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Second order approximate ancillaries have evolved as the primary ingredient for recent likelihood develop-
ment in statistical inference. This uses quantile functions rather than the equivalent distribution functions,
and the intrinsic ancillary contour is given explicitly as the plug-in estimate of the vector quantile function.
The derivation uses a Taylor expansion of the full quantile function, and the linear term gives a tangent to
the observed ancillary contour. For the scalar parameter case, there is a vector field that integrates to give the
ancillary contours, but for the vector case, there are multiple vector fields and the Frobenius conditions for
mutual consistency may not hold. We demonstrate, however, that the conditions hold in a restricted way and
that this verifies the second order ancillary contours in moderate deviations. The methodology can generate
an appropriate exact ancillary when such exists or an approximate ancillary for the numerical or Monte
Carlo calculation of p-values and confidence quantiles. Examples are given, including nonlinear regression
and several enigmatic examples from the literature.
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1. Introduction

Ancillaries are loved or hated, accepted or rejected, but typically ignored. Recent approximate
ancillary methods (e.g., [28]) give a decomposition of the sample space rather than providing sta-
tistics on the sample space (e.g., [7,26]). As a result, continuity gives the contour along which the
variable directly measures the parameter and then gives the subcontour that provides measure-
ment of a parameter of interest. This, in turn, enables the high accuracy of cumulant generating
function approximations [2,9] to extend to cover a wide generality of statistical models.

Ancillaries initially arose (see [10]) to examine the accuracy of the maximum likelihood esti-
mate, then (see [11]) to calibrate the loss of information in the use of the maximum likelihood
estimate and then (see [12]) to develop a key instance involving the configuration statistic. The
configuration of a sample arises naturally in the context of sampling a location-scale model,
where a standardized coordinate z = (y − μ)/σ has a fixed and known error distribution g(z):
the ith coordinate of the response thus has f (yi;μ,σ) = σ−1g{(yi − μ)/σ }. The configuration
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a(y) of the sample is the plug-in estimate of the standardized residual,

a(y) = ẑ =
(

y1 − μ̂

σ̂
, . . . ,

yn − μ̂

σ̂

)′
, (1.1)

where (μ̂, σ̂ ) is the maximum likelihood value for (μ,σ ) or is some location-scale equivalent.
Clearly, the distribution of ẑ is free of μ and σ as the substitution yi = μ + σzi in (1.1) leads to
the cancellation of dependence on μ and σ . This supports a common definition for an ancillary
statistic a(y), that it has a parameter-free distribution; other conditions are often added to seek
sensible results.

More generally, the observed value of an ancillary identifies a sample space contour along
which parameter change modifies the model, thus yielding the conditional model on the ob-
served contour as the appropriate model for the data. The ancillary method is to use directly this
conditional model identified by the data.

One approach to statistical inference is to use only the observed likelihood function L0(θ) =
L(θ;y0) from the model f (y; θ) with observed data y0. Inference can then be based on some
simple characteristic of that likelihood. Alternatively, a weight function w(θ) can be applied and
the composite w(θ)L(θ) treated as a distribution describing the unknown θ ; this leads to a rich
methodology for exploring data, usually, but unfortunately, promoted solely within the Bayesian
framework.

A more incisive approach derives from an enriched model which is often available and appro-
priate. While the commonly cited model is just a set of probability distributions on the sample
space, an enriched model can specifically include continuity of the model density function and
continuity of coordinate distribution functions. An approach that builds on these enrichments can
then, for example, examine the observed data y0 in relation to other data points that have a sim-
ilar shape of likelihood and are thus comparable, and can do even more. For the location-scale
model, such points are identified by the configuration statistic; then, accordingly, the model for
inference would be f {y | a(y) = a0; θ}, where a(y) is the configuration ancillary.

Exact ancillaries as just described are rather rare and seem limited to location-type models
and simple variants. However, extensions that use approximate ancillaries (e.g., [18,22]) have
recently been broadly fruitful, providing approximation in an asymptotic sense. Technical issues
can arise with approximate values for an increasing number of coordinates, but these can be
managed by using ancillary contours rather than statistics; thus, for a circle, we use explicitly a
contour A = {(x, y) = (a1/2 cos t, a1/2 sin t): t in [0,2π)} rather than using implicitly a statistic
x2 + y2 = a.

We now assume independent coordinate distribution functions that are continuously differen-
tiable with respect to the variable and the parameter; extensions will be discussed separately.
Then, rather than working directly with a coordinate distribution function ui = Fi(yi; θ), we will
use the inverse, the quantile function yi = yi(ui; θ) which presents a data value yi in terms of a
corresponding p-value ui . For additional advantage, we could use a scoring variable x in place
of the p-value, for example, x = �−1(u) or x = F−1(u; θ0), where �(·) is the standard Normal
distribution function. We can then write y = y(x; θ), where a coordinate yi is presented in terms
of the corresponding scoring variable xi .

For the full response variable, let y = y(x; θ) = {y1(x1; θ), . . . , yn(xn; θ)}′ be the quantile
vector expressing y in terms of the reference or scoring variable x with its given distribution: the
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quantile vector records how parameter change affects the response variable and its distribution,
as prescribed by the continuity of the coordinate distribution functions.

For an observed data point y0, a convenient reference value x̂0 or the fitted p-value vector is
obtained by solving the equation y0 = y(x; θ̂0) for x, where θ̂0 is the observed maximum like-
lihood value; for this, we assume regularity and asymptotic properties for the statistical model.
The contour of the second order ancillary through the observed data point as developed in this
paper is then given as the trajectory of the reference value,

A0 = {y(x̂0; t): t in R
p}, (1.2)

to second order under parameter change, where p here is the dimension of the parameter. A sam-
ple space point on this contour has, to second order, the same estimated p-value vector as the
observed data point and special properties for the contours are available to second order.

The choice of the reference variable with given data has no effect on the contour: the reference
variable could be Uniform, as with the p-value; or, it could be the response distribution itself for
some choice of the parameter, say θ0.

For the location-scale example mentioned earlier, we have the coordinate quantile function
yi = μ + σzi , where zi has the distribution g(z). The vector quantile function is

y(z;μ,σ) = μ1 + σz, (1.3)

where 1 = (1, . . . ,1)′ is the ‘one vector.’ With the data point y0, we then have the fitted ẑ0 =
(y0 − μ̂01)/σ̂ 0. The observed ancillary contour to second order is then obtained from (1.2) by
substituting ẑ0 in the quantile (1.3):

A0 = {y(ẑ0; t)} = {m1 + sẑ0; (m, s) in R × R
+} = L+(1; ẑ0) (1.4)

with positive coefficient for the second vector. This is the familiar exact ancillary contour a(y) =
a0 from (1.1).

An advantage of the vector quantile function in the context of the enriched model mentioned
above is that it allows us to examine how parameter change modifies the distribution and thus
how it moves data points as a direct expression of the explicit continuity. In this sense, we define
the velocity vector or vectors as v(x; θ) = (∂/∂θ)y(x; θ) = ∂y/∂θ . In the scalar θ case, this is a
vector recording the direction of movement of a point y under θ change; in the vector θ case, it is
a 1 ×p array of such vectors in R

n, V (x; θ) = {v1(x1; θ), . . . , vp(xp; θ)}, recording the separate
effects from the parameter coordinates θ1, . . . , θp . For the location-scale example, the velocity
array is V (z;μ,σ) = (1, z), which can be viewed as a 1 × 2 array of vectors in R

n.
The ancillary contour can then be presented using a Taylor series about y0 with coefficients

given by the velocity and acceleration V and W . For the location-scale example, the related
acceleration vectors are equal to zero.

For more insight, consider the general scalar θ case and the velocity vector v(x; θ̂0). For a
typical coordinate, this gives the change dy = v(x; θ̂0)dθ in the variable as produced by a small
change dθ at θ̂0. A re-expression of the coordinate variable can make these increments equal
and produce a location model; the product of these location models is a full location model
g(y1 − θ, . . . , yn − θ) that precisely agrees with the initial model to first derivative at θ = θ̂0 (see
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[1,20]). This location model then, in turn, determines a full location ancillary with configuration
a(y) = (y1 − ȳ, . . . , yn− ȳ). For the original model, this configuration statistic has first-derivative
ancillarity at θ = θ̂0 and is thus a first order approximate ancillary; the tangent to the contour at
the data point is just the vector v(x̂0; θ̂0). Also this contour can be modified to give second order
ancillarity.

In a somewhat different way, the velocity vector v(y0; θ) at the data point y0 gives information
as to how data change at y0 relates to parameter change at various θ values of interest. This allows
us to examine how a sample space direction at the data point relates to estimated p-value and
local likelihood function shape at various θ values; this, in turn, leads to quite general default
priors for Bayesian analysis (see [21]).

In the presence of a cumulant generating function, the saddle-point method has produced
highly accurate third order approximations for density functions (see [9]) and for distribution
functions (see [25]). Such approximations are available in the presence of exact ancillaries [2]
and extend widely in the presence of approximate ancillaries (see [18]). For third order accuracy,
only second order approximate ancillaries are needed, and for such ancillaries, only the tangents
to the ancillary contour at the data point are needed (see [18,19]). With this as our imperative,
we develop the second order ancillary for statistical inference.

Tangent vectors to an ancillary at a data point give information as mentioned above concerning
a location model approximation at the data point. For a scalar parameter, these provide a vector
field and integrate quite generally to give a unique approximate ancillary to second order accu-
racy. The resulting conditional model then provides definitive p-values by available theory; see,
for example, [22]. For a vector parameter, however, the multiple vector fields may not satisfy the
Frobenius conditions for integrability and thus may not define a function.

Under mild conditions, however, we show that such tangent vectors do generate a surface to
second order without the Frobenius conditions holding. We show this in several steps. First, we
obtain the coordinate quantile functions yi = yi(xi; θ). Second, we Taylor series expand the full
vector quantile y = (y1, . . . , yn) in terms of the full reference variable x = (x1, . . . , xn) and the
parameter θ = (θ1, . . . , θp) about data-based values, appropriately re-expressing coordinates and
working to second order. Third, we show that this generates a partition with second order ancil-
lary properties and the usual tangent vectors. The seeming need for the full Frobenius conditions
is bypassed by finding that two integration routes need not converge to each other, but do remain
on the same contour, calculating, of course, to second order.

This construction of an approximate ancillary is illustrated in Section 2 using the familiar
example, the Normal-on-the circle from [13]; see also [3,8,16,20]. The example, of course, does
have an exact ancillary and the present procedure gives an approximation to that ancillary. In
Section 3, we consider various examples that have exact and approximate ancillaries, and then in
Sections 4 and 5, we present the supporting theory. In particular, in Section 4, we develop notation
for a p-dimensional contour in R

n, A = {y(x0; t): t in R
p}, and use velocity and acceleration

vectors to present a Taylor series with respect to t . Then, in Section 5, we consider a regular
statistical model with asymptotic properties and use the notation from Section 4 to develop the
second order ancillary contour through an observed data point y0. The re-expression of individual
coordinates, both of the variable and the parameter, plays an essential role in the development;
an asymptotic analysis is used to establish the second order approximate ancillarity. Section 6
contains some discussion.
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2. Normal-on-the-circle

We illustrate the second order approximate ancillary with a simple nonlinear regression model,
the Normal-on-the-circle example (see [13]). The model has a well-known exact ancillary. Let
y = (y1, y2)

′ be Normal on the plane with mean (ρ cos θ,ρ sin θ)′ and variance matrix I/n with
ρ known. The mean is on a circle of fixed radius ρ and the distribution has rotationally symmetric
error with variances n−1, suggesting an antecedent sample size n for an asymptotic approach.
The full n-dimensional case is examined as Example 2 in Section 3 and the present case derives
by routine conditioning.

The distribution is a unit probability mass centered at (ρ cos θ,ρ sin θ)′ on the circle with
radius ρ. If rotations about the origin are applied to (y1, y2)

′, then the probability mass rotates
about the origin, the mean moves on the circle with radius ρ and an element of probability at
a distance r from the origin moves on a circle of radius r . The fact that the rotations move
probability along circles but not between circles of course implies that probability on any circle
about the origin remains constant: probability flows on the ancillary contours. Accordingly, we
have that the radial distance r = (y2

1 + y2
2)1/2 has a fixed θ -free distribution and is thus ancillary.

The statistic r(y) is the Fisher exact ancillary for this problem and Fisher recommended that
inference be based on the conditional model, given the observed ancillary contour. This condi-
tional approach has a long but uneven history; [17] provides an overview and [23] offer links
with asymptotic theory. We develop the approximate second order ancillary and examine how it
relates to the Fisher exact ancillary.

The model for the Normal-on-the-circle has independent coordinates, so we can invert the
coordinate distribution functions and obtain the vector quantile function,

(
y1
y2

)
= ρ

(
cos θ

sin θ

)
+

(
x1
x2

)
,

where the xi = �−1(ui)/n1/2 are independent normal variables with means 0 and variances n−1,
and � is the standard Normal distribution function. We now examine the second order ancillary
contour A0 given by (1.2).

Let y0 = (y0
1 , y0

2)′ = (r0 cosa0, r0 sina0) be the observed data point where r0, a0 are the
corresponding polar coordinates; see Figure 1. For this simple nonlinear normal regression
model, θ̂0 = a0 is the angular direction of the data point. The fitted reference value x̂0 is the
solution of the equation y0 = y(x; θ̂0) = ρ(cosa0, sina0)′ + (x1, x2), giving x̂0 = (x̂0

1 , x̂0
2)′ =

y0 − ρ(cosa0, sina0)′ = y0 − ŷ0, where ŷ0 = ρ(cosa0, sina0)′ is the fitted value, which is the
projection of the data point y0 onto the circle. The observed ancillary contour is then

A0 =
{
ρ

(
cos θ

sin θ

)
+ y0 − ŷ0: θ near a0

}
= y0 − ŷ0 +

{
ρ

(
cos(a0 + t)

sin(a0 + t)

)
: t near 0

}
.

Figure 1 shows that A0 = {y(x̂0; t): t near a0} is a translation, as shown by the arrow of a seg-
ment S of the solution contour, from the fitted point ŷ0 to the data point y0.

The second order ancillary segment at y0 does not lie on the exact ancillary surface r(y1, y2) =
r0. The tangent vector at the data point y0 is v = (∂y/∂t)|t=a0 = (−ρ sina0, ρ cosa0)′,
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Figure 1. The regression surface S is a circle of radius R; the local contour of the approximate ancillary
A0 is a circle segment of S moved from ŷ0 to y0; the exact ancillary contour is a circle segment of radius
r0 through the data point y0.

which is the same as the tangent vector for the exact ancillary and which agrees with the
usual tangent vector v (see [22]). However, the acceleration vector is w = (∂2/∂t2)y|t=a0 =
(−ρ sina0,−ρ cosa0)′, which differs slightly from that for the exact ancillary: the approxima-
tion has radius of curvature ρ, as opposed to r0 for the exact, but the difference in moderate
deviations about y0 can be seen to be small and is second order.

The second order ancillary contour through y0 can also be expressed in a Taylor series as
A0 = {y0 + tv + wt2/2: t near 0}; here, the acceleration vector w is orthogonal to the velocity
vector v. Similar results hold in wide generality when y has dimension n and θ has dimension
p; further examples are discussed in the next section and the general development follows in
Sections 4 and 5.

3. Some examples

Example 1 (Nonlinear regression, σ0 known). Consider a nonlinear regression model y =
η(θ) + x in R

n, where the error x is Normal(0;σ 2
0 I ) and the regression or solution sur-

face S = {η(θ)} is smooth with parameter θ of dimension, say, r . For given data point y0,
let θ̂0 be the maximum likelihood value. The fitted value is then ŷ0 = η(θ̂0) and the fitted
reference value is x̂0 = y0 − η(θ̂0) = y0 − ŷ0. The model as presented is already in quan-
tile form; accordingly, V = (∂η/∂θ)|

θ̂0 ,W = (∂2η/∂θ2)|
θ̂0 are the observed velocity and ac-

celeration arrays, respectively, and the approximate ancillary contour at the data point y0 is
A0 = {y0 + V t + t ′Wt/2 + · · · : t in R

r}, which is just a y0 − ŷ0 translation of the solution
surface S = {ŷ0 +V t + t ′Wt/2 +· · · : t in R

r}. For this, we use matrix multiplication to linearly
combine the elements in the arrays V and W .

Example 2 (Nonlinear regression, circle case). As a special case, consider the regression model
where the solution surface S = {η(θ)} is a circle of radius ρ about the origin; this is the full-
dimension version of the example in Section 2. For notation, let C = (c1, . . . , cn) be an orthonor-
mal basis with vectors c1, c2 defining the plane that includes S. Then ỹ = C′y provides rotated
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coordinates and η̃(θ) = C′η(θ) = (ρ cos θ,ρ sin θ,0, . . . ,0) gives the solution surface in the new
coordinates.

There is an exact ancillary given by r = (ỹ2
1 + ỹ2

2)1/2 and (ỹ3, . . . , ỹn); the corresponding
ancillary contour through ỹ0 is a circle of radius r0 through the data point y0 and lying in the
plane ỹ3 = ỹ0

3 , . . . , ỹn = ỹ0
n . The approximate ancillary contour is a segment of a circle of radius

ρ through the data point y0 and lying in the same plane. This directly agrees with the simple
Normal-on-the-circle example of Section 2.

For the nonlinear regression model, Severini ([29], page 216) proposes an approximate ancil-
lary by using the obvious pivot y − η(θ) with the plug-in maximum likelihood value θ = θ̂ ; we
show that this gives a statistic A(y) = y −η(θ̂) that can be misleading. In the rotated coordinates,
the statistic A(y) becomes

Ã(y) = (r cos θ̂ , r sin θ̂ , ỹ3, . . . , ỹn)
′ − (ρ cos θ̂ , ρ sin θ̂ ,0, . . . ,0)′

= {(r − ρ) cos θ̂ , (r − ρ) sin θ̂ , ỹ3, . . . , ỹn}′,
which has observed value Ã0 = {(r0 − ρ) cos θ̂0, (r0 − ρ) sin θ̂0, ỹ0

3 , . . . , ỹ0
n}′.

If we now set the proposed ancillary equal to its observed value, Ã = Ã0, we obtain ỹ3 =
ỹ0

3 , . . . , ỹn = ỹ0
n and also obtain r = r0 and θ̂ = θ̂0. Together, these say that y = y0, and thus

that the proposed approximate ancillary is exactly equivalent to the original response variable,
which is clearly not ancillary. Severini does note “. . . it does not necessarily follow that a is a
second-order ancillary statistic since the dimension of a increases with n.” The consequences of
using the plug-in θ̂ in the pivot are somewhat more serious: the plug-in pivotal approach for this
example does not give an approximate ancillary.

Example 3 (Nonlinear regression, σ unknown). Consider a nonlinear regression model y =
η(θ)+σz in R

n, where the error z is Normal(0; I ) and the solution surface S = {η(θ)} is smooth
with surface dimension r (see [24]). Let y0 be the observed data point and (θ̂0, σ̂ 0) be the cor-
responding maximum likelihood value. We then have the fitted regression ŷ0, the fitted residual
x̂0 = y0 − ŷ0, and the fitted reference value ẑ0 = x̂0/σ̂ 0 which is just the standardized residual.

Simple calculation gives the velocity and acceleration arrays

V̄ = (V ẑ0), W̄ =
(

W 0
0 0

)

using V and W from Example 1. The approximate ancillary contour at the data point y0 is then

Ã0 = {y0 + V T + t ′Wt/2 + · · · + sẑ0: t in R
r , s in R

+}
= {η(t) + sẑ0: t in R

r , s in R
+}

= A0 + L+(ẑ0),

where A0 is as in Example 1. This is the solution surface from Example 1, translated from ŷ0 to
y0 and then positively radiated in the ẑ0 direction.
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Example 4 (The transformation model). The transformation model (see, e.g., [14]) provides
a paradigm for exact ancillary conditioning. A typical continuous transformation model for a
variable y = θz has parameter θ in a smooth transformation group G that operates on an n-
dimensional sample space for y; for illustration, we assume here that the group acts coordinate
by coordinate. The natural quantile function for the ith coordinate is yi = θzi , where zi is a co-
ordinate reference variable with a fixed distribution; the linear regression model with known and
unknown error scaling are simple examples. With observed data point y0, let θ̂0 be the maximum
likelihood value and ẑ0 the corresponding reference value satisfying y0 = θ̂0ẑ0. The second or-
der approximate ancillary is then given as {θ ẑ0}, which is just the usual transformation model
orbit Gẑ0. If the group does not apply separately to independent coordinates, then the present
quantile approach may not be immediately applicable; this raises issues for the construction of
the trajectories and also for the construction of default priors (see, e.g., [4]). Some discussion of
this in connection with curved parameters will be reported separately. A modification achieved
by adding structure to the transformation model is given by the structural model [14]. This takes
the reference distribution for z as the primary probability space for the model and examines what
events on that space are identifiable from an observed response; we do not address here this
alternative modelling approach.

Example 5 (The inverted Cauchy). Consider a location-scale model centered at μ and scaled by
σ with error given by the standard Cauchy; this gives the statistical model

f (y;μ,σ) = 1

πσ {1 + (y − μ)2/σ 2}
on the real line. For the sampling version, this location-scale model is an example of the trans-
formation model discussed in the preceding Example 4 and the long-accepted ancillary contour
is the half-plane (1.4).

McCullagh [27] uses linear fractional transformation results that show that the inversion ỹ =
1/y takes the Cauchy (μ,σ ) model for y into a Cauchy (μ̃, σ̃ ) model for ỹ, where μ̃ = μ/(μ2 +
σ 2), σ̃ = σ/(μ2 +σ 2). He then notes that the usual location-scale ancillary for the derived model
does not map back to give the usual location-scale ancillary on the initial space and would thus
typically give different inference results for the parameters; he indicates “not that conditioning
is a bad idea, but that the usual mathematical formulation is in some respects ad hoc and not
completely satisfactory.”

We illustrate this for n = 2 in Figure 2. For a data point in the upper-left portion of the plane
in part (b) for the inverted Cauchy, the observed ancillary contour is shown as a shaded area; it
is a half-plane subtended by L(1). When this contour is mapped back to the initial plane in part
(a), the contour becomes three disconnected segments with lightly shaded edges indicating the
boundaries; in particular, the line with marks 1, 2, 3, 4, 5, 6 becomes three distinct curves again
with corresponding marks 1, 2, 3, 4, 5, 6, but two points (0,1), (1,0) on the line have no back
images. Indeed, the same type of singularity, where a point with a zero coordinate cannot be
mapped back, happens for any sample size n. Thus the proposed sample space is not one-to-one
continuously equivalent to the given sample space: points are left out and points are created. And
the quantile function used on the proposed sample space for constructing the ancillary does not
exist on the given sample space: indeed, it is not defined at points and is thus not continuous.
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Figure 2. (a) The location-scale Cauchy model for the inverted ỹ1 = 1/y1, ỹ2 = 1/y2 has an ancillary
contour given by the shaded area in (b). When interpreted back for the original (y1, y2) the connected
ancillary contour becomes three unconnected regions, shown in (a). A line ỹ2 = ỹ1 + 1 on the contour in
(b) is mapped back to three curved segments in (a) and numbered points in sequence on the line are mapped
back to the numbered points on the unconnected ancillary contour.

The Cauchy inversion about 0 could equally be about an arbitrary point, say a, on the real
line and would lead to a corresponding ancillary. We would thus have a wealth of competing
ancillaries and a corresponding wealth of inference procedures, and all would have the same
lack of one-to-one continuous equivalence to the initial sample space. While Fisher seems not
to have explicitly specified continuity as a needed ingredient for typical ancillarity, it also seems
unlikely that he would have envisaged ancillarity without continuity. If continuity is included in
the prescription for developing the ancillary, then the proposed ancillary for the inverted Cauchy
would not arise.

Bayesian statistics involves full conditioning on the observed data and familiar frequentist in-
ference avoids, perhaps even evades, conditioning. Ancillarity, however, represents an interme-
diate or partial conditioning and, as such, offers a partial bridging of the two extreme approaches
to inference.

4. An asymptotic statistic

For the Normal-on-the-circle example, the exact ancillary contour was given as the observed
contour of the radial distance r(y1, y2): the contour is described implicitly. By contrast, the ap-
proximate ancillary was given as the trajectory of a point y(x̂0; t) under change of an index or
mathematical parameter t : the contour is described explicitly. For the general context, the first
approach has serious difficulties, as found even with nonlinear regression, and these difficulties
arise with an approximate statistic taking an approximate value; see Example 2. Accordingly, we
now turn to the second, the explicit approach, and develop the needed notation and expansions.
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Consider a smooth one-dimensional contour through some point y0. To describe such a contour
in the implicit manner requires n − 1 complementary statistics. By contrast, for the explicit
method, we write y = y(t), which maps a scalar t into the sample space R

n. More generally, for
a p-dimensional contour, we have y = y(t) in R

n, where t has dimension p and the mapping is
again into R

n.
For such a contour, we define the row array V (t) = (d/dt ′)y(t) = {v1(t), . . . , vp(t)} of tangent

vectors, where the vector vα(t) = (d/dtα)y(t) gives the direction or gradient of y(t) with respect
to change in a coordinate tα . We are interested in such a contour near a particular point y0 = y(t0);
for convenience, we often choose y0 to be the observed data point y0 and the t0 to be centered
so that t0 = 0. In particular, the array V = V (t0) of tangent vectors at a particular data point
y0 will be of special interest. The vectors in V generate a tangent plane L(V ) at the point y0

and this plane provides a linear approximation to the contour. Differential geometry gives length
properties of such vectors as the first fundamental form:

V ′V =
⎛
⎝

v1 · v1 · · · v1 · vp

...
...

vp · v1 · · · vp · vp

⎞
⎠ =

⎛
⎝

v′
1v1 · · · v′

1vp

...
...

v′
pv1 · · · v′

pvp

⎞
⎠ ;

this records the matrix of inner products for the vectors V as inherited from the inner product on
R

n. A change in the parameterization t̃ = t (t) of the contour will give different tangent vectors
V , the same tangent plane L(V ) and a different, but corresponding, first fundamental form.

Now, consider the derivatives of the tangents V (t) at t0:

W = d

dt ′
V (t)

∣∣∣∣
t=t0

=
⎛
⎝

w11 · · · w1p

...
...

wp1 · · · wpp

⎞
⎠ ,

where wαα′ = (∂2/∂tα ∂tα′)y(t)|t=t0 is an acceleration or curvature vector relative to coordinates
tα and tα′ at t0. We regard the array W as a p × p array of vectors in R

n. We could have used
tensor notation, but the approach here has the advantage that we can write the second degree
Taylor expansion of y(t) at t0 = 0 as

y(t) = y0 + V t + t ′Wt/2 + · · · , (4.1)

which uses matrix multiplication for linearly combining the vectors in the arrays V and W .
Some important characteristics of the quadratic term in (4.1) are obtained by orthogonalizing the
elements of W to the tangent plane L(V ), to give residuals

w̃αα′ = {I − V (V ′V )−1V ′}wαα′ = wαα′ − Pwαα′ ;
this uses the regression analysis projection matrix P = V (V ′V )−1V ′. The full array W̃ of such
vectors w̃αα′ is then written W̃ = W − PW = W − V H, where H = (hαα′) is a p × p array of
elements hαα′ = (V ′V )−1V ′wαα′ ; an element hαα′ is a p×1 vector, which records the regression
coefficients of wαα′ on the vectors V .
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The array W̃ of such orthogonalized curvature vectors w̃ is the second fundamental form
for the contour at the expansion point. Consider the Taylor expansion (4.1) and substitute W =
W̃ + V H :

y(t) = y0 + V t + t ′(W̃ + V H)t/2 + · · ·
= y0 + V (t + t ′Ht/2) + t ′W̃ t/2 + · · · ,

where we note that t and t ′ are being applied to the p × p arrays H and W̃ by matrix mul-
tiplication, but the elements are p × 1 vectors for H and n × 1 vectors for W̃ , and these are
being combined linearly. We can then write y(t) = y0 + V t̃ + t̃ W̃ t̃ ′/2 + · · · and thus have
the contour expressed in terms of orthogonal curvature vectors w̃ with the reparameterization
t̃ = t + t ′Ht/2 + · · ·. When we use this in the asymptotic setting, we will have standardized
coordinates and the reparameterization will take the form t̃ = t + t ′Ht/2n1/2 + · · ·.

5. Verifying second order ancillarity

We have used the Normal-on-the-circle example to illustrate the proposed second order ancillary
contour {y(x̂0; t)}. Now, generally, let f (y; θ) be a statistical model with regularity and asymp-
totic properties as the data dimension n increases: we assume that the vector quantile y(x; θ) has
independent scalar coordinates and is smooth in both the reference variable x and the parameter
θ ; more general conditions will be considered subsequently. For the verification, we use a Taylor
expansion of the quantile function in terms of both x and θ , and work from theory developed in
[5] and [1]. The first steps involve the re-expression of individual coordinates of y, x, and θ , and
show that the proposed contours establish a partition on the sample space; the subsequent steps
establish the ancillarity of the contours.

(1a) Standardizing the coordinates. Consider the statistical model in moderate deviations
about (y0, θ̂0) to order O(n−1). For this, we work with coordinate departures in units scaled
by n−1/2. Thus, for the ith coordinate, we write yi = ŷ0

i + ỹi/n1/2, xi = x̂0
i + x̃i/n1/2 and

θα = θ̂0
α + θ̃α/n1/2; and for a modified ith quantile coordinate ỹi = ỹi (x̃i , θ̂ ), we Taylor ex-

pand to the second order, omit the subscripts and tildes for temporary clarity, and obtain
y = x + V θ + (ax2 + 2xBθ + θ ′Wθ)/2n1/2, where V is the 1 × p gradient of y with respect to
θ , B is the 1 × p cross Hessian with respect to x and θ , W is the p × p Hessian with respect to
θ and vector–matrix multiplication is used for combining θ with the arrays.

(1b) Re-expressing coordinates for a nicer expansion. We next re-express an x coordinate,
writing x̃ = x + ax2/2n1/2, and then again omit the tildes to obtain the simpler expansion

y = x + V θ + (2xBθ + θ ′Wθ)/2n1/2 + · · · , (5.1)

to order O(n−1) for the modified y, x and θ , now in bounded regions about 0.
(1c) Full response vector expansion. For the vector response y = (y1, . . . , yn) in quantile

form, we can compound the preceding coordinate expansions and write y = x + V θ + (2x :
Bθ + θ ′Wθ)/2n1/2 + · · · , where y and x are now vectors in R

n, V = (v1, . . . , vp) = (vα) and
B = (b1, . . . , bp) = (bα) are 1 × p arrays of vectors in R

n, W = (wαα′) is a p × p array of
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vectors in R
n and x:B is a 1 × p array of vectors x:b, where the ith element of the vector x:b is

the product xibi of the ith elements of the vectors x and b.
(1d) Eliminate the cross Hessian: scalar parameter case. The form of a Taylor series de-

pends heavily on how the function and the component variables are expressed. For a partic-
ular coordinate of (5.1) in (1b), if we re-express the coordinate y = ỹ + cỹ2/2n1/2 in terms
of a modified ỹ, substitute it in (5.1) and then, for notational ease, omit the tildes, we obtain
y + c(x + vθ)2/2n1/2 = x + vθ + (2xbθ + θ2w)/2n1/2. To simplify this, we take the x2 term
over to the right-hand side and combine it with x to give a re-expressed x, take the θx term over
to the right-hand side and choose c so that cv = b and, finally, combine the θ2 terms giving a
new w. We then obtain y(x; θ) = x + vθ + θ2w/2n1/2 with the cross Hessian removed; for this,
if v = 0, we ignore the coordinate as being ineffective for θ . For the full response accordingly,
we then have y(x; θ) = x + vθ + wθ2/2n1/2 + · · · to the second order in terms of re-expressed
coordinates x and y. The trajectory of a point x is A(x) = {y(x; t)} = {x +vt +wt2/2n1/2 +· · ·}
to the second order as t varies.

(1e) Scalar case: trajectories form a partition. In the standardized coordinates, the initial
data point is y0 = 0 with corresponding maximum likelihood value θ̂0 = 0; the corresponding
trajectory is A(0) = {vt + wt2/2n1/2 + · · ·}. For a general reference value x, but with θ̂ (x) = 0,
the trajectory is A(x) = {x + vt + wt2/2n1/2 + · · ·} = x + A(0). The sets {A(x)} with θ̂ (x) = 0
are all translates of A(0) and thus form a partition.

Consider an initial point x0 with maximum likelihood value θ̂ (x0) = 0 and let y1 = x0 +
vt1 + wt2

1 /2n1/2 + · · · be a point in the set A(x0) = x0 + A(0). We calculate the trajectory
A(y1) of y1 and show that it lies on A(x0); the partition property then follows and the related
Jacobian effect is constant. From the quantile function y = x + vθ + wθ2/2n1/2, we see that
the y distribution is a θ -based translation of the reference distribution described by x. Thus the
likelihood at y1 is l(y1 − vθ − wθ2/2n1/2), in terms of the log density l(x) near x0. It follows
that y1 = x0 + vt1 + wt2

1 /2n1/2 has maximum likelihood value θ̂ (y1) = t1.
Now, for the trajectory about y1, we calculate derivatives

dy

dθ
= v + wθ/n1/2,

d2y

dθ2
= w/n1/2,

which, at the point y1 = vt1 + wt2
1 /2n1/2 with θ = θ̂ (y1), gives

V (y1) = v + wt1/n1/2, W(y1) = w/n1/2,

to order O(n−1). We thus obtain the trajectory of the point y1:

A(y1) = {x0 + vt1 + wt2
1 /2n1/2 + (v + wt1/n1/2)t + wt2/2n1/2}

= {x0 + vT + wT 2/2n1/2}
under variation in t . However, with T = t1 + t , we have just an arbitrary point on the initial
trajectory. Thus the mapping y → A(y) is well defined and the trajectories generate a partition,
to second order in moderate derivations in R

n. In the standardized coordinates, the Jacobian
effect is constant.
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(1f) Vector case: trajectories form a partition. For the vector parameter case, we again use
standardized coordinates and choose a parameterization that gives orthogonal curvature vectors
w at the observed data point y0. We then examine scalar parameter change on some line through
θ̂ (y0). For this, the results above give a trajectory and any point on it reproduces the trajectory
under that scalar parameter. Orthogonality ensures that the vector maximum likelihood value is
on the same line just considered. These trajectories are, of course, part of the surface defined
by {V t + t ′Wt/2n1/2}. We then use the partition property of the individual trajectories as these
apply perpendicular to the surface; the surfaces are thus part of a partition. We can then write the
trajectory of a point x as a set

A(x) = {x + V t + t ′Wt/2n1/2 + · · · : t} = x + A(0) (5.2)

in a partition to the second order in moderate deviations.
(2a) Observed information standardization. With moderate regularity, and following [18] and

[23], we have a limiting Normal distribution conditionally on y0 + L(V ). We then rescale the
parameter at θ̂0 to give identity observed information and thus an identity variance matrix for the
Normal distribution to second order. We also have a limiting Normal distribution conditionally
on y0 + L(V ,W); for this, we linearly modify the vectors in W by rescaling and regressing on
L(V ) to give distributional orthogonality to θ̂ and identity conditional variance matrix to second
order.

(2b) The trajectories are ancillary: first derivative parameter change. We saw in the preceding
section that key local properties of a statistical model were summarized by the tangent vectors
V and the curvature vectors W , and that the latter can, to advantage, be taken to be orthogonal
to the tangent vectors. These vectors give local coordinates for the model and can be replaced by
an appropriate subset if linear dependencies are present.

First, consider the conditional model given the directions corresponding to the span y0 +
L{V,W }. From the ancillary expansion (5.2), we have that change of θ to the second order moves
points within the linear space y0 + L{V,W }; accordingly, this conditioning is ancillary. Then,
consider the further conditioning to an alleged ancillary contour, as described by (5.2). Also, let
y0 be a typical point having θ̂ (y0) = θ̂0 as the corresponding maximum likelihood value; y0 is
thus on the observed maximum likelihood contour.

Now, consider a rotationally symmetric Normal distribution on the (x, y) plane with mean
θ on the x axis and let a = y + cx2/2 be linear in y with a quadratic adjustment with respect
to x. Then a = a(x, y) is first-derivative ancillary at θ = 0. For this, we assume, without loss of
generality, that the standard deviations are unity. The marginal density for a is then

f (a; θ) =
∫ ∞

−∞
φ(x − θ)φ(a − cx2/2)dx,

which is symmetric in θ ; thus (d/dθ)f (a; θ)|θ=0 = 0, showing that the distribution of a is first-
derivative ancillary at θ = 0 or, more intuitively, that the amount of probability on a contour of
a is first-derivative free of θ at θ = 0. Of course, for this, the y-spacing between contours of a is
constant.

Now, more generally, consider an asymptotic distribution for (x, y) that is first order rotation-
ally symmetric Normal with mean θ on the y = 0 plane; this allows O(n−1/2) cubic contributions.
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Also, consider an s-dimensional variable a = y + Q(x)/2n1/2 which is a quadratic adjustment
of y. The preceding argument extends to show that a(y) is first-derivative ancillary: the two
O(n−1/2) effects are zero and the combination is of the next order.

(2c) Trajectories are ancillary: parameter change in moderate deviations. Now, consider a
statistical model f (y; θ) with data point y0 and assume regularity, asymptotics and smoothness
of the quantile functions. We examine the parameter trajectory {y(x̂0; t)} in moderate deviations
under change in t . From the preceding paragraph, we then have first-derivative ancillarity at
θ = θ̂ = 0. But this holds for each expansion in moderate deviations and we thus have ancillarity
in moderate deviations. The key here has been to use the expansion form about the point that has
θ̂ equal to the parameter value being examined.

6. Discussion

(i) On ancillarity. The Introduction gave a brief background on ancillary statistics and noted
that an ancillary is typically viewed as a statistic with a parameter-free distribution; for some
recent discussion, see [17]. Much of the literature is concerned with difficulties that can arise
using this third Fisher concept, third after sufficiency and likelihood: that maximizing power
given size typically means not conditioning on an ancillary; that shorter on-average confidence
intervals typically mean ignoring ancillary conditioning; that techniques that are conditional on
an ancillary are often inadmissible; and more. Some of the difficulty may hinge on whether
there is merit in the various optimality criteria themselves. However, little in the literature seems
focused on the continued evolution and development of this Fisher concept, that is, on what
modifications or evolution can continue the exploration initiated in Fisher’s original papers (see
[10–12]).

(ii) On simulations for the conditional model. The second order ancillary in moderate devi-
ations has contours that form a partition, as shown in the preceding section. In the modified or
re-expressed coordinates, the contours are in a location relationship and, correspondingly, the
Jacobian effect needed for the conditional distribution is constant. However, in the original co-
ordinates, the Jacobian effect would typically not be constant and its effect would be needed for
simulations. If the parameter is scalar, then the effect is available to the second order through the
divergence function of a vector field; for some discussion and examples, see [15]. For a vector
parameter, generalizations can be implemented, but we do not pursue these here.

(iii) Marginal or conditional. When sampling from a scalar distribution having variable y and
moderate regularity, the familiar central limit theorem gives a limiting Normal distribution for
the sample average ȳ or sample sum

∑
yi . From a geometric view, we have probability in n-

space and contours determined by ȳ, contours that are planes perpendicular to the 1-vector. If we
then collect the probability on a contour, plus or minus a differential, and deposit it, say, on the
intersection of the contour with the span L(1) of the 1-vector, then we obtain a limiting Normal
distribution on L(1), using ȳ or

∑
yi for location on that line.

A far less familiar Normal limit result applies in the same general context, but with a totally
different geometric decomposition. Consider lines parallel to the 1-vector, the affine cosets of
L(1). On these lines, plus or minus a differential, we then obtain a limiting Normal distribution
for location say ȳ or

∑
yi . In many ways, this conditional, rather than marginal, analysis is much



1222 A.M. Fraser, D.A.S. Fraser and A.-M. Staicu

stronger and more useful. The geometry, however, is different, with planes perpendicular to L(1)

being replaced by points on lines parallel to L(1).
This generalizes giving a limiting conditional Normal distribution on almost arbitrary smooth

contours in a partition and it has wide application in recent likelihood inference theory. It also
provides third order accuracy rather than the first order accuracy associated with the usual geom-
etry. In a simple sense, planes are replaced by lines or by generalized contours and much stronger,
though less familiar, results are obtained. For some background based on Taylor expansions of
log-statistical models, see [5,6] and [1].
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