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Multivariate saddlepoint approximations in
tail probability and conditional inference
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We extend known saddlepoint tail probability approximations to multivariate cases, including multivariate
conditional cases. Our approximation applies to both continuous and lattice variables, and requires the
existence of a cumulant generating function. The method is applied to some examples, including a real
data set from a case-control study of endometrial cancer. The method contains less terms and is easier to
implement than existing methods, while showing an accuracy comparable to those methods.
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1. Introduction

Let X1,X2, . . . ,Xn be independent and identically distributed random vectors from a density
fX(·) on Rd . We construct an accurate multivariate saddlepoint approximation of the tail prob-
ability of the mean random vector X̄ = (X1 + X2 + · · · + Xn)/n. We also develop a similar ap-
proximation for conditional tail probabilities. The approximation has a relative error of O(n−1),
uniformly over a compact set of x̄, a realization of X̄, under some general conditions. Our method
utilizes the likelihood ratio statistic, routinely calculated by standard software, which makes the
approximation easy to implement.

The Edgeworth expansion is a natural competitor to the saddlepoint approximation. This ex-
pansion has a uniformly bounded absolute error and works well in the center of the distribution
being approximated. However, the approximation deteriorates at the far tail of the distribution,
where it can sometimes even attain negative values. [1] first applied saddlepoint techniques to the
approximation of a probability density function. Saddlepoint approximation addresses the prob-
lem of degradation outside a region of radius O(n−1/2) about E(Xi ) by bounding the relative
error, rather than the absolute error, of the approximation over the admissible range.

[1] discussed approximating the density of X̄ when the dimension d = 1, that is, the uni-
variate case. The approximation achieved a relative error of O(n−1) uniformly over the whole
admissible range of the variable, under some conditions. The method uses the Fourier inversion
formula, which involves moment generating, or characteristic, functions and complex integra-
tion. In this approach, the path of integration is shifted so that it passes through the saddlepoint
of the integrand and follows the steepest descent curve at the neighborhood of the saddlepoint.
The asymptotic property follows from a lemma due to [14].

Extensions of univariate saddlepoint approximation of tail probabilities P(X̄ > x̄) for the
means of independent random variables have also been studied. This calculation is more dif-
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ficult, in that, unlike the density function case, the integrand of the Fourier inversion integral for
tail probabilities has a pole at zero.

[10] presented a general saddlepoint approximation technique that can be applied to tail proba-
bility approximation, based on Laplace approximation of the integrated saddlepoint density, with
an error of O(n−1). Robinson used an argument involving a conjugate exponentially shifted dis-
tribution family and the Edgeworth expansion. The terms of the expansion can then be integrated
termwise. There is no direct explicit formula for the integration of each term, but the terms may
be computed recursively. This method applies when x̄ ≥ E(X). When x̄ < E(X), Boole’s law
and reflection of the distribution must be used.

[8] provided an alternative approximation. [2] derived this technique, using a transformation
of variables to directly address the local quadratic behavior of the numerator exponent. The
integral is then split into two parts, one which contains a pole, but can be integrated exactly
and explicitly, and the other which only has removable singularities and can be expanded and
approximated accurately. The virtue of this method is that the approximation is compact and can
be computed without recursion, and the formula is valid over the whole range of admissible x̄.

[9] thoroughly discussed the usefulness of the saddlepoint method in a review of the method
focusing on a variety of applications to statistical inference.

[5] generalized the univariate Robinson approach under the Daniels framework and achieved
an error of size O(n−1). The method uses integral expressions for the tail probability in the
multivariate case and presents a multivariate expansion of the numerator of the integrand and a
termwise multivariate integration using recursion. This approach shares the drawback of Robin-
son’s approach in that it requires a positivity constraint on the ordinate.

[13] generalized Lugannani and Rice’s method to the case of a bivariate probability distribution
function using variable transformations. [5] used a different method of proof and showed that the
error term is of order O(n−1); his method is limited to d = 2. Furthermore, Wang’s development
involves an inversion integral in which the pole of one variable depends on the values of other
variables in a fundamentally nonlinear way.

Wang’s proof of the error rate in the neighborhood of the pole is incomplete. In this paper,
a way of effectively extending Lugannani and Rice’s method to the multivariate case, which uses
a different transformation formula from Wang’s and can be used in the case d > 2, is proposed.
The method uses fewer terms and can be extended to multivariate conditional cases.

Our proposed saddlepoint approximation may be used to test null and alternative hypotheses
concerning a multivariate parameter when the hypotheses are specified by systems of linear in-
equalities. [6] applied the method of [5], in conjunction with the adjusted profile likelihood, in
such a case. For instance, [6] refers to data presented by [12] on 63 case-control pairs of women
with endometrial cancer. The occurrence of endometrial cancer is influenced by explanatory vari-
ables including gall bladder disease, hypertension and non-estrogen drug use. The test of whether
hypertension or non-estrogen drug use is associated with an increase in endometrial cancer will
be performed, conditional on the sufficient statistic value associated with gall bladder disease.

The remainder of the paper is organized as follows. Section 2 provides the unified framework
under which both unconditional and conditional tail probability approximations are considered.
Section 3 derives formulas for multivariate unconditional distributions. Section 4 focuses on
conditional distributions. Section 5 presents five examples and shows the approximation results.
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2. Multivariate extension

The unconditional and conditional tail probability approximation share some common charac-
teristics. We derive them in a unified way. Applying the Fourier inversion theorem and Fubini’s
theorem, as in [5], we find that both the unconditional and conditional tail probability approxi-
mations require evaluation of an integral of the form

nd−d0

(2πi)d

∫ c+iK

c−iK

exp(n[K(τ ) − τTt∗])∏d0
j=1 ρ(τj )

dτ , (2.1)

where K is the cumulant generating function, which is the natural logarithm of the moment gen-
erating function, and c is any positive d-dimensional vector. This will be discussed in Section 4.
In the unconditional case, for continuous variables, K is a vector of length d , with every entry
infinity, t∗ = t and ρ(τ) = τ ; for unit lattice, K is a vector of length d , with every entry π, t∗
is t corrected for continuity, ρ(τ) = 2 sinh(τ/2) and d = d0. In the conditional case, the setting
is the same, except that d0 equals d minus the dimension of the conditioning variables.

[2] recast a great deal of the saddlepoint literature in terms of inversion integrals of the
form (2.1), rescaled so that the exponent is exactly quadratic. This rescaling includes the mul-
tiplier for the linear term in the exponent; this linear term is the signed root of the likelihood
ratio statistic. The idea of using the modified signed likelihood ratio statistic was proposed in
[3]. [4] defines a multivariate version of this reparameterization and also defines the multiplier
for the linear terms; again, these are signed roots of likelihood ratio statistics, but, this time, for
a sequence of nested models:

−1

2
ŵTŵ = min

γ

(
K(γ ) − γ Tt∗

)
and

−1

2
(w − ŵ)T(w − ŵ) = K(τ ) − τTt∗ − min

γ

(
K(γ ) − γ Tt∗

)
.

Further specification of ŵ and w is needed. For any vector v of length d , let vj be the vector
consisting of the first j elements, that is, (v1, v2, . . . , vj )

T. For instance, γ j = (γ1, γ2, . . . , γj )
T,

τ j = (τ1, τ2, . . . , τj )
T and 0j is the zero vector (0,0, . . . ,0)T with dimension j . Let v−j be the

vector consisting all but the first j elements of v, that is, (vj+1, vj+2, . . . , vd)T. [4], Chapter 6
defines ŵ and w using

−1

2
ŵ2

j = min
γ ,γ j−1=0j−1

(
K(γ ) − γ Tt∗

) − min
γ ,γ j =0j

(
K(γ ) − γ Tt∗

)
, (2.2a)

−1

2
(wj − ŵj )

2 = min
γ ,γ j−1=τ j−1

(
K(γ ) − γ Tt∗

) − min
γ ,γ j =τ j

(
K(γ ) − γ Tt∗

)
. (2.2b)

This definition is not invariant with regard to the order of the coordinates. Also, note that wj is
a function of only τ j , but not of any element of τ−j ∀j . The same holds true for τj as a function
of w.
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We now construct more explicit formulas for ŵ and w. Let

τ̃ j (γ j ) = (γ1, γ2, . . . , γj , τ̃j+1(γ j ), τ̃j+2(γ j ), . . . , τ̃d (γ j ))

be the minimizer of (K(γ ) − γ Tt∗) when the first j variables are fixed. The function τ̃k(γ j )

above is the minimizer for variable k when the first j variables are fixed, for k > j .
Using the above notation, the definitions of ŵ and w can be rewritten as

−1

2
ŵ2

j = K(τ̃ j−1(0j−1)) − τ̃ j−1(0j−1)
Tt∗ − (

K(τ̃ j (0j )) − τ̃ j (0j )
Tt∗

)
, (2.3a)

−1

2
(wj − ŵj )

2 = K(τ̃ j−1(τ j−1)) − τ̃ j−1(τ j−1)
Tt∗ − (

K(τ̃ j (τ j )) − τ̃ j (τ j )
Tt∗

)
, (2.3b)

where τ̃ j−1(·) is set to τ̂ when j = 1 for succinctness of expression.
By choosing a sign to make ŵ and w increasing functions of τ̂ and τ , we can further specify

them as follows:

ŵj = sign(τ̃j (0j−1))
(2.4a)

×
√

−2
[
K(τ̃ j−1(0j−1)) − τ̃ j−1(0j−1)Tt∗ − (

K(τ̃ j (0j )) − τ̃ j (0j )Tt∗
)]

,

wj = ŵj + sign
(
τj − τ̃j (τ j−1)

)
(2.4b)

×
√

−2
[
K(τ̃ j−1(τ j−1)) − τ̃ j−1(τ j−1)Tt∗ − (

K(τ̃ j (τ j )) − τ̃ j (τ j )Tt∗
)]

.

The derivation of the [8] approximation provided by [2] requires identification of the simple
pole in the inversion integrand. We need to match zeros in the denominator of the multivari-
ate integrand with functions of the variables in the new parameterization; the points at which
this matching occurs will be denoted by a tilde. The quantities above, such as τ̂ , ŵ, τ̃j (τ j−1)

and functional relationships between τ and w, etcetera, can be solved numerically by Newton–
Raphson methods, or even analytically in some cases. Finally, we define a function w̃j (wj−1)

such that τj (w1,w2, . . . , w̃j (wj−1)) = 0 for j > 1.
It can be verified that the following properties hold:

τ j = 0 if and only if wj = 0; (2.5a)

w̃j (0j−1) = 0 for j > 1; (2.5b)

τj = τ̃j (τ j−1) if and only if wj = ŵj for j > 1; (2.5c)

τ j = τ̂ j if and only if wj = ŵj . (2.5d)

Below, the superscript of a function denotes differentiation with respect to the corresponding
argument of the function. We will employ the same use of superscripts in the subsequent text
of the paper, except that when the superscript is a set, it denotes difference, as defined at the
end of this section. Also, a superscripted “T” denotes the transpose of matrix. We can obtain
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w̌j = w̃j (ŵj−1) and w̌k
j = w̃k

j (ŵj−1), which will be used in later sections. Substituting wj = w̌j ,

τj = 0, τ j−1 = τ̂ j−1 and τ j = (τ̂1, τ̂2, . . . , τ̂j−1,0)T = (τ̂ j−1,0)T into (2.4b), we obtain

w̌j = ŵj + sign(0 − τ̂j )

√
−2

[
K(τ̂ ) − τ̂Tt∗ − (

K(τ̃ j (τ̂ j−1,0)) − (τ̂ j−1,0)Tt∗
)]

. (2.6)

Differentiating (2.3b) with respect to wk and rearranging terms, we obtain

w̌k
j =

j−1∑
l=k

(
Kl(τ̃ j (τ̂ j−1,0)) · dτl

dwk

∣∣∣∣
ŵl

− t∗l
)/

(w̌j − ŵj ) (2.7)

for k < j . The derivatives dτl

dwk
evaluated at the point wl can be obtained by differentiating (2.3b)

with respect to wk once or twice, depending on whether or not wj = ŵj , and solving the resulting
system of equations. In particular, we are interested in

dτj

dwj

∣∣∣∣
wj

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1∑d

l=j Kjl(τ̃ j−1(τ j−1))τ
j
l ([τ̃ j−1(τ j−1)]j )

, if wj = ŵj ,

wj − ŵj

Kj (τ̃ j (τj )) − t∗j
, if wj �= ŵj ,

(2.8)

for j ≤ d0, where [·]j denotes the first j elements, and

d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

=
d∏

j=d0+1

√
1∑d

l=j Kjl(τ̃ d0(τ d0))τ
j
l ([τ̃ d0(τ d0)]j )

, (2.9)

where, for succinctness of expression, we define τ
j
l (·) to be 1 when l = j . For l > j , we obtain

τ
j
l (·) by differentiating both sides of the definition of τ

j
l (·), that is, Kl(·) = t∗l with respect to τj

∀l > j , and solving the system of equations.
Under this transformation of variables from τ to w, the Jacobian is just the product of the

diagonal terms of the Jacobian matrix and (2.1) can be expressed as

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 ρ(τj (wj ))

d∏
j=1

dτj

dwj

dw

= nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

·
d∏

j=1

dτj

dwj

∏d0
j=1 (wj − w̃j (wj−1))∏d0

j=1 ρ(τj (wj ))
dw (2.10)

∼ nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

G(τ )dw,
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where

G(τ ) =
∏d0

j=1 (wj − w̃j (wj−1))∏d0
j=1 ρ(τj (wj ))

d0∏
j=1

dτj

dwj

·
d∏

j=d0+1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

and, to simplify notation, we set w̃j (wj−1) to zero for j = 1. For later convenience, we write
G(τ ) as a function τ instead of w. The relation ∼ in the last step indicates exact equality in the
unconditional case, where d = d0, but holds with a relative error of O(n−1) in the conditional
case, which we will discuss in Section 4. Hereafter, we use ∼ to denote approximation with a
relative error of O(n−1) of both the left-hand side and the tail probability, and we use ∼̇ (∼ with
a dot above it) in the case where the right-hand side is an approximation with a relative error of
O(n−1/2) of the left-hand side.

The last integral in (2.10) will be evaluated by splitting it into rather simple terms involving
poles and more complicated terms involving analytic functions. We can decompose (2.10) into
2d0 terms. Let U = {1,2, . . . , d0} be the index set of integers from 1 to d0. For set s ⊆ U , define
Gs(τ ) = G(τ s), where the vector τ s is defined by

τ s
j =

{
τj , if j ∈ s,
0, if j /∈ s.

For example, if d0 = 3, then G{1,2}(τ ) = G(τ1, τ2,0). Now, for t ⊆ U , define Ht =∑
s⊆t (−1)|t−s|Gs(τ ), where | · | denotes the cardinality, that is, the number of elements of a set.

For example, H {1,2} = G{1,2}(τ ) − G{1}(τ ) − G{2}(τ ) + G∅(τ ) = G(τ1, τ2,0) − G(τ1,0,0) −
G(0, τ2,0) + G(0,0,0), where ∅ denotes the empty set. We conclude that G(τ ) = ∑

t⊆U Ht .
This decomposition holds by induction on d0. Noting that ∀s ⊆ U and a ∈ s, Hs(τ {a}) = 0, we
see that

Ht(τ )∏
j∈t (wj − w̃j (wj−1))

is analytic. In other words, |t | product terms in the denominator of the integrand in (2.10) are
‘absorbed’ by Ht(τ ), leaving the remaining (d0 − |t |) product terms unabsorbed. As explained
in [5], each term that is absorbed contributes a relative error of O(n−1/2). Therefore, if we let I t

be the integral corresponding to Ht , then we obtain

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

G(τ )dw ∼
∑

|t |≤1,t⊆U

I t . (2.11)

In the next two sections, we compute the I t , |t | ≤ 1, t ⊆ U , for distribution and conditional
distribution, respectively.1

1More detailed derivations and formulae for bivariate distributions can be found at http://stat.rutgers.edu/resources/
technical_reports10.html.

http://stat.rutgers.edu/resources/technical_reports10.html
http://stat.rutgers.edu/resources/technical_reports10.html
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3. Multivariate distribution approximation

In the unconditional continuous case, we have d = d0 and

G(τ ) =
∏d0

j=1 (wj − w̃j (wj−1))∏d0
j=1 τj (wj )

d0∏
j=1

dτj

dwj

.

Therefore,

I∅ = 1

(2πi)d0

∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTw])∏d0

j=1 (wj − w̃j (wj−1))
G(0)dw

(3.1)

= 1

(2πi)d0

∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTw])∏d0

j=1 (wj − w̃j (wj−1))
dw

since G(0) = 0 by properties (2.5a) and (2.5b).
Let uj = wj − w̃j (wj−1), û be such that w(û) = û and g(u) = 1

2 w(u)Tw(u) − ŵTw(u). By
changing variables, with Jacobian equal to 1, we have

I∅ = 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[g(u)])∏d0

j=1 uj

du. (3.2)

The integration in (3.2) cannot be integrated out exactly in general. However, using the same
argument as in [5], we approximate it by expanding g(u) about û up to the third degree; after
termwise integration, the resulting approximation to I∅ has relative error O(n−1). So, I∅ can
be approximated by

I∅ = 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[ĝ + (1/2)ĝjk(uj − ûj )(uk − ûk)])∏d0

j=1 uj

×
(

1 + n

6
ĝjkl(uj − ûj )(uk − ûk)(ul − ûl)

)
du

= 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[ĝ + (1/2)ĝjk(uj − ûj )(uk − ûk)])∏d0

j=1 uj

du (3.3)

+ 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[ĝ + (1/2)ĝjk(uj − ûj )(uk − ûk)])∏d0

j=1 uj

× n

6
ĝjkl(uj − ûj )(uk − ûk)(ul − ûl)du,

where, for brevity, we write ĝr for gr(û). All derivatives of g evaluated at û can be computed and,
in particular, ĝj = 0. Here, we use tensor notation, that is, the use of superscripts and subscripts
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to denote summation over all possible combinations, by which we are able to omit the summation
symbol. The computation of the second integral is addressed in [5]. The details involve partial
derivatives of some functions up to the second or third degree; these are algebraically complicated
and therefore omitted here. For the first integral, rearrange the terms in the numerator in the order
of the degree of u. The first integral is quadratic and can be computed as

1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[ĝ + (1/2)ĝjk(uj − ûj )(uk − ûk)])∏d0

j=1 uj

du

= 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[(ĝ + (1/2)ĝjkûj ûk) − ĝjkûkuj + (1/2)ĝjkujuk])∏d0

j=1 uj

du (3.4)

= C∅�̄(ȳ∅,�∅),

where C∅ = exp(n[ĝ+ 1
2 ĝjkûj ûk)]), ȳ∅ is a vector whose j th element is

√
nĝjkûk/

√
ĝjj and �̄

is the tail probability of a standard multivariate normal distribution with mean 0 and covariance
matrix �∅ with elements ĝjk/

√
ĝjj ĝkk . The last of the above equations can be obtained by

changing variables to v, where vj = uj/
√

ĝjj .
For I t , t = r , we have

I {r} = 1

(2πi)d0

∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTw])∏

j �=r (wj − w̃(wj−1))
· G{r}(τ ) − G(0)

wr − w̃(wr−1)
dw. (3.5)

We perform a similar change of variable from w to u as in computing I∅, except that ur = wr .
We then have

I {r} = 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[g{r}(u)])∏

j �=r uj

h{r}(u)dw

(3.6)

∼̇ 1

(2πi)d0

∫ û+i∞

û−i∞
exp(n[c{r}

00 + (1/2)(u − û)Tcc{r}(u − û) − u{r}(u − û))])∏
j �=r uj

h
{r}
u (u)dw,

where g{r}(u) is the exponent as a function of u after the change of variable, h
{r}
u (u) =

G{r}(τ )−G(0)
wr−w̃(wr−1)

. c
{r}
00 = g{r}(û), cc{r} is the matrix with elements cc

{r}
ij = [g{r}]ij (û) and c{r} is the

vector such that c
{r}
i = [g{r}]i (û). We can perform a further change of variables vj = √

n

√
c
{r}
jj uj

so that

I {r} ∼̇ C{r}
√

n

√
c
{r}
rr

∫ v̂+i∞

v̂−i∞
exp((1/2)vT�

{r}
v v − ȳ{r}

v v)

(2πi)d0
∏

j �=r vj

h
{r}
v (v)dv, (3.7)

where C{r} = exp(n[c{r}
00 + 1

2 ûTcc{r}û]), �
{r}
v is the covariance matrix with elements [�{r}

v ]ij =
c
{r}
ij /

√
c
{r}
ii c

{r}
jj and [ȳv]{r}j =

√
n[cc{r}û]j√

c
{r}
jj

. The function h
{r}
v (v) is analytic, but h

{r}
v (v)∏
j �=r vj

is not

analytic, and we cannot use Watson’s lemma directly. We use the following technique. Let
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tr = [�{r}
v v]r and tj =

√
1 − ([�{r}

v ]rj )2vj for j �= r . Perform a change of variables to obtain

I {r} ∼̇ C{r}
√

n

√
c
{r}
11

∫ t̂+i∞

t̂−i∞
exp(Q{r}(t))

(2πi)d0
∏

j �=r tj
h

{r}
t (t)dt, (3.8)

where Q{r}(t) = 1
2 tT�

{r}
t t − ȳ{r}

t t, here �
{r}
t being the matrix with elements [�{r}

t ]rj = 0 for
j �= r ,

[
�

{r}
t

]
jk

= [�{r}
v ]jk − [�{r}

v ]rj [�{r}
v ]rk√

[�{r}
v ]rj [�{r}

v ]rk
for j, k �= r,

ȳ{r}
t being the vector with elements

[
ȳ{r}

t

]
r
= [

ȳ{r}
v

]
r

and
[
ȳ{r}

t

]
j

= [ȳ{r}
v ]j − [�{r}

v ]rj [ȳ{r}
v ]r√

1 − ([�{r}
v ]rj )2

for j �= r.

For a set s, let ts denote the vector such that [ts]k = 0 if k /∈ s and [ts]k = tk if k ∈ s. We have

I {r} ∼̇ C{r}
√

n

√
c
{r}
11

∫ t̂+i∞

t̂−i∞
exp(Q{r}(t))

(2πi)d0
∏

k �=r tk
h

{r}
t

(
t{r}

)
dt. (3.9)

The argument that the above holds follows similar reasoning as in (2.11), except that we only
need to consider the main term here. Now, because tr can be separated after the change of variable
and by Watson’s lemma, we have

I {r} ∼̇ C{r}
√

n

√
c
{r}
11

∫ t̂{r}+i∞

t̂{r}−i∞
exp(Q{r}(t) − ((1/2)t2

r − [ȳ{r}
t ]r tr )

(2πi)d0−1
∏

k �=r tk

×
∫ tr+i∞

tr−i∞
exp((1/2)t2

r − [ȳ{r}
t ]r tr )

2πi
h

{r}
t

(
t{r}

)
dt (3.10)

∼̇ C{r}h{r}
t (t̂r )√

nc
{r}
11

φ
([

ȳ{r}
t

]
r

)
�̄

(
ȳ{r},�{r}),

where ȳ{r} is ȳ{r}
t with the r th element removed and �{r} is �

{r}
t with the r th row and column

removed.
Multivariate tail probability approximations for unit lattice variables follow along the same

lines, except that

G(τ ) =
∏d0

j=1 (wj − w̃j (wj−1))∏d0
j=1 2 sinh(τj /2)(wj )

d0∏
j=1

dτj

dwj

.
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Since limx→0 (2 sinh(x/2)/x) = 1, any analytic property in the continuous case still holds in the
lattice case.

4. Multivariate conditional distribution approximation

Consider a multivariate canonical exponential family. In practice, we are often only interested in
a subset of the parameters in a given statistical model, with the other model parameters usually
treated as nuisance parameters. The distribution of the sufficient statistics associated with the
parameters of interest, conditional on the sufficient statistics associated with the nuisance para-
meters, contains the parameters of interest and not the nuisance parameters. We can therefore
use the conditional distributions instead of the original distribution in the study. For instance, in
testing equality of proportions for a 2 × 2 contingency table, we condition on the row or column
margins. Another example is logistic regression, where inference on some regression parameters
is often performed conditionally on sufficient statistics associated with nuisance parameters.

Hypotheses involving parameters of interest may be tested by computing the tail probabilities
for the conditional distribution P(Td0 ≥ td0 |T−d0 = t−d0). [11] applies double saddlepoint ap-
proximation to the problem in the case where d0 = 1, d > 1 and T is the mean of independent
and identically distributed random vectors. Here, we propose a method that extends the results
to d0 > 1 and d > d0, using the idea from the previous sections.

First, consider T, the mean of independent and identically distributed continuous random vec-
tors. Then

P(Td0 ≥ td0 |T−d0 = t−d0) =
∫ ∞

td0
fT(y1, . . . , yd0, td0+1, . . . , td)dyd0

fT−d0
(t−d0)

,

where fT(·) is the joint density and fT−d0
(·) is the marginal density of T−d0 . Again, we use the

Fourier inversion formula to obtain

P(Td0 ≥ td0 |T−d0 = t−d0) = nd−d0

(2πi)d

∫ c+i∞

c−i∞
exp(n[K(τ ) − τTt])∏d0

j=1 τj

dτ
/
fT−d0

(t−d0), (4.1)

where K(τ ) is the cumulant generating function of the random vector T. The numerator is just a
special case of (2.1).

Approximation (2.10) holds because of the following lemma which will allow us to apply
previous unconditional results by substituting components of ŵ for components of w when the
components correspond to variables in the conditioning event.

Lemma 4.1.

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

·
d∏

j=1

dτj

dwj

∏d0
j=1 (wj − w̃j (wj−1))∏d0

j=1 ρ(τj (wj ))
dw

(4.2)

= nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

G(τ )dw
(
1 + O(n−1)

)
,
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where

G(τ ) =
∏d0

j=1 (wj − w̃j (wj−1))∏d0
j=1 ρ(τj (wj ))

·
d∏

j=1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

.

Proof. By Watson’s lemma, given fixed wd0 , we have

∫ ŵ−d0+iK

ŵ−d0−iK
exp

(
n

[
1

2
wT−d0

w−d0 − ŵT−d0
w−d0

]) d∏
j=d0+1

dτj

dwj

dw−d0

=
∫ ŵ−d0+iK

ŵ−d0−iK
exp

(
n

[
1

2
wT−d0

w−d0 − ŵT−d0
w−d0

]) d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

×
(

1 + E(wd0)

n

)
dw−d0,

for some analytic function E(wd0) of O(1). Therefore,

LHS = nd−d0

(2πi)d

∫ ŵd0 +iK

ŵd0−iK

exp(n[(1/2)wT
d0

wd0 − ŵT
d0

wd0])∏d0
j=1 ρ(τj (wj ))

d0∏
j=1

dτj

dwj

×
∫ ŵ−d0+iK

ŵ−d0−iK
exp

(
n

[
1

2
wT−d0

w−d0 − ŵT−d0
w−d0

]) d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

×
(

1 + E(wd0)

n

)
dw−d0 dwd0

= A

(
1 + 1

n

B

A

)
,

where

A = nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

G(τ )dw

and

B = nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[(1/2)wTw − ŵTw])∏d0
j=1 (wj − w̃j (wj−1))

G(τ )E(wd0)dw.

If A and B are expanded according to [5], each integral is approximated by a tilting term times a
normal multivariate tail probability, up to relative order O(1/

√
n). The expression for B is also

multiplied by the leading term of E. Hence, A/B = O(1) and, therefore, the left-hand side equals
A(1 + O(n−1)). �
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To deal with the denominator in (4.1), [7] demonstrates that

(
n

2πi

)d−d0 ∫ ŵ−d0 +i∞

ŵ−d0−i∞
exp

(
n

[
1

2
wT−d0

w−d0 − ŵT−d0
w−d0

]) d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(0d0 ,ŵ−d0 )

dw−d0

(4.3)
= fT−d0

(t−d0)
(
1 + O(n−1)

)
.

This development is similar to that of [4], page 147.
With continuous variables, we can decompose A according to (2.11) with

G(τ ) =
d0∏

j=1

(
wj − w̃j (wj−1)

τj

dτj

dwj

) d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

. (4.4)

Denote the left-hand side of (4.3) by J−d0 . Note that G(0) = ∏d
j=d0+1

dτj

dwj
|(0d0 ,ŵ−d0 ). The main

term is then

I∅ =
∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTŵ])

(2πi)d0
∏d0

j=1(wj − w̃j (wj−1))

nd−d0

(2πi)d−d0

d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(0d0 ,ŵ−d0 )

dw

=
∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTŵ])

(2πi)d0
∏d0

j=1(wj − w̃j (wj−1))
dwd0 · J−d0 (4.5)

∼
∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTŵ])

(2πi)d0
∏d0

j=1(wj − w̃j (wj−1))
dwd0 · fT−d0

(t−d0),

where ∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTŵ])

(2πi)d0
∏d0

j=1(wj − w̃j (wj−1))
dwd0 (4.6)

can be obtained by formula (3.4).
Using the same technique as in (3.5)–(3.10), we have

I {r} ∼̇ nd−d0

(2πd)d

∫ ŵ+i∞

ŵ−i∞
exp(n[(1/2)wTw − ŵTŵ])∏

j �=r (wj − w̃(wj−1))

G{r}(τ ) − G(0)

wr − w̃(wr−1)
dw

(4.7)

∼̇ C{r}h{r}
t (t̂r )√

nc
{r}
11

∏d
j=d0+1 dτj /dwj |(0d0 ,ŵ−d0 )

φ
([

ȳ{r}
t

]
r

)
�̄

(
ȳ{r},�{r}) · J−d0

at O(n−1). The computation involves
∏d

j=d0+1
dτj

dwj
|(w1,w2,ŵ−2), which can be obtained us-

ing (2.9).
In summary, in the conditional case, P(Td0 > td0 |T−d0 > t−d0) ∼ ∑

|s|≤1,s⊆U I s/f−d0(t−d0),
where U = {1,2, . . . , d0}.
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Similarly to the unconditional case, in the case of unit lattice variables, we have

G(τ ) =
d0∏

j=1

(
wj − w̃j (wj−1)

2 sinh(τj /2)

dτj

dwj

) d∏
j=d0+1

dτj

dwj

∣∣∣∣∣
(wd0 ,ŵ−d0 )

. (4.8)

Other analytic properties and formulae still hold.

5. Five examples

We present five examples here. The fourth example is based on real data.
In the first example, we consider the bivariate random vector (Y1, Y2), with Y1 = X1 + X2

and Y2 = X2 + X3, where X1, X2 and X3 are independent and identically distributed random
variables following the exponential distribution, which has a density function f (x) = e−x for
x > 0. The results for approximating P(Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2) when n = 5 are listed in Table 1,
where “P. approx.” stands for the saddlepoint approximation proposed in this paper, “K. approx.”
stands for the saddlepoint approximation presented in [5] and “N. approx.” stands for bivariate
normal approximation. The “exact” column shows the exact tail probability values computed
in [15]. The “relative error” column shows the relative error of “P. approx.” The results for the
cases (ȳ1, ȳ2) = (2.5,3.0) and (ȳ1, ȳ2) = (3.0,4.0) are the special cases where ŵ1 = 0, which we
have mentioned, but which are omitted here because of the removable singularity. The normal
approximation deteriorates at the far tail, while both saddlepoint approximations show much
better and more stable relative errors. In almost all cases, the new method shows smaller relative
errors than those in [5].

In the second example, we consider the bivariate random vector (Y1, Y2), with Y1 = X1 + X2
and Y2 = X2 + X3, where X1, X2 and X3 are independent and identically distributed random
variables following the binomial distribution, which has a mass function

(
N
x

)
px(1 − p)N−x for

0 ≤ x ≤ N . The results for approximating P(Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2) when N = 10, p = 0.2 and n = 8
are displayed in Table 2. We can again see from the table that the normal approximation (with
adjustment for continuity) deteriorates at the far tail, while the saddlepoint approximations show

Table 1. Results of saddlepoint approximation compared with other approximations in the
continuous case

ȳ1 ȳ2 P. approx. K. approx. N. approx. Exact Relative error

2.5 2.5 9.12 × 10−2 8.98 × 10−2 9.65 × 10−2 9.22 × 10−2 −1.08%
2.5 3.5 1.41 × 10−2 1.41 × 10−2 6.54 × 10−3 1.41 × 10−2 0.00%
2.5 4.0 3.91 × 10−3 3.99 × 10−3 6.69 × 10−3 3.93 × 10−3 −0.51%
3.0 3.0 2.20 × 10−2 2.14 × 10−2 1.46 × 10−2 2.22 × 10−2 −0.90%
3.0 3.5 8.97 × 10−3 8.73 × 10−3 3.52 × 10−3 8.96 × 10−3 0.11%
3.5 3.5 4.40 × 10−3 4.25 × 10−3 1.09 × 10−3 4.40 × 10−3 0.00%
3.5 4.0 1.67 × 10−3 1.61 × 10−3 1.78 × 10−4 1.66 × 10−3 0.60%
4.0 4.0 7.69 × 10−4 7.34 × 10−4 3.88 × 10−5 7.58 × 10−4 1.45%
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Table 2. Results of saddlepoint approximation compared with other approximations in the
unit lattice case

ȳ1 ȳ2 P. approx. K. approx. N. approx. Exact Relative error

4.5 4.5 1.15 × 10−1 1.16 × 10−1 1.16 × 10−1 1.15 × 10−1 0.00%
4.5 5.0 4.43 × 10−2 4.51 × 10−2 4.28 × 10−2 4.44 × 10−2 −0.23%
4.5 5.5 1.04 × 10−2 1.05 × 10−2 8.73 × 10−3 1.04 × 10−2 0.00%
4.5 6.0 1.46 × 10−3 1.45 × 10−3 9.50 × 10−4 1.46 × 10−3 0.00%
5.0 5.0 2.07 × 10−2 2.12 × 10−2 1.92 × 10−2 2.08 × 10−2 −0.48%
5.0 5.5 5.89 × 10−3 6.04 × 10−3 4.85 × 10−3 5.91 × 10−3 −0.34%
5.0 6.0 9.91 × 10−4 1.01 × 10−3 6.40 × 10−4 9.94 × 10−4 −0.30%
5.5 5.5 2.11 × 10−3 2.16 × 10−3 1.57 × 10−3 2.11 × 10−3 0.00%
5.5 6.0 4.45 × 10−4 4.56 × 10−4 2.69 × 10−4 4.47 × 10−4 −0.45%
6.0 6.0 1.21 × 10−4 1.24 × 10−4 6.14 × 10−5 1.21 × 10−4 0.00%

much better and more stable relative errors. In most cases, the new approximation shows better
accuracy than that of [5].

The third example involves conditional distribution functions. Let Xi , i = 1,2,3, be in-
dependent and identically distributed random variables following the exponential distribution,
as in the first example. Consider the random vector (Y1, Y2, Y3) with Y1 = X2, Y2 = X3 and
Y3 = X1 + X2 + X3. The results for approximating P(Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2|Ȳ3 = ȳ3) when n = 10
are shown below in Table 3. The case where ȳ1 = 2.0, ȳ2 = 2.5 and ȳ3 = 7.0 is the special case
where both τ̃2(0) = 0 and ŵ2 = 0, as discussed in Section 3, and is omitted here. The cases
where ȳ1 = 2.0, ȳ2 = 3.0 and ȳ3 = 7.0, and ȳ1 = 2.0, ȳ2 = 2.5 and ȳ3 = 6.5, are the cases where
ŵ1 = 0; these are also omitted. The exact values are computed in [15].

The fourth example was used in [5] and [6], which refers to data presented in [12]. The data
consist of 63 case-control pairs of women with endometrial cancer. The relationship between

Table 3. Results of saddlepoint approximation compared with bivariate normal
approximation in the conditional continuous case

ȳ1 ȳ2 ȳ3 P. approx. N. approx. Exact Relative error

2.0 2.0 7.0 4.42 × 10−1 8.04 × 10−2 4.38 × 10−1 0.91%
2.5 2.5 7.0 6.25 × 10−2 2.04 × 10−2 6.32 × 10−2 −1.11%
2.5 3.0 7.0 8.00 × 10−3 4.14 × 10−5 8.54 × 10−3 −6.32%
3.0 3.0 7.0 3.02 × 10−4 1.00 × 10−8 3.46 × 10−4 −12.7%
2.0 2.0 6.5 2.93 × 10−1 1.16 × 10−1 2.91 × 10−1 0.69%
2.0 3.0 6.5 1.09 × 10−2 6.48 × 10−5 1.14 × 10−2 −4.39%
2.5 2.5 6.5 1.49 × 10−2 6.96 × 10−4 1.56 × 10−2 −4.49%
2.5 3.0 6.5 5.25 × 10−4 1.57 × 10−7 6.09 × 10−4 −13.8%
3.0 3.0 6.5 9.63 × 10−7 3.67 × 10−12 1.10 × 10−6 12.5%
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Table 4. Differences between cases and controls for endometrial cancer data

Gall bladder disease −1 −1 −1 0 0 0 0 0
Hypertension −1 0 1 −1 −1 0 0 1
Non-estrogen drug use 0 −1 0 −1 0 0 1 0
Number of pairs 1 1 1 2 6 14 10 12

Gall bladder disease 0 1 1 1 1 1 1 1
Hypertension 1 −1 −1 0 0 0 1 1
Non-estrogen drug use 1 0 1 −1 0 1 0 1
Number of pairs 4 3 1 1 4 1 1 1

the occurrence of endometrial cancer and explanatory variables including gall bladder disease,
hypertension and non-estrogen drug use is modeled with logistic regression. [12] noted that the
likelihood for these data is equivalent to that of a logistic regression in which the units of obser-
vation are the matched pairs, the explanatory variables are those of the case member minus those
of the control member and the response variable is 1.

The number of pairs with each configuration of differences of the three variables are shown in
Table 4. Let zj , j = 1,2, . . . ,63 denote the differences of covariates between cases and controls,
as given in Table 4. Consider the situation under the null hypothesis, where the linear coefficients
are zero. Let Zj , j = 1,2, . . . ,63, be the random vectors that take value zj with a probability of
1
2 and 0 with a probability of 1

2 . Let Z be matrix whose rows are Zj and where T = Z′1, where 1
is a column vector with dimension 63. We then have K(τ ) = ∑

j mj [log(
1+exp(zj τ )

2 )]. [6] tested
the association of hypertension or non-estrogen drug use with an increase in endometrial cancer,
conditional on the sufficient statistic value associated with gall bladder disease. The test required
evaluating the quantity P(T2 ≥ 10 or T3 ≥ 13|T1 = 9) for T = (T1, T2, T3). By Boole’s law, this
probability can be computed using

P(T2 ≥ 10|T1 = 9) + P(T3 ≥ 13|T1 = 9) − P(T2 ≥ 10, T3 ≥ 13|T1 = 9).

The results for approximating P(T2 ≥ 10, T3 ≥ 13|T1 = 9) compared to those listed in [6] are
shown in Table 5, where “N. app.” stands for normal approximation, “E. app.” stands for Edge-
worth approximation, “K. app.” stands for the approximation presented in [6] and “P. app.” is the

Table 5. Endometrial cancer results for some (t2, t3) instances

Method (10,13) (9,12) (8,11) (7,10) (6,9)

N. app. 3.50 × 10−4 1.78 × 10−3 7.26 × 10−3 2.39 × 10−2 6.39 × 10−2

E. app. 3.31 × 10−4 1.72 × 10−3 7.13 × 10−3 2.37 × 10−2 6.37 × 10−2

K. app. 1.51 × 10−4 1.07 × 10−3 5.37 × 10−3 2.01 × 10−2 5.84 × 10−2

P. app. 1.62 × 10−4 1.13 × 10−3 5.60 × 10−3 2.08 × 10−2 6.00 × 10−2

Exact 1.52 × 10−4 1.09 × 10−3 5.48 × 10−3 2.05 × 10−2 5.95 × 10−2
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Table 6. Results of saddlepoint approximation compared with normal approximations for a mul-
tivariate gamma distribution

y1 y2 y3 P. approx. N. approx. Simulation Std. err. Relative error

5.5 5.5 5.5 4.93 × 10−2 9.64 × 10−2 5.58 × 10−2 1.42 × 10−3 −11.6%
5.5 5.5 6.5 3.65 × 10−2 7.17 × 10−2 4.16 × 10−2 1.24 × 10−3 −12.3%
5.5 6.5 6.5 2.70 × 10−2 5.34 × 10−2 3.26 × 10−2 1.10 × 10−4 −17.2%
6.5 6.5 6.5 1.98 × 10−2 3.99 × 10−2 2.45 × 10−2 9.58 × 10−4 −19.2%
6.5 6.5 7.5 1.45 × 10−2 2.78 × 10−2 1.83 × 10−2 8.31 × 10−4 −20.8%
6.5 7.5 7.5 1.05 × 10−2 1.94 × 10−2 1.34 × 10−2 7.11 × 10−4 −21.6%
7.5 7.5 7.5 0.76 × 10−2 1.36 × 10−3 1.04 × 10−3 1.89 × 10−4 −26.9%

proposed approximation. Approximation results of P(T2 ≥ t2, T3 ≥ t3|T1 = 9) for other values
of t2 and t3 are also listed in the table. We can see that the proposed method achieves better
results than other methods, except for the method of [6], which is far more complicated compu-
tationally.

In the fifth example, we consider a multivariate gamma distribution, which is the diagonal of
a Wishart distribution, formed from a 3-variate normal distribution, with covariance matrix

V =
( 1 0.25 0.25

0.25 1 0.25
0.25 0.25 1

)

and n = 5. The results are listed in Table 6, where “P. approx.” stands for the saddlepoint ap-
proximation proposed in this paper and “N. approx.” stands for bivariate normal approximation.
The “simulation” and “std. err.” column shows the simulation results and 5% standard error. The
“relative error” column shows the relative error of “P. approx.” compared with the simulation
results. We can see that the proposed approximation performs better than the normal approxima-
tion.
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