convergence to 0 holds, note that for some δ and some $\eta>0$,

$$
\begin{equation*}
\pi_{x}<1-\eta \quad \text { for all } x \text { and all } h<\delta . \tag{25}
\end{equation*}
$$

Condition (25) indeed prevails, except in the case where F is degenerate with total mass at a single point. Given δ sufficiently small, $\pi_{x}^{n-1}-p_{x}^{n-1}$ therefore decays exponentially in n, which yields pointwise convergence to 0 of (24). The decreasing behaviour is equivalent to the existence of $y_{0} \geq 0$ such that

$$
\begin{equation*}
g_{x}\left(y_{1}\right) \geq g_{x}\left(y_{2}\right) \quad \text { for all } y_{1}, y_{2} \text { such that } y_{0} \leq y_{1} \leq y_{2} \tag{26}
\end{equation*}
$$

To verify (26), note that

$$
\begin{equation*}
g_{x}^{\prime}(y)=-y^{r}\left(\lambda_{1} \mathrm{e}^{-\lambda_{1} y}-\lambda_{2} \mathrm{e}^{-\lambda_{2} y}\right)+r y^{r-1}\left(\mathrm{e}^{-\lambda_{1} y}-\mathrm{e}^{-\lambda_{2} y}\right)=f_{y}\left(\lambda_{2}\right)-f_{y}\left(\lambda_{1}\right) \tag{27}
\end{equation*}
$$

with $f_{y}(\lambda):=\mathrm{e}^{-\lambda y}\left(\lambda y^{r}-r y^{r-1}\right)$ and furthermore that

$$
\begin{equation*}
f_{y}^{\prime}(\lambda)=\mathrm{e}^{-\lambda y}\left(y^{r}-\lambda y^{r+1}+r y^{r}\right)=\mathrm{e}^{-\lambda y}\left((r+1) y^{r}-\lambda y^{r+1}\right) . \tag{28}
\end{equation*}
$$

We verify (26) using the fact that $f_{y}^{\prime}(\lambda)<0$ for $\lambda_{1} \leq \lambda \leq \lambda_{2}$, which, by (28), is satisfied for $y>y_{0}$, provided $\lambda_{1}>\eta$ for some $\eta>0$. The latter condition is equivalent to (25).

Proof of Lemma 6.2. It follows from Corollary 6.1 with $U_{n}=S_{n}^{2} / V_{n}^{2}$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{r}{2} \int_{0}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}>z\right) \mathrm{d} z=\mathrm{E}|T|^{r} \quad \text { for all } r>0 \tag{29}
\end{equation*}
$$

Define $E_{n}=\left\{X_{1}=X_{2}=\cdots=X_{n} \neq 0\right\}$ so that $\mathrm{P}\left(U_{n}>z\right)=\mathrm{P}\left(U_{n}^{*}>z\right)+\mathrm{P}\left(E_{n}\right)$ for $0<z<n$. The desired conclusion is hence established by showing that for all $r>0$,

$$
\begin{align*}
\lim _{n \rightarrow \infty} n^{r / 2+1} \int_{0}^{n-\delta} z^{r / 2-1} \mathrm{P}\left(E_{n}\right)(n-z)^{-(r / 2+1)} \mathrm{d} z & =0 \tag{30}\\
\lim _{n \rightarrow \infty} \int_{0}^{n-\delta} z^{r / 2-1} \mathrm{P}\left(U_{n}>z\right)\left(n^{r / 2+1}(n-z)^{-(r / 2+1)}-1\right) \mathrm{d} z & =0, \tag{31}\\
\lim _{n \rightarrow \infty} \int_{n-\delta}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}>z\right) \mathrm{d} z & =0 . \tag{32}
\end{align*}
$$

Starting with (30), let $\left\{a_{k}\right\}_{k \geq 1}$ be a denumeration of all non-zero points attributed mass by F and define $p_{k}=\mathrm{P}\left(X=a_{k}\right), p=\sup _{k \geq 1} p_{k}$. It follows that $p<1$ since X is not constant. Moreover,

$$
\mathrm{P}\left(E_{n}\right)=\sum_{k \geq 1} p_{k}^{n} \leq p^{n-1} \sum_{k \geq 1} p_{k} \leq p^{n-1}
$$

This shows that $\mathrm{P}\left(E_{n}\right)$ decays exponentially in n. However, the quantities

$$
n(n-1)^{r / 2} \int_{0}^{n-\delta} z^{(r-2) / 2}(n-z)^{-(r+2) / 2} \mathrm{~d} z
$$

are all finite and grow with polynomial rate as n grows. Conclusion (30) follows. Statement (32) may be deduced from (29) in the following way:

$$
\int_{n-\delta}^{n} z^{r / 2-1} \mathrm{P}\left(U_{n}>z\right) \mathrm{d} z \leq(n-\delta)^{-1} \int_{n-\delta}^{n} z^{r / 2} \mathrm{P}\left(U_{n}>z\right) \mathrm{d} z \leq(n-\delta)^{-1} C_{r+2}
$$

where the constant C_{r+2} stems from the identity in (29) with r replaced by $r+2$. It remains to prove (31), which we split into

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{0}^{1} z^{(r / 2-1)} \mathrm{P}\left(U_{n}>z\right)\left(n(n-1)^{r / 2}(n-z)^{-(r / 2+1)}-1\right) \mathrm{d} z=0 \tag{33}\\
& \lim _{n \rightarrow \infty} \int_{1}^{n-\delta} z^{r / 2-1} \mathrm{P}\left(U_{n}>z\right)\left(n(n-1)^{r / 2}(n-z)^{-(r / 2+1)}-1\right) \mathrm{d} z=0 \tag{34}
\end{align*}
$$

Statement (33) follows from Lebesgue's dominated convergence theorem, [2], Theorem 2.4.4, page 72 . To verify (34), we introduce the notation

$$
\begin{aligned}
f_{n}(z) & =z^{r / 2-1} \mathrm{P}\left(U_{n}>z\right)\left(n(n-1)^{r / 2}(n-z)^{-(r / 2+1)}-1\right) I_{D_{n}}, \\
D_{n} & =\{z: 1 \leq z \leq(n-\delta)\}, \quad g_{n}(z)=z^{r} \mathrm{P}\left(U_{n}>z\right) I_{D_{n}}, \quad g(z)=z^{r} \mathrm{P}\left(T^{2}>z\right) I_{D_{n}} .
\end{aligned}
$$

The desired conclusion (34) is now written as (36), while (37) follows from the assumptions, (29) and the elementary inequalities (35):

$$
\begin{gather*}
(n-1) /(z(n-z)) \leq(n-1) /(\delta(n-\delta)) \leq C \quad \text { when } z \in D_{n}, \tag{35}\\
\lim _{n \rightarrow \infty} \int f_{n}=0, \tag{36}\\
\int g_{n} \rightarrow \int g, \quad g_{n} \rightarrow g, \quad f_{n} \rightarrow 0, \quad\left|f_{n}\right| \leq C_{1} g_{n} . \tag{37}
\end{gather*}
$$

By a technique called Pratt's lemma, Fatou's lemma, [2], Theorem 2.4.3, page 72, and (37) then give

$$
\begin{align*}
& C_{1} \int g=\int \underset{n}{\liminf }\left(C_{1} g_{n}-f_{n}\right) \leq \underset{n}{\liminf } \int\left(C_{1} g_{n}-f_{n}\right)=C_{1} \int g-\limsup _{n} \int f_{n}, \tag{38}\\
& C_{1} \int g=\int \liminf _{n}\left(C_{1} g_{n}+f_{n}\right) \leq \liminf _{n} \int\left(C_{1} g_{n}+f_{n}\right)=C_{1} \int g+\liminf _{n} \int f_{n} \tag{39}
\end{align*}
$$

Statement (36) follows from (38) and (39).

Acknowledgements

I would like to thank my Ph.D. supervisor Allan Gut for guidance, encouragement and persistent reading of drafts. I also wish to express my gratitude to Professor Lennart Bondesson for offering valuable comments and criticism regarding [5] in connection with the defense of my Licentiate thesis.

References

[1] Chistyakov, G.P. and Götze, F. (2004). Limit distributions of studentized means. Ann. Probab. 34 28-71. MR2040775
[2] Cohn, D.L. (1980). Measure Theory. Boston, MA: Birkhäuser. MR0578344
[3] Giné, E., Götze, F. and Mason, D.M. (1997). When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25 1514-1531. MR1457629
[4] Gut, A. (2007). Probability: A Graduate Course, Corr. 2nd printing. New York: Springer. MR2125120
[5] Jonsson, F. (2008). Existence and convergence of moments of Student's t-statistic. Licentiate thesis, U.U.D.M. Report 2008:18.
[6] Praetz, P.D. (1972). The distribution of share price changes. J. Business 45 49-55.
[7] Zabell, S.L. (2008). On Student's 1908 article "The probable error of a mean". With comments and a rejoinder by the author. J. Amer. Statist. Assoc. 481 1-20. MR2394634

Received August 2009 and revised January 2010

