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Let {Xi}i≥1 be an i.i.d. sequence of random variables and define, for n ≥ 2,

Tn =
{

n−1/2σ̂−1
n Sn, σ̂n > 0,

0, σ̂n = 0,
with Sn =

n∑
i=1

Xi, σ̂ 2
n = 1

n − 1

n∑
i=1

(Xi − n−1Sn)2.

We investigate the connection between the distribution of an observation Xi and finiteness of E|Tn|r for

(n, r) ∈ N≥2 ×R
+. Moreover, assuming Tn

d−→ T , we prove that for any r > 0, limn→∞ E|Tn|r = E|T |r <

∞, provided there is an integer n0 such that E|Tn0 |r is finite.
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1. Introduction

Assume, in the following, that {Xi}i≥1 is a sequence of independent random variables, each with
distribution F . Then, for n ≥ 2, define the t -statistic random variables

Tn =
{

n−1/2σ̂−1
n Sn, σ̂n > 0,

0, σ̂n = 0,
with Sn =

n∑
i=1

Xi, σ̂ 2
n = 1

n − 1

n∑
i=1

(Xi − n−1Sn)
2.

In the case where F is a normal distribution with mean zero, the distribution of Tn is the well-
known t -distribution with n − 1 degrees of freedom. The effect of non-normality of F on the
distribution of Tn has received considerable attention in the statistical literature. For a review, see
[7]. t -distributions do not only occur in the inference of means, but also sometimes in models of
data in the economic sciences; see [6]. There seem to be two characteristic properties which, in
comparison with the normal distribution, make these distributions convenient in certain modeling
situations: a higher degree of heavy-tailedness (moments are finite only below the degree of
freedom) and a higher degree of so-called kurtosis.

This paper investigates the tail behaviour of Tn and the related issue of the existence of mo-
ments E|Tn|r , for a parameter r > 0, under more general conditions than the normal assumption.
Motivating questions were the following: Is it generally true that E|Tn|r can only be finite for
r < n − 1? For which kinds of distributions is the converse implication false? Assuming the
often encountered Tn

d−→ T , is it then generally true that E|Tn|r → E|T |r?
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2. Summary

The fundamental result is Theorem 3.1, which presents two conditions, each equivalent to finite-
ness of E|Tn|r . The result is based on a connection between the tail behaviour of Tn and proba-
bilities of having almost identical observations X1, . . . ,Xn. Theorem 4.1 states that finiteness
of E|Tn|r implies finiteness of E|Tn+1|r , and is followed by Theorem 4.2 which states that
t -statistic random variables never possess moments above the degree of freedom unless F is
discrete. It is established in Section 5, under the assumption that F is continuous, that regu-
larity, referring to the degree of heavy-tailedness of t -statistic random variables, is measurable
in terms of the behaviour of certain concentration functions related to F . Theorem 6.2 states
that limn→∞ E|Tn|r = E|T |r whenever there is an integer n0 such that E|Tn0 |r is finite and {Tn}
converges in distribution.

Remark. This paper is an abridged version of [5]. The results found in Section 5 here are there
generalized beyond the continuity assumption. We also refer to [5] for a discussion of related
results previously obtained by H. Hotelling.

3. Characterizing E|Tn|r < ∞ through bounds on P(|Tn| > x)

A close connection exists between Tn and the self-normalized sum Sn/Vn; see Lemma 3.1 (whose
elementary proof we omit). The connection allows E|Tn|r to be expressed with probabilities re-
lating to Sn/Vn, as in Lemma 3.2, revealing that finiteness of E|Tn|r depends on the magnitude of
the probabilities of having Sn/Vn close to ±√

n. Some geometric relations between Sn/Vn close
to ±√

n and almost identical observations X1, . . . ,Xn are then given in Lemmas 3.3 and 3.4.

Lemma 3.1. Define

Vn =
(

n∑
i=1

X2
i

)1/2

, U∗
n =

{
0, Sn/Vn = n or Vn = 0,
(Sn/Vn)

2, otherwise.

It then holds, for any x ≥ 0, that T 2
n > x if and only if U∗

n > nx/(n + x − 1).

Lemma 3.2. For r > 0 and U∗
n as in Lemma 3.1,

E|Tn|r = r

2
n(n − 1)r/2

∫ n

0
zr/2−1P(U∗

n > z)(n − z)−(r/2+1) dz.

Lemma 3.3. Let x = (x1, . . . , xn) ∈ R
n and h ∈ (0,1) be given such that x1 �= 0 and n−un < h2

with un = (
∑n

i=1 xi)
2/

∑n
i=1 x2

i . Then, with C1 = √
5,

|xi − x1| < hC1|x1| for all i �= 1.

Moreover, C1 = C1(n,h) = √
2 + 2h + h2 is optimal for the conclusion to be valid for all x.
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Lemma 3.4. Let x = (x1, . . . , xn) ∈ R
n and h ∈ (0,1) be given such that, with C2 = 1,

|xi − x1| < C2h|x1|/
√

n − 1 for all i �= 1.

Then n − un < h2 with un = (
∑n

i=1 xi)
2/

∑n
i=1 x2

i . Moreover, in the case where n is odd, C2 =
C2(n,h) must satisfy C2 ≤ √

n/(n − h2) for the conclusion to be valid for all x.

Theorem 3.1. The following three quantities are either all finite or all infinite:

(i) E|Tn|r ;

(ii) E

(
|X1|r

n∧
i=2

|Xi − X1|−r I {|Xi − X1| > 0, some i ≤ n}
)

;

(iii)
∫

x �=0

∫ 1

0
h−(r+1)

((
P(|X − x| < h|x|))n−1 − pn−1

x

)
dhdF(x) with px = P(X = x).

Proof of Lemma 3.2. By [4], Theorem 12.1, Chapter 2, together with Lemma 3.1 and a change
of variables, we have

E|Tn|r = r

2

∫ ∞

0
yr/2−1P(T 2

n > y)dy

= r

2

∫ ∞

0
yr/2−1P

(
U∗

n > ny/(n + y − 1)
)

dy

= r

2
n(n − 1)r/2

∫ n

0
zr/2−1P(U∗

n > z)(n − z)−(r/2+1) dz. �

Proof of Lemma 3.3. We argue by contraposition. Due to the invariance with respect to scaling
of x and permutation of the coordinates x2, . . . , xn, it suffices to prove that

|x2 − x1| ≥ h|x1| 
⇒ n − un ≥ h2/C2
1

with C1 = √
2 + 2h + h2 and that equalities are simultaneously attained. Set x2 = x1 + ε and

x = (x3, . . . , xn). We then minimize n − un with respect to x and ε. Note that

∂(n − un)

∂xj

= −2
∑n

i=1 xi(
∑n

i=1 x2
i − xj

∑n
i=1 xi)

(
∑n

i=1 x2
i )2

. (1)

First, set (1) to zero for j = 3, . . . , n. Since
∑

xi = 0 corresponds to un = 0, which is non-
interesting with respect to the minimization of n − un, these equations reduce to

n∑
i=3

x2
i − xj

n∑
i=3

xi = xj (x1 + x2) − (x2
1 + x2

2) for j = 3, . . . , n. (2)



On the heavy-tailedness of Student’s t -statistic 279

We claim that (2) has the unique solution

xj = (x2
1 + x2

2)/(x1 + x2) = (2x2
1 + 2x1ε + ε2)/(2x1 + ε) for j = 3, . . . , n. (3)

To verify this, assume that x is a solution of (2). Since
∑n

i=3 x2
i and

∑n
i=3 xi do not vary with j ,

x must be of the form xj = const., j = 3, . . . , n. However, the left-hand side of (2) then vanishes
for all j , which gives (3) as the unique solution. Inserting the solution into n − un gives

(n − un)min(ε) = ε2/(x2
1 + x2

2) = ε2/(2x2
1 + 2x1ε + ε2). (4)

It remains to minimize with respect to ε with ε /∈ (−h|x1|, h|x1|). The equation

∂

∂ε

(
ε2

2x2
1 + 2x1ε + ε2

)
= 0

has the unique solution ε = −2x1 which cannot be a minimum since a minimum must sat-
isfy sign(ε) = sign(x1), by the representation (4). The solution is hence obtained for ε =
sign(x1)h|x1|,

(n − un)min = (hx1)
2/

(
x2

1(2 + 2h + h2)
) = h2/(2 + 2h + h2).

It follows that C1 = C1(h) = √
2 + 2h + h2 ≤ √

5 is an optimal constant, as claimed. �

Proof of Lemma 3.4. Assume that

|xi − x1| < C2h|x1|/
√

n − 1 for all i = 2, . . . , n. (5)

The aim is to verify that n−un < h2 with C2 = C2(n,h) optimally large. We therefore maximize
n − un over the rectangular region (5) with x1 �= 0, C2 and h fixed. It suffices to consider the
restriction of n − un to the corners of the region (5) since the maximum attained at a point
y = (y1, . . . , yn) in the interior of the region, or in the interior of an edge, would mean that, for
some j = 2, . . . , n and some η > 0,

∂(n − un)

∂xj

(y) = 0, (6)

∂(n − un)

∂xj

(y1, . . . , yj−1, yj − h,yj+1, . . . , yn) ≥ 0 for all 0 < h < η, (7)

∂(n − un)

∂xj

(y1, . . . , yj−1, yj + h,yj+1, . . . , yn) ≤ 0 for all 0 < h < η. (8)

Recall, from the proof of Lemma 3.3, that

∂(n − un)

∂xj

= −2
∑n

i=1 xi(
∑

i �=j x2
i − xj

∑
i �=j xi)

(
∑n

i=1 x2
i )2

.
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We may assume that C2h <
√

n − 1 since the point xi ≡ 0 would otherwise belong to the region
yielding un = 1, in which case n − un < h2 cannot hold. This implies that sign(xi) = sign(x1)

for all i = 2, . . . , n so that neither
∑

xi nor
∑

i �=j xi change sign within the region. Assume, due
to invariance with respect to scaling, that x1 > 0. Conditions (6)–(8) may then be reformulated
as∑

i �=j

y2
i − yj

∑
i �=j

yi = 0,
∑
i �=j

y2
i − (yj − h)

∑
i �=j

yi < 0,
∑
i �=j

y2
i − (yj + h)

∑
i �=j

yi > 0,

which is contradictory since h > 0 and
∑

i �=j yi > 0.
Now, consider the restriction of n − un to the corners of the region (5). Set k := |{i :xi =

x1 + ε}| − |{i :xi = x1 − ε}| so that

n − un = n(nx2
1 + (n − 1)ε2 + 2kεx1) − (nx1 + kε)2

nx2
1 + (n − 1)ε2 + 2kεx1

(9)

= ε2(n(n − 1) − k2)

nx2
1 + (n − 1)ε2 + 2kεx1

= h2C2
2(n − k2/(n − 1))

n + C2
2h2 + 2kC2h/

√
n − 1

.

Take C2 = 1 in (9) and z = k(n − 1)−1/2. Algebraic manipulations yield

n − k2/(n − 1)

n + h2 + 2kh/
√

n − 1
≤ 1 ⇐⇒ (h + z)2 ≥ 0

so that C2 = 1 is sufficiently small for the desired bound n − un < h2. We find, by taking k = 0
in (9) (which is possible when n is odd) that

C2
2n/(n + C2

2h2) ≤ 1 ⇐⇒ C2
2 ≤ n/(n − h2)

so that C2 ≤ √
n/(n − h2) is then necessary for n − un < h2 to hold. �

Proof of Theorem 3.1. We first deduce the equivalence between (i) and (iii). By Lemma 3.2, we
find that E|Tn|r < ∞ is equivalent to, for some δ < 1,∫ n

n−δ

zr/2−1P(U∗
n > z)(n − z)−(r/2+1) dz < ∞ ⇐⇒

∫ δ

0
h−(r+1)P(n − U∗

n < h2)dh < ∞,

which, in turn, is equivalent to∫ ∫ δ

0
h−(r+1)P(0 < n − Un < h2 | X1 = x)dhdF(x) < ∞. (10)

The event X1 = 0 implies Un ≤ n − 1 by the Cauchy–Schwarz inequality so that (10) reduces to∫
x �=0

∫ δ

0
h−(r+1)P(0 < n − Un < h2 | X1 = x)dhdF(x) < ∞,



On the heavy-tailedness of Student’s t-statistic 281

which is equivalent to

∫
x �=0

∫ δ

0
h−(r+1)P(n − Un < h2 | X1 = x) − pn−1

x dhdF(x) < ∞

since Un = n corresponds to Xi = X1 with px = P(X = x). Finally, apply Lemmas 3.3 and 3.4,
and set δ = 1 to arrive at condition (iii).

For the equivalence between (ii) and (iii), define An = {|Xi − X1| > 0, some i ≤ n}. Condi-
tion on X1 and convert expectation into integration of tail probabilities (cf. [4], Theorem 12.1,
Chapter 2):

E

(
|X1|r

n∧
i=2

|Xi − X1|−r IAn

)
=

∫
x �=0

E

(
n∧

i=2

(|Xi − x||x|−1)−r IAn

)
dF(x)

= r

∫
x �=0

∫ ∞

0
h−(r+1)

(
P(|X − x| < h|x|)n−1 − pn−1

x dhdF(x).

The equivalence between (ii) and (iii) then follows from the fact that∫
x �=0

∫ ∞

1
h−(r+1)

(
P(|X − x| < h|x|))n−1

dhdF(x)

≤
∫

x �=0

∫ ∞

1
h−(r+1) dhdF(x) < ∞. �

4. Two general facts regarding finiteness of E|Tn|r
Theorem 4.1. For any couple (n, r) ∈ N≥2 × R

+, if E|Tn|r is finite, then so is E|Tn+1|r .

Proof. Due to Theorem 3.1, it suffices to show that

E

[
|X1|r

n∧
i=2

|Xi − X1|−r IAn

]
< ∞ 
⇒ E

[
|X1|r

n+1∧
i=2

|Xi − X1|−r IAn+1

]
< ∞, (11)

where Ak := {|Xi − X1| > 0, some i ≤ k}. Define A′
n = {|Xi − X1| > 0, some 3 ≤ i ≤ n + 1}. It

follows that An+1 = An ∪ A′
n so that IAn+1 ≤ IAn + IA′

n
, which gives

E

[
|X1|r

n+1∧
i=2

|Xi − X1|−r IAn+1

]

≤ E

[
|X1|r

n+1∧
i=2

|Xi − X1|−r IAn

]
+ E

[
|X1|r

n+1∧
i=2

|Xi − X1|−r IA′
n

]
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≤ E

[
|X1|r

n∧
i=2

|Xi − X1|−r IAn

]
+ E

[
|X1|r

n+1∧
i=3

|Xi − X1|−r IA′
n

]

= 2E

[
|X1|r

n∧
i=2

|Xi − X1|−r IAn

]
.

The conclusion follows. �

Theorem 4.2. Assume that F decomposes into Fd + Fc, with discrete and continuous mea-
sures Fd and Fc, respectively, and that Fc �≡ 0. It is then necessary that r < n − 1 for E|Tn|r to
be finite.

Proof. Let Fc have total mass ε > 0. It suffices to verify that E|Tn|n−1 is infinite, which, by
Theorem 3.1, is equivalent to

∫
x �=0

∫ 1

0
h−n

((
P(|X − x| < h|x|))n−1 − pn−1

x

)
dhdF(x) = ∞.

The last identity is a consequence of

∫ ∫ 1

0
h−n

(
P(|X − x| < h|x|))n−1 dhdFc(x) = ∞. (12)

To verify (12), consider the restriction of Fc to a set [−C,−1/C] ∪ [1/C,C] with C sufficiently
large so that the restricted measure still has positive mass. It then suffices to establish the condi-
tion∫ (

P(|X − x| < h)h−1)n−1
dFc(x) > ηn for all h and some constant ηn = ηn(Fc,n). (13)

First, consider n = 2. Discretize [−C,C] uniformly with interval length h, that is, put xk = hk

for k ∈ [−N,N ] and N = �Ch−1�. Then

∫
P(|Xc − x| < h)dFc(x) =

k=N∑
k=−N

∫ xk

xk−1

P(|Xc − x| < h)dFc(x)

≥
k=N∑

k=−N

∫ xk

xk−1

P
(
Xc ∈ (xk−1, xk]

)
dFc(x)

=
k=N∑

k=−N

(
P
(
Xc ∈ (xk−1, xk]

))2
.
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Applying the Cauchy–Schwarz inequality, we obtain

k=N∑
k=−N

(
P(Xc ∈ (xk−1, xk])

)2 ≥
(

k=N∑
k=−N

P
(
Xc ∈ (xk−1, xk]

))2

(2N)−1 = ε2(2N)−1 ≥ C−1ε2h.

Conclusion (13) follows with η2 = C−1ε2. For n > 2, an application of the Hölder inequality
yields

ηn−1
2 ≤

(∫
P(|Xc − x| < h)h−1 dFc(x)

)n−1

≤ εn−2
∫ (

P(|Xc − x| < h)h−1)n−1 dFc(x).

The desired conclusion (13) follows with ηn = ηn−1
2 ε2−n. �

5. Regularity and concentration functions

Definition 5.1. Given the distribution of a random variable X, define the concentration func-
tions q and Q, for real-valued arguments h ≥ 0, by

Q(h) = sup
x

P(|X − x| ≤ h), q(h) = sup
x

P(|X − x| ≤ |x|h).

Q is known as the Lévy concentration function. Theorem 5.1 below characterizes finiteness of
E|Tn|r in terms of the limiting behaviour of q(h) as h tends to zero. Note that a statement of the
kind “Q(h) = O(hλ)” (for some λ ≤ 1) refers to the local behaviour of the distribution. The most
regular behaviour in this respect is that of an absolutely continuous distribution with bounded
density function, in which case Q(h) = O(h), while λ < 1 typically corresponds to one or several
“explosions” of the density function. The Cantor distributions also form fundamental examples of
such irregularity (cf. [5], pages 29–31). The parameter λ has, in this sense, a meaning of “degree
of irregularity” concerning the distribution, with smaller values of λ indicating higher degrees
of irregularity. A statement q(h) = O(hλ), on the other hand, also has a global component. It
requires more regularity of the distribution “at infinity” compared with Q(h) = O(hλ), while, at
the same time, being less restrictive regarding the local behaviour of the distribution at the origin.

Theorem 5.1. The following two implications hold for any continuous probability measure F :

(i) q(h) = O(hλ) for some λ > r/(n − 1) 
⇒ E|Tn|r < ∞;
(ii) E|Tn|r < ∞ 
⇒ q(h) = O(hλ) with λ = r/n.

A simple criterion guaranteeing the optimal q(h) = O(h) is given by the following proposi-
tion.

Proposition 5.1. The property q(h) = O(h) is obtained for any absolutely continuous distribu-
tion F with bounded density function f satisfying the assumption of a positive constant N such
that

f (x2) ≤ f (x1) for any x1, x2 such that N ≤ x1 ≤ x2 or − N ≥ x1 ≥ x2. (14)
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Proof of Theorem 5.1. For (i), condition (iii) of Theorem 3.1 reads, by continuity,

∫
x �=0

∫ 1

0
h−(r+1)

(
P(|X − x| < h|x|))n−1 dhdF(x) < ∞. (15)

Applying the assumption on q to the integrand yields

∫
x �=0

∫ 1

0
h−(r+1)

(
P(|X − x| < h|x|))n−1 dhdF(x)

≤ C

∫
x �=0

∫ 1

0
h−(r+1)hλ(n−1) dhdF(x) = C

∫ 1

0
h−(r+1)hλ(n−1) dh

= C/
(
λ(n − 1) − r

)
,

which proves (15). To verify the second implication, we argue by contraposition. Assume that

q(h) �= O(hλ) with λ = r/n. (16)

It suffices, by condition (ii) of Theorem 3.1 and the assumption of continuity, to prove that

E

(
|X1|r

n∧
i=2

|Xi − X1|−r

)
= ∞. (17)

Statement (16) is equivalent to the existence of sequences {xk}k≥1 and {hk}k≥1 such that

1/2 > hk > 0, lim
k→∞hk = 0, lim

k→∞h
−r/n
k P(|X − xk| ≤ |xk|hk) = ∞. (18)

Define intervals Ik = (xk − |xk|hk, xk + |xk|hk). It then follows that for some K and all k ≥ K ,

E

(
|X1|r

n∧
i=2

|Xi − X1|−r

)
≥ E

(
|X1|r

n∧
i=2

|Xi − X1|−r I {Xi ∈ Ik, all i}
)

≥ 2−1|xk|rE

(
n∧

i=2

|Xi − X1|−r I {Xi ∈ Ik, all i}
)

≥ 2−(r+1)|xk|rh−r
k |xk|−rE(I {Xi ∈ Ik, all i})

= 2−(r+1)h−r
k

(
P(|X − xk| ≤ |xk|hk)

)n
.

We conclude from (18) that (17) holds. �

Proof of Proposition 5.1. It follows that, for x > N ,

f (x)(x − N) ≤
∫ x

N

f (y)dy ≤ 1, f (−x)(x − N) ≤
∫ −N

−x

f (y)dy ≤ 1,
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so that f (x)|x| ≤ C. Consequently, assuming that x > 2N and h ≤ 1/2, we have

P(|X − x| ≤ |x|h) =
∫ |x|(1+h)

|x|(1−h)

f (y)dy ≤ 2C

|x|
∫ |x|(1+h)

|x|(1−h)

dy = 4Ch. (19)

Regarding 0 ≤ x ≤ 2N , we use the fact that f is bounded, f ≤ M , so that

P(|X − x| ≤ |x|h) =
∫ |x|(1+h)

|x|(1−h)

f (y)dy ≤ M

∫ 2N(1+h)

2N(1−h)

dy = 4MNh. (20)

Bounds analogous to (19) and (20) follow for negative x, which proves that q(h) = O(h). �

6. Convergence

Convergence in distribution of {Tn} to a random variable T (e.g., standard normally distributed)
is, due to Lemma 3.2, equivalent to convergence of {Sn/Vn} to T . A complete classification in
terms of possible limit distributions with corresponding conditions on F was given recently by
Chistyakov and Götze (see [1]). The following interesting property was derived somewhat earlier
by Giné, Götze and Mason in [3].

Theorem 6.1. Let a distribution F be given such that Sn/Vn →d T . The sequence {Sn/Vn} is
then sub-Gaussian, in the sense that, for some constant C, supn E[exp (tSn/Vn)] ≤ 2 exp (Ct2).

Corollary 6.1. For any F satisfying the condition of Theorem 6.1 with respect to a random
variable T and any r > 0, limn→∞ E|Sn/Vn|r = E|T |r < ∞.

Proof. The result follows from Theorem 6.1 and general properties of integration; see, for ex-
ample, [4], Theorem 5.9, Chapter 5, or [4], Corollary 4.1, Chapter 5. �

We are now ready for the main result of this section.

Theorem 6.2. Let F , T and r be given as in Corollary 6.1. If E|Tn0 |r is finite for some n0 ≥ 2,
then limn→∞ E|Tn|r = E|T |r .

Proof. The case “X = constant”, which leads to Tn ≡ 0, is degenerate and is henceforth ex-
cluded. Recall, from Lemma 3.2, that

E|Tn|r = r

2
n(n − 1)r/2

∫ n

0
zr/2−1P(U∗

n > z)(n − z)−(r/2+1) dz.

We split the desired conclusion limn→∞ E|Tn|r = E|T |r into the two conditions

lim
n→∞

r

2
nr/2+1

∫ n−δ

0
zr/2−1P(U∗

n > z)(n − z)−(r/2+1) dz = E|T |r for any 0 < δ < 1, (21)

lim
n→∞nr

∫ n

n−δ

P(U∗
n > z)(n − z)−(r/2+1) dz = 0 for some 0 < δ < 1. (22)
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Replace (22), via a change of variables n − z = h2, by the condition

lim
n→∞nr

∫ δ

0
h−(r+1)P(n − U∗

n < h2)dz = 0 for some 0 < δ < 1,

which, in turn, by the same steps as in the proof of Theorem 3.1, we find to be equivalent to

lim
n→∞Rn,δ = 0,

(23)

Rn,δ :=
∫

x �=0

∫ δ

0
nrh−(r+1)

((
P(|X − x| < h|x|))n−1 − pn−1

x

)
dhdF(x)

for some 0 < δ < 1 (with px = P(X = x)). We separate the verifications of (21) and (23) into
Lemmas 6.2 and 6.1, respectively. Note that the assumption E|Tn0 |r < ∞, via Theorems 3.1
and 4.1, implies that Rn,ε < ∞ for all (n, ε) ∈ N≥n0 × R

+. The proof of Theorem 6.2 is hence
completed by applying Lemmas 6.1 and 6.2. �

Lemma 6.1. Assume that there exists n0 ≥ 2 such that Rn,ε < ∞ for all (n, ε) ∈ N≥n0 × R
+.

There then also exists δ > 0 such that limn→∞ Rn,δ = 0.

Lemma 6.2. Statement (21) is a consequence of Corollary 6.1.

Proof of Lemma 6.1. We arrive at the conclusion from Lebesgue’s dominated convergence
theorem, [2], Theorem 2.4.4, page 72, by establishing that the integrand

nrh−(r+1)
((

P(|X − x| < h|x|))n−1 − pn−1
x

)
(24)

for some choice of δ and all h ≤ δ, is pointwise decreasing in n for sufficiently large n and
pointwise converging to 0 as n tends to infinity. To this end, define πx = P(|X − x| < h|x|),
gx(y) = yr(π

y
x − p

y
x ), λ1 = − logπx , λ2 = − logpx . To see that pointwise convergence to 0

holds, note that for some δ and some η > 0,

πx < 1 − η for all x and all h < δ. (25)

Condition (25) indeed prevails, except in the case where F is degenerate with total mass at a
single point. Given δ sufficiently small, πn−1

x −pn−1
x therefore decays exponentially in n, which

yields pointwise convergence to 0 of (24). The decreasing behaviour is equivalent to the existence
of y0 ≥ 0 such that

gx(y1) ≥ gx(y2) for all y1, y2 such that y0 ≤ y1 ≤ y2. (26)

To verify (26), note that

g′
x(y) = −yr(λ1e−λ1y − λ2e−λ2y) + ryr−1(e−λ1y − e−λ2y) = fy(λ2) − fy(λ1) (27)
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with fy(λ) := e−λy(λyr − ryr−1) and furthermore that

f ′
y(λ) = e−λy(yr − λyr+1 + ryr ) = e−λy

(
(r + 1)yr − λyr+1). (28)

We verify (26) using the fact that f ′
y(λ) < 0 for λ1 ≤ λ ≤ λ2, which, by (28), is satisfied for

y > y0, provided λ1 > η for some η > 0. The latter condition is equivalent to (25). �

Proof of Lemma 6.2. It follows from Corollary 6.1 with Un = S2
n/V 2

n that

lim
n→∞

r

2

∫ n

0
zr/2−1P(Un > z)dz = E|T |r for all r > 0. (29)

Define En = {X1 = X2 = · · · = Xn �= 0} so that P(Un > z) = P(U∗
n > z) + P(En) for 0 < z < n.

The desired conclusion is hence established by showing that for all r > 0,

lim
n→∞nr/2+1

∫ n−δ

0
zr/2−1P(En)(n − z)−(r/2+1) dz = 0, (30)

lim
n→∞

∫ n−δ

0
zr/2−1P(Un > z)

(
nr/2+1(n − z)−(r/2+1) − 1

)
dz = 0, (31)

lim
n→∞

∫ n

n−δ

zr/2−1P(Un > z)dz = 0. (32)

Starting with (30), let {ak}k≥1 be a denumeration of all non-zero points attributed mass by F and
define pk = P(X = ak), p = supk≥1 pk . It follows that p < 1 since X is not constant. Moreover,

P(En) =
∑
k≥1

pn
k ≤ pn−1

∑
k≥1

pk ≤ pn−1.

This shows that P(En) decays exponentially in n. However, the quantities

n(n − 1)r/2
∫ n−δ

0
z(r−2)/2(n − z)−(r+2)/2 dz

are all finite and grow with polynomial rate as n grows. Conclusion (30) follows. Statement (32)
may be deduced from (29) in the following way:∫ n

n−δ

zr/2−1P(Un > z)dz ≤ (n − δ)−1
∫ n

n−δ

zr/2P(Un > z)dz ≤ (n − δ)−1Cr+2,

where the constant Cr+2 stems from the identity in (29) with r replaced by r + 2. It remains to
prove (31), which we split into

lim
n→∞

∫ 1

0
z(r/2−1)P(Un > z)

(
n(n − 1)r/2(n − z)−(r/2+1) − 1

)
dz = 0, (33)

lim
n→∞

∫ n−δ

1
zr/2−1P(Un > z)

(
n(n − 1)r/2(n − z)−(r/2+1) − 1

)
dz = 0. (34)
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Statement (33) follows from Lebesgue’s dominated convergence theorem, [2], Theorem 2.4.4,
page 72. To verify (34), we introduce the notation

fn(z) = zr/2−1P(Un > z)
(
n(n − 1)r/2(n − z)−(r/2+1) − 1

)
IDn,

Dn = {z : 1 ≤ z ≤ (n − δ)}, gn(z) = zrP(Un > z)IDn, g(z) = zrP(T 2 > z)IDn.

The desired conclusion (34) is now written as (36), while (37) follows from the assumptions,
(29) and the elementary inequalities (35):

(n − 1)/
(
z(n − z)

) ≤ (n − 1)/
(
δ(n − δ)

) ≤ C when z ∈ Dn, (35)

lim
n→∞

∫
fn = 0, (36)

∫
gn →

∫
g, gn → g, fn → 0, |fn| ≤ C1gn. (37)

By a technique called Pratt’s lemma, Fatou’s lemma, [2], Theorem 2.4.3, page 72, and (37) then
give

C1

∫
g =

∫
lim inf

n
(C1gn − fn) ≤ lim inf

n

∫
(C1gn − fn) = C1

∫
g − lim sup

n

∫
fn, (38)

C1

∫
g =

∫
lim inf

n
(C1gn + fn) ≤ lim inf

n

∫
(C1gn + fn) = C1

∫
g + lim inf

n

∫
fn. (39)

Statement (36) follows from (38) and (39). �
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