
Bernoulli 16(4), 2010, 1064–1085
DOI: 10.3150/09-BEJ245

A Bernstein-type inequality for suprema of
random processes with applications to model
selection in non-Gaussian regression
YANNICK BARAUD

Université de Nice Sophia-Antipolis, Laboratoire J-A Dieudonné, Parc Valrose, 06108 Nice Cedex 02,
France. E-mail: baraud@unice.fr

Let (Xt )t∈T be a family of real-valued centered random variables indexed by a countable set T . In the
first part of this paper, we establish exponential bounds for the deviation probabilities of the supremum
Z = supt∈T Xt by using the generic chaining device introduced in Talagrand (Inst. Hautes Études Sci. Publ.
Math. 81 (1995) 73–205). Compared to concentration-type inequalities, these bounds offer the advantage
of holding under weaker conditions on the family (Xt )t∈T . The second part of the paper is oriented toward
statistics. We consider the regression setting Y = f + ξ , where f is an unknown vector in R

n and ξ is a
random vector, the components of which are independent, centered and admit finite Laplace transforms in
a neighborhood of 0. Our aim is to estimate f from the observation of Y by means of a model selection
approach among a collection of linear subspaces of R

n. The selection procedure we propose is based on
the minimization of a penalized criterion, the penalty of which is calibrated by using the deviation bounds
established in the first part of this paper. More precisely, we study suprema of random variables of the
form Xt = ∑n

i=1 ti ξi , where t varies in the unit ball of a linear subspace of R
n. Finally, we show that our

estimator satisfies an oracle-type inequality under suitable assumptions on the metric structures of the linear
spaces of the collection.
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1. Introduction

1.1. Outline of paper

The present paper contains two parts. The first is oriented toward probability. We consider a
family (Xt )t∈T of real-valued centered random variables indexed by a countable set T and give
an exponential bound for the probability of deviation of the supremum Z = supt∈T Xt . The result
is established under the assumption that the Laplace transforms of the increments Xt − Xs for
s, t ∈ T satisfy some Bernstein-type bounds. This assumption is convenient for simultaneously
handling the cases of sub-Gaussian increments (which are the typical cases in the literature)
as well as more ‘heavy tailed’ ones for which the Laplace transform of (Xs − Xt)

2 may be
infinite in a neighborhood of 0. Under additional assumptions on the Xt , our result recovers with
worse constants some deviation bounds based on concentration-type inequalities of Z around its
expectation. However, our general result cannot be deduced from those inequalities. As we shall
see, concentration-type inequalities could be false under the kinds of assumptions we consider
on the family (Xt )t∈T .
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The second part of the paper is oriented toward statistics. We consider the regression frame-
work

Yi = fi + ξi, i = 1, . . . , n, (1.1)

where f = (f1, . . . , fn) is an unknown vector in R
n and ξ = (ξ1, . . . , ξn) is a random vector, the

components of which are independent, centered and admit suitable exponential moments. Our
aim is to estimate f from the observation of Y = (Y1, . . . , Yn) by mean of a model selection
approach. More precisely, we start with a collection S = {Sm,m ∈ M} of finite-dimensional
linear spaces Sm, to each of which we associate the least-squares estimator f̂m ∈ Sm of f . From
the same data Y , our aim is to select some suitable estimator f̃ = f̂m̂ among the collection F =
{f̂m,m ∈ M} in such a way that the (squared) Euclidean risk of f̃ is as close as possible to the
infimum of the risks over F . The selection procedure we propose is based on the minimization of
a penalized criterion, the penalty of which is calibrated by using the deviation bounds established
in the first part of the paper. More precisely, the penalty is obtained by studying the deviations
of χ2-type random variables, that is, random variables of the form |�Sξ |22, where | · |2 denotes
the Euclidean norm and �S the orthogonal projector onto a linear subspace S of R

n. To our
knowledge, these deviation bounds in probability are new. We finally show that f̃ satisfies an
oracle-type inequality under suitable assumptions on the metric structures of the Sm.

In the sections which follow, we contextualize the results of the present paper within the ex-
isting literature.

1.2. Controlling suprema of random processes

Among the most common deviation inequalities, let us recall the following.

Theorem 1.1 (Bernstein’s inequality). Let X1, . . . ,Xn be independent random variables and
set X = ∑n

i=1(Xi − E(Xi)). Assume that there exist non-negative numbers v, c such that for all
k ≥ 3,

n∑
i=1

E[|Xi |k] ≤ k!
2

v2ck−2. (1.2)

Then, for all u ≥ 0,

P
(
X ≥

√
2v2u + cu

) ≤ e−u. (1.3)

Besides, for all x ≥ 0,

P(X ≥ x) ≤ exp

(
− x2

2(v2 + cx)

)
. (1.4)

In the literature, (1.2), together with the fact that the Xi are independent, is sometime replaced
by the weaker condition on X = ∑n

i=1(Xi − E(Xi)),

E(eλX) ≤ exp

[
λ2v2

2(1 − λc)

]
∀λ ∈ (0,1/c) (1.5)
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with the convention that 1/0 = +∞. Bernstein’s inequality allows deviation inequalities to be
derived for a large class of distributions, including the Poisson, Laplace, Gamma and Gaussian
distributions (once suitably centered). In the Gaussian case, (1.5) holds with c = 0. Another
situation of interest is the case where the Xi are i.i.d. with values in [−c, c]. Then, (1.2) and (1.5)
hold with v2 = nvar(X1).

Given a countable family (Xt )t∈T of such random variables X, many efforts have been made
with a view to extending Bernstein’s inequality to the supremum Z = supt∈T Xt . When T is a
bounded subset of a metric space (X , d), a common technique is to use a chaining device. This
approach seems to go back to Kolmogorov and was very popular in statistics in the 1990s for con-
trolling suprema of empirical processes with regard to the entropy of T ; see van de Geer (1990),
for example. However, this approach leads to pessimistic numerical constants that are, in general,
too large to be used in statistical procedures. An alternative to chaining is the use of concentration
inequalities. For example, when the Xt are Gaussian, for all u ≥ 0, we have

P
(
Z ≥ E(Z) +

√
2v2u

) ≤ e−u, where v2 = sup
t∈T

var(Xt ). (1.6)

This inequality, due to Sudakov and Cirel’son (1974), allows (1.5) to be recovered with c = 0
whenever T reduces to a single element. Compared to chaining, (1.6) provides a powerful tool
for controlling suprema of Gaussian processes as soon as one is able to evaluate E(Z) sharply
enough.

Credit is due to Talagrand (1995) for extending this approach for the purpose of controlling
suprema of bounded empirical processes, that is, for Xt of the form Xt = ∑n

i=1 t (ξi) − E(t (ξi)),
where ξ1, . . . , ξn are independent random variables and T is a set of uniformly bounded func-
tions, say with values in [−c, c]. From Talagrand’s inequality, one can deduce deviation bounds
with respect to E(Z) of the form

P
[
Z ≥ C

(
E(Z) +

√
v2u + cu

)] ≤ exp(−u) for all u ≥ 0, (1.7)

where v2 = supt∈T var(Xt ) and C is a positive numerical constant. Apart from the constants,
(1.7) and (1.3) have a similar flavor, even though the boundedness assumption on the elements
of T seems too strong compared to the conditions (1.2) or (1.5).

As the original result of Talagrand involved suboptimal numerical constants, many efforts were
made to recover it with sharper ones. A first step in this direction was made by Ledoux (1996),
by means of nice entropy and tensorization arguments. Further refinements were then made on
Ledoux’s result by Massart (2000), Rio (2002) and Bousquet (2002), the last author achieving the
best possible result in terms of constants. For a nice introduction to these inequalities (and their
applications to statistics), we refer the reader to the book by Massart (2007). Other improvements
on (1.7) have been made in the recent years. In particular, Klein and Rio (2005) generalized the
result to the case

Xt =
n∑

i=1

Xi,t , (1.8)

where, for each t ∈ T , (Xi,t )i=1,...,n are independent (but not necessarily i.i.d.) centered random
with values in [−c, c].
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In the present paper, the result we establish holds under different assumptions than the ones
leading to inequalities such as (1.7). Actually, an inequality such as (1.7) could be false under
our set of assumptions on (Xt )t∈T . This fact was communicated to us by Jonas Kahn. The coun-
terexample we give in Section 2, which is is a slight modification of the one Kahn gave us,
shows that Z may deviate from E(Z) on a set, the probability of which may not be exponentially
small. Moreover, even in the more common situation where Xt is of the form (1.8), we establish
deviation inequalities that are available for possibly unbounded random variables Xi,t , which
is beyond the scope of the concentration inequalities proved in Bousquet (2002) and Klein and
Rio (2005).

Even though it was originally introduced to bound E(Z) from above, generic chaining, as
described in Talagrand’s book (2005), provides another way of establishing deviation bounds
for Z. Talagrand’s approach relies on the idea of decomposing T into partitions, rather than into
nets, as was usually done before with the classical chaining device. Denoting by e1, . . . , ek the
canonical basis of R

k and by ξ (1), . . . , ξ (k) i.i.d. random vectors of R
n with common distribu-

tion μ, generic chaining was used in Mendelson et al. (2007) and Mendelson (2008) to study the
properties of the random operator � : t �→ k−1/2 ∑k

i=1 〈ξ (i), t〉ei defined for t in the unit sphere T

of R
n (which we endow with its usual scalar product 〈·, ·〉). Their results rely on the control of

suprema of random variables of the form Xt = k−1 ∑k
i=1 〈ξ (i), t〉 for t ∈ T . When k = 1, this

form of Xt is analogous to that which we consider in our statistical application. However, the
deviation bounds obtained in Mendelson et al. (2007) and Mendelson (2008) require that μ be
sub-Gaussian, which we do not want to assume here. Closer to our result is Theorem 3.3 in
Klartag and Mendelson (2005), which, on a set of probability at least 1 − δ (for some δ ∈ (0,1)),
bounds the supremum Z = supt∈T |Xt |. Unfortunately, their bound involves non-explicit con-
stants (that depend on δ), making it useless for statistical purposes.

Our approach also uses generic chaining. With such a technique, the inequalities we obtain
suffer from the usual drawback that the numerical constants are non-optimal, but at least allow
a suitable control of the χ2-type random variables we consider in the statistical part of this paper.
To our knowledge, these inequalities are new.

1.3. From the control of χ2-type random variables to model selection in
regression

The reason why χ2-type random variables naturally emerge in the regression setting is as follows.
Let S be a linear subspace of R

n. The classical least-squares estimator of f in S is given by f̂ =
�SY = �Sf +�Sξ and since the Euclidean (squared) distance between f and f̂ decomposes as

|f − f̂ |22 = |f − �Sf |22 + |�Sξ |22,
the study of the quadratic loss |f − f̂ |22 requires that of its random component |�Sξ |22. This
quantity is called a χ2-type random variable by analogy with the Gaussian case. Its study is
connected to that of suprema of random variables by the formula

|�Sξ |2 = sup
t∈T

Xt = Z with Xt =
n∑

i=1

ξi ti , (1.9)
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where T is the unit ball of S (or a countable and dense subset of it). The control of such random
variables is at the heart of the model selection scheme. When ξ is a standard Gaussian vector
in R

n, Birgé and Massart (2001) used (1.6) to control the probability of deviation of |�Sξ |2
with respect to its expectation. The strong integrability properties of the ξi allow very general
collections of models to be handled. By using chaining techniques, these results were extended
to the sub-Gaussian case (i.e., for X = ±ξi satisfying (1.5) with c = 0 for all i) in Baraud, Comte
and Viennet (2001). Similarly, very few assumptions were required on the collection to perform
model selection. Baraud (2000) considered the case where the ξi only admit few finite moments.
There, the weak integrability properties of the ξi induced severe restrictions on the collection of
models S . Typically, for all D ∈ {1, . . . , n}, the number of models Sm of a given dimension D

had to be at most polynomial with respect to D, the degree of the polynomial depending on the
number of finite moments of ξ1.

To our knowledge, the intermediate case where the random variables ±ξi admit exponential
moments of the form (1.5) for all i (with c �= 0 to exclude the already known sub-Gaussian
case) has remained open for general collections of models. In this context, the concentration-
type inequality obtained in Klein and Rio (2005) cannot be used to control |�Sξ |2 since it would
require that the ξi be bounded. An attempt at relaxing this boundedness assumption on the ξi can
be found in Bousquet (2003). There, the author considered the situation where T is a subset of
[−1,1]n and the ξi independent and centered random variables satisfy

E[|ξi |k] ≤ k!
2

σ 2ck−2 ∀k ≥ 2. (1.10)

Note that (1.10) implies that the Xt satisfy (1.5) with v2 = v2(t) = |t |22σ 2. The result of Bousquet
provides an analog of (1.7) with v2 replaced by nσ 2, although one would expect the smaller (and
usual) quantity v2 = supt∈T v2(t). Because of this, the resulting inequality turns out to be useless,
at least for the statistical applications we have in mind. This fact has already been pointed out
in Sauvé (2008). Sauvé also tackled the problem of model selection when the ξi satisfy (1.10).
Compared to Baraud (2000), her condition on the collection of models is weaker, in the sense that
the number of models with a given dimension D is allowed to be exponentially large with respect
to D. However, the collection she considered only consists of linear spaces Sm with a specific
form (leading to regressogram estimators). Besides, her selection procedure relies on a known
upper bound on maxi=1,...,n |fi |, which can be unrealistic in practice. A similar assumption was
made in Theorem 4 of Barron et al. (1999) in the related context of regression with i.i.d. design
points. Unlike these authors, our procedure does not depend on such an upper bound on f .

1.4. Organization of the paper and main notation

The paper is organized as follows. We present our deviation bound for Z in Section 2. The
statistical application is developed in Sections 3 and 4. In Section 3, we consider particular cases
of collections S of interest, the general case being considered in Section 4. Section 5 is devoted
to proofs.

Throughout the paper, we assume that n ≥ 2 and use the following notation. We denote by
e1, . . . , en the canonical basis of R

n which we endow with the Euclidean inner product, denoted
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〈·, ·〉. For x ∈ R
n, we set |x|2 = √〈x, x〉, |x|1 = ∑n

i=1 |xi | and |x|∞ = maxi=1,...,n |xi |. The linear
span of a family u1, . . . , uk of vectors is denoted by Span{u1, . . . , uk}. The quantity |I | is the
cardinality of a finite set I . Finally, κ denotes the numerical constant 18. It first appears in the
control of the deviation of Z when applying Talagrand’s chaining argument and then throughout
the remained of the paper. It seemed interesting to emphasize the influence of this constant in the
model selection procedure we propose.

2. A Talagrand-type chaining argument for controlling suprema
of random variables

Let (Xt )t∈T be a family of real-valued and centered random variables, indexed by a countable
and non-empty set T . Fix some t0 in T and set

Z = sup
t∈T

(Xt − Xt0) and Z = sup
t∈T

|Xt − Xt0 |.

Our aim is to give a probabilistic control of the deviations of Z (and Z). We make the following
assumptions.

Assumption 2.1. There exist two distances d , δ on T and a non-negative constant c such that for
all s, t ∈ T (s �= t ),

E
[
eλ(Xt−Xs)

] ≤ exp

[
λ2d2(s, t)

2(1 − λcδ(s, t))

]
∀λ ∈

[
0,

1

cδ(s, t)

)
(2.1)

with the convention that 1/0 = +∞.

Note that c = 0 corresponds to the particular situation where the increments of the process Xt

are sub-Gaussian.
Besides Assumption 2.1, we also assume in this section that d and δ derive from norms. This is

the only case we need to consider in order to handle the statistical problem described in Section 3.
Nevertheless, a more general result with arbitrary distances can be found in Section 5.

Assumption 2.2. Let S be a linear space with finite dimension D, endowed with two arbitrary
norms denoted ‖ · ‖2 and ‖ · ‖∞, respectively. For s, t ∈ S, define d(s, t) = ‖t − s‖2 and δ(s, t) =
‖s − t‖∞, and assume that for constants v > 0 and c ≥ 0,

T ⊂ {t ∈ S | ‖t − t0‖2 ≤ v, c‖t − t0‖∞ ≤ b}.

The following result then holds.

Theorem 2.1. Under Assumptions 2.1 and 2.2,

P
[
Z ≥ κ

(√
v2(D + x) + b(D + x)

)] ≤ e−x ∀x ≥ 0 (2.2)
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with κ = 18. Moreover,

P
[
Z ≥ κ

(√
v2(D + x) + b(D + x)

)] ≤ 2e−x ∀x ≥ 0. (2.3)

Since S is separable, the result easily extends to the case where T ⊂ S is not countable, pro-
vided the paths t �→ Xt are continuous with probability 1 (with respect to ‖ · ‖2 or ‖ · ‖∞, both
norms being equivalent on S).

2.1. Connections with deviation inequalities with respect to E(Z)

In this section, we make some connections between our bound (2.2) and inequalities (1.6)
and (1.7). Throughout this section, T is the unit ball of the linear span S of an orthonormal
system {u1, . . . , uD}. As the norms | · |2 and | · |∞ are equivalent on S, we set


2(S) = sup
t∈T \{0}

|t |∞
|t |2 < +∞.

Note that 
2(S) depends on the metric structure of S. In all cases, 
2(S) ≤ 1, this bound being
achieved for S = Span{e1, . . . , eD}, for example. However, 
2(S) can be much smaller, equal to√

D/n, for example, when n = kD for some positive integer k and uj = (e(j−1)k+1, . . . , ejk)/
√

k

for j = 1, . . . ,D. The set T fulfills Assumption 2.2 with t0 = 0, d(s, t) = |s − t |2, δ(s, t) =
|s − t |∞, v = 1 and b = c
2(S). Let ξ = (ξ1, . . . , ξn) be a random vector in R

n with i.i.d. com-
ponents of common variance 1. We consider the process defined on T by Xt = 〈t, ξ 〉 and note
that in this case, Z = supt∈T Xt = |�Sξ |2. Besides, by using Jensen’s inequality, we have

E[Z] = E

[√√√√√ D∑
j=1

〈uj , ξ 〉2

]
≤ √

D. (2.4)

The Gaussian case. Assume that the ξi are standard Gaussian random variables. On the one
hand, since supt∈T var(Xt ) = 1, we deduce from Sudakov and Cirel’son’s bound (1.6), together
with (2.4), that

P
(
Z ≥ √

D + √
2x

) ≤ e−x ∀x ≥ 0. (2.5)

On the other hand, since (1.5) holds with c = 0, for all s, t ∈ S and λ ≥ 0 ,

E
[
eλ(Xt−Xs)

] =
n∏

i=1

E
[
eλξi (ti−si )

] ≤
n∏

i=1

exp

[
λ2|ti − si |2

2

]

≤ exp

[
λ2|t − s|22

2

]
.

Consequently, (2.1) holds with c = 0 and one can apply Theorem 2.1 to get

P
[
Z ≥ κ

(√
D + √

x
)] ≤ P

(
Z ≥ κ

√
D + x

) ≤ e−x ∀x ≥ 0. (2.6)
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Apart from the numerical constants, it turns out that (2.5) and (2.6) are similar in this case.

The bounded case. Let us assume that the ξi take their values in [−a, a] for some a ≥ 1. We
can apply the bound given by Klein and Rio (2005) with v = 1 and c = a
2(S) in (1.7) which,
together with (2.4), gives, for a suitable constant C > 0,

P
[
Z ≥ C

(√
D + √

x + a
2(S)x
)] ≤ exp(−x) for all x ≥ 0. (2.7)

When the ξi are bounded, there are actually two ways of applying Theorem 2.1. One relies
on the fact that the random variables ±ξi satisfy (1.5) with v = 1 and c = a for all i. Hence,
whatever values are taken by s, t ∈ S and λ ≤ (a|s − t |∞)−1, we have

E
[
eλ(Xt−Xs)

] =
n∏

i=1

E
[
eλξi (ti−si )

] ≤
n∏

i=1

exp

[
λ2|ti − si |2

2(1 − λa|t − s|∞)

]

≤ exp

[
λ2|t − s|22

2(1 − λa|t − s|∞)

]

and since Assumption 2.1 holds with c = a, we get, from Theorem 2.1, that

P
[
Z ≥ κ

(√
D + √

x + a
2(S)x + a
2(S)D
)] ≤ e−x ∀x ≥ 0. (2.8)

Inequalities (2.7) and (2.8) essentially differ in that the latter involves the extra term a
2(S)D

whenever x ≤ D. In this case, we recover (2.7) only for those S bearing some specific metric
structure for which 
2(S) ≤ C′(a

√
D)−1 for some numerical constant C′ > 0.

The other way of using Theorem 2.1 is to note that the random variables ±ξi are sub-Gaussian
(because they are bounded) and therefore satisfy (1.5) with v = a and c = 0. By arguing as
in the Gaussian case, Assumption 2.1 holds with d(s, t) = a|s − t |2 for all s, t ∈ S, c = 0 and
Assumption 2.2 is fulfilled with v = a and b = 0. We deduce from Theorem 2.1 that

P
[
Z ≥ κ

(
a
√

D + a
√

x
)] ≤ e−x ∀x ≥ 0. (2.9)

Note that whenever a is not too large compared to 1, this bound improves (2.7) by avoiding the
linear term a
2(S)x.

2.2. A counterexample

In this section, we show that the supremum Z of a random process X = (Xt )t∈T satisfying (2.1)
may not concentrate around E(Z). More precisely, we will show that (1.7) could be false un-
der (2.1). A simple counterexample is the following. For D ≥ 1, let S = Span{e1, . . . , eD}, T be
the unit ball of S and X′ = (X′

t )t∈T the Gaussian process defined for t ∈ T by t �→ 〈t, ξ 〉, where ξ

is a standard Gaussian vector of R
n. For some p ∈ (0,1) to be chosen later, define X as either X′

with probability p or as the process X′′ identically equal to 0 with probability 1 − p. On the
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one hand, note that both processes X′ and X′′ satisfy (2.1) with c = 0, d(s, t) = |s − t |2 for all
s, t ∈ S and therefore so does X (for any p). On the other hand, since

E(Z) = pE

[
sup
t∈T

X′
t

]
= pE

[√√√√ D∑
i=1

ξ2
i

]
≤ p

√
D

and supt∈T var(Xt ) ≤ 1, (1.7) would imply that for some positive numerical constant C (which
we can take to be larger than 1 with no loss of generality) and all u ≥ 0,

P
[
Z ≥ Cp

√
D + C

(√
u + u

)] = pP

[√√√√ D∑
i=1

ξ2
i ≥ Cp

√
D + C

(√
u + u

)]

≤ e−u.

By choosing p = (2C)−1 ∈ (0,1) and u = log(2/p), we would get

P

[√√√√ 1

D

D∑
i=1

ξ2
i ≥ 1

2
+ C√

D

(√
log(2/p) + log(2/p)

)] ≤ 1

2
,

which is, of course, false by the law of large numbers for large values of D.

3. Applications to model selection in regression

Consider the regression framework given by (1.1) and assume that for some known non-negative
numbers σ and c,

logE[eλξi ] ≤ λ2σ 2

2(1 − |λ|c) for all λ ∈ (−1/c,1/c) and i = 1, . . . , n. (3.1)

Inequality (3.1) holds for a large class of distributions (once suitably centered) including
Gaussian, Poisson, Laplace and Gamma (among others). Besides, (3.1) is fulfilled when the ξi

satisfy (1.10) and therefore whenever these are bounded.
Our estimation strategy is based on model selection. We start with a (possibly large) collection

{Sm,m ∈ M} of linear subspaces (models) of R
n and associate to each of these the least-squares

estimators f̂m = �SmY . Given a penalty function, pen, from M to R+, we define the penalized
criterion crit(·) on M by

crit(m) = |Y − f̂m|22 + pen(m). (3.2)

In this section, we establish risk bounds for the estimator of f given by f̂m̂, where the index m̂

is selected from the data among M as any minimizer of crit(·).
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In the sequel, the penalty pen will be based on some a priori choice of non-negative numbers
{�m,m ∈ M} for which we set

� =
∑

m∈M
e−�m < +∞.

When � = 1, the choice of the �m can be viewed as that of a prior distribution on the mod-
els Sm. For related conditions and their interpretation, see Barron and Cover (1991) or Barron et
al. (1999).

In the following sections, we present some applications of our main result (to be presented in
Section 4.2) for some collections of linear spaces {Sm,m ∈ M} of interest.

3.1. Selecting among histogram-type estimators

For a partition m of {1, . . . , n}, Sm denotes the linear span of vectors of R
n, the coordinates of

which are constants on each element I of m. In the sequel, we shall restrict our attention to
partitions m whose elements consist of consecutive integers.

Consider a partition m of {1, . . . , n} and a collection M of partitions m such that Sm ⊂ Sm.
We obtain the following result.

Proposition 3.1. Let a, b > 0. Assume that

|I | ≥ a2 log2 n ∀I ∈ m. (3.3)

If, for some K > 1,

pen(m) ≥ Kκ2
(

σ 2 + 2c
(σ + c)(b + 2)

aκ

)
(|m| + �m) ∀m ∈ M, (3.4)

then the estimator f̂m̂ satisfies

E(|f − f̂m̂|22) ≤ C(K)
[

inf
m∈M

[E(|f − f̂m|22) + pen(m)] + R
]
, (3.5)

where C(K) is given by (4.4) and

R = κ2
(

σ 2 + 2c
(c + σ)(b + 2)

aκ

)
� + 2

(c + σ)2(b + 2)2

a2nb
.

Note that when c = 0, inequality (3.4) holds as soon as

pen(m) = Kκ2σ 2(|m| + �m) ∀m ∈ M. (3.6)

Besides, by taking a = (logn)−1, we see that condition (3.3) becomes automatically satisfied
and by letting b tend to +∞, inequality (3.5) holds with pen given by (3.6) and R = κ2σ 2�.



1074 Y. Baraud

The problem of selecting among histogram-type estimators in this regression setting has re-
cently been investigated in Sauvé (2008). Her selection procedure is similar to ours, but with
a different choice of penalty term. Unlike hers, our penalty does not involve any known upper
bound on |f |∞.

3.2. Families of piecewise polynomials

In this section, we assume that f = (F (x1), . . . ,F (xn)), where xi = i/n for i = 1, . . . , n and F

is an unknown function on (0,1]. Our aim is to estimate F by a piecewise polynomial of degree
not larger than d based on a data-driven choice of partition of (0,1].

In the sequel, we shall consider partitions m of {1, . . . , n} such that each element I ∈ m con-
sists of at least d + 1 consecutive integers. For such a partition, Sm denotes the linear span of
vectors of the form (P (1/n), . . . ,P (n/n)), where P varies among the space of piecewise poly-
nomials with degree not larger than d based on the partition of (0,1] given by{(

min I − 1

n
,

max I

n

]
, I ∈ m

}
.

Consider a partition m of {1, . . . , n} and a collection M of partitions m such that Sm ⊂ Sm. We
obtain the following result.

Proposition 3.2. Let a, b > 0. Assume that

|I | ≥ (d + 1)a2 log2 n ≥ d + 1 ∀I ∈ m. (3.7)

If, for some K > 1,

pen(m) ≥ Kκ2
(

σ 2 + c
4
√

2(σ + c)(d + 1)(b + 2)

aκ

)
(Dm + �m) ∀m ∈ M,

then the estimator f̂m̂ satisfies (3.5) with

R = κ2
(

σ 2 + c
4
√

2(σ + c)(d + 1)(b + 2)

aκ

)
� + 4

(c + σ)2(b + 2)2

a2nb
.

3.3. Families of trigonometric polynomials

We assume that f has the same form as in Section 3.2. Here, our aim is to estimate F by a trigono-
metric polynomial of degree not larger than some D ≥ 0.

Consider the (discrete) trigonometric system {φj }j≥0 of vectors in R
n defined by

φ0 = (
1/

√
n, . . . ,1/

√
n
)
,

φ2j−1 =
√

2

n
(cos(2πjx1), . . . , cos(2πjx1)) ∀j ≥ 1,
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φ2j =
√

2

n
(sin(2πjx1), . . . , sin(2πjx1)) ∀j ≥ 1.

Let M be a family of subsets of {0, . . . ,2D}. For m ∈ M, we define Sm to be the linear span of
the φj with j ∈ m (with the convention that Sm = {0} when m = ∅).

Proposition 3.3. Let a, b > 0. Assume that 2D + 1 ≤ √
n/(a logn). If, for some K > 1,

pen(m) ≥ Kκ2
(

σ 2 + 4c(c + σ)(b + 2)

a

)
(Dm + �m) ∀m ∈ M,

then f̂m̂ satisfies (3.5) with

R = κ2
(

σ 2 + 4c(c + σ)(b + 2)

a

)
� + 4(b + 2)2(c + σ)2

a2(2D + 1)nb
.

4. Toward a more general result

We consider the statistical framework presented in Section 3 and give a general result that al-
lows Propositions 3.1, 3.2 and 3.3 to be handled simultaneously. It will rely on some geometric
properties of the linear spaces Sm that we describe below.

4.1. Some metric quantities

Let S be a linear subspace of R
n. We associate with S the following quantities:


2(S) = max
i=1,...,n

|�Sei |2 and 
∞(S) = max
i=1,...,n

|�Sei |1. (4.1)

It is not difficult to see that these quantities can be interpreted in terms of norm relations, more
precisely,


2(S) = sup
t∈S\{0}

|t |∞
|t |2 and 
∞(S) = sup

t∈Rn\{0}
|�St |∞

|t |∞ .

Clearly, 
2(S) ≤ 1. Besides, since |x|1 ≤ √
n|x|2 for all x ∈ R

n, 
∞(S) ≤ √
n
2(S). Neverthe-

less, these bounds can be rather rough and turn out to be much smaller for the linear spaces Sm

presented in Sections 3.1, 3.2 and 3.3.

4.2. The main result

Let {Sm,m ∈ M} be a family of linear spaces and {�m,m ∈ M} a family of non-negative
weights. We define Sn = ∑

m∈M Sm and


∞ =
(

sup
m,m′∈M


∞(Sm + Sm′)
)

∨ 1.
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Theorem 4.1. Let K > 1 and z ≥ 0. Assume that for all i = 1, . . . , n, inequality (3.1) holds. Let
pen be some penalty function satisfying

pen(m) ≥ Kκ2
(

σ 2 + 2cu

κ

)
(Dm + �m) ∀m ∈ M, (4.2)

where

u = (c + σ)
∞
2(Sn) log(n2ez). (4.3)

If one selects m̂ among M as any minimizer of crit(·) defined by (3.2), then

E[|f − f̂m̂|22] ≤ C(K)
[

inf
m∈M

(
E[|f − f̂m|22] + pen(m)

) + R
]
,

where

C(K) = K(K2 + K − 1)

(K − 1)3
(4.4)

and R = κ2(σ 2 + 2κ−1cu)� + 2u2

−2
∞ e−z.

When c = 0, we derive the following corollary by letting z grow toward infinity.

Corollary 4.1. Let K > 1. Assume that the ξi for i = 1, . . . , n satisfy inequality (3.1) with c = 0.
If one selects m̂ among M as a minimizer of crit defined by (3.2), with pen satisfying

pen(m) ≥ Kκ2σ 2(Dm + �m) ∀m ∈ M,

then

E[|f − f̂m̂|22] ≤ K(K2 + K − 1)

(K − 1)3
inf

m∈M

(
E[|f − f̂m|22] + pen(m)

) + R,

where R = K3(K − 1)−2κ2σ 2�.

5. Proofs

We start with the following result, generalizing Theorem 2.1 when d and δ are not induced by
norms. We assume that T is finite and take numbers v and b such that

sup
s∈T

d(s, t0) ≤ v, sup
s∈T

cδ(s, t0) ≤ b. (5.1)

We now consider a family of finite partitions (Ak)k≥0 of T such that A0 = {T } and, for k ≥ 1
and A ∈ Ak ,

d(s, t) ≤ 2−kv and cδ(s, t) ≤ 2−kb ∀s, t ∈ A.
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Besides, we assume that Ak ⊂ Ak−1 for all k ≥ 1, which means that all elements A ∈ Ak are
subsets of an element of Ak−1. Finally, we define, for k ≥ 0,

Nk = |Ak+1||Ak|.

Theorem 5.1. Let T be some finite set. Under Assumption 2.1,

P
(
Z ≥ H + 2

√
2v2x + 2bx

) ≤ e−x ∀x > 0, (5.2)

where

H =
∑
k≥0

2−k
(
v

√
2 log(2k+1Nk) + b log(2k+1Nk)

)
.

Moreover,

P
(
Z ≥ H + 2

√
2v2x + 2bx

) ≤ 2e−x ∀x > 0. (5.3)

The quantity H can be related to the entropies of T with respect to the distances d and cδ

(when c �= 0) in the following way. We first recall that for a distance e(·, ·) on T and ε > 0,
the entropy H(T , e, ε) is defined as the logarithm of the minimum number of balls of ra-
dius ε with respect to e which are necessary to cover T . For ε > 0, let us set H(T , ε) =
max{H(T ,d, εv),H(T , cδ, εb)}. Note that H(T , ε) = 0 for ε > 1 because of (5.1). For ε < 1,
one can bound H(T , ε) from above as follows. For k ≥ 0, each element A of the partition Ak+1
is both a subset of a ball of radius 2−(k+1)v with respect to d and of a ball of radius 2−(k+1)b

with respect to cδ. Since |Ak+1| ≤ Nk , we obtain, for all ε ∈ [2−(k+1),2−k), H(T , ε) ≤ logNk

and by integrating with respect to ε and summing over k ≥ 0, we get

∫ 1

0

(√
2v2H(T , ε) + bH(T , ε)

)
dε ≤ H.

5.1. Proof of Theorem 5.1

Note that we obtain (5.3) by using (5.2) twice (first with Xt and then with −Xt ). Let us now
prove (5.2). For each k ≥ 1 and A ∈ Ak , we choose some arbitrary element tk(A) in A. For each
t ∈ T and k ≥ 1, there exists a unique A ∈ Ak such that t ∈ A and we set πk(t) = tk(A). When
k = 0, we set π0(t) = t0.

We consider the (finite) decomposition

Xt − Xt0 =
∑
k≥0

Xπk+1(t) − Xπk(t)

and set, for k ≥ 0,

zk = 2−k
(
v

√
2
(
log(2k+1Nk) + x

) + b
(
log(2k+1Nk) + x

))
.



1078 Y. Baraud

Since
∑

k≥0 zk ≤ z = H + 2v
√

2x + 2bx, we have

P(Z ≥ z) ≤ P
(∃t,∃k ≥ 0,Xπk+1(t) − Xπk(t) ≥ zk

)
≤

∑
k≥0

∑
(s,u)∈Ek

P(Xu − Xs ≥ zk),

where

Ek = {(πk(t),πk+1(t)) | t ∈ T }.
Since Ak+1 ⊂ Ak , it follows that πk(t) and πk+1(t) belong to a same element of Ak and therefore
d(s,u) ≤ 2−kv and cδ(s, u) ≤ 2−kb for all pairs (s, u) ∈ Ek . Besides, under Assumption 2.1, the
random variable X = Xu − Xs with (s, u) ∈ Ek is centered and satisfies (1.5) with 2−kv and
2−kb in place of v and c, respectively. Hence, by using Bernstein’s inequality (1.3), we get, for
all (s, u) ∈ Ek and k ≥ 0,

P(Xu − Xs ≥ zk) ≤ 2−(k+1)N−1
k e−x ≤ 2−(k+1)|Ek|−1e−x.

Finally, we obtain inequality (5.2) by summing this inequality over (s, u) ∈ Ek and k ≥ 0.

5.2. Proof of Theorem 2.1

We only prove (2.2), the argument for proving (2.3) being the same as that for proving (5.3).
For t ∈ S and r > 0, we denote by B2(t, r) and B∞(t, r) the balls centered at t and of radius r

associated with ‖ · ‖2 and ‖ · ‖∞, respectively. In the sequel, we shall use the following result on
the entropy of those balls.

Proposition 5.1. Let ‖ · ‖ be an arbitrary norm on S and B(0,1) the corresponding unit ball.
For each δ ∈ (0,1], the minimum number N (δ) of balls of radius δ (with respect to ‖ · ‖) which
are necessary to cover B(0,1) satisfies

N (δ) ≤ (1 + 2δ−1)D.

The proof of this classical lemma can be found in Birgé (1983) (Lemma 4.5, page 209). Let us
now turn to the proof of (2.2). Note that it is enough to prove that for some u < H + 2

√
2v2x +

2bx and all finite sets T satisfying inequalities (2.1) and (5.1),

P

(
sup
t∈T

(Xt − Xt0) > u
)

≤ e−x.

Indeed, for any sequence (Tn)n≥0 of finite subsets of T increasing toward T , that is, satisfying
Tn ⊂ Tn+1 for all n ≥ 0 and

⋃
n≥0 Tn = T , the sets

{
sup
t∈Tn

(Xt − Xt0) > u
}
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increase (in the sense of inclusion) toward {Z > u}. Therefore,

P(Z > u) = lim
n→+∞ P

(
sup
t∈Tn

(Xt − Xt0) > u
)
.

Consequently, we shall hereafter assume that T is finite.
For k ≥ 0 and j ∈ {2,∞}, define the sets Aj,k as follows. We first consider the case j = 2. For

k = 0, A2,0 = {T }. By applying Proposition 5.1 with ‖ · ‖ = ‖ · ‖2/v and δ = 1/4, we can cover
T ⊂ B2(t0, v) with at most 9D balls of radius v/4. From such a finite covering {B1, . . . ,BN }
with N ≤ 9D , it is easy to derive a partition A2,1 of T by at most 9D sets of diameter not larger
than v/2. Indeed, A2,1 can consist merely of the non-empty sets among the family

{(
Bk \

⋃
1≤�<k

B�

)
∩ T , k = 1, . . . ,N

}

(with the convention that
⋃

∅
= ∅). Then, for k ≥ 2, we proceed by induction, using Proposi-

tion 5.1 repeatedly. Each element A ∈ A2,k−1 is a subset of a ball of radius 2−kv and can be
partitioned, similarly as before, into 5D subsets of balls of radius 2−(k+1)v. By doing so, the
partitions A2,k with k ≥ 1 satisfy A2,k ⊂ A2,k−1, |A2,k| ≤ (1.8)D × 5kD and, for all A ∈ A2,k ,

sup
s,t∈A

‖s − t‖2 ≤ 2−kv.

Let us now turn to the case j = +∞. If c > 0, define the partitions A∞,k in exactly the same
way as we did for the A2,k . Similarly, the partitions A∞,k with k ≥ 1 satisfy A∞,k ⊂ A∞,k−1,
|A∞,k| ≤ (1.8)D × 5kD and for all A ∈ A∞,k ,

sup
s,t∈A

c‖s − t‖∞ ≤ 2−kb.

When c = 0, we simply take A∞,k = {T } for all k ≥ 0 and note that the properties above are also
fulfilled.

Finally, define the partition Ak for k ≥ 0 as that generated by A2,k and A∞,k , that is,

Ak = {A2 ∩ A∞ | A2 ∈ A2,k,A∞ ∈ A∞,k}.

Clearly, Ak+1 ⊂ Ak . Besides, |A0| = 1 and for k ≥ 1,

|Ak| ≤ |A2,k||A∞,k| ≤ (1.8)2D × 52kD.

The set T being finite, we can apply Theorem 5.1. Actually, our construction of the Ak allows
us to slightly improve on the constants. Going back to the proof of Theorem 5.1, we note that

|Ek| =
∣∣{(πk(t),πk+1(t)) | t ∈ T }∣∣ ≤ |Ak+1| ≤ 92D × 52kD
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since the element πk+1(t) determines πk(t) in a unique way. This means that one can take Nk =
92D × 52kD in the proof of Theorem 5.1. Adopting the notation of Theorem 5.1, we have

H ≤
∑
k≥0

2−k
[
v

√
2 log(2k+1 × 92D × 52kD) + b log(2k+1 × 92D × 52kD)

]

< 14
√

Dv2 + 18Db

and using the concavity of x �→ √
x, we get

H + 2
√

2v2x + 2bx ≤ 14
√

Dv2 + 2
√

2v2x + 18b(D + x)

≤ 18
(√

v2(D + x) + b(D + x)
)
,

which leads to the result.

5.3. Control of χ2-type random variables

We have the following result.

Theorem 5.2. Let S be some linear subspace of R
n with dimension D. If the coordinates of ξ

are independent and satisfy (3.1), then for all x,u > 0,

P

[
|�Sξ |22 ≥ κ2

(
σ 2 + 2cu

κ

)
(D + x), |�Sξ |∞ ≤ u

]
≤ e−x (5.4)

with κ = 18 and

P(|�Sξ |∞ ≥ x) ≤ 2n exp

[
− x2

2
2
2(S)(σ 2 + cx)

]
, (5.5)

where 
2(S) is defined by (4.1).

Proof. Let us set χ = |�Sξ |2. For t ∈ S, let Xt = 〈ξ, t〉 and t0 = 0. It follows from the indepen-
dence of the ξi and inequality (3.1) that (2.1) holds with d(t, s) = σ |t − s|2 and δ(t, s) = |t − s|∞
for all s, t ∈ S. The random variable χ equals the supremum of the Xt when t varies within
the unit ball of S. Besides, the supremum is achieved for t̂ = �Sξ/χ and thus, on the event
{χ ≥ z, |�Sξ |∞ ≤ u},

χ = sup
t∈T

Xt with T = {t ∈ S, |t |2 ≤ 1, |t |∞ ≤ uz−1},

leading to the bound

P(χ ≥ z, |�Sξ |∞ ≤ u) ≤ P

(
sup
t∈T

Xt ≥ z
)
.
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We take z = κ
√

(σ 2 + 2cuκ−1)(D + x) and (using the concavity of x �→ √
x) note that

z ≥ κ
(√

σ 2(D + x) + cuz−1(D + x)
)
.

Then, by applying Theorem 2.1 with v = σ , b = cu/z, we obtain (5.4).
Let us now turn to (5.5). Under (3.1), we can apply Bernstein’s inequality (1.3) to X = 〈ξ, t〉

and X = 〈 − ξ, t〉 with t ∈ S, v2 = σ 2|t |22 and c|t |∞ in place of c and get, for all t ∈ S and x > 0,

P(|〈ξ, t〉| ≥ x) ≤ 2 exp

[
− x2

2(σ 2|t |22 + c|t |∞x)

]
. (5.6)

Let us take t = �Sei with i ∈ {1, . . . , n}. Since |t |2 ≤ 
2(S) and

|t |∞ = max
i,i′=1,...,n

|〈�Sei, ei′ 〉| = max
i,i′=1,...,n

|〈�Sei,�Sei′ 〉| ≤ 
2
2(S)

for all i ∈ {1, . . . , n}, we have

P(|〈�Sξ, ei〉| ≥ x) ≤ 2 exp

[
− x2

2
2
2(S)(σ 2 + cx)

]
.

We obtain (5.5) by summing these probabilities for i = 1, . . . , n. �

5.4. Proof of Theorem 4.1

Let us fix some m ∈ M. It follows by simple algebra and the inequality crit(m̂) ≤ crit(m) that

|f − f̂m̂|22 ≤ |f − f̂m|22 + 2〈ξ, f̂m̂ − f̂m〉 + pen(m) − pen(m̂).

Using the elementary inequality 2ab ≤ a2 + b2 for all a, b ∈ R, we have, for K > 1,

2〈ξ, f̂m̂ − f̂m〉 ≤ 2|f̂m̂ − f̂m|2|�Sm+Sm̂
ξ |2

≤ K−1
[(

1 + K − 1

K

)
|f̂m̂ − f |22 +

(
1 + K

K − 1

)
|f − f̂m|22

]

+ K|�Sm+Sm̂
ξ |22

and we derive

(K − 1)2

K2
|f − f̂m̂|22 ≤ K2 + K − 1

K(K − 1)
|f − f̂m|22 + K|�Sm+Sm̂

ξ |22 − (
pen(m̂) − pen(m)

)

≤ K2 + K − 1

K(K − 1)
|f − f̂m|22 + pen(m)

+ K|�Sm+Sm̂
ξ |22 − (

pen(m̂) + pen(m)
)
.
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Setting

A1(m̂) = Kκ2
(

σ 2 + 2cu

κ

)( |�Sm+Sm̂
ξ |22

κ2(σ 2 + 2cu/κ)
− Dm̂ − Dm − �m̂ − �m

)
+

× 1{|�Sm+Sm̂
ξ |∞ ≤ u},

A2(m̂) = K|�Sm+Sm̂
ξ |221{|�Sm+Sm̂

ξ |∞ ≥ u}
and using (4.2), we deduce that

(K − 1)2

K2
|f − f̂m̂|22 ≤ K2 + K − 1

K(K − 1)
|f − f̂m|22 + pen(m) + A1(m̂) + A2(m̂),

and by taking the expectation on both sides, we get

(K − 1)2

K2
E[|f − f̂m̂|22] ≤ K2 + K − 1

K(K − 1)
E[|f − f̂m|22] + pen(m) + E[A1(m̂)] + E[A2(m̂)].

The index m being arbitrary, it remains to bound E1 = E[A1(m̂)] and E2 = E[A2(m̂)] from
above.

Let m′ be some deterministic index in M. By using Theorem 5.2 with S = Sm + Sm′ , the
dimension of which is not larger than Dm + Dm′ , and integrating (5.4) with respect to x, we get

E[A(m′)] ≤ Kκ2
(

σ 2 + 2cu

κ

)
e−�m−�m′

and thus

E1 ≤
∑

m′∈M
E[A(m′)] ≤ Kκ2

(
σ 2 + 2cu

κ

)
�.

Let us now turn to E[A2(m̂)]. By using the fact that Sm̂ + Sm ⊂ Sn, we have |�Sm̂+Smξ |22 ≤
|�Sn

ξ |22 ≤ n|�Sn
ξ |2∞. Besides, it follows from the definition of 
∞ that

|�Sm̂+Smξ |∞ = |�Sm̂+Sm�Sn
ξ |∞ ≤ 
∞|�Sn

ξ |∞.

Therefore, setting x0 = 

−1
∞ u, we have

E2 ≤ KnE[|�Sn
ξ |2∞1{|�Sn

ξ |∞ ≥ x0}].
We shall now use the following lemma, the proof of which can be found in Baraud (2009).

Lemma 5.1. Let X be some non-negative random variable satisfying, for all x > 0,

P(X ≥ x) ≤ a exp[−φ(x)] with φ(x) = x2

2(α + βx)
, (5.7)
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where a,α > 0 and β ≥ 0. For x0 > 0 such that φ(x0) ≥ 1, we have

E[Xp1{X ≥ x0}] ≤ ax
p

0 e−φ(x0)

(
1 + ep!

φ(x0)

)
∀p ≥ 1.

We apply the lemma with p = 2 and X = |�Sn
ξ |∞, for which we know, from (5.5), that (5.7)

holds with a = 2n, α = 
2
2(S)σ 2 and β = 
2

2(S)c. Besides, it follows from the definition of x0
and the fact that n ≥ 2 that

φ(x0) = x2
0

2
2
2(S)(σ 2 + cx0)

≥ log(n2ez) ≥ 1.

The assumptions of Lemma 5.1 being checked, we deduce that E2 ≤ 2Kx2
0 e−z and conclude the

proof by combining these upper bounds on E1 and E2.

5.5. Elements of the proofs of Propositions 3.1, 3.2 and 3.3

The proofs of Propositions 3.1, 3.2 and 3.3 derive from the proposition below, which allows

2(S) and 
∞(S) to be bounded under suitable assumptions on an orthonormal basis of S. We
only give the proof of this proposition and refer the reader to Baraud (2009) for the complete
proofs of Propositions 3.1, 3.2 and 3.3.

Proposition 5.2. Let P be some partition of {1, . . . , n}, J some non-empty index set and

{φj,I , (j, I ) ∈ J × P }
an orthonormal system such that for some � > 0 and all I ∈ P ,

sup
j∈J

|φj,I |∞ ≤ �√|I | and < φj,I , ei〉 = 0 ∀i /∈ I.

If S is the linear span of the φj,I with (j, I ) ∈ J × P , then


2
2(S) ≤

( |J |�2

minI∈P |I |
)

∧ 1 and 
∞(S) ≤ (|J |�2) ∧ (√
n
2(S)

)
.

Proof. We have already seen that 
2(S) ≤ 1 and 
∞(S) ≤ √
n
2(S), so it only remains to

show that


2
2(S) ≤ |J |�2

minI∈P |I | and 
∞(S) ≤ |J |�2.

Let i = 1, . . . , n. There exists some unique I ∈ P such that i ∈ I and since 〈φj,I ′ , ei〉 = 0 for all
I ′ �= I , �Sei = ∑

j∈J 〈ei, φj,I 〉φj,I . Consequently,

|�Sei |22 =
∑
j∈J

〈ei, φj,I 〉2 ≤ |J |�2

|I | ≤ |J |�2

minI∈P |I |
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and

|�Sei |1 =
∑
i′∈I

∣∣∣∣∑
j∈J

〈ei, φj,I 〉〈ei′ , φj,I 〉
∣∣∣∣ ≤ |I | |J |�2

|I | ≤ |J |�2.

The proof is completed since i is arbitrary. �
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