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We use Rice formulae in order to compute the moments of some level functionals which are linked to prob-
lems in oceanography and optics: the number of specular points in one and two dimensions, the distribution
of the normal angle of level curves and the number of dislocations in random wavefronts. We compute
expectations and, in some cases, also second moments of such functionals. Moments of order greater than
one are more involved, but one needs them whenever one wants to perform statistical inference on some
parameters in the model or to test the model itself. In some cases, we are able to use these computations to
obtain a central limit theorem.
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1. Introduction

Many problems in applied mathematics require estimations of the number of points, the length,
the volume and so on, of the level sets of a random function {W(x) : x ∈ R

d}, or of some func-
tionals defined on them. Let us mention some examples which illustrate this general situation:

1. A first example in dimension one is the number of times that a random process
{X(t) : t ∈ R} crosses the level u:

NX
A (u) = #{s ∈ A :X(s) = u}.

Generally speaking, the probability distribution of the random variable NX
A (u) is unknown, even

for simple models of the underlying process. However, there exist some formulae to compute
E(NX

A ) and also higher order moments; see, for example, [6].
2. A particular case is the number of specular points of a random curve or a random surface.

Consider first the case of a random curve. A light source placed at (0, h1) emits a ray that is
reflected at the point (x,W(x)) of the curve and the reflected ray is registered by an observer
placed at (0, h2). Using the equality between the angles of incidence and reflection with respect
to the normal vector to the curve (i.e., N(x) = (−W ′(x),1)), an elementary computation gives

W ′(x) = α2r1 − α1r2

x(r2 − r1)
, (1)

where αi := hi − W(x) and ri :=
√

x2 + α2
i , i = 1,2. The points (x,W(x)) of the curve such

that x is a solution of (1) are called “specular points”. For each Borel subset A of the real line,
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we denote by SP1(A) the number of specular points belonging to A. One of our aims is to study
the probability distribution of SP1(A).

3. The following approximation, which turns out to be very accurate in practice for ocean
waves, was introduced some time ago by Longuet-Higgins ([10,11]; see also [9]). If we suppose
that h1 and h2 are large with respect to W(x) and x, then ri = αi + x2/(2αi) + O(h−3

i ). (1) can
then be approximated by

W ′(x) � x

2

α1 + α2

α1α2
� x

2

h1 + h2

h1h2
= kx, where k := 1

2

(
1

h1
+ 1

h2

)
. (2)

Set Y(x) := W ′(x) − kx and let SP2(A) denote the number of roots of Y(x) belonging to the set
A, an approximation of SP1(A) under this asymptotic. The first part of Section 2 below will be
devoted to obtaining some results on the distribution of the random variable SP2(R).

4. Let W :Q ⊂ R
d → R

d ′
with d > d ′ be a random field and define the level set

CW
Q (u) = {x ∈ Q :W(x) = u}.

Under certain general conditions, this set is a (d − d ′)-dimensional manifold, but, in any case,
its (d − d ′)-dimensional Hausdorff measure is well defined. We denote this measure by σd−d ′ .
Our interest will be in computing the mean of the σd−d ′ -measure of this level set, that is,
E[σd−d ′(CW

Q (u))], as well as its higher moments. It will also be of interest to compute

E

[∫
CW

Q (u)

Y (s)dσd−d ′(s)

]
,

where Y(s) is some random field defined on the level set. One can find formulae of this type, as
well as a certain number of applications, in [5,14] (d ′ = 1), [3], Chapter 6, and [1].

5. Another set of interesting problems is related to phase singularities of random wavefronts.
These correspond to lines of darkness in light propagation, or threads of silence in sound prop-
agation [4]. In a mathematical framework, they can be defined as the locations of points where
the amplitudes of waves vanish. If we represent a wave as

W(x, t) = ξ(x, t) + iη(x, t), x ∈ R
d,

where ξ, η are independent homogenous Gaussian random fields, then the dislocations are the
intersections of the two random surfaces ξ(x, t) = 0, η(x, t) = 0. Here, we only consider the
case d = 2. At fixed time, say t = 0, we will compute the expectation of the random variable
#{x ∈ S : ξ(x,0) = η(x,0) = 0}.

The aim of this paper is threefold: (a) to re-formulate some known results in a modern lan-
guage; (b) to prove a certain number of new results, both for the exact and approximate models,
especially variance computations in cases in which only first moments have been known until
now, thus contributing to improve the statistical methods derived from the probabilistic results;
(c) in some cases, to prove a central limit theorem.

Rice formulae are our basic tools. For statements and proofs, we refer to the recent book [3].
On the other hand, we are not giving full proofs since the required computations are quite long
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and involved; one can find details and some other examples that we do not treat here in [2].
For numerical computations, we use MATLAB programs which are available at the site http:
//www.math.univ-toulouse.fr/~azais/prog/programs.html.

In what follows, λd denotes the Lebesgue measure in R
d , σd ′(B) the d ′-dimensional Hausdorff

measure of a Borel set B and MT the transpose of a matrix M . (const) is a positive constant
whose value may change from one occurrence to another. pξ (x) is the density of the random
variable or vector ξ at the point x, whenever it exists. If not otherwise stated, all random fields
are assumed to be Gaussian and centered.

2. Specular points in dimension one

2.1. Expectation of the number of specular points

We first consider the Longuet-Higgins approximation (2) of the number of SP (x,W(x)), that is,

SP2(I ) = #{x ∈ I :Y(x) = W ′(x) − kx = 0}.
We assume that {W(x) :x ∈ R} has C 2 paths and is stationary. The Rice formula for the first
moment ([3], Theorem 3.2) then applies and gives

E(SP2(I )) =
∫

I

E
(|Y ′(x)||Y(x) = 0

)
pY(x)(0)dx =

∫
I

E(|Y ′(x)|) 1√
λ2

ϕ

(
kx√
λ2

)
dx

(3)

=
∫

I

G
(−k,

√
λ4

) 1√
λ2

ϕ

(
kx√
λ2

)
dx,

where λ2 and λ4 are the spectral moments of W and

G(μ,σ) := E(|Z|), Z ∼ N(μ,σ 2) = μ[2�(μ/σ) − 1] + 2σϕ(μ/σ), (4)

where ϕ(·) and �(·) are respectively the density and cumulative distribution functions of the
standard Gaussian distribution.

If we look at the total number of specular points over the whole line, we get

E(SP2(R)) = G(k,
√

λ4)

k
�

√
2λ4

π

1

k

(
1 + 1

2

k2

λ4
+ 1

24

k4

λ2
4

+ · · ·
)

, (5)

which is the result given in [10], part II, formula (2.14), page 846. Note that this quantity is an

increasing function of
√

λ4
k

.
We now turn to the computation of the expectation of the number of specular points SP1(I ) de-

fined by (1). It is equal to the number of zeros of the process {Z(x) := W ′(x)−m1(x,W(x)) :x ∈
R}, where

m1(x,w) = x2 − (h1 − w)(h2 − w) + √[x2 + (h1 − w)2][x2 + (h2 − w)2]
x(h1 + h2 − 2w)

.

http://www.math.univ-toulouse.fr/~azais/prog/programs.html
http://www.math.univ-toulouse.fr/~azais/prog/programs.html
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Assume that the process {W(x) :x ∈ R} is Gaussian, centered and stationary, with λ0 = 1. The
process Z is not Gaussian, so we use [3], Theorem 3.4, to get

E(SP1([a, b])) =
∫ b

a

dx

∫ +∞

−∞
E

(|Z′(x)||Z(x) = 0,W(x) = w
)

(6)

× 1√
2π

e−w2/2 1√
2πλ2

e−m2
1(x,w)/(2λ2) dw.

For the conditional expectation in (6), note that

Z′(x) = W ′′(x) − ∂m1

∂x
(x,W(x)) − ∂m1

∂w
(x,W(x))W ′(x)

so that under the condition {Z(x) = 0,W(x) = w}, we get

Z′(x) = W ′′(x) − K(x,w), where K(x,w) = ∂m1

∂x
(x,w) + ∂m1

∂w
(x,w)m1(x,w).

Once again, using Gaussian regression, we can write (6) in the form

E(SP1([a, b])) = 1

2π

√
λ4 − λ2

2

λ2

∫ b

a

dx

∫ +∞

−∞
G(m,1) exp

(
−1

2

(
w2 + m2

1(x,w)

λ2

))
dw, (7)

where m = m(x,w) = (λ2w +K(x,w))/

√
λ4 − λ2

2 and G is defined in (4). In (7), the integral is
convergent as a → −∞, b → +∞ and this formula is well adapted to numerical approximation.

We have performed some numerical computations to compare the exact expectation given
by (7) with the approximation (3) in the stationary case. The result depends on h1, h2, λ4 and
λ2, and, after scaling, we can assume that λ2 = 1. When h1 ≈ h2, the approximation (3) is
very sharp. For example, if h1 = 100, h2 = 100, λ4 = 3, the expectation of the total number of
specular points over R is 138.2; using the approximation (5), the result with the exact formula
is around 2.10−2 larger (this is the same order as the error in the computation of the integral).
For h1 = 90, h2 = 110, λ4 = 3, the results are 136.81 and 137.7, respectively. If h1 = 100, h2 =
300, λ4 = 3, the results differ significantly and Figure 1 displays the densities in the integrand of
(6) and (3) as functions of x.

2.2. Variance of the number of specular points

We assume that the covariance function E(W(x)W(y)) = 
(x − y) has enough regularity to
perform the computations below, the precise requirements being given in the statement of Theo-
rem 1.

Writing, for short, S = SP2(R), we have

Var(S) = E
(
S(S − 1)

) + E(S) − [E(S)]2. (8)
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Figure 1. Intensity of specular points in the case h1 = 100, h2 = 300, λ4 = 3. Solid line corresponds to the
exact formula, dashed line corresponds to the approximation (3).

Using [3], Theorem 3.2, we have

E
(
S(S − 1)

) =
∫

R2
E

(|W ′′(x) − k||W ′′(y) − k||W ′(x) = kx,W ′(y) = ky
)

(9)
× pW ′(x),W ′(y)(kx, ky)dx dy,

where

pW ′(x),W ′(y)(kx, ky)
(10)

= 1

2π

√
λ2

2 − 
′′2(x − y)

exp

[
−1

2

k2(λ2x
2 + 2
′′2(x − y)xy + λ2y

2)

λ2
2 − 
′′2(x − y)

]
,

under the condition that the density (10) does not degenerate for x �= y.
For the conditional expectation in (9), we perform a Gaussian regression of W ′′(x) (resp.,

W ′′(y)) on the pair (W ′(x),W ′(y)). Putting z = x − y, we obtain

W ′′(x) = θy(x) + ay(x)W ′(x) + by(x)W ′(y),

ay(x) = −
′′′(z)
′′(z)
λ2

2 − 
′′2(z)
, by(x) = − λ2


′′′(z)
λ2

2 − 
′′2(z)
,

where θy(x) is Gaussian centered, independent of (W ′(x),W ′(y)). The regression of W ′′(y) is
obtained by permuting x and y.
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The conditional expectation in (9) can now be rewritten as an unconditional expectation:

E

{∣∣∣∣θy(x) − k
′′′(z)
[

1 + 
′′(z)x + λ2y

λ2
2 − 
′′2(z)

]∣∣∣∣
∣∣∣∣θx(y) − k
′′′(−z)

[
1 + 
′′(−z)y + λ2x

λ2
2 − 
′′2(z)

]∣∣∣∣
}
. (11)

Note that the singularity on the diagonal x = y is removable since a Taylor expansion shows that
for z ≈ 0,


′′′(z)
[

1 + 
′′(z)x + λ2y

λ2
2 − 
′′2(z)

]
= 1

2

λ4

λ2
x
(
z + O(z3)

)
. (12)

It can be checked that

σ 2(z) = E((θy(x))2) = E((θx(y))2) = λ4 − λ2

′′′2(z)

λ2
2 − 
′′2(z)

, (13)

E(θy(x)θx(y)) = 
(4)(z) + 
′′′2(z)
′′(z)
λ2

2 − 
′′2(z)
. (14)

Moreover, if λ6 < +∞, we can show that as z ≈ 0, we have

σ 2(z) ≈ 1

4

λ2λ6 − λ2
4

λ2
z2 (15)

and it follows that the singularity on the diagonal of the integrand in the right-hand side of (9) is
also removable.

We will make use of the following auxiliary statement that we state as a lemma for further
reference. The proof requires some calculations, but is elementary, so we omit it. The value of
H(ρ;0,0) can be found in, for example, [6], pages 211–212.

Lemma 1. Let

H(ρ;μ,ν) = E(|ξ + μ||η + ν|),
where the pair (ξ, η) is centered Gaussian, E(ξ2) = E(η2) = 1,E(ξη) = ρ.

Then, if μ2 + ν2 ≤ 1 and 0 ≤ ρ ≤ 1,

H(ρ;μ,ν) = H(ρ;0,0) + R2(ρ;μ,ν),

where

H(ρ;0,0) = 2

π

√
1 − ρ2 + 2ρ

π
arctan

ρ√
1 − ρ2

and |R2(ρ;μ,ν)| ≤ 3(μ2 + ν2).

In the next theorem, we compute the equivalent of the variance of the number of specular
points, under certain hypotheses on the random process W and with the Longuet-Higgins as-
ymptotic. This result is new and useful for estimation purposes since it implies that, as k → 0,
the coefficient of variation of the random variable S tends to zero at a known speed. Moreover, it
will also appear in a natural way when normalizing S to obtain a central limit theorem.
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Theorem 1. Assume that the centered Gaussian stationary process W = {W(x) :x ∈ R} is δ-
dependent, that is, 
(z) = 0 if |z| > δ, and that it has C 4-paths. Then, as k → 0, we have

Var(S) = θ
1

k
+ O(1), (16)

where

θ =
(

J√
2

+
√

2λ4

π
− 2δλ4√

π3λ2

)
, J =

∫ +δ

−δ

σ 2(z)H(ρ(z);0,0))√
2π(λ2 + 
′′(z))

dz,

ρ(z) = 1

σ 2(z)

[

(4)(z) + 
′′′(z)2
′′(z)

λ2
2 − 
′′2(z)

]
,

σ 2(z) is defined in (13) and H is defined in Lemma 1. Moreover, as k → 0, we have

√
Var(S)

E(S)
≈ √

θk.

Remarks.

(1) The δ-dependence hypothesis can be replaced by some weaker mixing condition, such as∣∣
(i)(z)
∣∣ ≤ (const)(1 + |z|)−α (0 ≤ i ≤ 4)

for some α > 1, in which case the value of θ should be

θ =
√

2λ4

π
+ 1√

π

∫ +∞

−∞

[
σ 2(z)H(ρ(z);0,0)

2
√

λ2 + 
′′(z)
− 1

π

λ4√
λ2

]
dz.

The proof of this extension can be constructed along the same lines as the one we give
below, with some additional computations.

(2) The above computations complete the study done in [10] (Theorem 4). In [9], the random
variable SP2(I ) is expanded in the Wiener–Hermite chaos. The aforementioned expansion
yields the same formula for the expectation and also allows a formula to be obtained for
the variance. However, this expansion is difficult to manipulate in order to get the result
of Theorem 1.

Proof of Theorem 1. We use the notation and the computations preceding the statement of the
theorem.

Divide the integral on the right-hand side of (9) into two parts, corresponding to |x − y| > δ

and |x − y| ≤ δ, that is,

E
(
S(S − 1)

) =
∫ ∫

|x−y|>δ

· · · +
∫ ∫

|x−y|≤δ

· · · = I1 + I2. (17)
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In the first term, the δ-dependence of the process implies that one can factorize the conditional
expectation and the density in the integrand. Taking into account that for each x ∈ R, the random
variables W ′′(x) and W ′(x) are independent, we obtain for I1

I1 =
∫ ∫

|x−y|>δ

E
(|W ′′(x) − k|)E(|W ′′(y) − k|)pW ′(x)(kx)pW ′(y)(ky)dx dy.

On the other hand, we know that W ′(x) (resp., W ′′(x)) is centered normal with variance λ2

(resp., λ4). Hence,

I1 = [
G

(
k,

√
λ4

)]2
∫ ∫

|x−y|>δ

1

2πλ2
exp

[
−1

2

k2(x2 + y2)

λ2

]
dx dy.

To compute the integral on the right-hand side, note that the integral over the whole x, y plane
is equal to 1/k2 so that it suffices to compute the integral over the set |x − y| ≤ δ. Changing
variables, this last integral is equal to

∫ +∞

−∞
dx

∫ x+δ

x−δ

1

2πλ2
exp

[
−1

2

k2(x2 + y2)

λ2

]
dy = δ

k
√

λ2π
+ O(1),

where the last term is bounded if k is bounded (remember that we are considering an approxima-
tion in which k ≈ 0). Therefore, we can conclude that

∫ ∫
|x−y|>δ

1

2πλ2
exp

[
−1

2

k2(x2 + y2)

λ2

]
dx dy = 1

k2
− δ

k
√

λ2π
+ O(1),

from which we deduce, performing a Taylor expansion, that

I1 = 2λ4

π

[
1

k2
− δ

k
√

λ2π
+ O(1)

]
. (18)

Let us now turn to I2. Using Lemma 1 and the equivalences (12) and (15), whenever |z| =
|x − y| ≤ δ, the integrand on the right-hand side of (9) is bounded by

(const)[H(ρ(z);0,0) + k2(x2 + y2)].

We divide the integral I2 into two parts.
First, on the set {(x, y) : |x| ≤ 2δ, |x − y| ≤ δ}, the integral is clearly bounded by some con-

stant.
Second, we consider the integral on the set {(x, y) :x > 2δ, |x −y| ≤ δ}. (The symmetric case,

replacing x > 2δ by x < −2δ, is similar – that is the reason for the factor 2 in what follows.) We
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have (recall that z = x − y)

I2 = O(1) + 2
∫ ∫

|x−y|≤δ,x>2δ

σ 2(z)[H(ρ(z);0,0) + R2(ρ(z);μ,ν)]

× 1

2π

√
λ2

2 − 
′′2(z)

× exp

[
−1

2

k2(λ2x
2 + 2
′′(x − y)xy + λ2y

2)

λ2
2 − 
′′2(x − y)

]
dx dy,

which can be rewritten as

I2 = O(1) + 2
∫ δ

−δ

σ 2(z)[H(ρ(z);0,0) + R2(ρ(z);μ,ν)]

× 1√
2π(λ2 + 
′′(z))

exp

[
−1

2

k2z2

λ2 − 
′′(z)

(
λ2

λ2 + 
′′(z)
− 1

2

)]
dz

×
∫ +∞

2δ

1√
2π(λ2 − 
′′(z))

exp

[
−k2 (x − z/2)2

λ2 − 
′′(z)

]
dx.

Changing variables, the inner integral becomes

1

k
√

2

∫ +∞

τ0

1√
2π

exp

(
−1

2
τ 2

)
dτ = 1

2
√

2

1

k
+ O(1), (19)

where τ0 = 2
√

2k(2δ − z/2)/
√

λ2 − 
′′(z).
Substituting this into I2, we obtain

I2 = O(1) + J

k
√

2
. (20)

To finish, combine (20) with (18), (17), (8) and (5). �

2.3. Central limit theorem

Theorem 2. Assume that the process W satisfies the hypotheses of Theorem 1. In addition, we
assume that the fourth moment of the number of approximate specular points on an interval
having length equal to 1 is uniformly bounded in k, that is, for all a ∈ R and 0 < k < 1,

E
([

SP2([a, a + 1])]4) ≤ (const). (21)

Then, as k → 0,

S − √
2λ4/π1/k√
θ/k


⇒ N(0,1) in distribution.
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Remarks. One can give conditions for the additional hypothesis (21) to hold true. Even though
they are not nice, they are not costly from the point of view of physical models. For example,
either one of the following conditions implies (21):

(i) the paths x � W(x) are of class C 11 (use [3], Theorem 3.6, with m = 4, applied to the
random process {W ′(x) :x ∈ R});

(ii) the paths x � W(x) are of class C 9 and the support of the spectral measure has an ac-
cumulation point (apply [3], Example 3.4, Proposition 5.10 and Theorem 3.4, to show that the
fourth moment of the number of zeros of W ′′(x) is bounded).

Note that the asymptotic here differs from other ones existing in the literature on related subjects
(compare with, e.g., [7] and [12]).

Proof of Theorem 2. Let α and β be real numbers satisfying the conditions 1/2 < α < 1, α +
β > 1, 2α + β < 2. It suffices to prove the convergence as k takes values on a sequence of
positive numbers tending to 0. To keep in mind that the parameter is k, we use the notation
S(k) := S = SP2(R).

Choose k small enough so that k−α > 2 and define the sets of disjoint intervals, for j = 0,

±1, . . . ,±[k−β ] ([·] denotes integer part),

Uk
j = (

(j − 1)[k−α]δ + δ/2, j [k−α]δ − δ/2
)
,

I k
j = [

j [k−α]δ − δ/2, j [k−α]δ + δ/2
]
.

Each interval Uk
j has length [k−α]δ − δ and two neighboring intervals Uk

j are separated by
an interval of length δ. So, the δ-dependence of the process implies that the random variables
SP2(U

k
j ), j = 0,±1, . . . ,±[k−β ], are independent. A similar argument applies to SP2(I

k
j ), j =

0,±1, . . . ,±[k−β ].
We write

T (k) =
∑

|j |≤[k−β ]
SP2(U

k
j ), Vk = (Var(S(k)))−1/2 ≈ √

k/θ,

where the equivalence is due to Theorem 1.
The proof is performed in two steps, which easily imply the statement. In the first, it is proved

that Vk[S(k)− T (k)] tends to 0 in the L2 of the underlying probability space. In the second step,
we prove that VkT (k) is asymptotically standard normal.

Step 1. We first prove that Vk[S(k)−T (k)] tends to 0 in L1. Since it is non-negative, it suffices
to show that its expectation tends to zero. We have

S(k) − T (k) =
∑

|j |<[k−β ]
SP2(I

k
j ) + Z1 + Z2,

where Z1 = SP2(−∞,−[k−β ] · [k−α]δ + δ/2), Z2 = SP2([k−β ] · [k−α]δ − δ/2,+∞)).

Using the fact that E(SPk
2(I )) ≤ (const)

∫
I
ϕ(kx/

√
λ2)dx, we can show that

VkE
(
S(k) − T (k)

) ≤ (const)k1/2

[+∞∑
�=0

ϕ

(
�[k−α]kδ√

λ2

)
+

∫ +∞

[k−α][k−β ]δ
ϕ
(
kx/

√
λ2

)
dx

]
,



180 J.-M. Azaïs, J.R. León and M. Wschebor

which tends to zero as a consequence of the choice of α and β . It suffices to prove that
V 2

k Var(S(k) − T (k)) → 0 as k → 0. Using independence, we have

Var
(
S(k) − T (k)

) =
∑

|j |<[k−β ]
Var(SP2(I

k
j )) + Var(Z1) + Var(Z2)

≤
∑

|j |<[k−β ]
E

(
SP2(I

k
j )

(
SP2(I

k
j ) − 1

))

+ E
(
Z1(Z1 − 1)

) + E
(
Z2(Z2 − 1)

) + E
(
S(k) − T (k)

)
.

We already know that V 2
k E(S(k) − T (k)) → 0. Since each I k

j can be covered by a fixed number
of intervals of size one, we know that E(SP2(I

k
j )(SP2(I

k
j ) − 1)) is bounded by a constant which

does not depend on k and j . Therefore,

V 2
k

∑
|j |<[k−β ]

E
(
SP2(I

k
j )

(
SP2(I

k
j ) − 1

)) ≤ (const)k1−β,

which tends to zero because of the choice of β . The remaining two terms can be bounded in a
similar form as in the proof of Theorem 1.

Step 2. T (k) is a sum of independent, but not equidistributed, random variables. To prove that
it satisfies a central limit theorem, we will use a Lyapunov condition based of fourth moments.
Set

Mm
j := E{[SP2(U

k
j ) − E(SP2(U

k
j ))]m}.

For the Lyapunov condition, it suffices to verify that

�−4
∑

|j |≤[k−β ]
M4

j → 0 as k → 0, where �2 :=
∑

|j |≤[k−β ]
M2

j . (22)

To prove (22), we divide each interval Uk
j into p = [k−α]− 1 intervals I1, . . . , Ip of equal size δ.

We have

E(SP1 + · · · + SPp)4 =
∑

1≤i1,i2,i3,i4≤p

E(SPi1SPi2SPi3SPi4), (23)

where SPi stands for SP2(Ii) − E(SP2(Ii)). Since the size of all intervals is equal to δ, given the
finiteness of fourth moments in the hypothesis, it follows that E(SPi1SPi2SPi3SPi4) is bounded.

On the other hand, the number of terms which do not vanish in the sum of the right-hand side
of (23) is O(p2). In fact, if one of the indices in (i1, i2, i3, i4) differs by more than 1 from all the
others, then E(SPi1SPi2SPi3SPi4) = 0. Hence,

E[SP2(U
k
j ) − E(SP2(U

k
j ))]4 ≤ (const)k−2α

so that
∑

|j |≤[k−β ] M4
j = O(k−2αk−β). The inequality 2α + β < 2 implies the Lyapunov condi-

tion. �
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3. Specular points in two dimensions. Longuet-Higgins
approximation

We consider, at fixed time, a random surface depending on two space variables x and y. The
source of light is placed at (0,0, h1) and the observer is at (0,0, h2). The point (x, y) is a spec-
ular point if the normal vector n(x, y) = (−Wx,−Wy,1) to the surface at (x, y) satisfies the
following two conditions:

• the angles with the incident ray I = (−x,−y,h1 − W) and the reflected ray R =
(−x,−y,h2 − W) are equal (to simplify notation, the argument (x, y) has been removed);

• it belongs to the plane generated by I and R.

Setting αi = hi − W and ri = √
x2 + y2 + αi , i = 1,2, as in the one-parameter case, we have

Wx = x

x2 + y2

α2r1 − α1r2

r2 − r1
, Wy = y

x2 + y2

α2r1 − α1r2

r2 − r1
. (24)

When h1 and h2 are large, the system above can be approximated by

Wx = kx, Wy = ky, (25)

under the same conditions as in dimension one.
Next, we compute the expectation of SP2(Q), the number of approximate specular points,

in the sense of (25), that are in a domain Q. In the remainder of this paragraph, we limit our
attention to this approximation and to the case in which {W(x,y) : (x, y) ∈ R

2} is a centered
Gaussian stationary random field.

Let us define

Y(x, y) :=
(

Wx(x, y) − kx

Wy(x, y) − ky

)
. (26)

Under very general conditions, for example, on the spectral measure of {W(x,y) :x, y ∈ R}, the
random field {Y(x, y) :x, y ∈ R} satisfies the conditions of [3], Theorem 6.2, and we can write

E(SP2(Q)) =
∫

Q

E(|det Y′(x, y)|)pY(x,y)(0)dx dy (27)

since for fixed (x, y), the random matrix Y′(x, y) and the random vector Y(x, y) are independent
so that the condition in the conditional expectation can be eliminated. The density in the right-
hand side of (27) has the expression

pY(x,y)(0) = p(Wx,Wy)(kx, ky)
(28)

= 1

2π

1√
λ20λ02 − λ2

11

exp

[
− k2

2(λ20λ02 − λ2
11)

(λ02x
2 − 2λ11xy + λ20y

2)

]
.
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To compute the expectation of the absolute value of the determinant in the right-hand side of
(27), which does not depend on x, y, we use the method of [4]. Set � := det Y′(x, y) = (Wxx −
k)(Wyy − k) − W 2

xy .
We have

E(|�|) = E

[
2

π

∫ +∞

0

1 − cos(�t)

t2
dt

]
. (29)

Define

h(t) := E
[
exp

(
it[(Wxx − k)(Wyy − k) − W 2

xy]
)]

.

Then

E(|�|) = 2

π

(∫ +∞

0

1 − Re[h(t)]
t2

dt

)
. (30)

We now proceed to give a formula for Re[h(t)]. Define

A =
( 0 1/2 0

1/2 0 0
0 0 −1

)

and denote by � the variance matrix of (Wxx,Wyy,Wx,y)

� :=
(

λ40 λ22 λ31
λ22 λ04 λ13
λ31 λ13 λ22

)
.

Let �1/2A�1/2 = P diag(�1,�2,�3)P
T, where P is orthogonal. Then

h(t) = eitk2
E

(
exp

[
it
((

�1Z
2
1 − k(s11 + s21)Z1

) + (
�2Z

2
2 − k(s12 + s22)Z2

)
(31)

+ (
�3Z

2
3 − k(s13 + s23)Z3

))])
,

where (Z1,Z2,Z3) is standard normal and sij are the entries of �1/2P T.
One can check that if ξ is a standard normal variable and τ,μ are real constants, τ > 0, then

E
(
eiτ(ξ+μ)2) = (1 − 2iτ)−1/2eiτμ2/(1−2iτ) = 1

(1 + 4τ 2)1/4
exp

[ −2τ

1 + 4τ 2
+ i

(
ϕ + τμ2

1 + 4τ 2

)]
,

where ϕ = 1
2 arctan(2τ),0 < ϕ < π/4. Substituting this into (31), we obtain

Re[h(t)] =
[

3∏
j=1

dj (t, k)√
1 + 4�2

j t
2

]
cos

(
3∑

j=1

(
ϕj (t) + k2tψj (t)

))
, (32)

where, for j = 1,2,3:

• dj (t, k) = exp

[
−k2t2

2

(s1j + s2j )
2

1 + 4�2
j t

2

]
;



Rice formulae and Gaussian waves 183

• ϕj (t) = 1

2
arctan(2�j t), 0 < ϕj < π/4;

• ψj(t) = 1

3
− t2 (s1j + s2j )

2�j

1 + 4�2
j t

2
.

Introducing these expressions into (30) and using (28), we obtain a new formula which has the
form of a rather complicated integral. However, it is well adapted to numerical evaluation. On the
other hand, this formula allows us to compute the equivalent as k → 0 of the expectation of the
total number of specular points under the Longuet-Higgins approximation. In fact, a first-order
expansion of the terms in the integrand gives a somewhat more accurate result, one that we now
state as a theorem.

Theorem 3.

E(SP2(R
2)) = m2

k2
+ O(1), (33)

where

m2 =
∫ +∞

0

1 − [∏3
j=1(1 + 4�2

j t
2)]−1/2 cos(

∑3
j=1 ϕj (t))

t2
dt

=
∫ +∞

0

1 − 2−3/2[∏3
j=1(Aj

√
1 + Aj)](1 − B1B2 − B2B3 − B3B1)

t2
dt, (34)

Aj = Aj(t) = (1 + 4�2
j t

2)−1/2, Bj = Bj (t) =
√

(1 − Aj)/(1 + Aj).

Note that m2 depends only on the eigenvalues �1,�2,�3 and is easily computed numeri-
cally. We have performed a numerical computation using a standard sea model with a Jonswap
spectrum and spread function cos(2θ). It corresponds to the default parameters of the Jonswap
function of the toolbox WAFO [13]. The variance matrix of the gradient and the matrix � are,
respectively,

10−4
(

114 0
0 81

)
, � = 10−4

(9 3 0
3 11 0
0 0 3

)
.

The integrand in (27) is displayed in Figure 2 as a function of the two space variables x, y.
The value of the asymptotic parameter m2 is 2.52710−3.

We now consider the variance of the total number of specular points in two dimensions, look-
ing for analogous results to the one-dimensional case (i.e., Theorem 1), in view of their interest
for statistical applications. It turns out that the computations become much more complicated.
The statements on variance and speed of convergence to zero of the coefficient of variation that
we give below include only the order of the asymptotic behavior in the Longuet-Higgins approx-
imation, but not the constant. However, we still consider them to be useful. If one refines the
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Figure 2. Intensity function of the specular points for the Jonswap spectrum.

computations, rough bounds can be given on the generic constants in Theorem 4 on the basis of
additional hypotheses on the random field.

We assume that the real-valued, centered, Gaussian stationary random field {W(x) : x ∈ R
2}

has paths of class C3, the distribution of W ′(0) does not degenerate (i.e., Var(W ′(0)) is invert-
ible). Moreover, let us consider W ′′(0), expressed in the reference system xOy of R

2 as the 2×2
symmetric centered Gaussian random matrix

W ′′(0) =
(

Wxx(0) Wxy(0)

Wxy(0) Wyy(0)

)
.

The function

z � �(z) = det[Var(W ′′(0)z)],
defined on z = (z1, z2)

T ∈ R
2, is a non-negative homogeneous polynomial of degree 4 in the pair

z1, z2. We will assume the non-degeneracy condition

min{�(z) :‖z‖ = 1} = � > 0. (35)
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Theorem 4. Let us assume that {W(x) : x ∈ R
2} satisfies the above conditions and that it is also

δ-dependent, δ > 0, that is, E(W(x)W(y)) = 0 whenever ‖x − y‖ > δ. Then, for k small enough,

Var(SP2(R
2)) ≤ L

k2
, (36)

where L is a positive constant depending on the law of the random field.
Moreover, for k small enough, by using the result of Theorem 3 and (36), we get

√
Var(SP2(R2))

E(SP2(R2))
≤ L1k,

where L1 is a new positive constant.

Proof. To simplify notation, let us denote T = SP2(R
2). We have

Var(T ) = E
(
T (T − 1)

) + E(T ) − [E(T )]2. (37)

We have already computed the equivalents as k → 0 of the second and third term in the right-
hand side of (37). Our task in what follows is to consider the first term.

The proof is performed along the same lines as the one of Theorem 1, but instead of applying
a Rice formula for the second factorial moment of the number of crossings of a one-parameter
random process, we need [3], Theorem 6.3, for the factorial moments of a 2-parameter random
field. We have

E
(
T (T − 1)

) =
∫ ∫

R2×R2
E

(|det Y′(x)||det Y′(y)||Y(x) = 0,Y(y) = 0
)

× pY(x),Y(y)(0,0)dx dy

=
∫ ∫

‖x−y‖>δ

· · · dx dy +
∫ ∫

‖x−y‖≤δ

· · · dx dy = J1 + J2.

For J1, we proceed as in the proof of Theorem 1, using the δ-dependence and the evaluations
leading to the statement of Theorem 3. We obtain

J1 = m2
2

k4
+ O(1)

k2
. (38)

One can show that under the hypotheses of the theorem, for small k, one has

J2 = O(1)

k2
. (39)

We refer the reader to [2] for the lengthy computations leading to this inequality. In view of (37),
(33) and (38), this suffices to prove the theorem. �
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4. The distribution of the normal to the level curve

Let us consider a modeling of the sea W(x,y, t) as a function of two space variables and
one time variable. Usual models are centered Gaussian stationary with a particular form of
the spectral measure μ that is presented, for example, in [3]. We denote the covariance by

(x, y, t) = E(W(0,0,0)W(x, y, t)).

In practice, one is frequently confronted with the following situation: several pictures of the
sea on time over an interval [0, T ] are stocked and some properties or magnitudes are observed.
If the time T and the number of pictures are large, and if the process is ergodic in time, then
the frequency of pictures that satisfy a certain property will converge to the probability of this
property happening at a fixed time.

Let us illustrate this with the angle of the normal to the level curve at a point “chosen at
random”. We first consider the number of crossings of a level u by the process W(·, y, t) for
fixed t and y, defined as

N
W(·,y,t)

[0,M1] (u) = #{x : 0 ≤ x ≤ M1;W(x,y, t) = u}.
We are interested in computing the total number of crossings per unit time when integrating over
y ∈ [0,M2], that is,

1

T

∫ T

0
dt

∫ M2

0
N

W(·,y,t)

[0,M1] (u)dy. (40)

If the ergodicity assumption in time holds true, then we can conclude that a.s.

1

T

∫ T

0
dt

∫ M2

0
N

W(·,y,t)

[0,M1] (u)dy → M1E
(
N

W(·,0,0)
[0,M1] (u)

) = M1M2

π

√
λ200

λ000
e−1/2u2/λ000,

where

λabc =
∫

R3
λa

xλ
b
yλ

c
t dμ(λx,λy, λt )

are the spectral moments of W . Hence, on the basis of the quantity (40), for large T , one can
make inference about the value of certain parameters of the law of the random field. In this
example, these are the spectral moments λ200 and λ000.

If two-dimensional level information is available, one can work differently because there exists
an interesting relationship with Rice formulae for level curves that we explain in what follows.
We can write (x = (x, y))

W ′(x, t) = ‖W ′(x, t)‖(cos�(x, t), sin�(x, t))T .

Using a Rice formula, more precisely, under conditions of [3], Theorem 6.10,

E

[∫ M2

0
N

W(·,y,0)

[0,M1] (u)dy

]
= E

[∫
CQ(0,u)

| cos�(x,0)|dσ1

]
= σ2(Q)

π

√
λ200

λ000
e−u2/(2λ000), (41)
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where Q = [0,M1] × [0,M2]. We have a similar formula when we consider sections of the
set [0,M1] × [0,M2] in the other direction. In fact, (41) can be generalized to obtain the Palm
distribution of the angle �.

Set hθ1,θ2 = I[θ1,θ2] and, for −π ≤ θ1 < θ2 ≤ π, define

F(θ2) − F(θ1) := E
(
σ1

({x ∈ Q :W(x,0) = u; θ1 ≤ �(x, s) ≤ θ2}
))

= E

(∫
CQ(u,s)

hθ1,θ2(�(x, s))dσ1(x)ds

)
(42)

= σ2(Q)E

[
hθ1,θ2

(
∂yW

∂xW

)(
(∂xW)2 + (∂yW)2)1/2

]
exp(−u2/(2λ00))√

2πλ000
.

Defining � = λ200λ020 − λ110 and assuming σ2(Q) = 1 for ease of notation, we readily obtain

F(θ2) − F(θ1)

= e−u2/(2λ000)

(2π)3/2(�)1/2
√

λ000

∫
R2

hθ1,θ2(�)

√
x2 + y2e−(1/(2�))(λ02x

2−2λ11xy+λ20y
2) dx dy

= e−u2/(2λ00)

(2π)3/2(λ+λ−)1/2
√

λ000

×
∫ +∞

0

∫ θ2

θ1

ρ2 exp

(
− ρ2

2λ+λ−
(
λ+ cos2(ϕ − κ) + λ− sin2(ϕ − κ)

))
dρ dϕ,

where λ− ≤ λ+ are the eigenvalues of the covariance matrix of the random vector (∂xW(0,0,0),

∂yW(0,0,0)) and κ is the angle of the eigenvector associated with γ +. Noting that the exponent
in the integrand can be written as 1/λ−(1 − γ 2 sin2(ϕ − κ)) with γ 2 := 1 − λ+/λ− and that∫ +∞

0
ρ2 exp

(
−Hρ2

2

)
=

√
π

2H
,

it is easy to obtain that

F(θ2) − F(θ1) = (const)
∫ θ2

θ1

(
1 − γ 2 sin2(ϕ − κ)

)−1/2 dϕ.

From this relation, we get the density g(ϕ) of the Palm distribution, simply by dividing by the
total mass:

g(ϕ) = (1 − γ 2 sin2(ϕ − κ))−1/2∫ π
−π(1 − γ 2 sin2(ϕ − κ))−1/2 dϕ

= (1 − γ 2 sin2(ϕ − κ))−1/2

4K(γ 2)
. (43)

Here, K is the complete elliptic integral of the first kind. This density characterizes the distribu-
tion of the angle of the normal at a point chosen “at random” on the level curve. In the case of a
random field which is isotropic in (x, y), we have λ200 = λ020 and, moreover, λ110 = 0, so that g

turns out to be the uniform density over the circle (Longuet-Higgins says that over the contour,
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Figure 3. Density of the Palm distribution of the angle of the normal to the level curve in the case γ = 0.5
and κ = π/4.

the “distribution” of the angle is uniform (cf. [11], page 348)). We have performed the numeri-
cal computation of the density (43) for an anisotropic process with γ = 0.5, κ = π/4. Figure 3
displays the densities of the Palm distribution of the angle showing a large departure from the
uniform distribution.

Let us turn to ergodicity. For a given subset Q of R
2 and each t , let us define At =

σ {W(x,y, t) : τ > t; (x, y) ∈ Q} and consider the σ -algebra of t -invariant events A = ⋂
At .

We assume that for each pair (x, y), 
(x, y, t) → 0 as t → +∞. It is well known that under
this condition, the σ -algebra A is trivial, that is, it only contains events having probability zero
or one (see, e.g., [6], Chapter 7). This has the following important consequence in our context.
Assume that the set Q has a smooth boundary and, for simplicity, unit Lebesgue measure. Let us
consider

Z(t) =
∫

CQ(u,t)

H(x, t)dσ1(x) (44)

with H(x, t) = H(W(x, t),∇W(x, t)), where ∇W = (Wx,Wy) denotes the gradient in the space
variables and H is some measurable function such that the integral is well defined. This is exactly
our case in (42). The process {Z(t) : t ∈ R} is strictly stationary and, in our case, has a finite mean
and is Riemann-integrable. By the Birkhoff–Khintchine ergodic theorem ([6], page 151), a.s. as
T → +∞,

1

T

∫ T

0
Z(s)ds → EB[Z(0)],

where B is the σ -algebra of t -invariant events associated with the process Z(t). Since for each t ,
Z(t) is At -measurable, it follows that B ⊂ A so that EB[Z(0)] = E[Z(0)]. On the other hand,
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the Rice formula yields (taking into account the fact that stationarity of W implies that W(0,0)

and ∇W(0,0) are independent)

E[Z(0)] = E[H(u,∇W(0,0))‖∇W(0,0)‖]pW(0,0)(u).

We consider now the central limit theorem. Let us define

Z(t) = 1

t

∫ t

0
[Z(s) − E(Z(0))]ds. (45)

To compute the variance of Z(t), one can again use the Rice formula for the first moment of
integrals over level sets, this time applied to the R

2-valued random field with parameter in R
4,

{(W(x1, s1),W(x2, s2))
T : (x1,x2) ∈ Q × Q,s1, s2 ∈ [0, t]} at the level (u,u). We get

Var Z(t) = 2

t

∫ t

0

(
1 − s

t

)
I (u, s)ds,

where

I (u, s) =
∫

Q2
E[H(x1,0)H(x2, s)‖∇W(x1,0)‖‖∇W(x2, s)‖|W(x1,0) = u;W(x2, s) = u]

× pW(x1,0),W(x2,s)(u,u)dx1 dx2 − (
E[H(u,∇W(0,0))‖∇W(0,0)‖]pW(0,0)(u)

)2
.

Assuming that the given random field is time-δ-dependent, that is, 
(x, y, t) = 0∀(x, y) when-
ever t > δ, we readily obtain

t Var Z(t) → 2
∫ δ

0
I (u, s)ds := σ 2(u) as t → ∞. (46)

Now, using a variant of the Hoeffding–Robbins theorem [8] for sums of δ-dependent random
variables, we can establish the following theorem.

Theorem 5. Assume that the random field W and the function H satisfy the conditions of [3],
Theorem 6.10. Assume, for simplicity, that Q has Lebesgue measure. Then:

(i) if the covariance γ (x, y, t) tends to zero as t → +∞ for every value of (x, y) ∈ Q, we
have

1

T

∫ T

0
Z(s)ds → E[H(u,∇W(0,0))‖∇W(0,0)‖]pW(0,0)(u),

where Z(t) is defined by (44).
(ii) if the random field W is δ-dependent in the sense above, we have

√
t Z(t) 
⇒ N(0, σ 2(u)),

where Z(t) is defined by (45) and σ 2(u) by (46).
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5. Application to dislocations of wavefronts

In this section, we follow the article [4] by Berry and Dennis. Dislocations are lines in space
or points in the plane where the phase χ of the complex scalar wave ψ(x, t) = ρ(x, t)eiχ(x,t)

is undefined. With respect to light, they are lines of darkness; with respect to sound, threads of
silence. Here, we only consider two-dimensional space variables x = (x1, x2).

It is convenient to express ψ by means of its real and imaginary parts:

ψ(x, t) = ξ(x, t) + iη(x, t).

Thus, dislocations are the intersection of the surfaces ξ(x, t) = 0 and η(x, t) = 0.

Let us quote the authors of [4]: “Interest in optical dislocations has recently revived, largely as
a result of experiments with laser fields. In low-temperature physics, ψ(x, t) could represent the
complex order parameter associated with quantum flux lines in a superconductor or quantized
vortices in a superfluid” (cf. [4] and the references therein).

In what follows, we assume an isotropic Gaussian model. This means that we will consider
the wavefront as an isotropic Gaussian field

ψ(x, t) =
∫

R2
exp (i[〈k · x〉 − c|k|t])

(
�(|k|)

|k|
)1/2

dW(k),

where k = (k1, k2), |k| =
√

k2
1 + k2

2 , �(k) is the isotropic spectral density and W = (W1 + iW2)

is a standard complex orthogonal Gaussian measure on R
2 with unit variance. We are only inter-

ested in t = 0 and we put ξ(x) := ξ(x,0) and η(x) := η(x,0). We have, setting k = |k|,

ξ(x) =
∫

R2
cos(〈k · x〉)

(
�(k)

k

)1/2

dW1(k) −
∫

R2
sin(〈k · x〉)

(
�(k)

k

)1/2

dW2(k), (47)

η(x) =
∫

R2
cos(〈k · x〉)

(
�(k)

k

)1/2

dW2(k) +
∫

R2
sin(〈k · x〉)

(
�(k)

k

)1/2

dW1(k). (48)

The covariances are

E[ξ(x)ξ(x′)] = E[η(x)η(x′)] = ρ(|x − x′|) :=
∫ ∞

0
J0(k|x − x′|)�(k)dk, (49)

where Jν(x) is the Bessel function of the first kind of order ν. Moreover, E[ξ(r1)η(r2)] = 0.

5.1. Mean number of dislocation points

Let us denote by {Z(x) : x ∈ R
2} a random field having values in R

2, with coordinates ξ(x), η(x),
which are two independent Gaussian stationary isotropic random fields with the same distribu-
tion. We are interested in the expectation of the number of dislocation points

d2 := E[#{x ∈ S : ξ(x) = η(x) = 0}],
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where S is a subset of the parameter space having area equal to 1.
Without loss of generality, we may assume that Var(ξ(x)) = Var(η(x)) = 1 and for the deriva-

tives, we set λ2 = Var(ηi(x)) = Var(ξi(x)), i = 1,2. Then, according to the Rice formula,

d2 = E[|det(Z′(x))|/Z(x) = 0]pZ(x)(0).

An easy Gaussian computation gives d2 = λ2/(2π) ([4], formula (4.6)).

5.2. Variance

Again, let S be a measurable subset of R
2 having Lebesgue measure equal to 1. We have

Var(NZ
S (0)) = E

(
NZ

S (0)
(
NZ

S (0) − 1
)) + d2 − d2

2

and for the first term, we use the Rice formula for the second factorial moment ([3], Theorem 6.3),
that is,

E
(
NZ

S (0)
(
NZ

S (0) − 1
)) =

∫
S2

A(s1, s2)ds1 ds2,

where

A(s1, s2) = E[|det Z′(s1)det Z′(s2)||Z(s1) = Z(s2) = 02]pZ(s1),Z(s2)(04).

Here, 0p denotes the null vector in dimension p.
Taking into account the fact that the law of the random field Z is invariant under translations

and orthogonal transformations of R
2, we have

A(s1, s2) = A((0,0), (r,0)) = A(r) with r = ‖s1 − s2‖.

The Rice function A(r) has two intuitive interpretations. First, it can be viewed as

A(r) = lim
ε→0

1

π2ε4
E[N(B((0,0), ε)) × N(B((r,0), ε))].

Second, it is the density of the Palm distribution, a generalization of the horizontal window condi-
tioning of the number of zeros of Z per unit surface, locally around the point (r,0), conditionally
on the existence of a zero at (0,0) (see [6]). In [4], A(r)/d2

2 is called the “correlation function”.
To compute A(r), we denote by ξ1, ξ2, η1, η2 the partial derivatives of ξ, η with respect to first

and second coordinate. Therefore,

A(r) = E[|det Z′(0,0)det Z′(r,0)||Z(0,0) = Z(r,0) = 02]pZ(0,0),Z(r,0)(04)

= E[|(ξ1η2 − ξ2η1)(0,0)(ξ1η2 − ξ2η1)(r,0)||Z(0,0) = Z(r,0) = 02] (50)

× pZ(0,0),Z(r,0)(04).
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The density is easy to compute:

pZ(0,0),Z(r,0)(04) = 1

(2π)2(1 − ρ2(r))
, where ρ(r) =

∫ ∞

0
J0(kr)�(k)dk.

The conditional expectation turns out to be more difficult to calculate, requiring a long compu-
tation (we again refer to [2] for the details). We obtain the following formula (that can be easily
compared to the formula in [4] since we are using the same notation):

A(r) = A1

4π3(1 − C2)

∫ ∞

−∞
1

t2

[
1 − 1

(1 + t2)

(Z2 − 2Z2
1 t2)

Z2

√
(Z2 − Z2

1 t2)

]
dt,

where we have defined

C := ρ(r), E = ρ ′(r), H = −E/r, F = −ρ′′(r), F0 = −ρ′′(0),

A1 = F0

(
F0 − E2

1 − C2

)
, A2 = H

F0

F(1 − C2) − E2C

F0(1 − C2) − E2
,

Z = F 2
0 − H 2

F 2
0

[
1 −

(
F − E2C

1 − C2

)2

·
(

F0 − E2

1 − C2

)−2]
,

Z1 = A2

1 + Zt2
, Z2 = 1 + t2

1 + Zt2
.
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