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We study the non-equilibrium dynamics of a one-dimensional interacting particle system that is a mixture
of the voter model and the exclusion process. With the process started from a finite perturbation of the
ground state Heaviside configuration consisting of 1’s to the left of the origin and 0’s elsewhere, we study
the relaxation time τ , that is, the first hitting time of the ground state configuration (up to translation). We
give conditions for τ to be finite and for certain moments of τ to be finite or infinite, and prove a result that
approaches a conjecture of Belitsky et al. (Bernoulli 7 (2001) 119–144). Ours are the first non-existence-of-
moments results for τ for the mixture model. Moreover, we give almost sure asymptotics for the evolution
of the size of the hybrid (disordered) region. Most of our results pertain to the discrete-time setting, but
several transfer to continuous-time. As well as the mixture process, some of our results also cover pure
exclusion. We state several significant open problems.

Keywords: almost-sure bounds; exclusion process; hybrid zone; Lyapunov functions; passage-time
moments; voter model

1. Introduction

The exclusion-voter model is a one-dimensional lattice-based interacting particle process with
nearest-neighbour interactions, introduced by Belitsky et al. in [7], that is, a mixture of the sym-
metric voter model and the simple exclusion process. For background on the latter two models
(separately) and interacting particle systems in general, see [16,17].

The voter model has been used to model the spread of an opinion through a static population
via nearest-neighbour interactions; see, for example, [13]. The mixture model studied here is a
natural extension of this model whereby individuals do not have to remain static, but may move
by switching places. Alternative motivations, such as from the point of view of competition of
species (see, e.g., [8]) can also be adapted to the mixture model. As our results show, allowing
place-swaps can have a dramatic effect on the dynamics of the process.

The exclusion-voter model is a Markov process with state space {0,1}Z; each site of Z can be
labelled either 0 or 1, representing the presence of one of two types of particle. The ground state
of our model will be the ‘Heaviside’ configuration . . .111000 . . . . We consider initial configu-
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rations that are finite perturbations of this ground state and so contain a finite number of unlike
pairs, where, by ‘pair’, we always mean two adjacent particles.

In this paper, we concentrate on a discrete-time process that can be described informally as fol-
lows. At each time step, the simple exclusion process selects uniformly at random from amongst
all unlike pairs. If the chosen pair is 01, it flips to 10 with probability p (otherwise there is no
change); if the pair is 10, it flips to 01 with probability 1 − p. On the other hand, at each time
step, the symmetric voter model selects uniformly at random from all unlike pairs and then flips
the chosen pair to either 00 or 11, with equal chance of each. The model that is considered in
this paper, introduced in [7], is a mixture of these two processes where, at each time step, we
determine independently at random whether to perform a voter-type move (with probability β)
or an exclusion-type move (probability 1 − β).

The analogous continuous-time exclusion-voter model can be defined via its infinitesimal gen-
erator and constructed via a Harris-type graphical construction. The discrete-time process de-
scribed above is naturally embedded in the continuous-time process. In our analysis, we work in
discrete time, and the discrete-time process has its own interest, but, as we shall indicate, some
of our results transfer almost immediately into continuous time.

Individually, the exclusion process and voter model exhibit very different behaviour. For in-
stance, in the exclusion process, there is local conservation of 1’s: the number of 1’s in a bounded
interval can change only through the boundary. There is no such conservation in the voter model.
In the mixture process that we study in the present paper, voter moves and exclusion moves in-
teract in a highly non-trivial way. This introduces technical difficulties: for instance, voter moves
can cause drastic changes quickly, also there is no obvious monotonicity property. We describe
the model more formally and state our results in the next section. First, we outline the existing
literature and the contribution of the present paper.

In [7], results were proven for the exclusion process and voter model separately, as well as
some initial results for the mixture model. The main problems left open in [7] were the non-
existence of passage-time moments and the issue of transience/recurrence for the mixture model.
As we will describe shortly, the present paper makes contributions to each of these problems.
Some of the results in [7], in the symmetric exclusion (p = 1/2) case, are generalized to non-
nearest-neighbour interactions in [20]. Certain ‘ergodic’ properties of a generalization of the
continuous-time exclusion-voter model, again in the symmetric exclusion case, are studied in
[14]. The goal of the present paper is to study the mixture model in more depth than [7]. In
particular, we prove new results on: (i) the passage-time problem for the exclusion-voter model,
the main contribution being the (more difficult) non-existence of passage-time moments; (ii) the
size of the disordered region where 1’s and 0’s intermingle. This region we call the hybrid zone
(cf. [9]). Our results leave several open problems and we put forward some conjectures with
regard to these in the next section.

Let us describe more specifically the contribution of the present paper to the passage-time
problem for the exclusion-voter model. The passage time of interest to us here is the relaxation
time τ – the return time of the configuration to the ground state. In general, one can often prove
the existence of moments of passage times directly via semimartingale (Lyapunov-type function)
criteria such as those in [2,4,15], in the vein of Foster [12]. The non-existence of moments (for
which no results have previously been obtained for the exclusion-voter model with β ∈ (0,1))
is usually a harder problem. In general, semimartingale-type arguments are available in this case



1314 MacPhee, Menshikov, Volkov and Wade

too (see, e.g., [3,4,15]), but under more restrictive conditions than the corresponding existence
results: non-existence results typically need fine control over jumps of the process. Lamperti [15]
was first to establish a general methodology for proving non-existence of passage-time moments,
based on finding a suitable submartingale and obtaining a good-probability lower bound for
passage times; his method was later extended in [3,4]. The same two elements form the basis of
our approach, but we must proceed differently since the exclusion-voter model does not possess
the regularity required by existing general results such as those of [3,4,15].

On the one hand, we extend the region of the parameter space of the model for which al-
most sure finiteness of τ is known and we give results on the existence of higher moments of
τ (including in the case of pure exclusion). On the other hand, we show the non-existence of
certain moments of τ ; this problem was not addressed in [7]. Each of these opposing directions
requires us to develop new techniques. We prove, for example, that under certain conditions,
1 + ε moments (ε > 0) of τ do not exist; this approaches a conjecture in [7].

The second main contribution of the paper is to study the evolution of the size of the hybrid
zone. Our basic tools are again semimartingales: we apply general results on almost sure bounds
for stochastic processes from [18]. For instance, for the pure exclusion process in the case p =
1/2 we prove that, with probability 1, the maximum size of the hybrid zone up to time t remains
bounded between t1/3 and t1/2, ignoring logarithmic factors.

In the next section, we give some more formal definitions, state our main results and discuss
some (challenging) open problems.

2. Definitions and statement of results

We now formally describe the model that we study, as considered in [7]. We introduce some
notation to describe the configuration of the process. Let D′ ⊂ {0,1}Z denote the set of configu-
rations with a finite number of 0’s to the left of the origin and 1’s to the right. Let ‘∼’ denote the
equivalence relation on D′ such that for S,S′ ∈ D′, S ∼ S′ if and only if S and S′ are translates
of each other. Then set D := D′/ ∼. In other words, the configuration space D is the set of con-
figurations taking the form of an infinite string of 1’s followed by a finite number of 0’s and 1’s
followed by an infinite string of 0’s, modulo translations. For example, one configuration S ∈ D
is

S = . . .1110000000011100001001001000000001111000 . . . . (1)

Configurations such as those in D are sometimes called shock profiles (see, e.g., [7]).
Fix β ∈ [0,1] (the mixing parameter) and p ∈ [0,1] (the exclusion parameter). The discrete-

time exclusion-voter process ξ = (ξt )t∈Z+ with parameters (β,p) is a time-homogeneous
Markov chain on the countable state space D. The one-step transition probabilities are deter-
mined by the following mechanism. At each time step, we decide independently at random
whether to perform a voter move or an exclusion move. We choose a voter move with proba-
bility β and an exclusion move with probability 1 −β . Having decided this, we choose an unlike
adjacent pair (i.e., 01 or 10) uniformly at random. The voter move is such that the chosen pair
(01 or 10) flips to 00 or 11, each with probability 1/2. The exclusion move is such that a chosen
pair 01 flips to 10 with probability p (otherwise no move) and a chosen pair 10 flips to 01 with
probability q := 1 − p (otherwise no move).
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In addition to the discrete-time model that is the focus of the present paper, there is a corre-
sponding continuous-time model, also introduced in [7]. A priori, the relationship between the
two time-scales is complicated, but from our results on the discrete-time process, we can obtain
some results in the continuous-time setting too. For a description of the continuous-time model,
its relationship to the discrete-time model that is our main object of study and our results in the
continuous-time setting, see Section 3 below.

We denote the underlying probability space for ξ by (�, F ,Pβ,p) and the corresponding ex-
pectation by Eβ,p . We denote the ground state Heaviside configuration D0 ∈ D, which consists
of a single pair 10 abutted by infinite strings of 1’s and 0’s to the left and right, respectively:

D0 = . . .11110000 . . . ,

up to translation. The next result gives some elementary properties of the state space D under
Pβ,p . In particular, Proposition 1 says that for (β,p) ∈ (0,1)2 (i.e., in the interior of the parameter
space), ξ is irreducible and aperiodic under Pβ,p .

Proposition 1. D0 is an absorbing state under Pβ,1 for any β ∈ [0,1]. Suppose that β �= 1 and
(β,p) /∈ {(0,0), (0,1)}. All states in D \{D0} then communicate under Pβ,p . Suppose that β �= 1,
p < 1 and (β,p) �= (0,0). All states in D then communicate under Pβ,p , and ξ is irreducible
and aperiodic.

For S0 ∈ D, define the relaxation time for the process ξ as

τ := min{t ∈ N: ξt = D0}.
We introduce some convenient terminology. If Pβ,p(τ = +∞|ξ0 = S0) > 0 for S0 ∈ D \ {D0},
then we say that ξ is transient started from S0; if Pβ,p(τ < ∞|ξ0 = S0) = 1 for S0 ∈ D \ {D0},
then we say that ξ is recurrent started from S0. In the latter case, if, in addition, Eβ,p[τ |ξ0 =
S0] < ∞ for S0 ∈ D \ {D0}, then we say that ξ is positive recurrent started from S0. When ξ is
irreducible (see Proposition 1), this terminology coincides with the standard usage for countable
state space Markov chains. When ξ is irreducible and aperiodic (see Proposition 1), we may use
the term ergodic in the positive recurrent case.

Results of Liggett (see, e.g., Chapter VIII of [16]) imply that the pure exclusion process (β =
0) is positive recurrent for all S0 ∈ D if and only if p > 1/2. We recall the following result, which
is contained in Theorems 5.1, 5.2, 6.1, 7.1 and 7.2 of [7], together with an inspection of (7.2) in
[7] for part (iii)(a).

Theorem 1. (i) Suppose that β = 0 (pure exclusion). Then, for any S0 ∈ D, ξ is positive recurrent
for p > 1/2 and transient for p ≤ 1/2.

(ii) Suppose that β = 1 (pure voter). Then ξ is positive recurrent for any S0 ∈ D and, more-
over, for any S0 ∈ D \ {D0} and any ε > 0,

E1,p

[
τ (3/2)−ε|ξ0 = S0

]
< ∞; E1,p

[
τ (3/2)+ε|ξ0 = S0

] = ∞.

(iii) Suppose that β ∈ (0,1) (mixture process).
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(a) If β and p ∈ [0,1] are such that (1 −p)(1 −β) < 1/3, then ξ is positive recurrent for
any S0 ∈ D. In particular, for any β > 2/3 and any p ∈ [0,1], ξ is positive recurrent
for any S0 ∈ D.

(b) For p ≥ 1/2 and any β > 0, ξ is positive recurrent for any S0 ∈ D.

In [7], the following was Conjecture 7.1.

Conjecture 1. For any p < 1/2, there exists β0 = β0(p) > 0 such that for any β < β0, ξ is not
positive recurrent, that is, Eβ,p[τ |ξ0 = S0] = ∞ for any S0 ∈ D \ {D0}.

Our first result says that for β small enough (so that the exclusion part is prevalent), 1 + ε

moments do not exist; thus Conjecture 1 remains tantalizingly open.

Theorem 2. For each p < 1/2, there exists β1 = β1(p) = (1 − 2p)/(2 − 2p) ∈ (0,1/2] such
that for all β ≤ β1, any ε > 0 and any S0 ∈ D \ {D0},

Eβ,p[τ 1+ε|ξ0 = S0] = ∞.

Our second result says that in the mixture process, the presence of a transient exclusion ensures
that 2+ε moments do not exist. Thus, for p ≤ 1/2, even in the case where Theorem 1(iii) applies,
the recurrence is polynomial in nature, that is, ‘heavy tailed’.

Theorem 3. Suppose that p ≤ 1/2, β ∈ [0,1]. For any ε > 0 and S0 ∈ D \ {D0},
Eβ,p[τ 2+ε|ξ0 = S0] = ∞.

In view of Theorem 1(ii), we suspect that mixing transient (p ≤ 1/2) exclusion with the voter
model ought not to lead to a lighter tail for τ , as we now conjecture.

Conjecture 2. Suppose that p ≤ 1/2, β ∈ [0,1]. For any ε > 0 and S0 ∈ D \ {D0},
Eβ,p

[
τ (3/2)+ε|ξ0 = S0

] = ∞.

Even this conjecture seems to be challenging, as exclusion and voter moves interact in complex
ways. Technically, the issue that prevents us from reducing the 2 to 3/2 in Theorem 3 is that
exclusion moves can (and typically will) increase the number of blocks.

An open problem mentioned in [7] is whether the mixture process with β > 0 and p < 1/2
is, in fact, transient (it is recurrent for p ≥ 1/2, by Theorem 1(iii)(b)). Simulations that we have
performed have been inconclusive. We conjecture the following.

Conjecture 3. Suppose that p < 1/2, β > 0. For any S0 ∈ D, ξ is recurrent.

Note that if Conjectures 1 and 3 both hold, then there is null recurrence for p < 1/2 and
β ∈ (0, β0). Our next result represents some progress in the direction of Conjecture 3 and gives
recurrence in a previously unexplored region of the parameter space.
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Theorem 4. Suppose that p < 1/2, β ≥ 4/7. For any S0 ∈ D, ξ is recurrent.

We now turn to the problem of existence of moments for τ . First, we consider the pure exclu-
sion process in the positive recurrent (p > 1/2) case. If we further restrict to p > 2/3, then it is
possible to construct a positive strict supermartingale with uniformly bounded increments (see
(5.7) in [7]) and so it is not hard to show that all polynomial moments of τ exist in that case.
Theorem 5 below extends this conclusion to all p > 1/2.

Theorem 5. Suppose that β = 0, p > 1/2. For any S0 ∈ D and any s ∈ [0,∞),

E0,p[τ s |ξ0 = S0] < ∞.

We suspect that under the conditions of Theorem 5, the existence of some superpolynomial
‘moments’ for τ can be obtained via our techniques and general results from [3]. The next result
covers the mixture process in the case where the exclusion component is positive recurrent. In
the β ∈ [0,1], p > 1/2 case, we know from Theorem 1 that E[τ ] < ∞; the next theorem says
that some higher moments are also finite.

Theorem 6. Suppose that β ∈ [0,1], p > 1/2. For any S0 ∈ D, Eβ,p[τ 6/5|ξ0 = S0] < ∞.

In view of Theorem 1 and Theorem 5, in the setting of Theorem 6, we are mixing together the
voter model, for which (3/2) − ε moments exist, and the recurrent exclusion process, for which
all moments exist. One might therefore hope to improve the exponent in Theorem 6 to at least
(3/2) − ε; this is another open problem.

Figure 1 gives two diagrams of the (β,p) parameter space, summarizing the results of the
previous theorems for the relaxation time τ .

We now state our results on the size of the hybrid zone. First, we need to introduce some
more notation, following [7]. A 1-block (0-block) is a maximal string of consecutive 1’s (0’s).
Configurations in D consist of a finite number of such blocks. For S ∈ D, let N = N(S) ≥ 0
denote the number of 1-blocks not including the infinite 1-block to the left (this is the same as
number of 0-blocks, not including the infinite 0-block to the right). Enumerating left-to-right, let
ni = ni(S) denote the size of the ith 0-block and mi = mi(S) the size of the ith 1-block. We
may represent configuration S ∈ D \ {D0} by the vector (n1,m1, . . . , nN ,mN). For example, the
configuration S of (1), which has N(S) = 5, has the representation (8,3,4,1,2,1,2,1,8,4). Set
|D0| := 0 and, for S ∈ D \ {D0}, let |S| := ∑N

i=1(ni + mi) represent the size of the hybrid zone,
that is, the length of the string of 0’s and 1’s between the infinite string of 1’s to the left and the
infinite string of 0’s to the right.

The next result gives upper bounds for the size of the hybrid zone |ξt | and the number of blocks
N(ξt ); in particular, part (ii) covers the case β = 0, p = 1/2 of the symmetric pure (transient)
exclusion process.

Theorem 7. (i) Suppose that β ∈ [0,1], p ∈ [0,1]. For any ε > 0, Pβ,p-a.s., for all but finitely
many t ∈ Z

+,

max
0≤s≤t

N(ξs) ≤
{

t1/2(log t)(1/2)+ε, if p < 1/2,
t1/3(log t)(1/3)+ε, if p ≥ 1/2.

(2)
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Figure 1. Representations of the (β,p) parameter space. The key explains the labelling, together with the
appropriate result from the text (for brevity, we have dropped the subscripts from P,E).

(ii) Suppose that β ∈ [0,1], p ≥ 1/2. For any ε > 0, Pβ,p-a.s., for all but finitely many t ∈ Z
+,

max
0≤s≤t

|ξs | ≤ t1/2(log t)(1/2)+ε. (3)

The remainder of our results deal with the pure exclusion process (β = 0). In the continuous-
time setting, related results on the growth of the hybrid zone of the pure exclusion process were
first obtained by Rost [19] in the totally asymmetric case; see Section VIII.5 of [16], and [1] for
more general results. In particular, Theorems 5.2, 5.3, and 5.12 on pages 403–407 of [16] say,
very loosely, that under P0,p ,

|ηt | ≈ t (p < 1/2); |ηt | ≈ t1/2 (p = 1/2),

where η is the continuous-time version of ξ , as described in Section 3. In particular, the sym-
metric case is significantly different from the asymmetric case. However, there seems to be no
immediate way to translate these results between the continuous- and discrete-time settings (see
Section 3 below). Part (i) of the next result strengthens the bound in (2) slightly in the pure ex-
clusion case with p < 1/2. Part (ii) complements the β = 0 case of (3) for the case p < 1/2
(transient but not symmetric exclusion); it quantifies the rate of transience.

Theorem 8. Suppose that β = 0 and p ∈ [0,1].
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(i) There exists C ∈ (0,∞) such that for any p ∈ [0,1], P0,p-a.s., for all t ∈ Z
+,

max
0≤s≤t

N(ξs) ≤ Ct1/2.

(ii) Suppose that p ∈ [0,1/2). Then, for any ε > 0, P0,p-a.s., for all but finitely many t ∈ Z
+,

max
0≤s≤t

|ξs | ≤ t2/3(log t)(1/3)+ε.

On the other hand, there exists c(p) ∈ (0,∞) such that for any c ∈ (0, c(p)), P0,p-a.s., for all
but finitely many t ∈ Z

+,

|ξt | ≥ ct1/2.

Our next result complements (3) in the case β = 0, p = 1/2.

Theorem 9. Suppose that β = 0, p = 1/2. For any ε > 0, P0,1/2-a.s., for all but finitely many
t ∈ Z

+,

t1/3(log t)−(1/3)−ε ≤ max
0≤s≤t

|ξs | ≤ t1/2(log t)(1/2)+ε.

It is an open problem to obtain sharper versions of the above results on |ξt |. In the pure exclu-
sion (β = 0) case, we conjecture the following.

Conjecture 4. Suppose that β = 0. If p < 1/2, then for any ε > 0, P0,p-a.s., for all but finitely
many t ∈ Z

+, |ξt | ≤ t (1/2)+ε . If p = 1/2, then for any ε > 0, P0,1/2-a.s., for all but finitely many
t ∈ Z

+, t (1/3)−ε ≤ |ξt | ≤ t (1/3)+ε .

The structure of the remainder of the paper is as follows. In Section 3, we describe the
continuous-time version of the exclusion-voter model, how it relates to the discrete-time ver-
sion studied here and which results can be transferred without too much extra work. Section 4
contains preliminary results. In Section 4.1, we collect general semimartingale results that we
apply in the paper. In Section 4.2, we introduce notation and a convenient representation for
configurations of the model, and we prove Proposition 1. In Section 4.3, we give some lemmas
on the Lyapunov-type functions that we will use throughout the paper. In Section 5, we prove
Theorems 2 and 3 on passage-time moments, via a series of lemmas. In Section 6, we prove
Theorem 4. In Section 7, we prove Theorems 5 and 6. In Section 8, we prove Theorems 7, 8
and 9 on the size of the hybrid zone and number of blocks.

3. Continuous time

The exclusion-voter model may also be defined and studied in continuous time. First, we recall
the definition, following [7]. Let ν = (ν(x))x∈Z ∈ {0,1}Z so that ν(x) is the label (0 or 1) at x.
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For x, y, z ∈ Z, denote

νx,y(z) :=
{

ν(y), if z = x,
ν(x), if z = y,
ν(z), if z �= x, y;

νx(z) :=
{

1 − ν(z), if z = x,
ν(z), if z �= x.

In words, νx,y is ν with labels at x, y interchanged and νx is ν with the label at x flipped (i.e.,
replaced by its opposite). We introduce Markovian generators �e

p (p ∈ [0,1]) and �v, defined

by their action on functions f on {0,1}Z, by

�e
pf (ν) =

∑
x,y

p(x, y)ν(x)
(
1 − ν(y)

)[f (νx,y) − f (ν)] and

�vf (ν) =
∑
x

c(x, ν)[f (νx) − f (ν)],

where p(x, x − 1) = p, p(x, x + 1) = 1 − p and p(x, y) = 0 for |x − y| �= 1, and

c(x, ν) :=
{

1
2

(
ν(x − 1) + ν(x + 1)

)
, if ν(x) = 0,

1
2

(
2 − ν(x − 1) − ν(x + 1)

)
, if ν(x) = 1.

The continuous-time exclusion-voter model with mixing parameter β ∈ [0,1] and exclusion
parameter p ∈ [0,1] is a Markov process (η′

t )t≥0 on D′ ⊂ {0,1}Z with generator (1 − β)�e
p +

β�v. This induces a Markov process η = (ηt )t≥0 on the space of equivalence classes D by
taking ηt to be the ∼-equivalence class of η′

t . The process η can be constructed from an array of
homogeneous one-dimensional Poisson processes via a Harris-type graphical construction; see
page 9 of [7] for details. With the definitions in Section 2 and this section, ξ may be embedded
in η in the standard way; again, see [7].

In the continuous-time setting, the relaxation time is

τc := inf{t ≥ 0: ηt = D0}.
The natural question is: given the results in Section 2 on τ , what is it possible to say about τc? We
now outline which of our discrete-time results for ξ can be readily transferred to continuous-time
results for η (cf. Section 8 of [7]).

First, as pointed out in [7], recurrence and transience transfer directly:

Pβ,p(τ < ∞|ξ0 = S0) = 1 ⇐⇒ Pβ,p(τc < ∞|η0 = S0) = 1.

To draw conclusions about moments (i.e., tails) of the relaxation times, it is necessary to know
about the comparative rates of the two processes. The transition rate of the continuous-time
process is, roughly speaking, proportional to the number of blocks so the continuous-time process
tends to evolve at least as fast as the discrete-time process.

The pure voter model (β = 1) is well behaved, in the sense that it cannot increase the number of
blocks. Thus, roughly speaking, the discrete and continuous time-scales are directly comparable



The exclusion-voter model 1321

and results are more easily transferred. This intuition is formalized in Section 8 of [7], where it
is shown that for any s > 0,

E1,p[τ s |ξ0 = S0] < ∞ ⇐⇒ E1,p[τ s
c |η0 = S0] < ∞.

In the general case, without more information on the number of blocks, only one-sided results
are possible a priori. It is shown in Section 8 of [7] that for any s > 0,

Eβ,p[τ s |ξ0 = S0] < ∞ ⇒ Eβ,p[τ s
c |η0 = S0] < ∞.

Theorem 1 above (proved in [7]) therefore transfers directly to continuous time and holds with
τc instead of τ ; this is Theorem 1.1 in [7]. In particular, the β = 1 case of this result shows that
the continuous-time pure voter model is positive recurrent, a result that goes back to Cox and
Durrett (Theorem 4 of [9]); for further study of voter model interfaces and some generalizations,
see [5,6,10]. Moreover our Theorems 4, 5 and 6 also carry across and hold with τc, yielding the
following corollary.

Corollary 1. For any S0 ∈ D, we have the following:

(i) if p < 1/2, β ≥ 4/7, then η is recurrent, that is, Pβ,p(τc < ∞|η0 = S0) = 1;
(ii) if β = 0, p > 1/2, then for any s ∈ [0,∞), E0,p[τ s

c |ξ0 = S0] < ∞;

(iii) if β ∈ [0,1], p > 1/2, then Eβ,p[τ 6/5
c |ξ0 = S0] < ∞.

Corollary 1(ii) says that for the standard (continuous-time) recurrent exclusion process, all
moments of τc exist. This fact may be known, but we could not find a reference.

4. Preliminaries

4.1. Technical tools

In this section, we state some general martingale-type results that we will need. In particular,
we will recall some criteria for obtaining upper and lower almost sure bounds for discrete-time
stochastic processes on the half-line given in [18].

Let (Ft )t∈Z+ be a filtration on a probability space (�, F ,P). Let X = (Xt )t∈Z+ be a discrete-
time (Ft )-adapted stochastic process taking values in [0,∞). Suppose that P(X0 = x0) = 1 for
some x0 ∈ [0,∞). For the applications in the present paper, we will, for instance, take Xt = |ξt |.
The following result combines a maximal inequality (Lemma 3.1 in [18]) with an almost sure
upper bound (contained in Theorem 3.2 of [18]).

Lemma 1. Let B ∈ (0,∞) be such that, for all t ∈ Z
+,

E[Xt+1 − Xt |Ft ] ≤ B a.s. (4)

Then:
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(i) for any r > 0 and any t ∈ N,

P

(
max

0≤s≤t
Xs ≥ r

)
≤ (Bt + x0)r

−1; (5)

(ii) for any ε > 0, a.s., for all but finitely many t ∈ Z
+,

max
0≤s≤t

Xs ≤ t (log t)1+ε.

We also state the following result on existence of passage-time moments for one-dimensional
stochastic processes, which is a simple consequence of Theorem 1 of [4].

Lemma 2. Let (Xt )t∈Z+ be an (Ft )t∈Z+ -adapted stochastic process taking values in an un-
bounded subset S of [0,∞). Suppose that B > 0. Let υB := min{t ∈ N: Xt ≤ B}. Suppose that
there exist C ∈ (0,∞) and γ ∈ [0,1) such that for any t ∈ Z

+,

E[Xt+1 − Xt |Ft ] ≤ −CX
γ
t on {υB > t}.

Then, for any p ∈ [0,1/(1 − γ )] and any x ∈ S , E[υp
B |X0 = x] < ∞.

4.2. Exclusion-voter configurations

We introduce some more notation. For S ∈ D \ {D0} and i ∈ {1, . . . ,N}, let

Ri := Ri(S) :=
i∑

j=1

nj and Ti := Ti(S) :=
N∑

j=i

mj . (6)

It is convenient to represent a configuration S ∈ D \ {D0} diagrammatically as a right-down
path in the quarter-lattice Z

+ × Z
+: starting from (0, T1), construct a walk by reading left-to-

right the configuration S and, for each 0 (1), taking a unit step in the right (down) direction. Thus,
the walk starts with a step to the right and ends at (RN,0), after |S| steps. See Figure 2 for the
case of S as given by (1).

The lattice squares of Z
+ × Z

+ bounded by the right-down path determined by S constitute a
polygonal region in the plane that we call the staircase corresponding to S. With this represen-
tation of the configuration space, the exclusion-voter model can be viewed as a growth/depletion
process on staircases. For instance, exclusion moves are particularly simple in this context, cor-
responding to adding or removing a square at a corner.

As well as D0, we introduce special notation for one more configuration. Set

D1 := . . .11101000 . . . , (7)

the configuration with N(D1) = 1 and vector representation (1,1).
We now introduce notation for the changes in configuration brought about by voter and ex-

clusion moves. Given the staircase of S, there are 2N + 1 ‘corners’ representing 10’s and 01’s
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Figure 2. An example of a staircase configuration.

alternately, of which N + 1 are 10’s and N are 01’s. In the staircase representation, these corners
have coordinates (Ri, Ti+1), i ∈ {0, . . . ,N} (for 10’s) and (Ri, Ti), i ∈ {1, . . . ,N} (for 01’s),
where R0 = TN+1 = 0. Enumerate the 10’s left-to-right in the configuration S by 0,1, . . . ,N ,
and similarly the 01’s by 1, . . . ,N .

For j ∈ {0,1, . . . ,N}, let v10�→00
j (S) (resp., v10�→11

j (S)) denote the configuration obtained
from S by performing a voter move changing the j th 10 to 00 (resp., 11). Similarly, for
j ∈ {1, . . . ,N}, let v01�→00

j (S), v01�→11
j (S) denote the configuration obtained from the two pos-

sible voter moves at the j th 01. We use analogous notation for exclusion moves: e10�→01
j (S)

(j ∈ {0, . . . ,N}), e01�→10
j (S) (j ∈ {1, . . . ,N}).

To conclude this section, we sketch the (elementary) proof of Proposition 1.

Proof of Proposition 1. It is not hard to see that D0 is an absorbing state for the pure voter model
(β = 1) and for the left-moving totally asymmetric exclusion process (β = 0,p = 1), hence also
for the mixture model under Pβ,1 for any β ∈ [0,1].

To show that all states within D communicate, it suffices to show that Pβ,p(ξt+k = S1|ξt =
S0) > 0 for some k ∈ N for each of the following:

(i) S0 = D0, S1 = D1;
(ii) S0 = D1, S1 = D0;

(iii) any S0 with |S0| ≥ 2 and some S1 with |S1| = |S0| + 1;
(iv) any S0 with |S0| ≥ 3 and some S1 with |S1| ≤ |S0| − 1;
(v) any S0 with |S0| ≥ 3 and any S1, where S1 is identical to S0 apart from in a single position

j ∈ {2,3, . . . , |S0| − 1}.
In other words, given that moves of types (i)–(v) can occur, it is possible (with positive probabil-
ity) to step, in a finite number of moves, between any two configurations in D by first adjusting
the length of the configuration via moves of types (i)–(iv) and then flipping the states in the in-
terior of the configuration via moves of type (v). Similarly, to show that all states in D \ {D0}
communicate, it suffices to show that all moves of types (iii)–(v) have positive probability.

It is not hard to see that voter moves can perform moves of types (ii), (iii) and (iv) in a single
step (i.e., with k = 1). Similarly, exclusion moves with p < 1 can perform moves of types (i)
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and (iii) in one step, while exclusion moves with p > 0 can perform moves of types (ii) and (iv),
possibly needing multiple steps. We claim that moves of type (v) can be performed provided:
(a) β ∈ (0,1); or (b) β = 0 and p ∈ (0,1).

In case (a), suppose that we need to replace a 0 by a 1 in the interior of a given configuration. If
p < 1, we may perform a voter move on the first 10 to the left of the position to be changed and
then, if necessary, perform successive 10 �→ 01 exclusion moves to ‘step’ the 1 into the desired
position. If p > 0, an analogous procedure works, starting from the first 01 to the right. On the
other hand, if we need to replace a 1 by a 0, a similar argument applies.

In case (b), we cannot use voter moves, but both types of exclusion move are permitted, so we
can ‘bring in’ any 0 (1) from outside the disordered region, rearrange as necessary and ‘take out’
the excess 1 (0) to the other boundary.

It follows that moves of types (ii)–(v) are possible, provided β �= 1 and (β,p) /∈ {(0,0), (0,1)},
and all (i)–(v) are possible if we additionally impose the condition p < 1.

To complete the proof, we need to demonstrate aperiodicity in the case where β �= 1, p < 1
and (β,p) �= (0,0), where all states communicate. Since β �= 1, exclusion moves may occur.
Moreover, every configuration other than D0 contains at least one pair of each type (01 and 10).
Hence, there is a positive probability that a configuration other than D0 remains unchanged at a
given step (when a proposed exclusion move fails to occur). Thus, since all states communicate,
we have aperiodicity. �

4.3. Lyapunov function lemmas

Throughout this paper, Lyapunov-type functions will be primary tools. In this section, we intro-
duce some of our functions and give some preliminary results. Recall the definitions of Ri , Ti

from (6). In [7], much use was made of the functions f1, f2 defined for S ∈ D \ {D0} by

f1(S) :=
N∑

i=1

miRi =
N∑

i=1

niTi, f2(S) := 1

2

(
N∑

i=1

miR
2
i +

N∑
i=1

niT
2
i

)
,

and by f1(D0) = f2(D0) = 0. Note that, with the diagrammatical representation described in
Section 4.2, f1 is the area of the staircase; for example, for S given by (1), f1(S) = 162.

In the present paper, we introduce some more Lyapunov-type functions that will prove valu-
able: these include ρ2 (see (43) below), φα for α > 0 (see (22) below) and g, which we define
shortly. First, we state some inequalities involving f1 and f2.

Lemma 3. For any S ∈ D, we have

1
2 |S| ≤ f1(S) ≤ 1

4 |S|2 and 1
4 |S|2 ≤ f2(S) ≤ 1

8 |S|3; (8)

f2(S) ≤ |S|f1(S) ≤ 2(f1(S))2. (9)

Proof. The inequalities in (8) are in Lemma 4.1 of [7]. For (9), we have that for S ∈ D,

f2(S) ≤ 1

2

(
N∑

i=1

miRi +
N∑

i=1

niTi

)
· (RN + T1) = f1(S) · |S| (10)
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since, by (6), Ri ≤ RN and Ti ≤ T1 for 1 ≤ i ≤ N . Then, from (10) and the first f1 inequality
in (8), we obtain (9). �

The next lemma collects formulae that we will need for the expected increments of f1(ξt ) and
f2(ξt ), obtained from (7.2), (5.3) and (6.3) in [7]. Note that (12) means that f2(ξt ) is a martingale
when β = 1.

Lemma 4. If S ∈ D \ {D0} and β,p ∈ [0,1], then

Eβ,p[f1(ξt+1) − f1(ξt )|ξt = S]
(11)

= (1 − β)
N(1 − 2p) + (1 − p)

2N + 1
− β

N

2N + 1
;

Eβ,p[f2(ξt+1) − f2(ξt )|ξt = S]
(12)

= (1 − β)

(
1

2
+ (1/2) − p

2N + 1
− 2p − 1

2N + 1

N∑
i=1

(Ri + Ti)

)
.

Next, we define the function g, which captures most of f1, in a sense made precise in Lemma 5
below. For S ∈ D \{D0}, let K = K(S) be the smallest member of {1, . . . ,N} for which RKTK =
max1≤k≤N {RkTk}. Then, for S ∈ D \ {D0}, set

X(S) := RK, Y (S) := TK (13)

and put X(D0) = Y(D0) = 0. For S ∈ D, we then define

g(S) := X(S)Y (S) = max
1≤k≤N

{RkTk}, (14)

where max∅ := 0. With the representation described in Section 4.2, g is the area of the largest
rectangle that can be inscribed in the staircase.

Lemma 5. For any S ∈ D \ {D0},

f1(S) ≥ g(S) ≥ f1(S)

1 + logf1(S)
. (15)

Proof. We start with a geometrical argument that will yield the stated results via the staircase
representation of configurations S. Define ra(x) := a/x for a > 0 and x > 0. For a > 0 and
b ≥ 1, let R(a, b) denote the region defined by

R(a, b) := {
(x, y) ∈ R

2: 0 ≤ x ≤ b,0 ≤ y ≤ (a/x)1{x≥1} + a1{x<1}
}
.

Then, with | · | denoting Lebesgue measure on R
2,

|R(a, b)| = a +
∫ b

1
(a/x)dx = a + a logb.
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Let h : [0,∞) → [0, c] be a non-increasing bounded function such that h(x) = c for 0 ≤ x < 1,
h(d) = 0 and h(x) ≥ 1 for 0 ≤ x < d , where c ≥ 1 and d ≥ 1. Define

M := M(h) := {(x, y) ∈ R
2: 0 ≤ x ≤ d,0 ≤ y ≤ h(x)}.

Let a0 := sup{a > 0: {ra(x): x > 0} ∩ M �= ∅}, that is, the greatest value of a for which
a curve ra(x) intersects the region M . Then, let x0 be such that (x0, ra0(x0)) ∈ M . Let B(M)

denote the rectangle with vertices (0,0), (x0,0), (0, ra0(x0)) and (x0, ra0(x0)); then |B(M)| =
x0(a0/x0) = a0. Moreover, it is clear that B(M) ⊆ M and M ⊆ R(a0, d), so

|B(M)| ≤ |M| ≤ |R(a0, d)| = a0(1 + logd). (16)

So, using the fact that ra0(d) = a0/d ≥ 1, we obtain from (16) that

1 ≤ |M|
|B(M)| ≤ 1 + logd ≤ 1 + loga0 = 1 + log |B(M)|. (17)

We now translate the above argument into a proof of the lemma. Fix a configuration S ∈
D \ {D0} with block representation (n1,m1, . . . , nN ,mN). For x ≥ 0, define

jS(x) := max

{
j ∈ Z

+, j ≤ N :
j∑

i=1

ni ≤ x

}
and hS(x) :=

N∑
i=jS(x)+1

mi,

where we interpret an empty sum as zero. Set cS = ∑N
i=1 mi and dS = ∑N

i=1 ni . Then hS(x) = cS

when 0 ≤ x < 1, since n1 ≥ 1. Also, hS(x) = 0 for x ≥ dS and hS(x) ≥ mN ≥ 1 for 0 ≤ x <

dS . Therefore, hS is a function of the form of h in the first paragraph of the present proof. In
particular, |M(hS)| = f1(S) and |B(M(hS))| = g(S). Thus, (17) implies (15). �

5. Non-existence of passage-time moments

For t ∈ Z
+, let Ft denote the σ -field generated by (ξs; s ≤ t). Recall the definitions of X(S) and

Y(S) from (13). For convenience, we set Xt := X(ξt ), Yt := Y(ξt ) and consider the auxiliary
(Ft )-adapted process (ξ̃t )t∈Z+ defined by ξ̃t := (Xt , Yt ) = (X(ξt ), Y (ξt )); ξ̃t takes values in the
quarter-lattice Z

+ × Z
+ and ξt = D0 if and only if ξ̃t = (0,0). Let σx,y be the time for ξt to

hit the ground state configuration D0 (equivalently, the time taken for ξ̃t to hit the origin (0,0))
given the F0-event {X(ξ0) = x,Y (ξ0) = y}. The crucial ingredient in the proof of non-existence
of moments will be the following result.

Lemma 6. Suppose that p ≤ 1/2, β ∈ [0,1]. There then exist δ > 0, γ > 0 such that for all
x, y ∈ Z

+,

Pβ,p

(
σx,y ≥ δ(x2 + y2)

) ≥ γ (18)
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and for all S ∈ D \ {D0},

Pβ,p

(
τ ≥ δ

f1(S)

1 + logf1(S)

∣∣∣ξ0 = S

)
≥ γ. (19)

Note that (19) is close to Conjecture 7.2 in [7]. The proof of Lemma 6 will be carried out in
stages. The next result gives control over the size of the disordered region in the mixture process
of voter model with symmetric or recurrent exclusion (p ≥ 1/2).

Lemma 7. Suppose that p ≥ 1/2 and β ∈ [0,1]. Then, for all t ∈ N,

Pβ,p

(
max

0≤s≤t
|ξs | ≤ 2

√
10t1/2

)
≥ 0.95 − f2(ξ0)

10t
.

Proof. For p ≥ 1/2 and β ∈ [0,1], we have, from (12), that f2(ξt ) satisfies

Eβ,p[f2(ξt+1) − f2(ξt )|ξt = S] ≤ 1
2

for all S ∈ D. Applying Lemma 1(i) to f2(ξt ) with r = 10t and B = 1/2, (5) implies that

Pβ,p

(
max

0≤s≤t
f2(ξt ) ≤ 10t

)
≥ 1 − (t/2) + f2(ξ0)

10t
= 0.95 − f2(ξ0)

10t
.

Then, using the fact that |S| ≤ 2(f2(S))1/2 for any S ∈ D (by (8)), we obtain the result. �

Suppose that ξ0 = S0 ∈ D \{D0} with corresponding ξ̃0 = (x0, y0) ∈ Z
+×Z

+, that is, X(S0) =
x0 and Y(S0) = y0. In order to enable us to identify positions within a configuration S ∈ D \{D0},
enumerate the positions in the hybrid zone left-to-right as 1,2, . . . , |S|.

We now return to the voter plus transient (p ≤ 1/2) exclusion model and define an auxiliary
coloured process as follows. Set H := ∑K(S0)

i=1 (ni + mi), recalling the definition of K(S0) from
just above (13); then, position H in S0 is necessarily occupied by a 0 and position H + 1 by a 1.
We colour the x0 0’s that occupy positions in {1,2, . . . ,H } and the y0 1’s that occupy positions
in {H + 1, . . . , |S0|}. All other particles are uncoloured. Intuitively, coloured particles can be
thought of as ‘high energy’. Next, we will define the evolution of the colouring corresponding to
the process (ξt )t∈Z+ . We emphasize that the colouring is associated with the particles (i.e., 1’s
and 0’s) rather than the sites.

The colour dynamics is as follows. Exclusion moves do not alter any colour so that particles
retain their colour-state after an exclusion move. Voter moves affect the colouring of particles
only if the modified pair consists of exactly one coloured particle, in which case the colouring
is changed as follows. In a pair 01 or 10, suppose that the 1 is coloured while the 0 is not;
a voter move to pair 00 produces two uncoloured particles, while a move to pair 11 produces two
coloured particles. On the other hand, if, in an unlike pair, the 0 is coloured and the 1 not, then a
voter move to 00 produces two coloured particles and to 11 produces two uncoloured particles.
We note the following facts about the dynamics:
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(a) uncoloured 1’s remain to the left of any coloured 1’s and uncoloured 0’s remain to the
right of coloured 0’s;

(b) a necessary condition to be in the ground state configuration D0 is that the set of coloured
particles consists only of a (possibly empty) block of coloured 1’s at the left boundary of the
hybrid zone and a (possibly empty) block of coloured 0’s at the right boundary.

With ξ0 = S0 ∈ D, for t ∈ N, let ξ∗
t denote the configuration ξt with the associated colouring

as determined by (ξ0, . . . , ξt ) according to the mechanism just described.
Let F ∗

t denote the σ -field generated by (ξ∗
s ; s ≤ t). Define the F ∗

t -measurable random vari-
ables �t and rt as follows. Let �t be the position (measured from the left end of the hybrid zone)
of the leftmost coloured 1 in ξ∗

t and rt be the position of the rightmost coloured 0 in ξ∗
t ; initially,

r0 + 1 = �0, by construction.
As the process evolves, coloured 1’s may end up to the left of coloured 0’s. We define an

auxiliary process (ζt )t∈Z+ to keep track of such configurations. Informally, when �t < rt , ζt will
be the portion of ξt between positions �t and rt . More formally, we introduce a holding state D∗

0
and set ζt = D∗

0 if �t ≥ rt . If �t < rt , then the configuration ξ∗
t induces a finite string of 0’s and

1’s obtained by extracting the segment of ξ∗
t between positions �t and rt (inclusive); we call this

string ζt . Then (ζt )t∈Z+ is an (F ∗
t )-adapted process with ζ0 = D∗

0 .
Note that, when it is not in state D∗

0 , ζt contains only coloured particles when colours are
transposed from ξ∗

t . The idea now is that when p ≤ 1/2, ζt behaves like the mixture of voter
and p ≥ 1/2 exclusion, except that the presence of uncoloured particles in ξ∗

t causes it to ‘slow
down’; we therefore aim for a version of Lemma 7 in this case. This is the next result.

Lemma 8. Suppose that p ≤ 1/2 and β ∈ [0,1]. Then, for all t ∈ N,

Pβ,p

(
max

0≤s≤t
|ζs | ≤ 2

√
10t1/2

)
≥ 0.95.

Proof. We compare the process (ζt )t∈Z+ to an independent copy ξ ′ = (ξ ′
t )t∈Z+ of the process ξ .

We define f ∗
2 (ζt ) analogously to f2(ξt ), but counting only the (coloured) particles in region ζt ,

that is, coloured 1’s to the left of coloured 0’s and coloured 0’s to the right of coloured 1’s.
Suppose that we were to permit the initial configuration ξ∗

0 = D′
0 := . . .000111 . . . , where all

0’s and 1’s are coloured, so that ζ0 = D∗
0 . Then, by a simple reflection argument, the process

(ζt )t∈Z+ embedded in (ξ∗
t )t∈Z+ started from ξ∗

0 = D′
0 has the same distribution under Pβ,p as

the process (ξt )t∈Z+ under Pβ,1−p with initial state D0. So, in particular, Lemma 7 holds with ζt

instead of ξt , given the initial configuration D′
0; using the fact that f ∗

2 (ζ0) = 0, we then obtain
the claimed result in this case.

Now, the presence of uncoloured 1’s to the left of coloured 1’s or uncoloured 0’s to the right of
coloured 0’s restricts the growth of |ζt |; hence, the claimed result also holds for any permissible
initial configuration for ξ∗

0 other than D′
0. (One can argue rigorously by stochastic domination at

this point.) �

Proof of Lemma 6. We first prove the statement (18). Let χt := χ(ξ∗
t ) denote the number of

coloured particles in ξ∗
t . Then (χt )t∈Z+ is (F ∗

t )-adapted and χ0 = χ(ξ∗
0 ) = x0 + y0. Also, given

χt = n for n ∈ N, we have that χt+1 = n, unless a voter move is performed on a pair with exactly
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one particle coloured, in which case χt+1 takes values n − 1, n + 1 with equal probability. Also,
if χt = 0, then χt+1 = 0 as well. Thus, χt is a non-negative (F ∗

t )-martingale with uniformly
bounded jumps. It follows from Doob’s submartingale inequality applied to the non-negative
submartingale (χt − (x0 +y0))

2, using the fact that E[(χt − (x0 +y0))
2] ≤ t , by the orthogonality

of martingale increments, that for any z > 0,

Pβ,p

(
max

0≤s≤t
|χs − (x0 + y0)|2 ≥ z

)
≤ t/z.

In particular, taking z = 100t , this implies that for any t ∈ Z
+,

Pβ,p

(
min

0≤s≤t
χs ≥ (x0 + y0) − 10t1/2

)
≥ 0.99.

Taking t = δ2(x2
0 + y2

0) for some δ > 0, combining the last display with Lemma 8, we have that,
with probability at least 0.94, the two events{

min
0≤s≤t

χs ≥ (x0 + y0) − 10δ(x2
0 + y2

0)1/2 ≥ (1 − 10δ)(x0 + y0)
}

and

{
max

0≤s≤t
|ζs | ≤ 2

√
10δ(x2

0 + y2
0)1/2 ≤ 2

√
10δ(x0 + y0)

}

both occur (noting that (x2
0 + y2

0)1/2 ≤ (x0 + y0)). Choose δ small, say δ = 0.01. Then, with
probability at least 0.94, the total number χs of coloured particles up to time t remains greater
than 0.9(x0 + y0), while the central overlap region ζs of coloured particles between the leftmost
coloured 1 and the rightmost coloured 0 remains shorter than 0.1(x0 + y0). Hence, there must
remain at least one coloured 0 to the left of any coloured 1 or one coloured 1 to the right of
any coloured 0. By observation (b) above, this excludes the possibility of ξs = D0 for any s ≤ t ,
where t = δ2(x2

0 + y2
0). We thus obtain (18).

To derive (19), we use the fact that x2
0 + y2

0 ≥ 2x0y0 = 2g(ξ0) and then use (15). �

We are now nearly ready to complete the proofs of Theorems 2 and 3. The proofs proceed in
a similar way to the proof of Theorem 6.1 in [7].

Proof of Theorem 2. Suppose that p ≤ 1/2. Take S0 ∈ D \ {D0}. Suppose, for the purpose of
deriving a contradiction, that Eβ,p[τ 1+ε|ξ0 = S0] < ∞ for some ε > 0. Let ξ ′ = (ξ ′

t )t∈Z+ be an
independent copy of ξ and τ ′ be the corresponding independent copy of τ . For any t ∈ Z

+, using
the Markov property, we obtain

Eβ,p[τ 1+ε|ξ0 = S0] ≥ Eβ,p

[
Eβ,p[(t + τ ′)1+ε|ξ ′

0 = ξt ]1{τ≥t}|ξ0 = S0
]
. (20)

For the inner expectation in the expression on the right-hand side of (20), we have, by (19), that
there exist δ > 0, γ > 0 such that for any t ∈ Z

+,

Eβ,p[(t + τ ′)1+ε|ξ ′
0 = ξt ] ≥ γ

(
δ

f1(ξt )

1 + logf1(ξt )

)1+ε

.
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Since, for any ε > 0, xε > 1 + logx for all x sufficiently large, there exists γ ′ > 0 for which

Eβ,p[(t + τ ′)1+ε|ξ ′
0 = ξt ] ≥ γ ′(f1(ξt )

1−(ε/2)
)1+ε (21)

for any t ∈ Z
+. It follows from (20) with (21) that for some ε′ ∈ (0, ε) and some C ∈ (0,∞),

Eβ,p[τ 1+ε|ξ0 = S0] ≥ CEβ,p

[
(f1(ξt ))

1+ε′
1{τ≥t}|ξ0 = S0

] = CEβ,p[(f1(ξt∧τ ))
1+ε′ |ξ0 = S0]

for any t ∈ Z
+, using the fact that f1(ξτ ) = f1(D0) = 0 a.s. That is, given ξ0 = S0, (f1(ξt∧τ ))

1+ε′

is uniformly bounded in L1.
Hence, the assumption that Eβ,p[τ 1+ε|ξ0 = S0] < ∞ implies that on ξ0 = S0, the process

f1(ξt∧τ ) is uniformly integrable and, trivially, that τ < ∞ a.s.; thus, as t → ∞, Eβ,p[f1(ξt∧τ )|
ξ0 = S0] → Eβ,p[f1(ξτ )|ξ0 = S0] = f1(D0) = 0. However, for p ≤ 1/2 and β ≤ (1 − 2p)/(2 −
2p), it follows from (11) that for any t ∈ Z

+ and any S ∈ D,

Eβ,p[f1(ξt+1) − f1(ξt )|ξt = S] ≥ 0.

By the submartingale property, we then have that for all t ∈ Z
+, Eβ,p[f1(ξt∧τ )|ξ0 = S0] ≥

f1(S0) > 0. We thus have the desired contradiction. �

Proof of Theorem 3. Suppose that S0 ∈ D \ {D0} and, for a contradiction, that Eβ,p[τ 2+ε|ξ0 =
S0] < ∞ for some ε > 0. Then, for any t ∈ Z

+, similarly to the proof of Theorem 2,

Eβ,p[τ 2+ε|ξ0 = S0] ≥ Eβ,p

[
Eβ,p[(t + τ ′)2+ε|ξ ′

0 = ξt ]1{τ≥t}|ξ0 = S0
]
.

Hence, for p ≤ 1/2, using (19), there exist γ, δ, ε′, ε′′ > 0 such that

Eβ,p[τ 2+ε|ξ0 = S0] ≥ γ Eβ,p

[(
t + δ(f1(ξt ))

1−(ε/3)
)2+ε1{τ≥t}|ξ0 = S0

]
≥ CEβ,p[(f1(ξt∧τ ))

2+ε′ |ξ0 = S0] ≥ CEβ,p[(f2(ξt∧τ ))
1+ε′′ |ξ0 = S0],

using (9) for the last inequality. Hence, the process f2(ξt∧τ ) is uniformly integrable and thus, as
t → ∞, Eβ,p[f2(ξt∧τ )|ξ0 = S0] → Eβ,p[f2(ξτ )|ξ0 = S0] = f2(D0) = 0.

However, for p ≤ 1/2 and β ∈ [0,1], for all S ∈ D and all t ∈ Z
+, it follows from (12) that

Eβ,p[f2(ξt+1) − f2(ξt )|ξt = S] ≥ 0.

Hence, for all t ∈ Z
+, Eβ,p[f2(ξt∧τ )|ξ0 = S0] ≥ f2(S0) > 0, giving a contradiction. �

6. Recurrence

We consider a new Lyapunov-type function that generalizes f1. For α ≥ 0, set φα(D0) := 0 and
for S ∈ D \ {D0}, set

φα(S) :=
N∑

i=1

Ri∑
j=Ri−1+1

Ti∑
k=1

1

(j + k)α
=

N∑
i=1

Ti∑
j=Ti+1+1

Ri∑
k=1

1

(j + k)α
; (22)
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here, and throughout this section, we use the conventions R0 := 0, RN+1 := RN , T0 :=
T1, TN+1 := 0. In particular, it follows from (22) that when α = 0, φ0(S) = ∑N

i=1 niTi =∑N
i=1 miRi = f1(S). For convenience, we introduce the notation

ai(j) := (Tj + Rj + i)−α and bi(j) := (Tj+1 + Rj + i)−α.

The next lemma gives an expression for the expected increments of φα .

Lemma 9. Let β ∈ [0,1] and p ∈ [0,1]. Then, for any S ∈ D \ {D0} and any t ∈ Z
+,

Eβ,p[φα(ξt+1) − φα(ξt )|ξt = S]

= 1 − β

2N + 1

{
−p

N∑
j=1

a0(j) + (1 − p)

N∑
j=0

b2(j)

}
(23)

+ β

2N + 1

{
N

N∑
j=1

(
a1(j) − b1(j − 1)

) − 1

2

N∑
j=2

a1(j) − N + 1

2
b1(N)

}
.

Proof. Recalling the notation of Section 4.2, we write

D
v,10
j (S) := φα(v10�→00

j (S)) + φα(v10�→11
j (S)) − 2φα(S) (j ∈ {0, . . . ,N}),

D
v,01
j (S) := φα(v01�→00

j (S)) + φα(v01�→11
j (S)) − 2φα(S) (j ∈ {1, . . . ,N}),

D
e,10
j (S) := φα(e10�→01

j (S)) − φα(S) (j ∈ {0, . . . ,N}),
D

e,01
j (S) := φα(e01�→10

j (S)) − φα(S) (j ∈ {1, . . . ,N}).
Summing over all possible moves, we have that

Eβ,p[φα(ξt+1) − φα(ξt )|ξt = S]

= β

2N + 1

{
1

2

N∑
j=1

D
v,01
j (S) + 1

2

N∑
j=0

D
v,10
j (S)

}
(24)

+ 1 − β

2N + 1

{
−p

N∑
j=1

D
e,01
j (S) + (1 − p)

N∑
j=0

D
e,10
j (S)

}
.

We now calculate expressions for the terms in (24). The reader might find it helpful here to
refer to a picture such as Figure 2 in Section 4.2. We have that for j ∈ {1, . . . ,N},

D
v,01
j (S) =

N∑
i=1

(
a1(i) − b1(i − 1)

) − a1(j) − a1(j + 1).
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Also, for j ∈ {0,1, . . . ,N}, we have that D
v,10
j (S) is given by

N∑
i=1

(
a1(i) − 1{i≤j}b1(i − 1) − 1{i>j}b1(i)

) =
N∑

i=1

(
a1(i) − b1(i − 1)

) + b1(j) − b1(N).

Taking the computations for D
v,01
j (S), D

v,10
j (S) and summing, we have

1

2

N∑
j=1

D
v,01
j (S) + 1

2

N∑
j=0

D
v,10
j (S)

= 2N + 1

2

N∑
j=1

(
a1(j) − b1(j − 1)

) − 1

2

N∑
j=1

(
a1(j) + a1(j + 1)

)

+ 1

2

N∑
j=0

b1(j) − N + 1

2
b1(N)

= 2N + 1

2

N∑
j=1

(
a1(j) − b1(j − 1)

) −
N∑

j=1

a1(j) + 1

2
a1(1)

+ 1

2

N∑
j=1

b1(j − 1) − N + 1

2
b1(N)

= N

N∑
j=1

(
a1(j) − b1(j − 1)

) − 1

2

N∑
j=2

a1(j) − N + 1

2
b1(N).

For the (simpler) exclusion moves, we obtain D
e,01
j (S) = −a0(j) and D

e,10
j (S) = b2(j). Then,

combining all the computations, from (24), we obtain (23). �

For the rest of this section, we will be interested in the properties of φ1.

Lemma 10. For any S ∈ D \ {D0}, we have φ1(S) ≥ log(|S|/4).

Proof. Suppose that S ∈ D \ {D0}. From (22), we have that

φ1(S) ≥
N∑

i=1

Ri∑
j=Ri−1+1

1

1 + j
=

RN∑
j=1

1

j + 1
≥

∫ RN

1

dx

1 + x
≥ log(RN/2),

using monotonicity for the second inequality. Similarly, (22) gives φ1(S) ≥ log(T1/2). Thus,
φ1(S) ≥ log(max{RN,T1}/2), which yields the result. �



The exclusion-voter model 1333

The following lemma is the key to this section.

Lemma 11. Suppose that β ≥ 4/7 and p ∈ [0,1]. Then, for any S ∈ D \ {D0},
Eβ,p[φ1(ξt+1) − φ1(ξt )|ξt = S] ≤ 0.

Proof. For ease of notation during this proof, set �(S) := Eβ,p[φ1(ξt+1) − φ1(ξt )|ξt = S]. It is
clear from (23) that �(S) is non-increasing in p and so it suffices to consider the case p = 0.
(23) then implies that in this case, �(S) is given by

β

2N + 1

{
N

N∑
j=1

(
a1(j) − b1(j − 1)

) − 1

2

N∑
j=2

a1(j) − N + 1

2
b1(N)

}
+ 1 − β

2N + 1

N∑
j=0

b2(j).

We rewrite this last expression by setting γ := (1 − β)/β ∈ [0,∞) to obtain

2N + 1

β
�(S) = N

N∑
j=1

(
a1(j) − b1(j − 1)

)
(25)

− 1

2

N∑
j=2

a1(j) − 1

2

N + 1

RN + 1
+ γ

N+1∑
j=1

b2(j − 1).

We need to show that the right-hand side of (25) is non-positive. Since this quantity is non-
decreasing in γ , it suffices to consider the case γ = 3/4, corresponding to β = 4/7. Set

�̃(S) := N

N∑
j=1

(
a1(j) − b1(j − 1)

) − 1

2

N∑
j=2

a1(j) − 1

2

N + 1

RN + 1
+ 3

4

N+1∑
j=1

b1(j − 1)

so that, from (25), �(S) ≤ β
2N+1�̃(S) since b1(j) ≥ b2(j).

Write AN := 1 + m1 + m2 + · · · + mN , D0 := 0 and, for i ∈ {1, . . . ,N}, Di := (n1 − m1) +
· · · + (ni − mi) so that Rj−1 + Tj + 1 = AN + Dj−1. We then have that

�̃(S) = N

N∑
j=1

(
1

AN + Dj−1 + nj

− 1

AN + Dj−1

)
−

N∑
j=2

1/2

AN + Dj−1 + nj

(26)

− (N + 1)/2

AN + DN

+ 3

4

N+1∑
j=1

1

AN + Dj−1
= 1/2

AN + n1
+ HN(S),

where we have introduced the notation, for k ∈ {1, . . . ,N},

Hk(S) :=
k∑

j=1

(
N − 1/2

AN + Dj−1 + nj

− N − 3/4

AN + Dj−1

)
− (N + k − 1)/4

AN + Dk

.
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We now claim that if N ≥ 2, then for any k ∈ {2, . . . ,N},
Hk(S) ≤ Hk−1(S). (27)

We then have, from (26) and (27), that for N ≥ 2,

�̃(S) = 1/2

AN + n1
+ HN(S) ≤ 1/2

AN + n1
+ H1(S) = N

AN + n1
− N − 3/4

AN

− N/4

AN + n1 − m1

≤ N

AN + n1
− N − 3/4

AN + n1
− N/4

AN + n1
= (3 − N)/4

AN + n1
.

Thus, �̃(S) ≤ 0 and hence �(S) ≤ 0 also, for all S ∈ D \ {D0} with N(S) ≥ 3.
Let us now verify the claim (27). We have that for k ∈ {2, . . . ,N},

Hk(S) =
k−1∑
j=1

(
N − 1/2

AN + Dj−1 + nj

− N − 3/4

AN + Dj−1

)
+ N − (1/2)

AN + Dk−1 + nk

− N − (3/4)

AN + Dk−1
− (N + k − 1)/4

AN + Dk

=
k−1∑
j=1

(
N − 1/2

AN + Dj−1 + nj

− N − 3/4

AN + Dj−1

)
+

[
(3N − k − 1)/4

AN + Dk−1 + nk

− N − (3/4)

AN + Dk−1

]

+
[

(N + k − 1)/4

AN + Dk−1 + nk

− (N + k − 1)/4

AN + Dk

]
,

where we have split the term with the denominator AN +Dk−1 +nk into two parts. Note that for
all j we have AN + Dj−1 + nj ≥ AN + Dj−1 and also AN + Dj−1 + nj = AN + Dj + mj ≥
AN + Dj . Therefore, applying these inequalities separately to the two terms in square brackets
in the last display, we verify the claim (27) since

Hk(S) ≤
k−1∑
j=1

(
N − 1/2

AN + Dj−1 + nj

− N − 3/4

AN + Dj−1

)
+

[
(−N − k + 2)/4

AN + Dk−1

]
= Hk−1(S).

To complete the proof, we show that �(S) ≤ 0 for N(S) ∈ {1,2} also. For N = 1, writing the
right-hand side of the β = 4/7 case of (25) over a common denominator, we have

21

4
�(S) = −n1m1(n1 − m1)

2 + 13(n1 + m1) + 4(1 + n1m1) + 14(n2
1 + m2

1) + 5(n3
1 + m3

1)

4(1 + m1 + n1)(1 + m1)(1 + n1)(2 + m1)(2 + n1)
,

which is negative. Finally, for N = 2, from (25) and some tedious algebra, we obtain 35�(S)/4 =
−Q/R, where R = 4(m1 + m2 + n1 + 1)(m1 + m2 + 1)(m2 + n1 + n2 + 1)(m2 + n1 + 1)(n1 +
n2 + 1)(m1 + m2 + 2)(m2 + n1 + 2)(n1 + n2 + 2) and

Q = m1n
4
1(2m2

1 + 5n2
1 − m1n1) + n2m

4
2(2n2

2 + 5m2
2 − n2m2) + 244 positive terms,
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as can be readily checked in Maple, for instance. Since 2x2 + 5y2 − xy is always non-negative,
we conclude that �(S) ≤ 0 in this last case also. �

Proof of Theorem 4. Lemma 11 shows that for β ≥ 4/7, (φ1(ξt ))t∈Z+ is a supermartingale on
ξt ∈ D \ {D0}. Since, by Lemma 10, φ1(S) → ∞ as |S| → ∞, we can use Theorem 2.2.1 of [11]
to complete the proof of the theorem. �

7. Existence of passage-time moments

Our main tool in this section will be Lemma 2 applied with the Lyapunov function f2. Our first
result is a bound on the expected increments of f2.

Lemma 12. Suppose that β ∈ [0,1) and p > 1/2. There then exists C ∈ (0,∞) such that for all
but finitely many S ∈ D,

Eβ,p[f2(ξt+1) − f2(ξt )|ξt = S] ≤ −C(f2(S))1/6.

Proof. It follows directly from (6) that RN + T1 = |S| and Ri + Ti ≥ N so that

N∑
i=1

(Ri + Ti) ≥ max{|S|,N2} ≥ N |S|1/2. (28)

We see from (12) with (28) that for p > 1/2, Eβ,p[f2(ξt+1) − f2(ξt )|ξt = S] is at most

1 − β

2
− (1 − β)(2p − 1)

N |S|1/2

2N + 1
≤ 1 − β

2
− 1

3
(1 − β)(2p − 1)|S|1/2

since N ≥ 1. The result follows since |S|1/2 ≥ f2(S)1/6, from (8). �

Proof of Theorem 6. The β = 1 case of the theorem follows from Theorem 1(ii). Now, suppose
that β ∈ [0,1). Applying Lemma 2 with Xt = f2(ξt ) and using Lemma 12 shows that the hitting
time of a finite subset of D has finite (6/5)th moment. Since D0 is accessible from any state, it
follows that τ also has finite (6/5)th moment. �

Remark. The exponent 1/6 in Lemma 12 may not be the best possible. However, (12) applied
to the configuration n1 = n2 = · · · = nN−1 = 1, nN = N2 and m1 = N2,m2 = · · · = mN = 1
shows that one cannot increase the exponent to more than 1/4 in general. Hence, the method
used in this section seems unable to prove existence of moments greater than 4/3; see the remark
immediately following the statement of Theorem 6.

To prove Theorem 5, we will again apply Lemma 2, but this time we will take Xt = f2(ξt )
M

for arbitrary M ∈ [1,∞). To study the increments of this process, we recall some facts about f2
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under exclusion moves; compare (5.1) and (5.2) in [7]. We have that

f2(e
10�→01
j (S)) = f2(S) + 1 + Rj + Tj+1 (j ∈ {0, . . . ,N}), (29)

f2(e
01�→10
j (S)) = f2(S) + 1 − Rj − Tj (j ∈ {1, . . . ,N}), (30)

where R0 := 0 and TN+1 := 0. We will now prove the following lemma.

Lemma 13. Suppose that β = 0 and p > 1/2. Let M ∈ (0,∞). There then exists C ∈ (0,∞)

such that for all but finitely many S ∈ D,

E0,p[f2(ξt+1)
M − f2(ξt )

M |ξt = S] ≤ −Cf2(S)M−(5/6).

Proof. In this proof, we write �2(S) := E0,p[f2(ξt+1)
M − f2(ξt )

M |ξt = S], which we calculate
by summing over all the possible exclusion moves. The e10�→01

j transition has probability (1 −
p)/(2N + 1) and changes f2(S)M by

(
f2(S) + 1 + Rj + Tj+1

)M − f2(S)M = f2(S)M
[(

1 + 1 + Rj + Tj+1

f2(S)

)M

− 1

]
.

Since Rj + Tj+1 ≤ |S| = O(f2(S)1/2) for any j , by (8), Taylor’s theorem yields

(
f2(S) + 1 + Rj + Tj+1

)M − f2(S)M = f2(S)M
[
M

1 + Rj + Tj+1

f2(S)
+ O(f2(S)−1)

]
.

Proceeding similarly for the e01�→10
j transitions and summing, we obtain

�2(S) = M

2N + 1
f2(S)M−1

[
N + (1 − p) + (1 − 2p)

N∑
j=1

(Rj + Tj )

]

(31)
+ O(f2(S)M−1),

where the implicit constant in O(·) does not depend on S. From (31) with (28) and (8), we then
obtain that for some C1,C2 ∈ (0,∞),

�2(S) ≤ C1f2(S)M−1 − C2f2(S)M−(5/6).

This yields the result. �

Proof of Theorem 5. Take Xt = f2(ξt )
M for some M ≥ 1. From Lemma 13, we then have that

E[Xt+1 − Xt |ξt = S] ≤ −CX
1−5/(6M)
t for all but finitely many S. We can thus apply Lemma 2

to obtain E[τ 6M/5] < ∞. Since M ≥ 1 was arbitrary, the theorem follows. �

8. Size of the hybrid zone

We now prove the almost sure bounds on the rate of growth of |ξt | stated in Section 2.
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Lemma 14. Let β ∈ [0,1], p ∈ [0,1]. For any ε > 0, Pβ,p-a.s., for all but finitely many t ,

max
0≤s≤t

f1(ξs) ≤ t (log t)1+ε.

Proof. From (11), we have that for any S ∈ D,

Eβ,p[f1(ξt+1) − f1(ξt )|ξt = S] ≤ N(S) + 1

2N(S) + 1
≤ 1.

We can then apply Lemma 1(ii) with Xt = f1(ξt ) to obtain the result. �

Proof of Theorem 7. Lemma 14, with the simple inequality f1(ξt ) ≥ N(ξt )
2/2, implies the

p < 1/2 case of (2). By (12), we have that for p ≥ 1/2 and all S ∈ D,

Eβ,p[f2(ξt+1) − f2(ξt )|ξt = S] ≤ 1 − β

2
.

Hence, Lemma 1(ii) with Xt = f2(ξt ) yields, for any ε > 0, Pβ,p-a.s.,

max
0≤s≤t

f2(ξs) ≤ t (log t)1+ε (32)

for all but finitely many t . (3) then follows from (32) with (8) and the p ≥ 1/2 case of (2) follows
from (32) with the simple inequality f2(ξt ) ≥ (N(ξt ))

3/3 (obtained by replacing each mi and ni

by 1 in the definition of f2). �

For the remainder of this section, we concentrate on the pure exclusion process, that is, when
β = 0. Again, the Lyapunov function f1 will be a primary tool here; the next result describes its
behaviour in this case. We use the abbreviation Nt := N(ξt ).

Lemma 15. Let β = 0, p ∈ [0,1]. Then f1(ξt ) has transition probabilities pj = P0,p(f1(ξt+1)−
f1(ξt ) = j |Ft ) for jumps j ∈ {−1,0,+1}, where p−1 + p0 + p1 = 1 and

p−1 = p
Nt

2Nt + 1
≤ p

2
, p0 = Nt + p

2Nt + 1
, p1 = (1 − p)

Nt + 1

2Nt + 1
≥ 1 − p

2
. (33)

Hence, for all t ∈ Z
+,

f1(ξt ) ≤ f1(ξ0) + t. (34)

Moreover, when p < 1/2, for any c ∈ (0, (1/2) − p), P0,p-a.s., for all but finitely many t ,

f1(ξt ) ≥ ct. (35)

Proof. (33) follows from equations (5.5) and (5.6) in [7]. (34) is then immediate. From (33),
we have that ξt stochastically dominates ξ0 + ∑t

s=1 Ws , where W1,W2, . . . are i.i.d. random
variables taking values +1, 0, −1 with probabilities q/2, 1/2, p/2, respectively. Hence, the
SLLN and the fact that E[W1] = (1/2) − p yields (35) for p < 1/2. �
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Corollary 2. Suppose that β = 0 and p < 1/2. There then exists c′(p) > 0 such that for any
c ∈ (0, c′(p)), P0,p-a.s., for all but finitely many t ,

|ξt | ≥ ct1/2. (36)

Suppose that β = 0. There then exists C ∈ (0,∞) such that for any p ∈ [0,1], P0,p-a.s., for all
but finitely many t ∈ Z

+,

N(ξt ) ≤ Ct1/2. (37)

Proof. The bound (36) follows from (35) together with (8); (37) follows from (34) with the
simple inequality f1(ξt ) ≥ (N(ξt ))

2/2. �

The next two lemmas give some properties of the process (|ξt |)t∈Z+ . Recall the definition of
configuration D1 from (7).

Lemma 16. Suppose that β = 0 and p ∈ [0,1]. For any t ∈ Z
+, we have that

P0,p(|ξt+1| = 2|ξt = D0) = 1 − P0,p(|ξt+1| = 0|ξt = D0) = 1 − p and (38)

P0,p(|ξt+1| = j |ξt = D1) = p

3
,

1 + p

3
,

2(1 − p)

3
for j = 0,2,3, respectively. (39)

For any t ∈ Z
+, conditional on ξt ∈ D \ {D0, D1}, |ξt+1| − |ξt | takes values only in {−1,0,+1}

and for any S ∈ D \ {D0, D1},

P0,p(|ξt+1| − |ξt | = 1|ξt = S) = 2(1 − p)

2N(S) + 1
and (40)

P0,p(|ξt+1| − |ξt | = −1|ξt = S) = p(1{n1(S)=1} + 1{mN(S)(S)=1})
2N(S) + 1

≤ 2p

2N(S) + 1
. (41)

Proof. The statements (38) and (39) are straightforward. Suppose that ξt = S for some S ∈
D \ {D0, D1}. Then |S| ≥ 2 and exclusion moves cannot effect a change of magnitude more
than 1. We have that |ξt+1| = |S| + 1 if and only if we select (with probability 2/(2N(S) + 1))
one of the two extreme 10 pairs and then (with probability 1−p) we flip the 10 to a 01. Similarly,
|ξt | can decrease by 1 if and only if there exists a configuration . . .11101 . . . at the left end or a
configuration . . .01000 . . . at the right end, and then we select the 01 and flip to 10. The statement
of the lemma follows. �

Lemma 17. If β = 0 and p = 1/2, then

E0,1/2[|ξt+1|3 − |ξt |3|Ft ] ≥ 4 a.s. (42)

Proof. First, we have from (38) and (39) that

E0,1/2[|ξt+1|3 − |ξt |3|ξt = D0] = 4, E0,1/2[|ξt+1|3 − |ξt |3|ξt = D1] = 5.
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It thus remains to consider the case where ξt = S for S ∈ D \ {D0, D1}. Here, from (40) and (41),
writing N = N(S), we have

E0,1/2[|ξt+1|3 − |ξt |3|ξt = S] ≥ 1

2N + 1

[(
(|S| + 1)3 − |S|3) + (

(|S| − 1)3 − |S|3)]
= 6|S|

2N + 1
≥ 12N

2N + 1
≥ 4

since |S| ≥ 2N(S) and N(S) ≥ 1 for all S �= D0. �

Proof of Theorem 9. The upper bound in the theorem is implied by (3). For the lower bound,
use Theorem 3.3 of [18] with, in the notation of that paper, f (x) = x3 and Yn = |ξn|. Using (42)
and the fact that |ξt | has uniformly bounded jumps (see Lemma 16), we then obtain the desired
result. �

We now work toward the upper bound for |ξt |, for p ∈ [0,1], given in Theorem 8. Define the
function ρ2 by ρ2(D0) := 0 and, for S ∈ D \ {D0},

ρ2(S) :=
N∑

i=1

m2
i +

N∑
i=1

n2
i . (43)

Lemma 18. For any S ∈ D \ {D0},

|S| ≤ 1

2N(S)
|S|2 ≤ ρ2(S) ≤ |S|2. (44)

Proof. Suppose that S ∈ D \ {D0}. For the upper bound, we have ρ2(S) ≤ ∑N
i=1(mi + ni)

2 ≤
|S|2. For the lower bound, 1

N

∑N
i=1 m2

i ≥ ( 1
N

∑N
i=1 mi)

2, from Jensen’s inequality, and similarly
for the ni . Hence,

ρ2(S) ≥ 1

N
(R2

N + T 2
1 ) ≥ 1

2N
(RN + T1)

2 = 1

2N
|S|2 ≥ |S|

since |S| ≥ 2N , completing the proof. �

Lemma 19. Suppose that β = 0 and p ∈ [0,1]. For t ∈ Z
+, we have

E0,p[ρ2(ξt+1) − ρ2(ξt )|Ft ] ≤ 2 a.s.; (45)

moreover, for any ε > 0, P0,p-a.s., for all but finitely many t ∈ Z
+,

max
0≤s≤t

ρ2(ξs) ≤ t (log t)1+ε. (46)
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Proof. We start by proving (45). First, we note that for any t ∈ Z
+,

E0,p[ρ2(ξt+1) − ρ2(ξt )|ξt = D0] = 2(1 − p) ≤ 2.

We next need to verify (45) for any configuration S ∈ D \ {D0}.
Let �1,i (S) denote the change in ρ2(S) when a 01 �→ 10 exclusion move is performed on

the ith 01 pair in S (i = 1, . . . ,N ). Similarly, let �2,i (S) denote the change in ρ2(S) when a
10 �→ 01 exclusion move is performed on the ith 10 pair (i = 0, . . . ,N ). Thus,

�1,i (S) := ρ2(e01�→10
i (S)) − ρ2(S), �2,i (S) := ρ2(e10�→01

i (S)) − ρ2(S),

in the notation of Section 4.2. We then have

E0,p[ρ2(ξt+1) − ρ2(ξt )|ξt = S] = 1

2N + 1

(
p

N∑
i=1

�1,i (S) + q

N∑
i=0

�2,i (S)

)
. (47)

We compute the two sums on the right-hand side of (47) separately. First, consider all N possible
exclusion moves 01 �→ 10. Separating out the cases when mi = 1 or ni = 1,

�1,i (S) = −(2mi − 2)1{mi>1} − (2ni − 2)1{ni>1} + 2mi−11{ni=1} + 2ni+11{mi=1},

with the convention that nN+1 = m0 = −1/2 to make this formula correct for i = 1 and i = N .
Since (x − 1)1{x>1} = x − 1 for x ∈ N, this last equation is

�1,i (S) = 2
[
2 − mi − ni + mi−11{ni=1} + ni+11{mi=1}

]
.

Hence, summing over i ∈ {1, . . . ,N} gives

1

2

N∑
i=1

�1,i (S) = 2N −
N∑

i=1

(mi + ni) +
N−1∑
i=0

mi1{ni+1=1} +
N+1∑
i=2

ni1{mi−1=1} ≤ 2N. (48)

Similarly, a 10 �→ 01 exclusion move on the ith 10 pair (i = 0,1, . . . ,N ) contributes

�2,i (S) = 2
[
2 − mi − ni+1 + mi+11{ni+1=1} + ni1{mi=1}

]
,

with the conventions that n0 = mN+1 = 0 and nN+1 = m0 = 1/2 to make this formula correct
for i = 0 and i = N . Summing, as before,

1

2

N∑
i=0

�2,i (S) = 2N + 1 −
N∑

i=1

mi1{ni>1} −
N∑

i=1

ni1{mi>1} ≤ 2N + 1. (49)

Combining (48) and (49) with (47), we conclude that

E0,p[ρ2(ξt+1) − ρ2(ξt )|ξt = S] ≤ 2(2N + q)

2N + 1
≤ 2,
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which is (45). Finally, (46) follows from (45) with Lemma 1(ii), taking Xt = ρ2(ξt ). �

Suppose that p ∈ [0,1]. Then, from (46), (37) and the middle inequality in (44), we obtain an
upper bound for max0≤s≤t |ξs | of order t3/4 (ignoring logarithmic factors). In order to prove the
upper bound in Theorem 8(ii), we will give an argument that improves the 3/4 to 2/3. We start
with a simple inequality.

Lemma 20. Let N ∈ N. Suppose that n1, n2, . . . , nN ≥ 0. If, for some A,B > 0,

N∑
i=1

n2
i ≤ A and

N∑
i=1

ini ≤ B, then
N∑

i=1

ni ≤ (6AB)1/3.

Proof. In the elementary inequality (
∑N

i=1 ni)
3 ≤ 3

∑N
i=1 n2

i

∑N
i=1 ni + 3

∑N
i=1 ni(

∑i−1
j=1 nj )

2,
apply Jensen’s inequality to the final term to obtain

(
N∑

i=1

ni

)3

≤ 3
N∑

i=1

n2
i

N∑
i=1

ini + 3
N∑

i=1

ini

i−1∑
j=1

n2
j ≤ 6AB.

�

Proof of Theorem 8. Part (i) of the theorem is (37) and the lower bound in part (ii) of the
theorem is (36). We now derive the upper bound in part (ii). Since each block of 1’s has at least
one element, observe that

∑N
i=1 ni(N − i) ≤ f1(S) and also that

∑N
i=1 n2

i ≤ ρ2(S). Lemma 20
thus implies that for any S ∈ D \ {D0},

N∑
i=1

ni ≤ (6f1(S)ρ2(S))1/3 ≤ 2(f1(S)ρ2(S))1/3,

and the same argument applies for
∑N

i=1 mi . Hence, for any S ∈ D,

|S| ≤ 4(f1(S)ρ2(S))1/3. (50)

Taking S = ξt , we have f1(ξt ) ≤ C1t for all t and some C1 ∈ (0,∞), by (34). Also, for any ε > 0,
P0,p-a.s., ρ2(ξt ) ≤ C2t (log t)1+ε for all t , by (46), for some C2 ∈ (0,∞). Using these bounds in
(50) completes the proof. �
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