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In this paper, we introduce a new class of Lévy processes which we call hypergeometric-stable Lévy
processes because they are obtained from symmetric stable processes through several transformations,
where the Gauss hypergeometric function plays an essential role. We characterize the Lévy measure of
this class and obtain several useful properties such as the Wiener–Hopf factorization, the characteristic
exponent and some associated exit problems.
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1. Introduction and preliminaries

Let Z = (Zt = {Z(1)
t , . . . ,Z

(d)
t }, t ≥ 0) be a symmetric stable Lévy process of index α ∈ (0,2)

in Rd (d ≥ 1), that is, a process with stationary independent increments, whose sample paths are
càdlàg and

E0(exp{i〈λ,Zt 〉}) = exp{−t‖λ‖α}
for all t ≥ 0 and λ ∈ Rd . Here, Pz denotes the law of the process Z started from z ∈ Rd , ‖ · ‖ the
norm in Rd and 〈·, ·〉 the Euclidean inner product.

The process Z(k) = (Z
(k)
t , t ≥ 0) will be called the kth coordinate process of Z. Of course,

Z(k) is a real symmetric stable process whose characteristic exponent is given by

E0
(
exp

{
iθZ

(k)
t

}) = exp{−t |θ |α}

for all t ≥ 0 and θ ∈ R.
According to Bertoin [2], Chapter I, the process Z is transient for α < d , that is,

lim
t→∞‖Zt‖ = ∞ a.s.

and it oscillates otherwise, that is, for α ∈ [1,2) and d = 1, we have

lim sup
t→∞

Zt = ∞ and lim inf
t→∞ Zt = −∞ a.s.
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When d ≥ 2, we have that single points are polar, that is, for every x, z ∈ Rd ,

Px(Zt = z for some t > 0) = 0.

In the one-dimensional case, points are polar for α ∈ (0,1] and when α ∈ (1,2), the process Z

makes infinitely many jumps across a point, say z, before the first hitting time of z (see, e.g., [2],
Proposition VIII.8).

One of the main properties of the process Z is that it satisfies the scaling property with index α,
that is, for every b > 0,

the law of (bZb−αt , t ≥ 0) under Px is Pbx . (1.1)

This implies that the radial process R = (Rt , t ≥ 0) defined by Rt = ‖Zt‖ satisfies the same
scaling property (1.1). Since Z is isotropic, its radial part R is a strong Markov process (see [10]).
When d ≥ 2, the radial process R hits points if and only if Z(1) hits points, that is, when α ∈
(1,2) (see, e.g., [10], Theorem 3.1). Finally, we note that when points are polar for Z, the radial
process R will never hit the point 0.

In what follows, we will assume that α ≤ d , so the radial process R will be a positive self-
similar Markov process (pssMp) with index α and infinite lifetime. A natural question arises:
can we characterize the Lévy process ξ associated to the pssMp (Rt , t ≥ 0) via the Lamperti
transformation?

We briefly recall the main features of the Lamperti transformation between pssMp and Lévy
processes. A positive self-similar Markov processes (X,Qx), x > 0, is a strong Markov processes
with càdlàg paths, which fulfills a scaling property. Well-known examples of this kind of process
are Bessel processes, stable subordinators, stable processes conditioned to stay positive, etc.

According to Lamperti [9], any pssMp up to its first hitting time of 0 may be expressed as the
exponential of a Lévy process, time changed by the inverse of its exponential functional. More
formally, let (X,Qx) be a pssMp with index β > 0, starting from x > 0, set

S = inf{t > 0 :Xt = 0}
and write the canonical process X in the following form:

Xt = x exp
{
ξτ(tx−β )

}
, 0 ≤ t < S, (1.2)

where, for t < S,

τ(t) = inf

{
s ≥ 0 :

∫ s

0
exp{βξu}du ≥ t

}
.

Then, under Qx , ξ = (ξt , t ≥ 0) is a Lévy process started from 0 whose law does not depend on
x > 0 and such that:

(i) if Qx(S = +∞) = 1, then ξ has an infinite lifetime and lim supt→+∞ ξt = +∞, Px -a.s.;
(ii) if Qx(S < +∞,X(S−) = 0) = 1, then ξ has an infinite lifetime and limt→∞ ξt = −∞,

Px -a.s.;



36 M.E. Caballero, J.C. Pardo and J.L. Pérez

(iii) if Qx(S < +∞,X(S−) > 0) = 1, then ξ is killed at an independent exponentially dis-
tributed random time with parameter λ > 0.

As mentioned in [9], the probabilities Qx(S = +∞), Qx(S < +∞,X(S−) = 0) and Qx(S <

+∞,X(S−) > 0) are 0 or 1 independently of x, so the three classes presented above are exhaus-
tive. Moreover, for any t <

∫ ∞
0 exp{βξs}ds,

τ(t) =
∫ xβ t

0

ds

(Xs)β
, Qx-a.s. (1.3)

Therefore, (1.2) is invertible and yields a one-to-one relation between the class of pssMp’s killed
at time S and the class of Lévy processes.

Another important result of Lamperti [9] provides the explicit form of the generator of any
pssMp (X,Qy) in terms of its underlying Lévy process. Let ξ be the underlying Lévy process
associated to (X,Qy) via (1.2) and denote by L and M their respective infinitesimal generators.
Let D L be the domain of the generator L and recall that it contains all the functions with contin-
uous second derivatives on [−∞,∞], and that if f is such a function, then L acts as follows for
x ∈ R, where μ ∈ R and σ > 0:

Lf (x) = μf ′(x) + σ 2

2
f ′′(x) +

∫
R

(
f (x + y) − f (x) − f ′(x)h(y)

)
	(dy) − bf (x). (1.4)

The measure 	(dx) is the so-called Lévy measure of ξ , which satisfies

	({0}) = 0 and
∫

R

(1 ∧ |x|2)	(dx) < ∞.

The function h(·) is any bounded Borel function such that h(y) ∼ y as y → 0. The positive
constant b represents the killing rate of ξ (b = 0 if ξ has infinite lifetime). It is important to note
that in (1.4), the choice of the function h is arbitrary and the coefficient μ is the only one which
depends on this choice.

Lamperti establishes the following result in [9].

Theorem 1. If g is such that g, yg′ and y2g′′ are continuous on [0,∞], then they belong to the
domain DM of the infinitesimal generator of (X,Qy), which acts as follows for a > 0:

Mg(a) = μa1−βg′(a) + σ 2

2
a2−βg′′(a) − ba−βg(a)

+ a−β

∫ ∞

0

(
g(au) − g(a) − ag′(a)h(logu)

)
G(du),

where G(du) = 	(du) ◦ logu for u > 0. This expression determines the law of the process
(Xt ,0 ≤ t ≤ T ) under Qy .

Previous work on this subject appears in [5], where the authors study the radial part of
a Cauchy process C = (Ct , t ≥ 0) (i.e., α = d = 1) and obtain the infinitesimal generator of



Explicit identities for Lévy processes associated to symmetric stable processes 37

its associated Lévy process ξ = (ξt , t ≥ 0) via the Lamperti transformation. More precisely, the
infinitesimal generator of ξ is given as

Lg(ξ) = 1

π

∫
coshη

(sinhη)2

(
g(ξ + η) − g(ξ) − ηg′(ξ1|η|≤1

))
dη

and its characteristic exponent satisfies

E(exp{iλξt }) = e−iλ tanhπλ/2.

As we will see in Sections 2 and 5, this example is a particular case of the results obtained in this
paper by very different methods. As expected, the formulae obtained in both papers coincide for
α = d = 1.

It is important to point out that in [5], it is announced that the authors intend to continue this
line of research by studying the case of the norm of a multidimensional Cauchy process, but, to
the best of our knowledge, this has not be done.

This paper is organized as follows. In Section 2, we compute the infinitesimal generator of
the radial process R and, using Theorem 1, we obtain the characteristics of its associated Lévy
process ξ . The Lévy measure obtained has a rather complicated form since it is expressed in
terms of the Gauss hypergeometric function 2 F1. When d = 1, we show that the process ξ can
be expressed as the sum of a Lamperti stable process (see [4] for a proper definition) and an
independent Poisson process.

In Section 3, we study one-sided exit problems of the Lévy process ξ , using well-known results
of Blumenthal et al. [3] for the symmetric α-stable process Z. When α < d , a straightforward
computation allows us to deduce the law of the random variable ξ∞ = inft≥0 ξt .

In Section 4, we study the special case 1 < α < d . Using the work of Port [11] on the radial
processes of Z, we compute the probability that the Lévy process ξ hits points.

Finally, in Section 5, we obtain the Wiener–Hopf factorization of ξ and deduce the explicit
form of the characteristic exponent. Concluding remarks in Section 6 show how to obtain n-
tuple laws for ξ and R following [8].

2. The underlying Lévy process of R

In this section, we compute the generator of the radial process R and the characteristics of the
underlying Lévy process ξ in the Lamperti representation (1.2) of the latter.

To this end, we will use the expression of Z as a subordinated Brownian motion. More pre-
cisely, if B = (Bt , t ≥ 0) is a d-dimensional Brownian motion started from x ∈ Rd and we let
σ = (σt , t ≥ 0) be an independent stable subordinator with index α/2 initiated from 0, then the
process (B2σt , t ≥ 0) is a standard symmetric α-stable process.
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Let us define the so-called Pochhammer symbol by

(z)α = �(z + α)

�(z)
for z ∈ C

and the Gauss hypergeometric function by

2 F1(a, b; c; z) =
∞∑

k=0

zk (a)k(b)k

(c)kk! for ‖z‖ < 1,

where a, b, c > 0.

Theorem 2. Let g : R+ → R be such that g ∈ C2
0(R+). The infinitesimal generator of R =

(Rt , t ≥ 0), denoted by M , acts as follows for a > 0:

Mg(a) = a−α

∫ ∞

0

(
g(ya) − g(a) − ag′(a)�(logy)

) yd−1

(1 + y2)(α+d)/2
F

((
2y

1 + y2

)2)
dy,

where

F(z) = 2αα(d/2)α/2

�(1 − α/2)
2 F1

(
(α + d)/4, (α + d)/4 + 1/2;d/2; z) for z ∈ (−1,1) (2.1)

and the function � is given by

�(y) = y

1 + y2
e(1−d)y(1 + e2y)(α+d)/2−11{|y|<1}. (2.2)

Remark 1. Following the original notation of Lamperti in [9], the generator can also be written
as

Mg(a) = a−α

∫ ∞

0

(
g(ya) − g(a) − ag′(a)

logy

(1 + log2 y)

)

× (1 + log2 y)

log2 y
dG∗(dy) + a1−ανg′(a),

where G∗ is a finite measure given by

G∗(dy) = yd−1

(1 + y2)(α+d)/2

log2 y

1 + log2 y
F

((
2y

1 + y2

)2)
dy

and

ν =
∫ ∞

0

(
�(logy) − logy

(1 + log2 y)

)
1 + log2 y

logy
G∗(dy).

It is easy to prove that the integral defining ν converges.
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Proof of Theorem 2. From [13], Theorem 32.1, and the fact that Z can be seen as a subordinated
Brownian motion, the infinitesimal generator M of R = (Rt , t ≥ 0) is given as

Mh =
∫ ∞

0
(Psh − h)ρ(ds),

where ρ is the Lévy measure of the stable subordinator 2σ , given by

ρ(ds) = 2α/2−1α

�(1 − α/2)
s−(1+α/2)1{s>0} ds,

Ps is the semigroup of the d-dimensional Bessel process and h is any function in the domain of
the infinitesimal generator of (Pt , t ≥ 0).

Let g be as in the statement and recall that for a > 0, the semigroup for the d-dimensional
Bessel process satisfies

Psg(a) =
∫ ∞

0
dy

g(y)

s

(
y

a

)d/2−1

y exp

(
−y2 + a2

2s

)
Id/2−1

(
ay

s

)
,

where Id/2−1 is the modified Bessel function of index d/2−1 (see, e.g., [12]). Therefore, putting
the pieces together, it follows that

Mg(a) = 2α/2−1α

�(1 − α/2)

∫ ∞

0

∫ ∞

0
y
(
g(y) − g(a)

)(y

a

)d/2−1

(2.3)

× 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds.

Now, recall the identity for the modified Bessel function Id/2−1,

Id/2−1(x) =
∞∑

k=0

(x/2)2k+d/2−1

�(d/2 + k)k! ,

and note that, for a �= y,∫ ∞

0

ds

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)

=
∞∑

k=0

∫ ∞

0
ds

(
ay

2s

)2k+d/2−1
s−2−α/2

�(d/2 + k)k! exp

(
−a2 + y2

2s

)
(2.4)

=
∞∑

k=0

1

�(d/2 + k)k!
(

ay

a2 + y2

)2k+(α+d)/2( 2

ay

)1+α/2 ∫ ∞

0
duu2k+(α+d)/2−1e−u

= 21+α/2 (ay)d/2−1

(a2 + y2)(α+d)/2

∞∑
k=0

(
ay

a2 + y2

)2k
�(2k + (α + d)/2)

�(k + 1)�(d/2 + k)
.
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Next, we consider the property of the Gamma function,

�(2z) = (2π)−1/222z−1/2�(z)�(z + 1/2), (2.5)

and deduce that

�
(
2k + (α + d)/2

) = (2π)−1/222k+(α+d)/2−1/2�
(
k + (α + d)/4

)
�

(
k + (α + d)/4 + 1/2

)
= 22k�

(
(α + d)/2

)(
(α + d)/4

)
k

(
(α + d)/4 + 1/2

)
k
.

Therefore, using the above identity, we see that (2.4) is equal to

2α/2+1(ay)d/2−1

(a2 + y2)(α+d)/2

�((α + d)/2)

�(d/2)

∞∑
k=0

((
2ay

a2 + y2

)2)k
((α + d)/4)k((α + d)/4 + 1/2)k

(d/2)kk! ,

where the series above is the Gauss hypergeometric function

2 F1

(
(α + d)/4, (α + d)/4 + 1/2;d/2;

(
2ay

a2 + y2

)2)
.

We note that we cannot use Fubini’s theorem in (2.3) because the expression inside the integral
with respect to the product measure is not integrable. This is easily seen by observing that∣∣∣∣2 F1

(
(α + d)/4, (α + d)/4 + 1/2;d/2;

(
2ay

a2 + y2

)2)∣∣∣∣ ∼ |y − a|−(α+1) as y → a.

So, let us instead consider ε, a ≥ 0 and introduce the sets

Aε(a) =
(

0,
a2

(a + ε)

)
∪ (a + ε,∞), Ca,ε =

(
0,

a

(a + ε)

)
∪

(
a + ε

a
,∞

)
.

We then study the integral∫ ∞

0

∫
Aε(a)

y
(
g(y) − g(a)

)(y

a

)d/2−1 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds. (2.6)

We would like to use Fubini’s theorem in the expression above and, to this end, we now prove
the integrability of the integrand in (2.6) with respect to the product measure. For simplicity, we
use the notation established in (2.1) and, using Tonelli’s theorem and (2.4), we have∫ ∞

0

∫
Aε(a)

y|g(y) − g(a)|
(

y

a

)d/2−1 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds

≤ 2‖g‖∞
∫

Aε(a)

yd−1

(a2 + y2)(α+d)/2
F

((
2ay

a2 + y2

)2)
dy,
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which is finite. So, let us now return to (2.6). Applying Fubini’s theorem and (2.4), we obtain

2α/2−1α

�(1 − α/2)

∫ ∞

0

∫
Aε(a)

y
(
g(y) − g(a)

)(y

a

)d/2−1 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds

=
∫

Aε(a)

(
g(y) − g(a)

) yd−1

(a2 + y2)(α+d)/2
F

((
2ay

a2 + y2

)2)
dy (2.7)

= a−α

∫
C(a,ε)

(
g(ay) − g(a)

) yd−1

(1 + y2)(α+d)/2
F

((
2y

1 + y2

)2)
dy.

In order to get the result, we first show that if B(a, ε) = C(a, ε) ∩ (1/e, e), then∫
B(a,ε)

logy

1 + log2 y

1

1 + y2
F

((
2y

1 + y2

)2)
dy = 0. (2.8)

To do so, we note that the integral in (2.8) is equal to∫ e

1+a−1ε

logy

1 + log2 y

1

1 + y2
F

((
2y

1 + y2

)2)
dy

+
∫ a/(a+ε)

1/e

logy

1 + log2 y

1

1 + y2
F

((
2y

1 + y2

)2)
dy.

Making the change of variable y = z−1 in the first integral above, we get that∫ e

1+a−1ε

logy

1 + log2 y

1

1 + y2
F

((
2y

1 + y2

)2)
dy

= −
∫ a/(a+ε)

1/e

log z

1 + log2 z

1

1 + z2
F

((
2z

1 + z2

)2)
dz

and the identity (2.8) follows. It is easy to see, using (2.4), that∫
B(a,ε)

logy

1 + log2 y

1

1 + y2
F

((
2y

1 + y2

)2)
dy

= aα2α/2−1α

�(1 − α/2)

∫ ∞

0

∫ ∞

0
y�(logy/a)

(
y

a

)d/2−1

1Aε(a)(y) (2.9)

× 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds,

where � is defined as in (2.2). Finally, we add the null term

a1−α

∫ ∞

0
g′(a)

logy

1 + log2 y

1

1 + y2
F

((
2y

1 + y2

)2)
1B(a,ε)(y)dy
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to the identity (2.7) and, after some calculations using (2.9), we obtain

2α/2−1α

�(1 − α/2)

∫ ∞

0

∫
Aε(a)

y
(
g(y) − g(a) − ag′(a)�

(
log(y/a)

))(y

a

)d/2−1

× 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds (2.10)

= a−α

∫
C(a,ε)

(
g(ya) − g(a) − ag′(a)�(logy)

) yd−1

(1 + y2)(α+d)/2
F

((
2y

1 + y2

)2)
dy.

Using the dominated convergence theorem and (2.10), we can therefore conclude that

Mg(a) = 2α/2−1α

�(1 − α/2)

∫ ∞

0

∫ ∞

0
y
(
g(y) − g(a)

)(y

a

)d/2−1

× 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds

= lim
ε→0

2α/2−1α

�(1 − α/2)

∫ ∞

0

∫
Aε(a)

y
(
g(y) − g(a) − ag′(a)�

(
log(y/a)

))(y

a

)d/2−1

× 1

s2+α/2
exp

(
−a2 + y2

2s

)
Id/2−1

(
ay

s

)
dy ds

= a−α

∫ ∞

0

(
g(ya) − g(a) − ag′(a)�(logy)

) yd−1

(1 + y2)(α+d)/2
F

((
2y

1 + y2

)2)
dy. �

Using Lamperti’s result (recalled in Theorem 1), we may now give the explicit form of the
generator of the Lévy process ξ associated to the pssMp R. We will call this new class of Lévy
processes hypergeometric-stable.

Corollary 1. Let ξ be the Lévy process in the Lamperti representation (1.2) of the radial
process R. The infinitesimal generator L of ξ , with domain D L, is given, in the polar case,
by

Lf (x) =
∫

R

(
f (x + y) − f (x) − f ′(x)�(y)

)
	(dy) (2.11)

for any f ∈ DL and x ∈ R, where

	(dy) = edy

(1 + e2y)(α+d)/2
F

(
4e2y

(e2y + 1)2

)
dy.

Equivalently, the characteristic exponent of ξ is given by

�(λ) = iλμ +
∫

R

(
1 − eiλy + iλy1{|y|<1}

)
	(dy),
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where

μ =
∫

R

(
�(y) − y1{|y|≤1}

) edy

(1 + e2y)(α+d)/2
F

(
4e2y

(e2y + 1)2

)
dy.

We finish this section with a remarkable result on the decomposition of the Lévy measure of
the process ξ when the dimension is d = 1 and α ∈ (0,1] (polar case). Such a decomposition
describes the structure of ξ in terms of two independent Lévy processes, each with a different
type of path behaviour.

Recall, in this case, that the symmetric stable process Z is of bounded variation and so its
radial part R and the associated Lévy process ξ will also be of bounded variation. Hence, the
characteristic exponent of ξ is given by

�(λ) =
∫

R

(eiλy − 1)	(dy).

Proposition 1. If we assume that d = 1, then we have

�(λ) =
∫

R

(eiλy − 1)	1(dy) +
∫

R

(eiλy − 1)	2(dy),

where 	1 is the Lévy measure of a Lamperti Lévy process with characteristics (0,1, α) (see, e.g.,
[4]), that is,

	1(dy) = 2α−1α(1/2)α/2

�(1 − α/2)

(
ey

(ey − 1)α+1
1{y>0} + ey

(1 − ey)α+1
1{y<0}

)
dy

and

	2(dy) = 2α−1α(1/2)α/2

�(1 − α/2)

ey

(ey + 1)α+1
dy

is the Lévy measure of a compound Poisson process.

Proof. Let x ∈ [0,1). Using identity (2.5) twice, we deduce that

2 F1
(
(α + 1)/4, (α + 1)/4 + 1/2;1/2;x2)

=
∞∑

k=0

x2k ((α + 1)/4)k((α + 1)/4 + 1/2)k

k!(1/2)k

= �(1/2)

�((α + 1)/4 + 1/2)

21/2−α/2

�((α + 1)/4)

×
∞∑

k=0

x2k �((α + 1)/2 + 2k)

�(2k + 1)
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= 21/2−α/2�(1/2)

(2π)1/221/2−(α+1)/2�((α + 1)/2)

× 1

2

( ∞∑
0

xk �((α + 1)/2 + k)

�(1 + k)
+

∞∑
0

(−x)k
�((α + 1)/2 + k)

�(1 + k)

)

= 1

2

( ∞∑
k=0

xk ((α + 1)/2)k

k! +
∞∑

k=0

(−x)k
((α + 1)/2)k

k!

)

= 2−1((1 − x)−(α+1)/2 + (1 + x)−(α+1)/2).
Now, from the identity above, we deduce that the Lévy measure of the process ξ satisfies

	(dy) = 2α−1α(1/2)α/2

�(1 − α/2)

ey

(1 + e2y)(α+1)/2

((
1 − 2ey

e2y + 1

)−(α+1)/2

+
(

1 + 2ey

e2y + 1

)−(α+1)/2)
dy

= 2α−1α(1/2)α/2

�(1 − α/2)
ey

(
1

|ey − 1|α+1
+ 1

(ey + 1)α+1

)
dy

and the statement follows. �

3. Entrance laws for the process ξ : Intervals

In this section, we will work in the case α < d , which is the transient case, and will obtain some
explicit identities for the one-sided exit problem.

In what follows, P will be a reference probability measure on D (the Skorokhod space of
R-valued càdlàg paths), under which ξ is the hypergeometric-stable Lévy process described in
Corollary 1 starting from 0. For any y ∈ R, let

T +
y = inf{t ≥ 0 : ξt > y} and T −

y = inf{t ≥ 0 : ξt < y},
and, for any x > 0, let

σ+
x = inf{t ≥ 0 :Rt > x} and σ−

x = inf{t ≥ 0 :Rt < x}.

Lemma 1. Fix −∞ < v < 0 < u < ∞. Suppose that A is any interval in [u,∞) and B is any
interval in (−∞, v]. Then

P(ξT +
u

∈ A;T +
u < ∞) = Px(Rσ+

eu
∈ eA;σ+

eu < ∞)

and

P(ξT −
v

∈ B;T −
v < ∞) = Px(Rσ−

ev
∈ eB;σ−

ev < ∞),
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where x is such that ‖x‖ = 1.

The proof is a consequence of the Lamperti representation and is left as an exercise. Although
somewhat obvious, this lemma indicates that in order to understand the exit problem for the
process ξ , we need to study how the radial process R exits a positive interval around x > 0.
Fortunately, this is possible, thanks to a result of Blumenthal et al. [3], who established the
following for the symmetric α-stable process Z.

Define

f (y, z) = π−(d/2+1)�

(
d

2

)
sin

(
πα

2

)
|1 − ‖y‖2|α/2|1 − ‖z‖2|−α/2‖y − z‖−d .

Theorem 3 ([3]). Suppose that α < d and that (Z,Px) is a symmetric α-stable process with
values in Rd , started from x. For ‖y‖ < 1 and ‖z‖ ≥ 1, we have

Py(Zσ+
1

∈ dz;σ+
1 < ∞) = f (y, z)dz. (3.1)

Similarly, for ‖y‖ > 1 and ‖z‖ ≤ 1, we have

Py(Zσ−
1

∈ dz;σ−
1 < ∞) = f (y, z)dz. (3.2)

The one-sided exit problem for ξ can be solved using Lemma 1 and Theorem 3, as follows.

Theorem 4. Suppose that α < d and fix θ ≥ 0 and −∞ < v < 0 < u < ∞. Then

P(ξT +
u

− u ∈ dθ,T +
u < ∞)

(3.3)

= 2

π
sin

(
πα

2

)
e2(u+θ)(1 − e−2u)α/2(e2θ − 1)−α/2(e2(θ+u) − 1

)−1 dθ

and

P(v − ξT −
v

∈ dθ,T −
v < ∞)

(3.4)

= 2

π
sin

(
πα

2

)
ed(v−θ)(e−2v − 1)α/2(1 − e−2θ )−α/2(1 − e2(v−θ)

)−1 dθ.

Proof. Since Z is a symmetric α-stable process, we have, for any x ∈ Rd and b > 0,

Px(b
−1Zσ+

b
∈ dy;σ+

b < ∞) = Px/b(Zσ+
1

∈ dy;σ+
1 < ∞),

which implies that

Px(Rσ+
eu

∈ [eu, eu+θ ];σ+
eu < ∞) = Pe−ux(Rσ+

1
∈ [1, eθ ];σ+

1 < ∞). (3.5)
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We first study the case d = 1. Here, we assume that x = 1. From (3.1), (3.5) and Lemma 1, we
have, for u, θ ≥ 0,

P(ξT +
u

≤ u + θ;T +
u < ∞) = Pe−u(Rσ+

1
∈ [1, eθ ];σ+

1 < ∞)

= 1

π
sin

(
πα

2

)
(1 − e−2u)α/2

∫
1≤|y|≤eθ

|1 − |y|2|−α/2|e−u − y|−1 dy,

from which (3.3) follows.
We now study the case d ≥ 2. To this end, we fix x ∈ Rd such that ‖x‖ = 1 and wd =

2πd/2(�(d/2))−1. Hence, using identity (3.1) and polar coordinates in Rd , we have, for u, θ ≥ 0,

Pe−ux(Rσ+
1

∈ [1, eθ ];σ+
1 < ∞)

= π−(d/2+1)�

(
d

2

)
sin

(
πα

2

)
(1 − e−2u)α/2

∫
1≤‖y‖≤eθ

|1 − ‖y‖2|−α/2‖e−ux − y‖−d dy

= π−(d/2+1)�

(
d

2

)
sin

(
πα

2

)
(1 − e−2u)α/2

×
∫ eθ

1
dr

rd−1

(r2 − 1)α/2

∫ π

0
dφ

wd−1 sind−2 φ

(r2 − 2re−u cosφ + e−2u)d/2
.

On the other hand, from [7], formula (3.665), we get, for r > 1,∫ π

0
dφ

sind−2 φ

(r2 − 2re−u cosφ + e−2u)d/2
= π1/2�((d − 1)/2)

�(d/2)
e2ur2−d(r2e2u − 1)−1,

which implies that

Pe−ux(Rσ+
1

∈ [1, eθ ];σ+
1 < ∞)

= 2

π
sin

(
πα

2

)
(1 − e−2u)α/2e2u

∫ eθ

1
dr r(r2 − 1)−α/2(r2 − 1)−1.

Therefore, from Lemma 1 and (3.5), we conclude that

P(ξT +
u

≤ u + θ;T +
u < ∞)

= 2

π
sin

(
πα

2

)
(1 − e−2u)α/2e2u

∫ eθ

1
dr r(r2 − 1)−α/2(r2 − 1)−1,

which proves (3.3) for the case d ≥ 2.
The second part of the theorem can be proven in a similar way. Indeed, from the scaling

property of Z, we have, for θ ≥ 0 and v ≤ 0, that

Px(Rσ−
ev

∈ [ev−θ , ev];σ−
ev < ∞) = Pe−vx(Rσ−

1
∈ [e−θ ,1];σ−

1 < ∞). (3.6)
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Assume that d = 1 and take x = 1. From (3.2), (3.6) and Lemma 1, we have

P(ξT −
v

≥ θ − v;T −
v < ∞)

= Pe−v (Rσ−
1

∈ [e−θ ,1];σ−
1 < ∞)

= 1

π
sin

(
πα

2

)
(e−2v − 1)α/2

∫
e−θ≤|y|≤1

∣∣1 − |y|2∣∣−α/2|e−v − y|−1 dy,

from which (3.4) follows.
We now study the case d ≥ 2. To this end, we fix x ∈ Rd such that ‖x‖ = 1 and set wd =

2πd/2(�(d/2))−1. Hence, using (3.2), polar coordinates and [7], formula (3.665), we get, for
θ ≥ 0 and v ≤ 0,

Pe−vx(Rσ−
1

∈ [e−θ ,1];σ−
1 < ∞)

= π−(d/2+1)�

(
d

2

)
sin

(
πα

2

)
(e−2v − 1)α/2

×
∫

e−θ<‖y‖≤1
|1 − ‖y‖2|−α/2‖e−vx − y‖−d dy

= π−(d/2+1)�

(
d

2

)
sin

(
πα

2

)
(e−2v − 1)α/2

×
∫ 1

e−θ

dr
rd−1

(1 − r2)−α/2

∫ π

0
dθ

wd sind−2 θ

(r2 + e−2v − 2re−v cos θ)d/2

= 2

π
sin

(
πα

2

)
(e−2v − 1)α/2e−(2−d)v

×
∫ 1

e−θ

dr rd−1(1 − r2)−α/2(e−2v − r2)−1.

Therefore, from Lemma 1 and (3.6), we conclude that

P(v − ξT −
v

≤ θ;T −
u < ∞)

= 2

π
sin

(
πα

2

)
(e−2v − 1)α/2e−(2−d)v

∫ 1

e−θ

dr rd−1(1 − r2)−α/2(e−2v − r2)−1.

This complete the proof. �

Additional computations yield the following corollary.

Corollary 2. Suppose that α < d and let ξ∞ = inft≥0 ξt . For z ≥ 0,

P(−ξ∞ ∈ dz) = 2
�(d/2)

�((d − α)/2)�(α/2)
e−(d−2)z(e2z − 1)α/2−1 dz.
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Proof. We first note that∫ r

0
ud−α−1(r2 − u2)(α−2)/2 du = rd−2

2

�(α/2)�((d − α)/2)

�(d/2)

and that for u ∈ [0,1] and z > 0,

∫ 1−u2

0
dy y−α/2(e2z − 1 + y)−1(1 − y − u2)α/2−1 = π

sin(πα/2)

(e2z − u2)α/2−1

(e2z − 1)α/2
.

Thus, we have∫ 1

0
dr rd−1(1 − r2)−α/2(e2z − r2)−1

= 2�(d/2)

�(α/2)�((d − α)/2)

∫ 1

0
dr r(1 − r2)−α/2(e2z − r2)−1

×
∫ r

0
ud−α−1(r2 − u2)(α−2)/2 du

= �(d/2)

�(α/2)�((d − α)/2)

∫ 1

0
duud−α−1

∫ 1−u2

0
dy y−α/2(e2z − 1 + y)−1(1 − y − u2)α/2−1

= �(d/2)

�(α/2)�((d − α)/2)

π

sin(πα/2)
(e2z − 1)−α/2

∫ 1

0
duud−α−1(e2z − u2)α/2−1

= �(d/2)

�(α/2)�((d − α)/2)

π

2 sin(πα/2)
(e2z − 1)−α/2e(d−2)z

∫ ∞

e2z−1
dr

rα/2−1

(r + 1)d/2
.

Therefore, from the above computations and (3.4), we get, for z > 0,

P (ξ∞ ≤ −z)

= P(T −−z < ∞)

= 2

π
sin

(
πα

2

)
e−dz(e2z − 1)α/2

∫ ∞

0
e−dθ (1 − e−2θ )−α/2(1 − e−2(z+θ)

)−1 dθ

= 2

π
sin

(
πα

2

)
e−(d−2)z(e2z − 1)α/2

∫ 1

0
dr rd−1(1 − r2)−α/2(e2z − r2)−1

= �(d/2)

�(α/2)�((d − α)/2)

∫ ∞

e2z−1
dr

rα/2−1

(r + 1)d/2
.

This completes the proof. �
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4. Entrance laws: Points

For any y ∈ R and r > 0, let

Ty = inf{t > 0 : ξt = y} and σr = inf{t > 0 :Rt = r}.

We also introduce

Pμ
ν (z) = 1

�(1 − μ)

(
z + 1

z − 1

)μ/2

2 F1

(
−ν, ν + 1;1 − μ; 1 − z

2

)
, z > 1,

the so-called Legendre function of the first kind.
The purpose of this section is to explicitly compute the probability that the process ξ hits

a point, that is, P(Tr < ∞), as well as some related quantities. Our study is based on the
work of Port [11], where the author computes the probability that the radial process R hits
a given point when α ∈ (1,2). We recall that the radial process R only hits points when
α ∈ (1,2).

The one-point hitting probability for R, presented in [11], is given by the formula

Px(σr < ∞) = 22−απ1/2�((d + α)/2 − 1)

�((α − 1)/2)
(4.1)

× rd/2+1−α|1 − r2|α/2−1P1−d/2
−α/2

(
1 + r2

|1 − r2|
)

,

where r > 0 and x ∈ Rd such that ‖x‖ = 1. From the Lamperti representation (1.2) and iden-
tity (4.1), we obtain the one-point hitting problem for ξ as follows.

Theorem 5. Let 1 < α < d . Then, for y ∈ R,

P(Ty < ∞) = 22−απ1/2�((d + α)/2 − 1)

�((α − 1)/2)
e(d/2−1)y |e−2y − 1|α/2−1P1−d/2

−α/2

(
1 + e2y

|1 − e2y |
)

.

Now, we explore more elaborate hitting probabilities (n-point hitting problem) for the Lévy
process ξ when 1 < α < d . This is possible thanks to a result of Port [11] and the Lamperti
representation (1.2) of the process R. Let B = {r1, r2, . . . , rn}, where r1 < r2 < · · · < rn.

Recall, from [11], that the potential density u(·, ·) of the radial process R which is specified
by

Ez

(∫ ∞

0
1{Rt∈A} dt

)
= 1

2d/2�(d/2 + 1)

∫
A

dy ydu(‖z‖, y) for z ∈ Rd ,A ∈ B(R+),
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satisfies (see [11], Lemmas 2.1 and 2.2), for x, y > 0,

u(x, y) = 2(d/2)−α�(d/2)�((d − α)/2)

�(α/2)
(xy)1−d/2|x2 − y2|α/2−1P1−d/2

−α/2

(
x2 + y2

|x2 − y2|
)

and

u(x, x) = π−1/22d/2−2�((α − 1)/2)

�((α + d)/2 − 1)

�(d/2)�((d − α)/2)

�(α/2)
xα−d ,

and that the matrix U = [u(ri, rj )]n×n is invertible. Let us denote its inverse by KB =
[KB(i, j)]n×n and set σB = inf{t > 0 :Rt ∈ B}.

According to Port, the probability that the process R hits the set B at a finite time is given by

Pz(σB < ∞) =
n∑

i=1

n∑
j=1

u(‖z‖, rj )KB(i, j) (4.2)

and the probability that it first hits the point rj is given by

Pz(RσB
= rj ;σB < ∞) =

n∑
i=1

u(‖z‖, ri)KB(i, j). (4.3)

For a two-point set B = {r1, r2}, we have that

KB = 1

�

(
U22 −U12

−U12 U11

)
,

where � = U11U22 − U2
12. Then, from (4.2) and (4.3), we have

Pz(σB < ∞) = u(‖z‖, r1)u(r2, r2) + u(‖z‖, r2)u(r1, r1)

u(r1, r1)u(r2, r2) − u(r1, r2)2

− u(r1, r2)[u(‖z‖, r1) + u(‖z‖, r2)]
u(r1, r1)u(r2, r2) − u(r1, r2)2

and

Pz(σr1 < σr2) = u(‖z‖, r1)u(r2, r2) − u(‖z‖, r2)u(r2, r1)

u(r1, r1)u(r2, r2) − u(r1, r2)2
,

Pz(σr2 < σr1) = u(‖z‖, r2)u(r1, r1) − u(‖z‖, r1)u(r1, r2)

u(r1, r1)u(r2, r2) − u(r1, r2)2
.

Hence, the two-point hitting probabilities for the Lévy process ξ are as follows.

Theorem 6. Suppose that 1 < α < d and fix −∞ < v < 0 < u < ∞. Define

T{v,u} = inf
{
t > 0 : ξt ∈ {v,u}}.
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We have

P
(
T{v,u} < ∞) = u(1, ev)u(eu, eu) + u(1, eu)u(ev, ev)

u(ev, ev)u(eu, eu) − u(ev, eu)2

− u(ev, eu)[u(1, ev) + u(1, eu)]
u(ev, ev)u(eu, eu) − u(ev, eu)2

,

P
(
ξT{v,u} = v

) = f (1, ev, eu) and P
(
ξT{v,u} = u

) = f (1, eu, ev),

where

f (x, a, b) = u(x, a)/u(b, a) − u(x, b)/u(b, b)

u(a, a)/u(b, a) − u(a, b)/u(b, b)
.

5. Wiener–Hopf factorization

In this section, we work in the polar case (recall that this happens when d ≥ 2 or when d = 1
and α ∈ (0,1)) and explicitly compute the characteristic exponent of the process ξ using its
Wiener–Hopf factorization. Denote by {(L−1

t ,Ht ) : t ≥ 0} and {(L̂−1
t , Ĥt ) : t ≥ 0} the (possibly

killed) bivariate subordinators representing the ascending and descending ladder processes of ξ ,
respectively (see [2] for a proper definition). Write κ(θ,λ) and κ̂(θ, λ) for their joint Laplace
exponents for θ,λ ≥ 0. For convenience, we will write

κ̂(0, λ) = q̂ + ĉλ +
∫

(0,∞)

(1 − e−λx)	Ĥ (dx),

where q̂ ≥ 0 is the killing rate of Ĥ so that q̂ > 0 if and only if limt↑∞ ξt = ∞, ĉ ≥ 0 is the drift
of Ĥ and 	Ĥ is its jump measure. Similar notation will also be used for κ(0, λ) by replacing q̂ ,
ξ̂ , ĉ and 	Ĥ by q , ξ , c and 	H , respectively. Note that, necessarily, q = 0 since limt↑∞ ξt = ∞.

Associated with the ascending and descending ladder processes are the bivariate renewal func-
tions V and V̂ , respectively. The former is defined by

V (ds,dx) =
∫ ∞

0
dt · P(L−1

t ∈ ds,Ht ∈ dx)

and taking double Laplace transforms shows that∫ ∞

0

∫ ∞

0
e−θs−λxV (ds,dx) = 1

κ(θ,λ)
for θ,λ ≥ 0. (5.1)

A similar definition and relation holds for V̂ . These bivariate renewal measures are essentially the
Green measures of the ascending and descending ladder processes. With an abuse of notation, we
shall also write V (dx) and V̂ (dx) for the marginal measures V ([0,∞),dx) and V̂ ([0,∞),dx),
respectively. (Since we shall never use the marginals V (ds, [0,∞)) and V̂ (ds, [0,∞)), there
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should be no confusion.) Note that local time at the maximum is defined only up to a multiplica-
tive constant. For this reason, the exponent κ can only be defined up to a multiplicative constant
and hence the same is true of the measure V (and then this argument obviously applies to V̂ ).

The main result of this section is the Wiener–Hopf factorization of the characteristic exponent
of the Lévy process ξ .

Theorem 7. Let α < d and let ξ be the hypergeometric-stable Lévy process. Its characteristic
exponent � then enjoys the following Wiener–Hopf factorization:

�(λ) = 2α �((−iλ + α)/2)

�(−iλ/2)

�((iλ + d)/2)

�((iλ + d − α)/2)
(5.2)

= 2α �(d/2)�((−iλ + α)/2)

�((d − α)/2)�(−iλ/2)
× �((d − α)/2)�((iλ + d)/2)

�(d/2)�((iλ + d − α)/2)
,

where the first equality holds up to a multiplicative constant.

The proof of Theorem 7 relies on the computation of the Laplace exponents of the ascending
ladder height and descending ladder height processes of ξ .

Lemma 2. Let α < d and let ξ be the hypergeometric-stable Lévy process. The Laplace exponent
of its descending ladder height process Ĥ is given by

κ̂(0, λ) = �((d + λ)/2)�((d − α)/2)

�(d/2)�((d − α + λ)/2)
. (5.3)

Proof. Recall from the proof of Corollary 2 that

P
(
− inf

t≥0
ξt ≤ z

)
= �(d/2)

�((d − α)/2)�(α/2)

∫ e2z−1

0
(u + 1)−d/2uα/2−1 du.

Also, recall that V̂ denotes the renewal function associated with Ĥ . From [2], Proposition VI.17,
we know that

V̂ (z) := V̂ ([0, z]) = V̂ ([0,∞))P
(
− inf

t≥0
ξt ≤ z

)
for all z ≥ 0.

As mentioned before, it is well known that V̂ is unique up to a multiplicative constant which
depends on the normalization of the local time of ξ at its infimum. Without loss of generality,
we may therefore assume in the forthcoming analysis that V̂ (∞) may be taken to be identically
equal to 1. Hence,

V̂ (z) = �(d/2)

�((d − α)/2)�(α/2)

∫ e2z−1

0
(u + 1)−d/2uα/2−1 du.
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Now, let K(α,d) = �(d/2)(�((d − α)/2)�(α/2))−1 and note that

λ

∫ ∞

0
e−λxV̂ (x)dx = λK(α,d)

∫ ∞

0
dx e−λx

∫ e2x−1

0
du (u + 1)−d/2uα/2−1

= K(α,d)

∫ ∞

0
(u + 1)−(d+λ)/2uα/2−1 du

= K(α,d)

∫ 1

0
u(d−α+λ)/2−1(1 − u)α/2−1 du = �(d/2)�((d + λ − α)/2)

�((d + λ)/2)�((d − α)/2)
.

Finally, from (5.1), we deduce that

κ̂(0, λ) = �((d + λ)/2)�((d − α)/2)

�(d/2)�((d − α + λ)/2)
.

This completes the proof. �

For the computation of the Laplace exponent of the ascending ladder height process H , we
will make use of an important identity obtained by Vigon [14] that relates 	H , the Lévy measure
of the ascending ladder height process H , to that of the Lévy process ξ and V̂ , the potential
measure of the descending ladder height process Ĥ . Specifically, defining 	H (x) = 	H (x,∞),
the identity states that

	H (r) =
∫ ∞

0
V̂ (dl)	

+
(l + r), r > 0, (5.4)

where 	
+
(u) = 	(u,∞) for u > 0.

Now, recall the property of the hypergeometric function 2 F1 (see, e.g., [1], identity (3.1.9)),

2 F1(a, b;a − b + 1;x) = (1 + x)−a
2 F1

(
a/2, (a + 1)/2;a − b + 1; 4x

(1 + x)2

)
, (5.5)

and note that the Lévy measure of the process ξ can be written as follows:

	(dy) = e−αy

(1 + e−2y)(α+d)/2
F

(
4e−2y

(1 + e−2y)2

)
1{y>0} dy

+ edy

(1 + e2y)α+d/2
F

(
4e2y

(1 + e2y)2

)
1{y<0} dy.

Therefore,

	(dy) = 2αα(d/2)α/2

�(1 − α/2)
e−αy

2 F1
(
(α + d)/2, α/2 + 1;d/2; e−2y

)
1{y>0} dy

(5.6)

+ 2αα(d/2)α/2

�(1 − α/2)
edy

2 F1(α + d/2, α/2 + 1;d/2; e2y)1{y<0} dy.
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Lemma 3. Let α < d and let ξ be the hypergeometric-stable Lévy process. The Laplace exponent
of its ascending ladder height process H is given by

κ(0, λ) = 2α�(d/2)�((λ + α)/2)

�((d − α)/2)�(λ/2)
. (5.7)

Proof. We first note, from the proof of Lemma 2, that the renewal measure V̂ (dy) associated
with Ĥ satisfies

V̂ (dy) = 2�(d/2)

�((d − α)/2)�(α/2)
e(2−d)y(e2y − 1)α/2−1 dy. (5.8)

We also recall the following property of the Gamma function:

�(1 − α/2)�(α/2) = π

sin(πα/2)
.

From Vigon’s formula (5.4) and identity (5.6), we have

	H (x) = 2α+1α sin(απ/2)

π

�((d + α)/2)

�((d − α)/2)

∫ ∞

0
dy e(2−d)y(e2y − 1)α/2−1

×
∫ ∞

x+y

du e−αu
2 F1

(
(α + d)/2, α/2 + 1;d/2; e−2u

)
.

On the other hand, from the definition of 2 F1, we get∫ ∞

x+y

du e−αu
2 F1

(
(α + d)/2, α/2 + 1;d/2; e−2u

)
= 1

2

∫ e−2(x+y)

0
dz zα/2−1

2 F1
(
(α + d)/2, α/2 + 1;d/2; z)

= e−α(x+y)

α
2 F1

(
(d + α)/2, α/2;d/2; e−2(x+y)

)
.

Set

C(α,d) = 2α+1 sin(απ/2)

π

�((d + α)/2)

�((d − α)/2)
.

Hence, putting the pieces together, we obtain

	H (x) = C(α,d)e−αx

∫ ∞

0
2 F1

(
(d + α)/2, α/2;d/2; e−2(x+y)

)
ey(2−d−α)(e2y − 1)α/2−1 dy

= C(α,d)

∞∑
k=0

e−2x(α/2+k) ((d + α)/2)k(α/2)k

(d/2)kk!
∫ ∞

0
e−2y(d/2+k)(1 − e−2y)α/2−1 dy
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= C(α,d)

2

∞∑
k=0

e−2x(α/2+k) ((d + α)/2)k(α/2)k

(d/2)kk!
∫ 1

0
ud/2+k−1(1 − u)α/2−1 du

= C(α,d)

2

∞∑
k=0

e−2x(α/2+k) ((d + α)/2)k(α/2)k

(d/2)kk!
�(d/2 + k)�(α/2)

�((d + α)/2 + k)

= C(α,d)

2

�(d/2)�(α/2)

�((d + α)/2)
e−αx

∞∑
k=0

e−2kx (α/2)k

k!

= 2α sin(απ/2)

π

�(d/2)�(α/2)

�((d − α)/2)
e−αx(1 − e−2x)−α/2.

From Theorem 3, we deduce that the process ξ does not creep upward. Hence, by [2], Theo-
rem VI.19, the ascending ladder height process H has no drift. Also, recall that the process ξ

drifts to ∞, which implies that the process H has no killing term. Therefore, the Laplace expo-
nent κ(0, λ) of H is given by

κ(0, λ)

λ
= 2α sin(απ/2)

π

�(d/2)�(α/2)

�((d − α)/2)

∫ ∞

0
e−λxe−αx(1 − e−2x)−α/2 dx.

By integrating by parts and a change of variable, we get

κ(0, λ) = α2α sin(απ/2)

π

�(d/2)�(α/2)

�((d − α)/2)

∫ ∞

0

(
1 − e−(λ/2)x

) ex

(ex − 1)α/2+1
dx.

According to [4], Theorem 3.1, the previous integral satisfies∫ ∞

0

(
1 − e−(λ/2)x

) ex

(ex − 1)α/2+1
dx = −�(−α/2)�((λ + α)/2)

�(λ/2)
,

where �(−α/2) = −α−1�(1 − α/2). Therefore,

κ(0, λ) = 2α�(d/2)�((λ + α)/2)

�((d − α)/2)�(λ/2)
.

This completes the proof. �

Proof of Theorem 7. From the fluctuation theory of Lévy processes, it is known that Wiener–
Hopf factorization of the characteristic exponent of ξ is given by

ψ(λ) = κ(0,−iλ) × κ̂(0, iλ),

up to a multiplicative constant. Hence, the result follows from Lemmas 2 and 3. �

Remark 2. We have obtained the characteristic exponent for the process ξ in the case where
α < d , using the Wiener–Hopf factorization. We will now see that the same formula holds true
in the example studied in [5]: α = d = 1.
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Recall that they obtained the following characteristic exponent of ξ :

E[exp{iλξt }] = exp

{
−tλ tanh

(
πλ

2

)}
, t ≥ 0, λ ∈ R.

We have

ψ(λ) = λ tanh

(
πλ

2

)
= π/cosh(πλ/2)

π/((λ/2) sinh(πλ/2))

= |�((iλ + 1)/2)|2
|�(iλ/2)|2 =

(
iλ + 1

2

)
1/2

(
− iλ

2

)
1/2

.

Recall that, in the case α < d , the characteristic exponent is given by (5.2). From the above
computation, we note that this formula still holds for the case α = d = 1.

From the uniqueness of the Wiener–Hopf factorization, we deduce that the characteristic ex-
ponents of the subordinators Ĥ and H are, respectively,

κ̂(0, iλ) =
(

iλ + 1

2

)
1/2

, κ(0,−iλ) =
(

− iλ

2

)
1/2

.

6. n-tuple laws at first and last passage times

Recall that the renewal measure V̂ (dy) associated with Ĥ satisfies

V̂ (dy) = 2�(d/2)

�((d − α)/2)�(α/2)
e(2−d)y(e2y − 1)α/2−1 dy.

From the form of the Laplace exponent of H and (5.1), we get that the renewal measure V (dy)

associated with H satisfies

V (dy) = �((d − α)/2)

2α−1�(d/2)�(α/2)
(1 − e−2y)α/2−1 dy.

Since we have explicit expressions for the renewal functions V and V̂ , we can get, from the main
results of Doney and Kyprianou [6] and Kyprianou et al. [8], n-tuple laws at first and last passage
times for the Lévy process ξ and the radial part of the symmetric stable Lévy process Z.

Marginalizing the quintuple law at first passage of Doney and Kyprianou [6] (see Theorem 3)
and by the Lamperti representation (1.2), we now obtain the following new identities.

Proposition 2. Let ξ t = sup0≤s≤t ξs . For y ∈ [0, x], v ≥ y and u > 0,

P(ξT +
x

− x ∈ du,x − ξT +
x − ∈ dv, x − ξT +

x − ∈ dy)

= 4α�((α + d)/2)

�(d/2)�(α/2)

sin(απ/2)

π

(
1 − e−2(x−y)

)α/2−1e(2−d)(v−y)
(
e2(v−y) − 1

)α/2−1

× e−α(u+v)
2 F1

(
(α + d)/2, α/2 + 1;d/2; e−2(u+v)

)
dy dv du.
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For z ∈ [x,1], w ∈ [0, z] and θ > 1,

Px

(
sup

0≤s<σ+
1

Rs ∈ dz,Rσ+
1 − ∈ dw,Rσ+

1
∈ dθ

)

= 4α�((α + d)/2)

�(d/2)�(α/2)

sin(απ/2)

π
z3−d−αwd−1θ−α−2(z2 − x2)α/2−1

× (z2 − w2)α/2−1
2 F1

(
(α + d)/2, α/2 + 1;d/2; (w/θ)2)dz dw dθ.

Note that the normalizing constant above is chosen to make the densities on the right-hand
side into distributions. It is also important to point out that the triple law for the Lévy process ξ

extends the identity in (3.3).
Let us define the last passage time and the future infimum for the processes ξ and R as,

respectively,

Ux = sup{t : ξt < x}, Lx = sup{t :Rt < x},
Jt = inf

s≥t
ξs and Ft = inf

s≥t
Rs.

From [10], Proposition 2.3, we know that if z > 0, then the radial process R of the symmetric
stable Lévy process is regular for both (z,∞) and [0, z). Hence, from the Lamperti represen-
tation (1.2), we deduce that the Lévy process ξ is regular for both (−∞,0) and (0,∞). Now,
applying [8], Corollaries 2 and 5, we obtain quadruple laws at last passage times for ξ and R.

Proposition 3. For x, v > 0, 0 ≤ y < x + v and w ≥ v > 0,

P(−J0 ∈ dv,JUx − x ∈ du,x − ξUx− ∈ dy, ξUx − x ∈ dw)

= 8α�((α + d)/2)

�((d − α)/2)�2(α/2)

sin(απ/2)

π
e(2−d)(v+w−u)(e2v − 1)α/2−1(e2(w−u) − 1

)α/2−1

× (
1 − e−2(x+v−y)

)α/2−1e−α(w+y)
2 F1

(
(α + d)/2, α/2 + 1;d/2; e−2(w+y)

)
dw dy dudv.

For x, b > 0, we have, on v ≥ x−1 ∨ b−1, v−1 < y < b and b < u ≤ w < ∞,

Px(1/F0 ∈ dv,RLb− ∈ dy,RLb
∈ dw,FLb

∈ du)

= 8α�((α + d)/2)

�((d − α)/2)�2(α/2)

sin(απ/2)

π
bd−2αv1−dyw1−d−αud−α−1(v2 − 1)

(
y2 − (bv)−2)α/2−1

× (
w2 − (bu)2)α/2−1

2 F1
(
(α + d)/2, α/2 + 1;d/2; (y/bw)2)dv dy dw du.

We conclude this section with a nice formula for the potential kernel of the Lévy process ξ

killed as it enters (−∞,0), that follows from Bertoin [2], Theorem VI.20.
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Proposition 4. There exist a constant k > 0 such that for every measurable function f :
[0,∞) → [0,∞) and x ≥ 0, we have

Ex

(∫ T −
0

0
f (ξt )dt

)
= k

22−α

�2(α/2)

∫ ∞

0
dy (1 − e−2y)α/2−1

∫ x

0
dz e(2−d)z(e2z − 1)α/2−1f (x + y − z).

In particular, the potential measure of the Lévy process ξ killed as it enters (−∞,0) has a density
which is given by

r(x,u) = k
22−α

�2(α/2)

∫ u

(u−x)∨0
(1 − e−2y)α/2−1e(2−d)(x+y−u)

(
e2(x+y−u) − 1

)α/2−1 dy.

Note that, from the previous proposition, we can obtain the potential kernel of the radial
process R killed as it enters (0,1). If we let x > 1, then

Ex

(∫ σ−
1

0
f (Rt )dt

)
= Elogx

(∫ T −
0

0
f (eξt )eαξt dt

)
= k

22−α

�2(α/2)

∫ ∞

0
dy(1 − e−2y)α/2−1

×
∫ logx

0
dz e(2−d)z(e2z − 1)α/2−1xαeα(y−z)f (xey−z).

In particular,

Ex(σ
−
1 ) = Elogx

(∫ T −
0

0
eαξt dt

)
= k

22−α

�2(α/2)

∫ ∞

0
dy(1 − e−2y)α/2−1

∫ logx

0
dz e(2−d)z(e2z − 1)α/2−1xαeα(y−z)

= k
xα

2�(α)

∫ 1

x−2
duud/2−1(1 − u)α/2−1.
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