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Using Bernstein polynomial approximations, we prove the central limit theorem for linear spectral statistics
of sample covariance matrices, indexed by a set of functions with continuous fourth order derivatives on an
open interval including [(1 — ﬁ)z, 1+ ﬁ)z], the support of the Maréenko—Pastur law. We also derive
the explicit expressions for asymptotic mean and covariance functions.
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1. Introduction and main result

Let X;, = (xij)pxn, 1 <i < p,1 < j <n, be an observation matrix and x; = (xy, .. .,)cpj)t be
the jth column of X,,. The sample covariance matrix is then

1
n—1

D @ =D -0,

J=1

Sy =

where ¥ =n~! Z?:l xj and A* is the complex conjugate transpose of A. The sample covari-
ance matrix plays an important role in multivariate analysis since it is an unbiased estimator of
the population covariance matrix and, more importantly, many statistics in multivariate statistical
analysis (e.g., principle component analysis, factor analysis and multivariate regression analysis)
can be expressed as functionals of the empirical spectral distributions of sample covariance ma-
trices. The empirical spectral distribution (ESD) of a symmetric (or Hermitian, in the complex
case) p x p matrix A is defined as

1
FA(x) = = x cardinal number of {j: Aj <x},

where A1, ..., A, are the eigenvalues of A.
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Assuming that the magnitude of the dimension p is proportional to the sample size n, we will
study a simplified version of sample covariance matrices,

1 & 1
Bn = ; X;x]x;k = ;XnX;kl,
j:

since FP» and F5 have the same liming properties, according to Theorem 11.43 in [8]. We refer
to [3] for a review of this field.

The first success in finding the limiting spectral distribution (LSD) of sample covariance ma-
trices is due to to Marcenko and Pastur [13]. Subsequent work was done in [11,12,16,17] and
[18], where it was proven that under suitable moment conditions on x;;, with probability 1, the
ESD FB» converges to the Mar¢enko—Pastur (MP) law F. ) with density function

F;(x)=;\/(x—a)(b—x), x €[a, b],

2nxy

with point mass 1 — 1/y at the origin if y > 1, where a = (1 — ﬁ)z and b= (1 + ﬁ)z; the
constant y is the dimension-to-sample-size ratio index. The commonly used method to study the
convergence of FB» is the Stieltjes transform, which is defined for any distribution function F
by

sF(z)é/LdF(x), Iz #0.
X —Z

It is easy to see that s (Z) = sF(z), where z denotes the conjugate of the complex number z. As
is known, the Stieltjes transform of the MP law s(z) e Fy is the unique solution to the equation

1
= (1.1)
1—y—z—yzs
foreachz e Ct £ {z € C: 3z >0} inthe set {s € C: —(1 — y)z~! + ys € CT}. Explicitly,
1/1 1 1-—
s(z)z——(——— zz—(1+y)z+(l—y)2——y). (1.2)
2\y 2 vz

Here, and in the sequel, ,/z denotes the square root of the complex number z with positive
imaginary part.

Using a Berry—Esseen-type inequality established in terms of Stieltjes transforms, Bai [2] was
able to show that the convergence rate of EF 5" to Fy, is O(n=3/*8) or O(n—14), according to
whether y, is close to 1 or not. In [4], Bai, Miao and Tsay improved these rates in the case
of the convergence in probability. Later, Bai, Miao and Yao [5] proved that F 53 converges to
Fy, at a rate of O(n~2/3) in probability and O(n~%/°*") a.s. when y, = p/n is away from 1;
when y, = p/n is close to 1, both rates are O(n~'/3). The exact convergence rate still remains
unknown for the ESD of sample covariance matrices.

Instead of studying the convergence rate directly, Bai and Silverstein [7] considered the lim-
iting distribution of the linear spectral statistics (LSS) of the general form of sample covariance
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matrices, indexed by a set of functions analytic on an open region covering the support of the
LSD. More precisely, let D denote any region including [a, b] and A(D) be the set of analytic
functions on D. Write G, (x) = p[F 5 (x) — F. y, (x)]. Bai and Silverstein proved the central limit
theorem (CLT) for the LSS,

Gu(f) = / f(x)dG,(x),  feAD).

Their result is very useful for testing large-dimensional hypotheses. However, the analytic as-
sumption on f seems inflexible in practical applications because in many cases of application,
the kernel functions f can only be defined on the real line, instead of on the complex plane.
On the other hand, it is proved in [8] that the CLT of LSS does not hold for indicator functions.
Therefore, it is natural to ask what the weakest continuity condition is that should be imposed on
the kernel functions so that the CLT of the LSS holds. For the CLT for other types of matrices,
one can refer to [1].
In this paper, we consider the CLT for

Gu(f) 2 / FEAGL),  fectan,

where U/ denotes any open interval including [a, b] and C*@f) denotes the set of functions
f :U — C which have continuous fourth order derivatives.

Denote by s(z) the Stieltjes transform of Ey (x) = (1 = »)0,00) (x) + yFy(x) and set k(z) =
5(2)/(s(z) + 1), where, for x € R, s(x) =lim,—, y1i0 s(2).

Our main result is as follows.

Theorem 1.1. Assume that:

(a) foreachn, X, = (xij) pxn, where x;; are independent identically distributed (i.i.d.) for all
i, j with[Ex;; =0, E|X11|2 =1, Elxq; |8 < 00 and if x;j are complex variables, Exlz] =0;
®) yo=p/n—ye(0,00) and y # 1.

The LSS G, = {G,(f): f € C*(U)} then converges weakly in finite dimensions to a Gaussian
process G ={G(f): f € C*U)} with mean function

K b, Ky ° o YK (x)
EG(f):ﬁ/a f/(x) arg(1 —yk2(x))dx—f/a f(x)c<m> dr  (1.3)
and covariance function
c(f, &) £EUG(f) —EG(NHHG () —EG(g)}]
kil ot / s(x1) —s(x2)
=50 /a /a f (g (x2)In SO0 = s(r2) dxy dxz (1.4)

_ k)

b b
2112/ / Fe0)g () Rk (x )k (x2) — k(x1)k(x2)]dxy dxa, (1.5)
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where the parameter k| = |I['3)c121|2 takes the value 1 if x;; are real, 0 otherwise, and Kk, =
Elxi1]* — x5 — 2.

Remark 1.2. In the definition of G,(f), 6 = f f(x)dF(x) can be regarded as a population
parameter. The linear spectral statistic 6= [ f(x)dF,(x) is then an estimator of 6. We remind
the reader that the center 6 = f f(x)dF(x), rather than E f f(x)dF,(x), has its strong statistical

meaning in the application of Theorem 1.1. Using the limiting distribution of G, (f) = n—0),
one may perform a statistical test of the ideal hypothesis. However, in this test, one cannot apply
the limiting distribution of n(6 — £6), which was studied in [14].

The strategy of the proof is to use Bernstein polynomials to approximate functions in C*(1).
This will be done in Section 2. The problem is then reduced to the analytic case. The truncation
and renormalization steps are in Section 3. The convergence of the empirical processes is proved
in Section 4. We derive the mean function of the limiting process in Section 5.

2. Bernstein polynomial approximations

It is well known that if f (y) is a continuous function on the interval [0, 1], then the Bernstein
polynomials

. “ e
fm<y)=];<’,’j>yk(1—y) kf<n—1>

converge to f (y) uniformly on [0, 1] as m — oo.
Suppose that f(y) € C*[0, 1]. A Taylor expansion gives

AN k - 1k 2
f(—)=f(y)+<——y>f(y)+—<——y> V6
m m 2\m
1k . 1k 4
(£ 3 2(E @
3!<m y) f (y)+4!<m y) JE,

where &, is a number between k/m and y. Hence,

. . 1—y)f" 1
fm(y)—f(y)=w+o<—2). 2.1

2m m

+

For the function f € C*U), there exist 0 < a; < a < b < b, such that [a), b] C U. If we let
€ € (0, 1/2) and perform a linear transformation y = Lx + ¢, where L =~(1 —2¢€)/(by — a) and
c=((a+b)e—a)/(by—a), theny € [, 1 — €] if x € [ay, by]. Define f(y) = f((y —c)/L) =
f(x),yele,1 —e€] and

. “ [k
fn @& fu) =) (’Z) Y- y)'”"f(Z)

k=0
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From (2.1), we have

) = £ = fun ) — F) = W +o(m )

Since ﬁ(y) L2y(1—-y) f ”(y) has a second order derivative, we can once again use Bernstein
polynomial approximation to get

_ . m Ik _ 1
hn () —h() =) (",:) Y- y)’”"h<z> —h(y) = O(Z)'
k=0

So, with A, (x) = b (y),

1
FOO = funlx) hm<x)+o( )

Therefore, G, (f) can be split into three parts:
Gu(f) = P/ fOLFB — Fy, 1(dx)
= p/fm(X)[FB” — Fy,1(dx) — %/hm(X)[FB” — Fy,1(dx)

p / <f(x) — fu ) + ﬁhm(x)>[FB" — Fy,1(dx)
= A1+ Ay + As.
For A3, under the conditions in Theorem 1.1, by Lemma A.1 in the Appendix,
1FP — Fy, |l = 0p(n ™),

where a = O, (b) means that lim, _, o lim;, .00 P(la/b| > x) =0
Taking m? = [n3/3+€0] for some € > 0 and using integration by parts, we have that

1 /
Az = —P/<f(x) = fm(xX) + %hm(x)) (Fu(x) = F(x))dx
=0,(n")

since (f(x) — fin(x) + ﬁhm(x))’ = O(m~2). From now on, we choose €y = 1/20, so m =
[Vll3/40].
Note that f;,(x) and h,, (x) are both analytic. Based on Conditions 4.1 and 4.2 in Section 4

and a martingale CLT ([9], Theorem 35.12), replacing f;, by 4,,, we obtain
O(A)

2=

=0,(1).
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It suffices to consider Ay = G, (f;,). Clearly, the two polynomials f, (x) and fm (y), defined
only on the real line, can be extended to [aj, by] X [, ] and [€, 1 —€] x [— L&, L&], respectively.

Since f € C*0, 1], there exists a constant M such that |f(y)| < M Vy € [e,1 — €]. Noting
that for (u,v) € [e, 1 — €] x [—LE, L],

lu+iv] + |1 — (u +iv)| = V2 +v2 + V(1 —u)? + v2

calis Zlra-wfie U Jers 2
u — —u _— —,
- 2u? 2(1—u)? |~ €
we have, fory=Lx +c=u +iv,
~ " m k k= k Uz "
)] = Z(k)y (1= y)" f(—) 5M<1+—> :
= m €

If we take |&| < L/+/m, then | fyu ()| < M (1 + L2/(me))" — Mel*/¢ as m — co. Therefore,
fin () is bounded when y € [e, 1 — €] x [—L//m, L//m]. In other words, f,(x) is bounded
when x € [a, by] x [—1/4/m, 1//m].

Let v =1//m =n"13/80 and y,, be the contour formed by the boundary of the rectangle
with vertices (a1 & iv) and (b; £ iv). Similarly, one can show that &, (x), f,,(x) and k), (x) are
bounded on y;,.

3. Simplification by truncation and normalization

In this section, we will truncate the variables at a suitable level and renormalize the truncated
variables. As we will see, the truncation and renormalization do not affect the weak limit of the
spectral process.

By condition (a) in Theorem 1.1, for any § > 0,

87 Bl [P 2 ypy — O
which implies the existence of a sequence &, | 0 such that
-8 8
8 "Bl 1= s,y — O

as n — oo. Let )2,']' = xij]l{lxijlfx/ﬁan} and )E,‘j = ()’51‘]' — E)?,-j)/crn, where O'n2 = E|)€,-j — E)?ij|2. We
then have Ex;; = 0 and Onz — 1asn — 0o. We use X » and f(n to denote the analogs of X,, when
the entries x;; are replaced by %;; and %;;, respectively; let én and E‘,, be analogs of B,,, and let
Gn and Gn be analogs of G,. We then have

P(Gn # Gy) < P(By # By) <npP(x11] = /nd,)

3¢-8 8 2 G.D
= pn 78, "Bl Pl > yms,y = 00075).
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From Yin, Bai and Krishnaiah [19], we know that Amax and Amax are a.s. bounded by b =
1+./y )2. Let )»;‘ denote the jth largest eigenvalue of matrix A. Since

-6 _
|0y;2 - 1| = 2E|xll|2ﬂ{\xll|zﬁ§n} = 2(\/Zan) E|x11|8H{\x11|2ﬁ6n} =O(85}’l 3)
and
|Ex11|? < Elxyy |2H{|X11\Zﬁ5n} < O((Sﬁn_3),

we have

‘ / F)dG,(x) — / f(x)dG,(x)

p A -

B, B,

<Ky =l
j=1

<K (X, — X)X, — X)*)" (3.2)

<2(1 -0, H2tr B, + 20, 2 EX,EX*

20—0p)? 5, s 2 2 1
Sm Phivis 420, 2np ER11 P = 0(83n 7).

From the above estimates in (3.1) and (3.2), we obtain
/ F(x)dGp(x) = / fx)dGu(x) +0,(1).

Therefore, we only need to find the limiting distribution of f f(x) dG,(x) with the conditions
that EX;; =0, E|%11)> = 1, E|#11|® < 0o and E)?lzl = o(n~?) for complex variables. For brevity,
in the sequel, we shall suppress the superscript on the variables and still use x;; to denote the
truncated and renormalized variable X;;. Note that in this paper, we use K as a generic positive
constant which is independent of n and which may differ from one line to the next.

4. Convergence of A —EA

If we let B, = n_lX;,“X,,, then F&:(x) = (1 — Y)l0,00) (x) + y, FBr(x). Correspondingly, we
define F y, ) =1 - Y)10,00)(x) + yu Fy, (x). Let s, (z) and s,? (z) be the Stieltjes transforms
of FB» and Fy,, respectively; let s, (z) and 52 (z) be the Stieltjes transforms of F£+ and F ?
respectively. By Cauchy’s theorem, we then have

- 1
L /?g fu@ (z) DLFr FW](dx)dZ___yﬁ Fun @ plsn (@) — s°(2)]dz.
T 2mi J,,
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It is easy to verify that
G (x) = p[FP (x) = Fy, ()] =n[F2(x) — F, (x)].
Hence, we only need to consider y € (0, 1). We shall use the following notation:

rj = (1//n)x;, D(z) = B, — zl,, Dj(z)=D(z) —r;rj,
1 _
Bj(z) = W Bj(2) =
B 1
1+ (/mEuD; (@)

L+ 1/mu D} @)

bu(z)

* y—1 1 -1
Ej(z)zerj (z)rj—;trDj (2),

. Lo
3;(2) =17 D} @)rj — ~wED;(2)

and equalities

D) - D;'(2) = —B;@ D] @rjri D (2), (4.1)
Bi(2) = Bj(2) = —Bj (2B (2)e(2) = —B; ()6 () + Bj (DB (e (), (4.2)
Bj(2) — ba(2) = =B (2)bn(2)8;(2) = —b(2)8;(2) + B ()b (2)83(2).  (4.3)

Note that by (3.4) of Bai and Silverstein [6], the quantities 8;(z), B (z) and b, (z) are bounded
in absolute value by |z|/v.

Denote the o-field generated by ry,...,r; by Fj =0 (ry,...,r}), and let conditional expec-
tations I£; () =IE(-|F;) and Eo(-) = E(-). Using the equality

D72 - D; ' (@) =-;(D; @r;riD; (@), (4.4)

we have the following well-known martingale decomposition:

plsn(2) = Esy ()] = (D' (2) ~ED ™' (2)) =Y "tr(E; D~ (2) —=E; 1D~ (2))
j=1

=Y u(E®; —E;_ (D' ) - D] (2)

j=1

=—> (E;—E; )B;@riD;*@r,
j=1

v o o dlogBi)
= ;(E/ Ej_1) T
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Integrating by parts, we obtain

R R < P , Bj()
—EA| = Z_ni;(E/ _Ej_l)fé/m fm(@) 1o Bi(2)

== Z(E —E;-) @ fr@log(l+¢;(0)B;(2)dz

Ym

Let R;(z) =log(1 +¢;(2)B;(2)) — €;(2)B ;(z) and write

R ) _
—EAp=— ;GE/ —E;j-1) . fn@(ej(@B;(2) + Rj(2)) dz

1 & _
=52 B —Ei) | £,@e@F;@)+ Rj()]dz 4.5)
j=1

Ymh
1 n , _
+o > & - E/—l)/ In(@ej(2)B;(2) + Rj(2)]dz, (4.6)
]:1 mv

where here, and in the sequel, y,,; denotes the union of the two horizontal parts of y,,, and y,,
the union of the two vertical parts.

We first prove (4.6) — 0 in probability. Let A, = {a — €] < AP <b+ ¢} forany 0 < €] <
a—ajand Ayj ={a—e€ < ABri < b+e€}, where B,j = B, —rjr* and 2B denotes all eigenvalues
of matrix B. By the interlacing theorem (see [15], page 328), it follows that A, C A;. Clearly,

A,; and r; are independent. By Yin, Bai and Krishnaiah [19] and Bai and Silverstein [7], when
y € (0,1), forany [ >0,

POB >b+e)=o0m"") and

max —

PO <a—e)=om™).
We have P(Aj) = o(n!) for any / > 0.

By continuity of s(z), for large n, there exist positive constants M; and M,, such that for all
Z € Ymv> Mj < |yus(2)| < My. Letting Cyj = {I,Bj(z)l_l]IAnj > e}, where 0 < € < M;/2 and
C,= ﬂ';:l Cpj, we have

P(C) =P (U ,)<ZP(C;,>—ZP{|ﬂ @', <€)

Jj=1 Jj=1

n
1 _
< ZPH;UDJ '@) = yus (D)|La,, 262} +ZP(A,1,
j=1
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| b I 4
< a ZE‘;UD/ (@) = yus(@)| Ia,, +nP(AS)
j=1

IA

1< _ _
gZ‘Iom U5y 4 nP(AS) <02,
l:

where we have used Lemma A.1. Defining Q,; = A,; N Cy; and Q,, = ﬂ';:l Qyj, it is easy to

show that Q,; is independent of r; and P(Qy,) < P(Af) + P(C;;) — 0 as n — oo. (4.6) now
becomes

n
SE;-Eim) | £@lej @B, + R (@)1lg,, dz +0,(1).
j=1 Vmv
From the Burkholder inequality, Lemma A.3 and the inequalities |n ! tr D (@D ()14, <
1/(a — €1 —a)* and IBj(z)I]Ian < 1/€,, we have

2

Z(Ej ~E;_1) Im@lej (2B (2)]lg,; dz

j=1 Ymv

E

n
< Klyml?)_ sup Elej(2)B; @) Tg,,

j:1 Z€Ymv

n
< Kn"¥0N" sup Ele; ()], < Kn~ 1340,

j:1 Z€Ymv
By Lemma A.3, for z € y,,,, we have
n n
> P(lgj2)B;()lg,; = 1/2) <K Y Ele;(2)B,;(2)|'Ig,; < K/n.
j=1 j=1

From the inequality |log(1 + x) — x| < Kx? for |x| < 1/2, we get

2
n
E|Y (E&;—Ej_1) In @R @y, 1,008, )1<1/2) 2
j=1 Ymv
n
< Kllymol> Y sup BIR;PPLg, e, 05, 0)1<1/2) 4.7
Z€Ymv

j=1

n
< Kn_13/402 sup Elsj(z)|4]IAnj < Kn™33/40,

j=1 2€Ymv
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Therefore, from the above estimates, we can conclude that (4.6) converges to 0 in probability.
Similarly, for z € y,,,, we also have the following estimates:

> P(lej@)B; ()= 1/2) <K Y Ele;(2)B;@)I*

j=1 j=1
and
2
Ej-1) / Fn @R @y, 005 0)1<1/2 92
Ymh
< K[ ymnll Z sup EIR; ()10, )5, 1<1/2) 4.8)
j lzeymh
n
<K ) sup Ele; (0B,
j:lzeymh
Thus, we get

Ymh

45)——iiE/ L @le; (B, @1dz + 0, (1)
4.5) = 2ni/:1 j fn@ej (@B (2)1dz +0p

ZmZYn, +0,(1),

where 0, (1) follows from (4.7), (4.8) and Condition 4.1 below. Therefore, our goal reduces to
the convergence of Z’}Zl Yyj.

Since Y,; € Fjand E; 1Y,; =0, {Y,;, j =1,...,n}is a martingale difference sequence and
thus Z';Zl Y,j is a sum of a martingale difference sequence. In order to apply a martingale CLT
([9], Theorem 35.12) to it, we need to check the following two conditions:

Condition 4.1 (Lyapunov condition).

n
> ElY,;*— 0.

j=1

Condition 4.2 (Conditional covariance).
1 n
~ 3 2 Bl () - Y (gn)]
j=1

converges to a constant c(f, g) in probability, where f, g € C*(U) and f, gm are their corre-
sponding Bernstein polynomial approximations, respectively.
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Proof of Condition 4.1. By Lemmas A.5 and A.6, for any z € yup,

K
Ele;@I° < —[Elxl* D} @) D7 (2)° + Bl 2 u(D; @) D7 ()’

IA

K 3 4.3
Gs OIS e

Hence, we get

SE, < KZ/ Ele; (2)B;(2)I*dz
j=1 i=

1 Ymh

< KZ EIB,; @) Ele; (2)[%)* dz

Ymh
K
<— —0. O

Proof of Condition 4.2. Note that in Cauchy’s theorem, the integral formula is independent of
the choice of contour. Hence, we have

1 n
~ 3 2 Bl (fin) - Yy g
j=1

4]1221}33/ 1[[)/ hf,;(z)Ej(sj(z)Ej(z))dﬂ/, g;n(Z)Ej(Ej(Z)Ej(Z))dZ}

Ymh

=12 // Fin @& (22) Z Ej 1[E;(;(z)B;(z1))E;j(j(z2)B(22))]dz1 dza
thXth j=1

=1 2// F(@0)83, (@) (21, 22) 21 dza,
T thXth

where T (z1,22) = YL B 1[Ej(e; (2B (2))E; (6 (z2)B;(z2)] and y, is the contour
formed by the rectangle with vertices a| &1i/2/m and b, £i/2\/m. Here, 0 < a) < a] <a <
b < b| < by, which means that the contour y,, encloses the contour y,,. y’; ;, 1s the union of the
horizontal parts of y,,.

First, we show that

Pr. .
T,(z1,22) — T(z1,22) —> 0 uniformly on Yimn X Vs

where

F(e1, 22) = o yk(eDk(z2) — (k1 + 1) In 2ED2E)E — 22)
s(z1) — 5(z2)
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From Lemma A.6, for all z € y,,,;, U yr:lh and any [ > 2,

EIB;(2) — ba@)|' = E[B,;()ba(2n~ ( D;(2) — Etr D; (2)['

4.9)
<M(E|n ! (rDj(z) - IEtrDj(z))|21)l/2 < K(«/nv)l.
This leads to
- K
E|Tn(z1,22) = ba(z1)ba(z2) Y Ej1(Eje;(zD)E e (22))| < N =0(n~1/%).
Jj=1
Thus, we need to consider
n
bu(20)ba(22) Y Ej 1 (Bje(zD)E e (22)). (4.10)
j=1

Let [A];; denote the (i, i) entry of matrix A. For any two p X p non-random matrices A and B,
we have

E(xjAx; —ntr A)(x{ Bx; —ntrB)

P 14 P
= Elxi|* = [Bxfy * = 2) ) aiihii + [Exf) Y aijbij+ Y aijhji  (4.11)
i=1 i,j i,j

P
ZKZZaiibii + k1 tr ABT +trAB,

i=1
from which (4.10) becomes
1
(K1 + Dbn(@)ba(22)— > B D} 2DE; D} (22)

j=1

1 &
+ K260 (21)bn (z2) = E,[D7 'z E; (D7 (z2)]ii
n2 4 « J i
J=li1=

£ (21, 22) + Tha(z1, 22).
For I';2(z1, z2), by Lemmas A.6, A.7 and —zs(2)(s(z) + 1) = 1, we get
Fn2(zla ZZ) = K2)’nk(21)k(22) + Op(l)s

where 0,(1) denotes uniform convergence in probability on y,;, X v, .
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It is easy to check that k(z) = k(z) since s(Z) = s(z). As n — 00, aj — a and by — b, we then
get

1
—4—2// Jn(21)85, (22)Tn2(21, 22) dz1 dzo
R mhx)/,/nh

_Kk2Yn
472

// / I (2180 (22)k(z1)k(z2) dz1 dza + 0, (1)
Ymh XVyn

b b
9_%/ / Fl(x1) g (x)R[k(x1)k (x2) — k(x1)k(x2)]dx; dxa,

which is (1.5) in Theorem 1.1.
For I';;1(z1, z2), we will find the limit of

I+ -1 -1
ba(@1)bn(22) — X;trIE,-Dj @DE; D} (22). (4.12)
]:

Let Dij(z) = D) —rjri—riry, Bij(2) = (1477 D (2)r) ™, bia(2) = (14 s Etr Dy (2)) 7!
and1(z) = (z — ”T_lblz(z))’1 . Write
n—1 " n—1
b12(2)1p = Zrﬂ’i* -
. i#]

Dj(z)+zl, — b12(2)1p.

Multiplying by #(z)I, on the left, Dj_1 (z) on the right and combining with the identity

r D7 (2) = Bij()r D' (@), (4.13)
we obtain

n—1

D' (2) =11, + Y _1@)Bij@rirf D' () —
i#]
= —1(2)I, + b12(2)A(z) + B(2) + C(2),

b1(2)t(2)D} " (2)
n

4.14)

where
A@ =) t@irf —n"'1)D; @), B@) =) 1@ —b@)rirf D' (2)
i#j i#]

and

1 n _ _
C(2) = ;t(z)blz(z) .; _(Dijl(z) - Dj 1(1)).
i#j
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It is easy to verify that for all z € y,un Uy,

n—1 1 -1

n 1 —i—rrl]EtrDl_z1 (@)

B 1+n"'"Etr D, (z)
2(1+n~'Etr D3, () + (n — 1)/n

[t(2)] = |z+

|: 1 j| K
|z| Jz(1 —l—n_lEtrD_ (2) v

since a) < |z| < by + 1. Thus, by Lemmas A.6, A.4 and the Cauchy—Schwarz inequality, we have

IE|tr(B(Zl)]Eij_l(Zz))l = Zt(m) (Bij(z1) = bra(z)rf D_ zDE;D; ')

i#]

IA

Kn _ _

—E|(Bij (1) = ba(en)r Dy @OE; D} @] (415)
Kn 1 1 K

NN A

From Lemma 2.10 of Bai and Silverstein [6], for any n x n matrix A,

IA

ltr(D™" () — D; '(2))A] < ” (4.16)

which, combined with Lemma A.6, gives

E|tr(C(z1)E; D} (z2))]

1 “ _ _ _
=E ;t(m)blz(Zl);tr((D,-jl(Zl) —D;'(z)E; D} (22))
1
! 4.17)
< X @b A (E[e(D; @) - DT @))E; D @) [P)
. 12(21 i (@1 i (@))E;D; (22
K1 K
< —— = —,
v 2 3
From the above estimates (4.15) and (4.17), we arrive at
wE;D; ' @)E; D} (22)
(4.18)

_ _ K
= —t@)E; D} (22) + bia(@) rBjAGRDE,; D} ' (22) + .
Using the identity

D} '(z2) - D} (z2) = =Bij (22) D} z2)rirf D7 (22),
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we can write

wBj (A1) D} (22) = A1(z1, 22) + Ax(z1, 22) + A3 (a1, 22), (4.19)
where
Al(z1,22) = —tr ) 1@ Ej (DS @) (D) (22) — Dy (22))
i<j
==Y 1@ @I E(D;; 20) Dy )rirf D o),
i<j
- 1
Ar(erz2) ==t ) J1@)-E; (D5 @))(D] ' (z2) = Djj (22))
i<j
and

* 1 - —
A3(z1,22) = —trZI(Z1)<rir,~ - ;Ip)EﬂDijl(m))D,-jl(zz).

i<j

From (4.16), we get

1
A2 (21, 22)| = ‘; Y 1@ (D7 (22) — D' 2))E; Dy (21)

i<j

. (4.20)
j—11K K
< —_—— <
~ n wvv? 3
and by Lemma A.3, we have
KG -1 « 1 1 1
E|A3(z1, 22)| < TE tr| rir — ;Ip Ej(D;; (z))D;; (z2)
4.21)

_kn 1 _Ku
v Jmv?2 3
For A1(z1,22), by Lemmas A.4 and A.5,

E

B (D5 @)Dy @)rirf Dz

1
— — B (D} (2)) D ()] D' (z2)

<E

1
[rflEj(D,-}l(m))D,-}l(Q)ri - tr(]Ej(Di;l(Zl))Di;l(Zz))]”i*Di;l(Zz)ri

1 ! - =1 LI K
+E‘;tl’(Ej(Dij (z1))Dy; (zz))[r,-*Dij (z2)ri = ~w Dy (z2) || < N
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Let ¢ (z1,22) = tr(E; (D} ' (1)) D} ' (z2)). Using the identity (4.16), we have

|te(E; (D} 1)) D' @) tr D} (z2) — ¢ (21, 22) tr D} (z2)| < Knv ™.

Thus, in conjunction with Lemma A.6, we can get

E|A1(z1,22) +

=

i — 1
I t@nbiG)y; (1.2 D) @) (4.22)

K
Jnvd
Therefore, from (4.14)—(4.22), it follows that

j—1
pj(z1,z2)| 1+

5 t(Zl)blz(Zl)blz(Zz)trDj_l(Zz)}
n
=—tr(r(z)tr D]l(zz)) + A4(z1, 22)s

where E|A4(z1, 22)| < K/n/v3.
Using Lemma A.6, the expression for D;l (z2) in (4.14) and the estimate

w) 1@} =n" ) D @)

ElrA()|=E
i#]
Kn K. /n
< _E|ViDi;1(Z)ri* —n~! trDi}l(Z)l < {
v v
we find that
G—-D
¢ (zl,zz)[l - %r(m)bu(m)t(zz)bu(zz)]
= —pt(z1)t(z2) + As(21, 22),
where
K.\/n
ElAs(er. 2l < <Y
v
By Lemma A.6, we can write
(j—Dp 50 (z1)50(22) }
(21,2 1_
vt 2)[ 22 (6D + D0 + 1)

__r 1
T 22 60G@) + D@ + 1)

+ Ag(z1, 22),

where E|Ag(z1, 22)| < K/n/v3.
Let

yus0(z1)s%(22)
D+ DE%2)+ 1

an(z1,22) =
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(4.12) can be written as

an(21,22) = Z(l -

—1
an(Zl Zz)) + A7(z1, 22),

where

E|A7(z1,22)| <

f 3
Since

vs(z1)s(z2)
(s(z1) +D(s(z2)+1)

an(z1,22) —> a(z1,22) =
as n — 00, we arrive at

1(z1,22)

dr=—In(1 - = ) =@
n(l—at @) ==In ooy

4.12) 2 a(zy, Zz)/

1—ta(z1 22)

where [(z1, z2) = s(21)s(22)(z1 — z2), which implies that

I ¢ -1 -1
P21, 22) = (61 + Dba(20)bn(2)— thrEjD ' @DE; D} (22)
J=

= —(k1 + D In(l(z1, 22)) + (k1 + D In(s(z1) — 5(z2)) + 0p(D).

Thus, adding the vertical parts of both contours and using the fact that f, (z) and g/, (z) are
analytic functions, the integral of the first term of ';;1 (21, z2) is

7 2// S (@& (22) 1 + 1) In(l(z1, 22)) dz1 dz2
T thXV 'mh

k1 +1
__k f?{ fhzDgh (z2) In(l(z1, 22)) dz1 dza + O(v)
Y XV

472

=o(l).

For the second term of I',1(z1, z2), since s(z) = s(z), as n — 00, a; — a and b, — b, we get

K1+ 1

472
s(x1) —s(x2)

K1+1
- //f(x‘)g(x“ S —s(2)

which is (1.4) in Theorem 1.1. (I

yg f I (218 (z2)In(s(21) — 5(22)) dz1 dza + 0, (1)
me);l

dxp dx2,
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5. Mean function

In this section, we will find the limit of

1
BG, () = =5 Fn(@PIES @) — 21z
TS ym
We shall first consider M, (z) = p[Es, (z) — s,?(z)] =nlEs, (z) — 52 @]
Since D(z) +zI = Z’}:l rj r}*, multiplying by D~!(z) on the right-hand side and using (4.13),
we find that
‘ " orirtDT(2)
1+:D7' @)=Y rirp =) —L L
j=1 j:11+erj (Z)I‘j
Taking trace, dividing by n on both sides and combining with the identity zs,(z) = —1+y, +
YnZ8,(2) leads to

1 Z” 1 1 Z”
52() nz i 1+ r;‘Dj_l(z)rj nz = Fi®@ 6D

Then, once again using (4.13) and Al —B 1=—A"YA-B)B~!, we get

IP -1 1 . * —1
__r - 4 7R
Es,0+0 L O w0+ L;”’f“ 5"(1)}) ©

1

- - . . ky—1 _ . l -1
B z(Egn(z)Jrl);[ﬁ"I(Z)r'lerj @ —E@; @, D (Z)}'

Taking trace, dividing by p and taking expectation, we find that

1
@n(2) = _m — Esn(2)
1 n

A 1
T T GEs,o 0@

where

* y—1 1 -1
dj(z)=erj (z)rj—;trED (2).
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On the other hand, by the identity Es, (z) = —(1 — )2~V + yuEs, (2), we have

]Ein(z)< 1 Vn )A Es,(z)
= —L — + = R ?
@)= T e TE@rl) e @
where
Yn
R = —3— + 3
M@=t e o TR+ 1
which implies that
—1
Es, @)= (-z4+-—2" _R,2)) . (5.3)
= Es,()+1 "

For s0(2), since s2(z) = (1 — yy — ynzs(z) —2) "L and 59(z) = —(1 — y)z~! + yusO(2), we
have

-1
0 _ _ yn
5,(2) = ( z+ 0 +1 1) . (5.4

By (5.3) and (5.4), we get

-1 -1
Es, (z) —52(2) = <— M Rn(Z)> - <—z + y—”)

TRy @ +1 s0) +1
_ 0 Yn _ Yn
=B, (05, <52 ©+1 Eso+1 (Z)>
ynEs, (2)s9(2)

_ _ 0 0
= P01 N E T 1)(H*Zgn(z) 5p(2)) +Es,, (2)s, (2) Ry (2),

which, combined with (5.2), leads to

0  Bs, (@50 () )
1(Es @) 5"@)(1 9) + D(Es, @) + 1)
=nEs, (2)s2(2) Ry (2)

Ynl
Es, (z)

(5.5
=nEs, (2)s2(2)

wp (2)

59(2)
— _—”7‘61 .
Es, (o) + 1"

Thus, in order to find the limit of M), (z) = n[Es, (z) — 52 (z)], it suffices to find the limit of
Jn(@). Let dj(2) = r1D7 (@)rj — £ D7 (2) and Jo(2) = Yi_ E(B(2)d;(2)). By (4.3), we
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have

In(2) = J(z>+ZE[ﬂ,<z)( rD (@) — trJEDl(z)ﬂ

—J(z)—l—ZE[ Bi(z) — b(z))( tr D~ (z)—ltrED (Z))]

j=1
=Ju(2) — T1(x) + Ta(2),
where, from (4.16),

Ti(z) = ZE[b2<z>8 (z)( trD” (z)—%trED_l(z)ﬂ

j=1

n 1
- ZE[bg(z)aj @ (D7) - D;'(2)) — wE(D™'(z) — D} (z)))}

j=1

K
< —_— =
_jZl\/ﬁv nv  /nv?

It follows from Bai and Silverstein [6], (4.3) that for [ > 2,

1

1 1 1 1
E;trD (z) — trED (2) (5.6)

B (~/_ v)’

Hence,

K
Jnvd

T(z) = ZE[ﬁJ(Z)b2(1)82(1)< trD” (z)—%trED”(z))]s

j=1
From the above estimates on 7 and 75, we conclude that
In(2) = Jn(2) + én,

where here, and in the sequel, €, = O((ﬁv3):1).
We now only need to consider the limit of J,,(z). By (4.2), we write

Tn(2) = ZIE Bi (@) — Bj(2)e; ()] + ZIE [8i () (D' (2) - D7 (2))]

j=1

= —ZE(ﬁ @)e5(2) + ZE(ﬂ @)B;(D)e}()) + - ZE(ﬂ @riD(2)r))

Jj=1 Jj=1

£ nl(Z) + Jn2(Z) + JnS(Z)-
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From Lemmas A.3 and A.6, we find that

K
[Jn2(2)] < KZ<E|86<z>|>1/2 <

By Lemma A.6, Bj (2), Bj(z) and b, (z) can be replaced by —zs(z), and so we get

jn3(z)=zs2(z) ZEtrD 20 +& 2 @YD) + én.
j=1

By the identity of quadric form (4.11) and the fact, from Lemma A.7, that IE[D]._1 (2)]ii can be
replaced by s(z) = —z " (s(z) + 1), we have

J() =—z sz(z)ZEs (2) +en

j=1

Z2£2(Z) . 4 —1 2 _2 ) _
=——— ) E[ > D] @F +rxuD@ +uD*@) | +& (57

n ; .
j=1 i=1

= yuk2ok*(2) — 2252 (D) (k1 + DY (2) + &,

where k1, k7 and k(z) were defined in Theorem 1.1. Our goal is now to find the limit of v, (z).
Using the expansion of Dj_l (z) in (4.14), we get

R T 2N 2 _
Yn(2) = — ; Crm@r Tt @ ;EntrA (2) + &

2
= k (Z) Z Z Etr[( )D () Dy; (z)<r1r, - %I>i|

J=lild#]

1
+=) 55— +¢
HZ;ZZ(Q(Z)—HV ’

Note that the cross terms will be 0 if either Dl.;l(z) or D () is replaced by D;;
Dyij(2) = Dij(2) — rirf = D' (z) = rirf and

lij '(2), where

lt] (Z)rlrl llj (Z)

1+ rl*Dl” (D)

D;'(x) - Dy} () =
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Therefore, by (4.16), we conclude that the sum of cross terms is negligible and bounded by
K /(y/nv3). Thus, we find that

= Z Z ]Etr|:< >D @)Dy (z)<r,r,* - l[)}
i=lilA] "

n n
1

1 _ 1 _
=3 ZZEtr[(r,-ri* - ;I)DijZ(z)<r,~ri* - ;I)} +é,
J=li%j

= ZZE[(V D (@) r}ri)] + &,

J=li#j

1
=22 SB[ D2@(p+OM)] + & = yudn() + .
j=li#j
From above, we get that
Yn
n YRV nk n n-
Yn(z) = 206G )+1)2+y (DYn(2) +€

Combined with (5.7), we have

&2
In(@) = kayak?(z) — K@)

1 — y,k?(2) e
Thus, from (5.5), it follows that
My (2) = nEs, ()52 ()R (2) ] (1 o (Zy)"fﬁln) Eﬁog)’ + 1))
O ey ( nEs, (2)s9(2) )
CEs,(2)+1 (s92) + D (Es, () + 1)
K1 ynk> (2) K2 Yk (2)

T U= k2@) 11— yk2)
2 M (2) + Ma(2) + &n.

Therefore, we can calculate the mean function in the following two parts

1 -
o fm(@Mi(z2)dz

Ymh

K1

_ K ynk? (2)
©2mily, I )(1 — yuk2(2))? <
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- L fm(z)% In(1 = yuk?@)dz=——— [ f1.)In(1 — yuk?(2)) dz

4T[l Ymh 47[1 Ymh
K1 b / 2
— Toc f(x) arg(l — vk (x)) dx
Y a
as n — 00, a — a and by — b; similarly,

ynkS(Z)
1- .Vsz(Z)

o YK)
__f A ( VK2 (x ))dx

Hence, summing the two terms, we obtain the mean function of the limiting distribution
in (1.3).

L o = 2”—2 / fn(@) dz
Rl Ymh

27“ Ymh

Appendix
Lemma A.1. Under the conditions in Theorem 1.1, we have
IEF, = Fll=0(m~""%), Iy = F=0,(0"*?),
| Fy — F|| = O(n™2/3%m) a.s. forany n > 0.
This follows from Theorems 1.1, 1.2 and 1.3 in [5].

Lemma A.2 [Burkholder (1973), [10]]. Let Xk, k= 1,2, ..., be a complex martingale differ-
ence sequence with respect to the increasing o -fields Fy. Then, for p > 1,

B[ x| < k,5(Y 1)

In the reference [10], only real variables were considered. It is straightforward to extend to
complex cases.

Lemma A.3. For x = (x1, ..., x,)! with i.i.d. standardized real or complex entries such that
Ex; =0 and E|x;|> = 1, and for C an n x n complex matrix, we have, for any p > 2,

Elx*Cx — trC|” < K [(Elx;|*tr CC*)P/? + El|x; [*P tr(CC*)P/?].
This is Lemma 8.10 in [8].

Lemma A.4. For any non-random p x p matrix A,

ElrfAr|* < Kn~l) Al%.
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Proof. For non-random p x p matrix A,

» 2
Z X114k Xk
Lk=1

1
ElrfAr|*> = FE

p p p
1
— =2 2 2 2 2 4 2
= EE<lelalkxkl +Z|Xll| | X1 aiak +Z|xll| a[[)

Ik 1k =1

K P _
< E]E< Z |a1k|2> = Kn 2Etr(AA) < Kn~'|A)>

1k=1 O
Lemma A.S. For non-random p x p matrices A, k=1,...,s,
N 1 N
E[] (rl*Alrl - trAl) < Kn~ /M= OVOT T 4. (A.1)
k=1 k=1
Proof. Recalling the truncation steps E|x1; |8 < 00 and Lemma A.3, we have, forall/ > 1,
ElrfAir —n ALl < KA ' (72 + (Vi8,) 22" n)

A2
— K”Al“ln—((l/2)A3)(8’1)2(1—4)\/0 ( )
Then, (A.1) is the consequence of (A.2) and the Holder inequality. U

Lemma A.6. Under the conditions in Theorem 1.1, for any | > 2, E|B; @I, E|;§j )| and
b, (2)|" are uniformly bounded in Y. Furthermore, B i(2), Bj(2) and by, (z) are uniformly con-
vergent in probability to —zs(z) in Ymp.

Proof. By (4.2) and (4.3) in [6], we have, for any [ <2,
EltwD;'(2) —Eu D} @)l < kn'/?v7, (A3)
Elr;D}' @)rj —1/nEuw D ()] < Kn™'?07. (A4)

This lemma follows from Lemma A.3, (A.3), (A.4) and the following facts.

Fact 1. Since s(z) = —%(yin — yle\/Zz —A+y)z+A—=yn)?— %) and $9(z) = _I_Tyn +
yns,(l)(z), we have

2500 = =3 (1 =y + 2= 2 = A+ y)z+ (1 = )?).

Thus, zgg (z) is bounded in any bounded and closed complex region.
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Fact 2.

1
* y—1 —1
riD; (z)r./—;EtrDJ. (2)

1
Ibu(2) — EB;(@)] < —E
v

1 1 1
< —2|:E|8j(Z)| +]E'—trDj_l(z) - —EtI'Dj_l(Z)
v n n

}

[ K KK
02 Jnv  Jnv|  Jnvd
where the last inequality follows from (5.6).

Fact 3. Taking expectation on (5.1), one can find
1 n
s, () ==~ Ef;2) = —EB; ().
j=l1

Fact 4. From Lemma A.1, we have

|zEs, (z) — 252(2)| < 2ynElsa(z) — s2(2))

- zynEV L(FBn — F¥)(dx)
X —2Z

K
= —IFP = F

K
=—0,n"*?) =0,n"*v".
5 p(n” %) p(n~Pv7) 0

Lemma A.7. Under the conditions in Theorem 1.1, as n — 00,

max |IEj[Dj_1 @i —s@|—0 in probability
irj
uniformly in yipn, where the maximum is taken over all 1 <i < pand1 < j <n.

Proof. First, let e; (1 < j <n) be the p-vector whose jth element is 1, the rest being 0 and el’.,
the transpose of ¢;. Then,

EI[D™' ()i — [D}' @il =Elej(D™'(2) — D7 (2)ei]
=E|Bj()e; D} ()rjriD; ! (2eil

< ®I8; ) ®Ir; D} @eie; D} )rj ' < T



1112 Z. Bai, X. Wang and W. Zhou

Second, by martingale inequality, for any € > 0, we have

P (max|B;[D~' @i — EID @li] > )

L]

p
Z (max|]E [(D~'(2))ii —E[D _I(Z)]ii|>€)

1
SEID™ @i —EID™! @1 l°

P/%“u II

i=1

1 p
=€_62]E

i=1

6

> E —Ei)Bi )€ Dy @)nri D 2)e;

=1

n 3
<K ZE(Z |(Br — Er-1)Bi(2)e; Dy rur Dy (2)e |2) :

i=1 =1

Let Z(z) = ¢, D; ' (2)rir} Dy ' (2)ei. We have that
K , K

IEZi(2)| < — and E|Z(z) —~EZi()|° < 5.
nv n2v

Thus, we obtain

P(max [E; (D~ @)1ii ~ EID™ ()l > €)
L]

P n Pk
Zl (Zn v4> ~ a2l

Finally,

_ I &,
E[D™'lii ==Y EID™'1ii =Es,(2).
Pio
In Section 5, it is proved that p(Es, (z) — s(z)) converges to 0 uniformly on y,,;,. The proof of
Lemma A.7 is thus complete. (]
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