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In this paper, we investigate the problem of nonparametric monotone frontier estimation from the perspec-
tive of extreme value theory. This enables us to revisit the asymptotic theory of the popular free disposal hull
estimator in a more general setting, to derive new and asymptotically Gaussian estimators and to provide
useful asymptotic confidence bands for the monotone boundary function. The finite-sample behavior of the
suggested estimators is explored via Monte Carlo experiments. We also apply our approach to a real data
set based on the production activity of the French postal services.
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1. Introduction

In production theory and efficiency analysis, there is sometimes the need to estimate the bound-
ary of a production set (the set of feasible combinations of inputs and outputs). This boundary
(the production frontier) represents the set of optimal production plans so that the efficiency of
a production unit (a firm, for example) is obtained by measuring the distance from this unit to
the estimated production frontier. Parametric approaches rely on parametric models for the fron-
tier and the underlying stochastic process, whereas nonparametric approaches offer much more
flexible models for the data-generating process (see, for example, [4] for recent surveys on this
topic).

Formally, in this paper, we consider technologies where x ∈ R
p
+, a vector of production fac-

tors (inputs) is used to produce a single quantity (output) y ∈ R+. The attainable production set is
then defined, in standard microeconomic theory, as T = {(x, y) ∈ R

p
+ × R+ | x can produce y}.

Assumptions are usually made on this set, such as free disposability of inputs and outputs, mean-
ing that if (x, y) ∈ T, then (x′, y′) ∈ T for any (x′, y′) such that x′ ≥ x (this inequality must
be understood componentwise) and y′ ≤ y. To the extent that the efficiency of a firm is a con-
cern, the boundary of T is of interest. The efficient boundary (or production frontier) of T is
the locus of optimal production plans (maximal achievable output for a given level of inputs).
In our setup, the production frontier is represented by the graph of the production function
φ(x) = sup{y | (x, y) ∈ T}. The economic efficiency score of a firm operating at the level (x, y)

is then given by the ratio φ(x)/y.
Cazals et al. [2] proposed a probabilistic interpretation of the production frontier. Let T be the

support of the joint distribution of a random vector (X,Y ) ∈ R
p
+ × R+ and let (�, A,P) be the

probability space on which the vector of inputs X and the output Y are defined. The distribution
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function of (X,Y ) can be denoted F(x, y) and F(·|x) = F(x, ·)/FX(x) will be used to denote
the conditional distribution function of Y given X ≤ x, with FX(x) = F(x,∞) > 0. It has been
proven in [2] that

ϕ(x) = sup{y ≥ 0 | F(y|x) < 1}
is a monotone non-decreasing function with x. So, for all x′ ≥ x with respect to the partial order,
ϕ(x′) ≥ ϕ(x). The graph of ϕ is the smallest non-decreasing surface which is greater than or
equal to the upper boundary of T. Further, it has been shown that under the free disposability
assumption, ϕ ≡ φ, that is, the graph of ϕ coincides with the production frontier.

Since T is unknown, it must be estimated from a sample of i.i.d. firms Xn = {(Xi, Yi) | i =
1, . . . , n}. The free disposal hull (FDH) T̂FDH = {(x, y) ∈ R

p+1
+ | y ≤ Yi, x ≥ Xi, i = 1, . . . , n}

of Xn was introduced by [7]. The resulting FDH estimator of ϕ(x) is

ϕ̂1(x) = sup{y ≥ 0 | F̂ (y|x) < 1} = max
i : Xi≤x

Yi,

where F̂ (y|x) = F̂n(x, y)/F̂X(x) with F̂n(x, y) = (1/n)
∑n

i=1 1(Xi ≤ x,Yi ≤ y) and F̂X(x) =
F̂n(x,∞). This estimator represents the lowest monotone step function covering all of the data
points (Xi, Yi). The asymptotic behavior of ϕ̂1(x) was first derived by [13] for the consistency
and by [12,14] for the asymptotic sampling distribution. To summarize, under regularity condi-
tions, the FDH estimator ϕ̂1(x) is consistent and converges to a Weibull distribution with some
unknown parameters. In Park et al. [14], the obtained convergence rate n−1/(p+1) requires that
the joint density of (X,Y ) has a jump at its support boundary. In addition, the estimation of the
parameters of the Weibull distribution requires the specification of smoothing parameters and
the resulting procedure has very poor accuracy. In Hwang et al. [12], the convergence of ϕ̂1(x)

to the Weibull distribution was established in a general case where the density of (X,Y ) may
decrease to zero or increase toward infinity at a speed of power β (β > −1) of the distance from
the frontier. They obtain the convergence rate n−1/(β+2) and extend the particular result of Park
et al. [14] where β = 0, but their result is only derived in the simple case of one-dimensional
inputs (p = 1), which may be of less interest in practice.

In this paper, we first analyze the properties of the FDH estimator from an extreme value theory
perspective. In doing so, we generalize and extend the results of Park et al. [14] and Hwang et
al. [12] in at least three directions. First, we provide the necessary and sufficient condition for
the FDH estimator to converge in distribution and we specify the asymptotic distribution with
the appropriate rate of convergence. We also provide a limit theorem for moments in a general
framework. Second, we show how the unknown parameter ρx > 0, involved in the necessary
and sufficient extreme value conditions, is linked to the dimension p + 1 of the data and to the
shape parameter β > −1 of the joint density: in the general setting where p ≥ 1 and β = βx

may depend on x, we obtain, under a convenient regularity condition, the general convergence
rate n−1/ρx = n−1/(βx+p+1) of the FDH estimator ϕ̂1(x). Third, we suggest a strongly consistent
and asymptotically normal estimator of the unknown parameter ρx of the asymptotic Weibull
distribution of ϕ̂1(x). This also answers the important question of how to estimate the shape
parameter βx of the joint density of (X,Y ) when it approaches the frontier of the support T.
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By construction, the FDH estimator is very non-robust to extremes. Recently, Aragon et al. [1]
constructed an original estimator of ϕ(x), which is more robust than ϕ̂1(x), but which keeps the
same limiting Weibull distribution as ϕ̂1(x) under the restrictive condition β = 0. In this paper,
we provide further insights and generalize their main result. We also suggest attractive estimators
of ϕ(x) converging to a normal distribution, which appear to be robust to outliers. The paper is
organized as follows. Section 2 presents the main results of the paper. Section 3 illustrates how
the theoretical asymptotic results behave in finite-sample situations and gives an example with
a real data set on the production activity of the French postal services. Section 4 concludes the
paper, with proofs deferred for the Appendix.

2. The main results

From now on, we assume that x ∈ R
p
+ such that FX(x) > 0 and will denote by ϕα(x) and ϕ̂α(x),

respectively, the α-quantiles of the distribution function F(·|x) and its empirical version F̂ (·|x),

ϕα(x) = inf{y ≥ 0 | F(y|x) ≥ α} and ϕ̂α(x) = inf{y ≥ 0 | F̂ (y|x) ≥ α}
with α ∈]0,1]. When α ↑ 1, the conditional quantile ϕα(x) tends to ϕ1(x), which coincides with
the frontier function ϕ(x). Likewise, ϕ̂α(x) tends to the FDH estimator ϕ̂1(x) of ϕ(x) as α ↑ 1.

2.1. Asymptotic Weibull distribution

We first derive the following interesting results on the problem of convergence in distribution of
suitably normalized maxima b−1

n (ϕ̂1(x) − ϕ(x)). We will denote by �(·) the gamma function.

Theorem 2.1. (i) If there exist bn > 0 and some non-degenerate distribution function Gx such
that

b−1
n

(
ϕ̂1(x) − ϕ(x)

) d−→ Gx, (2.1)

then Gx(y) coincides with 	ρx (y) = exp{−(−y)ρx } with support ]−∞,0] for some ρx > 0.

(ii) There exists bn > 0 such that b−1
n (ϕ̂1(x) − ϕ(x)) converges in distribution if and only if

lim
t→∞

{
1 − F

(
ϕ(x) − 1/tz | x)}

/
{
1 − F

(
ϕ(x) − 1/t | x)} = z−ρx for all z > 0 (2.2)

(regular variation with exponent − ρx, notation 1 − F(ϕ(x) − 1
t
| x) ∈ RV−ρx ).

In this case, the norming constants bn can be chosen as bn = ϕ(x) − ϕ1−(1/nFX(x))(x).

(iii) Given (2.2), limn→∞ E{b−1
n (ϕ(x) − ϕ̂1(x))}k = �(1 + kρ−1

x ) for all integers k ≥ 1 and

lim
n→∞ P

[
ϕ̂1(x) − E(ϕ̂1(x))

{Var(ϕ̂1(x))}1/2
≤ y

]

= 	ρx [{�(1 + 2ρ−1
x ) − �2(1 + ρ−1

x )}1/2y − �(1 + ρ−1
x )].
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Remark 2.1. Since the function t 
→ FX(x)[1 − F(ϕ(x) − 1
t

| x)] ∈ RV−ρx (regularly varying
in t → ∞) by (2.2), this function can be represented as t−ρx Lx(t) with Lx(·) ∈ RV0 (Lx be-
ing slowly varying) and so the extreme value condition (2.2) holds if and only if we have the
following representation:

FX(x)[1 − F(y|x)] = Lx

({ϕ(x) − y}−1)(ϕ(x) − y
)ρx as y ↑ ϕ(x). (2.3)

In the particular case where Lx({ϕ(x)−y}−1) = 
x is a strictly positive function in x, it is shown
in the next corollary that bn ∼ (n
x)

−1/ρx . From now on, a random variable W is said to follow
the distribution Weibull(1, ρx) if Wρx is exponential with parameter 1.

Corollary 2.1. Given (2.3) or, equivalently, (2.2) with Lx({ϕ(x) − y}−1) = 
x > 0, we have

(n
x)
1/ρx

(
ϕ(x) − ϕ̂1(x)

) d−→ Weibull(1, ρx) as n → ∞.

Remark 2.2. Park et al. [14] and Hwang et al. [12] have obtained similar results under more
restrictive conditions. Indeed, a unified formulation of the assumptions used in [12,14] can be
expressed as

f (x, y) = cx{ϕ(x) − y}β + o
({ϕ(x) − y}β)

as y ↑ ϕ(x), (2.4)

where f (x, y) is the joint density of (X,Y ), β is a constant satisfying β > −1 and cx is a strictly
positive function in x. Under the restrictive condition that f is strictly positive on the frontier
(that is, β = 0), Park et al. [14], among others, have obtained the limiting Weibull distribution
of the FDH estimator with the convergence rate n−1/(p+1). When β may be non-null, Hwang et
al. [12] have obtained the asymptotic Weibull distribution with the convergence rate n−1/(β+2)

in the simple case p = 1 (here, it is also assumed that (2.4) holds uniformly in a neighborhood of
the point at which we want to estimate ϕ(·), and that this frontier function is strictly increasing
in that neighborhood and satisfies a Lipschitz condition of order 1). In the general setting where
p ≥ 1 and β = βx > −1 may depend on x, we have the following, more general, result, which
involves the link between the tail index ρx , the data dimension p + 1 and the shape parameter βx

of the joint density near the boundary.

Corollary 2.2. If the condition of Corollary 2.1 holds with F(x, y) being differentiable near the
frontier (that is, 
x > 0, ρx > p and ϕ(x) are differentiable in x with first partial derivatives of
ϕ(x) being strictly positive), then (2.4) holds with β = βx = ρx − (p + 1) and we have

(n
x)
1/(βx+p+1)

(
ϕ(x) − ϕ̂1(x)

) d−→ Weibull(1, βx + p + 1) as n → ∞.

Remark 2.3. We assume the differentiability of the functions 
x , ρx with ρx > p and ϕ(x)

in order to ensure the existence of the joint density near its support boundary. We distinguish
between three different behaviors of this density at the frontier point (x,ϕ(x)) ∈ R

p+1 based on
how the value of ρx compares to the dimension (p+1): when ρx > p+1, the joint density decays
to zero at a speed of power ρx − (p + 1) of the distance from the frontier; when ρx = p + 1,
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the density has a sudden jump at the frontier; when ρx < p + 1, the density increases toward
infinity at a speed of power ρx − (p + 1) of the distance from the frontier. The case ρx ≤ p + 1
corresponds to sharp or fault-type frontiers.

Remark 2.4. As an immediate consequence of Corollary 2.2, when p = 1 and βx = β (or,
equivalently, ρx = ρ) does not depend on x, we obtain the convergence in distribution of the
FDH estimator, as in Hwang et al. [12] (see Remark 2.2), with the same convergence rate
n−1/(β+2) (in the notation of [12], Theorem 1, μ(x) = 
x(β + 2)ϕ′(x) = 
xρxϕ

′(x)). In the
other particular case where the joint density is strictly positive on the frontier, we achieve the
best rate of convergence n−1/(p+1), as in Park et al. [14] (in the notation of Theorem 3.1 in [14],
μNW,0/y = 


1/(p+1)
x = 


1/ρx
x ).

Note, also, that the condition (2.4) with β = βx > −1 (as in Corollary 2.2) has been considered
by [8,10,11]. In Section 2.3, we answer the important question of how to estimate the shape
parameter βx in (2.4) or, equivalently, the regular variation exponent ρx in (2.2).

As an immediate consequence of Theorem 2.1(iii) in conjunction with Corollary 2.2, we obtain

E{ϕ(x) − ϕ̂1(x)}k = k{βx + p + 1}−1{n
x}−k/(βx+p+1)�(k{βx + p + 1}−1)
(2.5)

+ o
(
n−k/(βx+p+1)

)
.

This extends the limit theorem of moments of Park et al. ([14], Theorem 3.3) to the more general
setting where βx may be non-null. Likewise, Hwang et al. ([12], Remark 1) provide (2.5) only
for k ∈ {1,2}, p = 1 and βx = β . The result (2.5) also reflects the well-known curse of dimen-
sionality from which the FDH estimator ϕ̂1(x) suffers as the number p of inputs-usage increases,
as pointed out earlier by Park et al. [14] in the particular case where βx = 0.

2.2. Robust frontier estimators

By an appropriate choice of α as a function of n, Aragon et al. [1] have shown that ϕ̂α(x)

estimates the full frontier ϕ(x) itself and converges to the same Weibull distribution as the FDH
ϕ̂1(x) under the restrictive conditions of [14]. The next theorem provides further insights and
generalizes their main result.

Theorem 2.2.

(i) If b−1
n (ϕ̂1(x) − ϕ(x))

d−→ Gx , then for any fixed integer k ≥ 0,

b−1
n

(
ϕ̂1−k/(nF̂X(x))

(x) − ϕ(x)
) d−→ Hx as n → ∞

for the distribution function Hx(y) = Gx(y)
∑k

i=0(− logGx(y))i/i!.
(ii) Suppose that the upper bound of the support of Y is finite. If b−1

n (ϕ̂1(x) − ϕ(x))
d−→ Gx ,

then b−1
n (ϕ̂αn(x)−ϕ(x))

d−→ Gx for all sequences αn → 1 satisfying nb−1
n (1 −αn) → 0.



1044 A. Daouia, J.-P. Florens and L. Simar

Remark 2.5. When ϕ̂1(x) converges in distribution, the estimator ϕ̂αn(x), for αn := 1 −
k/nF̂X(x) < 1 (that is, k = 1,2, . . . , in Theorem 2.2(i)), estimates ϕ(x) itself and also
converges in distribution, with the same scaling, but a different limit distribution (here,
nb−1

n (1 − αn)
a.s.−→ ∞). To recover the same limit distribution as the FDH estimator, it suffices to

require that αn → 1 rapidly so that nb−1
n (1 − αn) → 0. This extends the main result of Aragon

et al. ([1], Theorem 4.3), where the convergence rate achieves n−1/(p+1) under the restrictive as-
sumption that the density of (X,Y ) is strictly positive on the frontier. Note, also, that the estimate
ϕ̂αn does not envelop all of the data points providing a robust alternative to the FDH frontier ϕ̂1;
see [3] for an analysis of its quantitative and qualitative robustness properties.

2.3. Conditional tail index estimation

The important question of how to estimate ρx from the multivariate random sample Xn is very
similar to the problem of estimating the so-called extreme value index, which is based on a sample
of univariate random variables. An attractive estimation method has been proposed by [15],
which can be easily adapted to our conditional approach: let k = kn be a sequence of integers
tending to infinity and let k/n → 0 as n → ∞. A Pickands-type estimate of ρx can be derived as

ρ̂x = log 2

(
log

ϕ̂1−(2k−1)/(nF̂X(x))
(x) − ϕ̂1−(4k−1)/(nF̂X(x))

(x)

ϕ̂1−(k−1)/(nF̂X(x))
(x) − ϕ̂1−(2k−1)/(nF̂X(x))

(x)

)−1

.

The following result is particularly important since it allows the hypothesis ρx > 0 to be tested
and will later be employed to derive asymptotic confidence intervals for ϕ(x).

Theorem 2.3. (i) If (2.2) holds, kn → ∞ and kn/n → 0, then ρ̂x
p−→ ρx .

(ii) If (2.2) holds, kn/n → 0 and kn/ log logn → ∞, then ρ̂x
a.s.−→ ρx .

(iii) Assume that U(t) := ϕ1−1/(tFX(x))(x), t > 1
FX(x)

, has a positive derivative and that

there exists a positive function A(·) such that for z > 0, limt→∞{(tz)1+1/ρx U ′(tz) −
t1+1/ρx U ′(t)}/A(t) = ± log(z), for either choice of the sign (�-variation, which will in
the sequel be denoted by: ±t1+1/ρx U ′(t) ∈ �(A)). Then,

√
kn(ρ̂x − ρx)

d−→ N (0, σ 2(ρx)), (2.6)

with asymptotic variance σ 2(ρx) = ρ2
x(21−2/ρx + 1)/{(2−1/ρx − 1) log 4}2, for kn → ∞

satisfying kn = o(n/g−1(n)), where g−1 is the generalized inverse function of g(t) =
t3+2/ρx {U ′(t)/A(t)}2.

(iv) If, for some κ > 0 and δ > 0, the function {tρx−1F ′(ϕ(x)− 1
t
| x)− δ} ∈ RV−κ , then (2.6)

holds with g(t) = t3+2/ρx {U ′(t)/(t1+1/ρx U ′(t) − [δFX(x)]−1/ρx (ρx)
1/ρx−1)}2.

Remark 2.6. Note that the second order regular variation conditions (iii) and (iv) of Theorem 2.3
are difficult to check in practice, which makes the theoretical choice of the sequence {kn} a hard
problem. In practice, in order to choose a reasonable estimate ρ̂x(kn) of ρx , one can construct
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the plot of ρ̂x , consisting of the points {(k, ρ̂x(k)),1 ≤ k < nF̂X(x)/4}, and select a value of ρx

at which the obtained graph looks stable. This technique is known as the Pickands plot in the
univariate extreme value literature (see, for example, [17] and the references therein, Section 4.5,
pages 93–96). This is this kind of idea which guides the automatic data-driven rule we suggest
in Section 3.

We can also easily adapt the well-known moment estimator for the index of a univariate ex-
treme value distribution (Dekkers et al. [6]) to our conditional setup. Define

M
(j)
n = 1

k

k−1∑
i=0

(
log ϕ̂1−i/(nF̂X(x))

(x) − log ϕ̂1−k/(nF̂X(x))
(x)

)j

for each j = 1,2 and k = kn < n.

We can then define the moment-type estimator for the conditional regular-variation exponent ρx

as

ρ̃x = −
{
M(1)

n + 1 − 1

2

[
1 − (

M(1)
n

)2
/M(2)

n

]−1
}−1

.

Theorem 2.4. (i) If (2.2) holds, kn/n → 0 and kn → ∞, then ρ̃x
p−→ ρx .

(ii) If (2.2) holds, kn/n → 0 and kn/(logn)δ → ∞ for some δ > 0, then ρ̃x
a.s.−→ ρx .

(iii) If ±t1/ρx {ϕ(x) − U(t)} ∈ �(B) for some positive function B , then
√

kn(ρ̃x − ρx) has,
asymptotically, a normal distribution with mean zero and variance

ρx(2 + ρx)(1 + ρx)
2
{

4 − 8
(2 + ρx)

(3 + ρx)
+ (11 + 5ρx)(2 + ρx)

(3 + ρx)(4 + ρx)

}

for kn → ∞ satisfying kn = o(n/g−1(n)), where g(t) = t1+2/ρx [{logϕ(x) −
logU(t)}/B(t)]2.

Remark 2.7. Note that the �-variation condition ±t1+1/ρx U ′(t) ∈ � of Theorem 2.3(iii) is
equivalent to ±(t1/ρx {ϕ(x)−U(t)})′ ∈ RV−1, following Theorem A.3 in [5], and that this equiva-
lent regular-variation condition implies that ±t1/ρx {ϕ(x)−U(t)} ∈ �, according to [16], Propo-
sition 0.11(a), with auxiliary function B(t) = ±t (t1/ρx {ϕ(x) − U(t)})′. Hence, the condition
of Theorem 2.3(iii) implies that of Theorem 2.4(iii). Note, also, that a result similar to Theo-
rem 2.4(iii) can be stated under the conditions of Theorem 2.3(iv).

2.4. Asymptotic confidence intervals

The next theorem enables the construction of confidence intervals for ϕ(x) and for high quantile-
type frontiers ϕ1−pn/FX(x)(x) when pn → 0 and npn → ∞.
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Theorem 2.5.
(i) Suppose that F(·|x) has a positive density F ′(·|x) such that F ′(ϕ(x) − 1

t
| x) ∈ RV1−ρx .

Then,

√
2kn

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ1−pn/FX(x)(x)

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ̂1−(2kn−1)/(nF̂X(x))

(x)

d−→ N (0,V1(ρx)),

where V1(ρx) = ρ−2
x 21−2/ρx /(2−1/ρx − 1)2, provided that pn → 0, npn → ∞ and kn =

[npn].
(ii) Suppose that the conditions of Theorem 2.3(iii) or (iv) hold, and define

ϕ̂∗
1 (x) := (21/ρ̂x − 1)−1{ϕ̂1−(kn−1)/(nF̂X(x))

(x) − ϕ̂1−(2kn−1)/(nF̂X(x))
(x)

}
+ ϕ̂1−(kn−1)/(nF̂X(x))

(x).

Then, putting V2(ρx) = 3ρ−2
x 2−1−2/ρx /(2−1/ρx − 1)6, we have

√
2kn

ϕ̂∗
1 (x) − ϕ(x)

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ̂1−(2kn−1)/(nF̂X(x))

(x)

d−→ N (0,V2(ρx)).

(iii) Suppose that the conditions of Theorem 2.3(iii) or (iv) hold, and define

ϕ̃∗
1 (x) := (21/ρx − 1)−1{ϕ̂1−(kn−1)/(nF̂X(x))

(x) − ϕ̂1−(2kn−1)/(nF̂X(x))
(x)

}
+ ϕ̂1−(kn−1)/(nF̂X(x))

(x).

Then, putting V3(ρx) = ρ−2
x 2−2/ρx /(2−1/ρx − 1)4, we have

√
2kn

ϕ̃∗
1 (x) − ϕ(x)

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ̂1−(2kn−1)/(nF̂X(x))

(x)

d−→ N (0,V3(ρx)),
(2.7){

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ̂1−(2kn−1)/(nF̂X(x))

(x)
}/{

n

2kn

U ′
(

n

2kn

)}
p−→ ρx(1 − 2−1/ρx ).

Remark 2.8. Note that Theorem 2.5(ii) is still valid if the estimate ρ̂x is replaced by the true
value ρx , up to a change of the asymptotic variance. It is easy to see that V2(ρx) ≥ V3(ρx) and so
the estimator ϕ̃∗

1 (x) of ϕ(x) is asymptotically more efficient than ϕ̂∗
1 (x). We also conclude from

(2.7) that ϕ̃∗
1 (x) and ϕ̂∗

1 (x) have the same rate of convergence, namely nU ′( n
2kn

)/(2kn)
3/2. In the

particular case where Lx({ϕ(x)−y}−1) = 
x in (2.3), we have U ′( n
2kn

) = 1
ρx

( 1

x

)1/ρx ( 2kn

n
)1+1/ρx .

Note, also, that in this particular case, the condition of Theorem 2.5(i) holds, that is, F ′(ϕ(x)− 1
t
|
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x) = 
xρx

FX(x)
( 1

t
)ρx−1 ∈ RV1−ρx . However, the conditions of Theorem 2.3(iii) and (iv) do not hold

since both functions t1+1/ρx U ′(t) = 1
ρx

( 1

x

)1/ρx and tρx−1F ′(ϕ(x) − 1
t
| x) = 
xρx

FX(x)
are constant

in t . Nevertheless, the conclusions of Theorem 2.3(iii) and (iv) hold in this case for all sequences
kn → ∞ satisfying kn

n
→ 0. The same is true for the conclusion of Theorem 2.5(ii).

Theorem 2.6. If the condition of Corollary 2.1 holds, kn → ∞ and kn/n → 0 as n → ∞, then

{ρxk
1/2
n /(kn/n
x)

1/ρx }[ϕ̂1−(kn−1)/(nF̂X(x))
(x) + (kn/n
x)

1/ρx − ϕ(x)
]

d−→ N (0,1) as n → ∞.

Remark 2.9. The optimization of the asymptotic mean-squared error of ϕ̂1−(kn−1)/(nF̂X(x))
(x) is

not an appropriate criteria for selecting the optimal kn since the resulting value of kn does not
depend on n.

We shall now construct asymptotic confidence intervals for both ϕ(x) and ϕ1−pn/FX(x)(x),

using the sums M
(1)
n and M

(2)
n .

Theorem 2.7.

(i) Under the conditions of Theorem 2.5(i),

√
kn

ϕ̂1−kn/(nF̂X(x))
(x) − ϕ1−pn/FX(x)(x)

M
(1)
n ϕ̂1−kn/(nF̂X(x))

(x)

d−→ N (0,V4(ρx)),

where V4(ρx) = (1 + 1/ρx)
2, provided that pn → 0, npn → ∞ and kn = [npn].

(ii) Suppose that the conditions of Theorem 2.4(iii) hold and that U(·) has a regularly vary-
ing derivative U ′ ∈ RV−ρx . Define the moment estimator ϕ̂(x) = ϕ̂1−kn/(nF̂X(x))

(x){1 +
M

(1)
n (1 + ρ̃x)}. Then,

√
kn

ϕ̂(x) − ϕ(x)

M
(1)
n (1 + 1/ρ̃x)ϕ̂1−kn/(nF̂X(x))

(x)

d−→ N (0,V5(ρx)),

V5(ρx) = ρ2
x

[
ρx

(2 + ρx)
+ ρx(2 + ρx)

{
4 − 8

(2 + ρx)

(3 + ρx)
+ (11 + 5ρx)(2 + ρx)

(3 + ρx)(4 + ρx)

}

− 4ρx

(3 + ρx)

]
.

2.5. Examples

Example 2.1. We consider the case where the support frontier is linear. We choose (X,Y ) uni-
formly distributed over the region D = {(x, y) | 0 ≤ x ≤ 1,0 ≤ y ≤ x}. In this case (see, for
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example, [3]), it is easy to see that ϕ(x) = x and FX(x)[1 − F(y|x)] = (ϕ(x) − y)2 for all
0 ≤ y ≤ ϕ(x). Thus, Lx(·) = 
x = 1 and ρx = 2 for all x. Therefore, the conclusions of all
Theorems 2.1–2.6 hold (see Remark 2.8).

Example 2.2. We now choose a nonlinear monotone upper boundary given by the Cobb–
Douglas model Y = X1/2 exp(−U), where X is uniform on [0,1] and U , independent of X, is ex-
ponential with parameter λ = 3 (see, for example, [3]). Here, the frontier function is ϕ(x) = x1/2

and the conditional distribution function is F(y|x) = 3x−1y2 − 2x−3/2y3 for 0 < x ≤ 1 and
0 ≤ y ≤ ϕ(x). It is then easily seen that the extreme value condition (2.2) or, equivalently, (2.3)
holds with ρx = 2 and Lx(z) = FX(x)[3ϕ(x) − 2

z
]/[ϕ(x)]3 for all x ∈]0,1] and z > 0.

3. Finite-sample performance

The simulation experiments of this section illustrate how the convergence results work in prac-
tice. We also apply our approach to a real data set on the production activity of the French postal
services.

3.1. Monte Carlo experiment

We will simulate 2000 samples of size n = 5000 according the scenario of Example 2.1 above.
Here, ϕ(x) = x and ρx = 2. Denote by Nx = nF̂X(x) the number of observations (Xi, Yi) with
Xi ≤ x. By construction of the estimators ρ̂x and ϕ̂∗

1 (x), the threshold kn(x) can vary between 1
and Nx/4. For the estimator with known ρx and ϕ̃∗

1 (x), kn(x) is bounded by Nx/2 and, finally,
for the moment estimators ρ̃x and ϕ̂(x), the upper bound for kn(x) is given by Nx − 1. So, in
our Monte Carlo experiments for the Pickands estimator, kn(x) was selected on a grid of values
determined by the observed value of Nx . We choose kn(x) = [Nx/4] − k + 1, where k is an
integer varying between 1 and [Nx/4]. In the tables below, N̄x is the average value observed
over the 2000 Monte Carlo replications. The tables display the values of k̄n(x), which is the
average of the Monte Carlo values of kn(x) obtained for a fixed selection of values of k. For the
moment estimators, the upper values of kn(x) were chosen as Nx − 1. The tables display only a
part of the results to save space, but in each case, we typically choose a set of values of k that
includes not only the most favorable cases, but also covers a wide range of values for kn(x).
These tables provide the Monte Carlo estimates of the bias and the mean-squared error (MSE)
of the various estimators computed over the 2000 random replications, as well as the average
lengths and the achieved coverages of the corresponding 95% asymptotic confidence intervals.
They display only the results for x ranging over {0.25,0.5,1}, to save space.

We will first comment on the results obtained for the Pickands estimators and for the estimator
of ϕ(x) obtained with the knowledge that ρx = p +1 = 2 (the jump of the joint density of (X,Y )

at the frontier); these results are displayed in Tables 1 and 2. We observe that the Pickands
estimates ρ̂x and ϕ̂∗

1 (x) behave much better when the sample size Nx increases, although the
convergence is rather slow. In contrast, even with the smallest sample size Nx (for x = 0.25), the
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Table 1. Pickands and known ρx cases: bias (B) and mean-squared error (MSE) of the estimates

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1 (x) MSEϕ̂∗

1 (x) Bϕ̃∗
1 (x) MSEϕ̃∗

1 (x)

x = 0.25, N̄x = 312, FDH: Bϕ̂1(x) = −0.012591, MSEϕ̂1(x) = 0.000203

77.7 −0.25757 784.19539 −0.02585 6.93961 0.00021 0.00028
74.4 0.41215 17.20703 0.03723 0.14471 0.00024 0.00028
71.0 0.42344 105.75775 0.03830 0.89895 0.00016 0.00028
67.7 0.44401 16.30552 0.03877 0.11468 0.00030 0.00028
64.4 0.30552 145.08207 0.02564 1.01166 0.00031 0.00029
61.0 0.68905 35.13730 0.05654 0.24012 0.00053 0.00029
57.7 0.82177 15489.98302 0.05929 89.02353 0.00053 0.00029
54.3 1.17914 1780.66037 0.08527 9.90370 0.00055 0.00029
51.0 −4.41384 13169.38480 −0.33207 74.80129 0.00046 0.00030
47.6 0.03147 3204.61688 −0.00179 14.27123 0.00064 0.00029

x = 0.50, N̄x = 1250, FDH: Bϕ̂1(x) = −0.012563, MSEϕ̂1(x) = 0.000200

312.1 0.09248 0.22503 0.01696 0.00735 0.00026 0.00029
297.0 0.09311 0.24340 0.01668 0.00759 0.00012 0.00029
281.9 0.09124 0.24958 0.01595 0.00742 −0.00001 0.00029
266.8 0.09201 0.27538 0.01579 0.00780 −0.00009 0.00029
251.7 0.08954 0.29784 0.01490 0.00797 −0.00042 0.00030
236.6 0.09840 0.33195 0.01584 0.00831 −0.00049 0.00030
221.5 0.11387 0.38048 0.01768 0.00893 −0.00043 0.00030
206.3 0.12297 0.47557 0.01840 0.01038 −0.00060 0.00030
191.2 0.12060 0.43562 0.01720 0.00881 −0.00081 0.00030
176.1 0.14573 0.72946 0.01989 0.01371 −0.00080 0.00029

x = 1.00, N̄x = 5000, FDH: Bϕ̂1(x) = −0.012663, MSEϕ̂1(x) = 0.000202

1250.0 0.02755 0.04085 0.01025 0.00540 0.00078 0.00028
1188.0 0.02863 0.04254 0.01047 0.00537 0.00085 0.00028
1126.0 0.02780 0.04643 0.00991 0.00557 0.00065 0.00029
1064.0 0.02689 0.05068 0.00953 0.00575 0.00064 0.00030
1002.0 0.02890 0.05241 0.00981 0.00559 0.00061 0.00029
940.0 0.02670 0.05545 0.00875 0.00552 0.00032 0.00029
878.0 0.02738 0.06064 0.00872 0.00564 0.00029 0.00029
816.0 0.02877 0.06738 0.00882 0.00577 0.00024 0.00028
754.0 0.03001 0.07071 0.00899 0.00562 0.00037 0.00028
692.0 0.03686 0.07869 0.01065 0.00583 0.00065 0.00029

estimator ϕ̃∗
1 (x) computed with the true value of ρx = 2 provides remarkable estimates of ϕ(x)

and is rather stable with respect to the choice of kn(x). We see the improvement of ϕ̃∗
1 (x) over the

FDH in terms of the bias, without significantly increasing the MSE. The achieved coverages of
the normal confidence intervals obtained from ϕ̃∗

1 (x) are also quite satisfactory and much easier
to derive than those obtained from the FDH estimator. As soon as Nx is greater than 1000, all
of the estimators provide reasonably good confidence intervals of the corresponding unknown,
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Table 2. Pickands and known ρx cases: average lengths (avl) and coverages (cov) of the 95% confidence
intervals

k̄n(x) avlρ̂x
covρ̂x

avlϕ̂∗
1 (x) covϕ̂∗

1 (x) avlϕ̃∗
1 (x) covϕ̃∗

1 (x)

x = 0.25, N̄x = 312

77.7 630.9019 0.9040 59.3041 0.8925 0.0670 0.9455
74.4 18.4635 0.9060 1.6821 0.8970 0.0670 0.9505
71.0 92.5814 0.9000 8.5104 0.8960 0.0670 0.9480
67.7 18.6125 0.8990 1.5673 0.8910 0.0670 0.9485
64.4 131.0169 0.8910 10.9372 0.8845 0.0670 0.9525
61.0 37.9315 0.8960 3.1260 0.8840 0.0671 0.9465
57.7 14491.7449 0.8965 1098.2578 0.8850 0.0671 0.9470
54.3 1735.9675 0.8930 129.3070 0.8820 0.0671 0.9430
51.0 13077.3352 0.8910 981.3170 0.8805 0.0671 0.9440
47.6 3374.6016 0.8925 224.7041 0.8735 0.0672 0.9410

x = 0.50, N̄x = 1250

312.1 1.7798 0.9295 0.3232 0.9195 0.0670 0.9485
297.0 1.8330 0.9255 0.3248 0.9245 0.0669 0.9490
281.9 1.8810 0.9250 0.3247 0.9240 0.0669 0.9475
266.8 1.9457 0.9220 0.3269 0.9240 0.0669 0.9460
251.7 2.0095 0.9200 0.3279 0.9145 0.0668 0.9505
236.6 2.1038 0.9195 0.3329 0.9165 0.0668 0.9420
221.5 2.2256 0.9150 0.3409 0.9100 0.0668 0.9390
206.3 2.3707 0.9115 0.3506 0.9075 0.0668 0.9440
191.2 2.4375 0.9105 0.3468 0.9085 0.0667 0.9455
176.1 2.7460 0.9155 0.3754 0.9080 0.0667 0.9440

x = 1.00, N̄x = 5000

1250.0 0.8019 0.9645 0.2909 0.9605 0.0670 0.9540
1188.0 0.8238 0.9625 0.2914 0.9595 0.0670 0.9555
1126.0 0.8463 0.9535 0.2914 0.9495 0.0670 0.9425
1064.0 0.8707 0.9510 0.2915 0.9445 0.0670 0.9435
1002.0 0.8994 0.9530 0.2922 0.9455 0.0670 0.9475

940.0 0.9273 0.9445 0.2918 0.9420 0.0669 0.9460
878.0 0.9614 0.9420 0.2923 0.9450 0.0669 0.9420
816.0 1.0002 0.9450 0.2932 0.9440 0.0669 0.9500
754.0 1.0426 0.9475 0.2939 0.9460 0.0669 0.9550
692.0 1.0976 0.9455 0.2966 0.9430 0.0670 0.9455

with quite good achieved coverages. In these cases (Nx ≥ 1000), we also observe some stability
of the results with respect to the choice of kn(x).

We now turn to the performances of the moment estimators ρ̃x and ϕ̂(x). The results are
displayed in Table 3. Note that we used the same seed in the Monte Carlo experiments as the one
used for the preceding tables. Compared with the Pickands estimators ρ̂x and ϕ̂∗

1 (x), we observe
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Table 3. Moment Estimators: bias, MSE, average lengths and coverages

k̄n(x) Bρ̃x
MSEρ̃x

Bϕ̂(x) MSEϕ̂(x) avlρ̃x
covρ̃x

avlϕ̂(x) covϕ̂(x)

x = 0.25, N̄x = 312

150.4 0.36520 1.47278 −0.04187 0.00339 2.5969 0.8900 0.0869 0.3350
137.9 0.35077 1.86333 −0.03615 0.00337 2.8243 0.8905 0.0939 0.3765
125.3 0.33799 1.26492 −0.03080 0.00226 2.7378 0.8990 0.0893 0.4435
112.9 0.30315 1.02334 −0.02670 0.00173 2.7495 0.9005 0.0874 0.4840
100.4 0.27374 0.93872 −0.02284 0.00139 2.8414 0.8930 0.0873 0.5495

87.9 0.28569 1.22921 −0.01810 0.00137 3.1695 0.8965 0.0936 0.5860
75.4 0.30500 9.96907 −0.01330 0.00806 7.3693 0.8865 0.2075 0.6340
62.9 0.26381 29.37920 −0.01097 0.02156 17.2434 0.8880 0.4629 0.6740
50.5 0.51850 18.67121 −0.00130 0.01090 14.4349 0.8780 0.3524 0.7020
38.0 0.53418 21.11753 0.00124 0.00956 18.2022 0.8645 0.3897 0.7225
19.2 0.62323 267.28452 0.00481 0.06789 246.3768 0.8430 3.8848 0.7525
12.9 −0.30491 1266.44113 −0.00977 0.30730 1431.7282 0.8150 22.2514 0.7315

x = 0.50, N̄x = 1250

600.5 0.16644 0.16966 −0.09657 0.01004 0.9860 0.8375 0.0645 0.0575
550.5 0.16412 0.16874 −0.08407 0.00776 1.0281 0.8590 0.0667 0.0890
500.4 0.16750 0.17596 −0.07212 0.00588 1.0818 0.8735 0.0691 0.1360
450.5 0.17133 0.18419 −0.06106 0.00440 1.1442 0.8970 0.0715 0.2155
400.5 0.16370 0.19777 −0.05158 0.00334 1.2099 0.9085 0.0733 0.2945
350.5 0.15716 0.20738 −0.04270 0.00250 1.2897 0.9225 0.0751 0.3815
300.5 0.16437 0.23740 −0.03370 0.00182 1.4051 0.9335 0.0778 0.4775
250.4 0.15151 0.25663 −0.02649 0.00137 1.5307 0.9430 0.0794 0.5650
200.5 0.13915 0.28167 −0.01987 0.00101 1.7031 0.9415 0.0811 0.6475
150.5 0.12971 0.36589 −0.01373 0.00082 1.9765 0.9305 0.0836 0.7180

50.5 0.29865 6.19391 0.00098 0.00356 6.8895 0.8895 0.1734 0.8000
13.0 −0.58590 9410.59672 −0.01445 1.57034 10243.4270 0.8150 131.6029 0.7550

x = 1.00, N̄x = 5000

2000.0 0.13502 0.05141 −0.14729 0.02230 0.5207 0.7685 0.0664 0.0000
1800.0 0.13019 0.05132 −0.12609 0.01649 0.5471 0.8140 0.0682 0.0025
1600.0 0.12099 0.04935 −0.10701 0.01202 0.5765 0.8455 0.0697 0.0145
1400.0 0.11212 0.05190 −0.08930 0.00855 0.6129 0.8595 0.0712 0.0455
1200.0 0.10555 0.05445 −0.07261 0.00584 0.6593 0.8965 0.0727 0.1055
1000.0 0.09393 0.05677 −0.05771 0.00388 0.7168 0.9180 0.0740 0.2325
800.0 0.07446 0.05965 −0.04469 0.00251 0.7911 0.9245 0.0748 0.3680
600.0 0.07713 0.07992 −0.03069 0.00148 0.9179 0.9310 0.0771 0.5615
400.0 0.06905 0.10581 −0.01877 0.00087 1.1221 0.9415 0.0790 0.7255
200.0 0.07559 0.20770 −0.00744 0.00059 1.6176 0.9365 0.0830 0.8375
100.0 0.09821 0.49803 −0.00225 0.00067 2.4204 0.9095 0.0896 0.8465
50.0 0.15884 1.20953 0.00051 0.00083 3.9082 0.8920 0.1034 0.8420
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here much more reasonable results in terms of the bias and MSE of the estimators ρ̃x and ϕ̂(x).
In addition, when Nx increases, the results are much less sensitive to the choice of kn(x) than for
the Pickands estimators. We also observe that the most favorable values of kn(x) for estimating
ρx and ϕ(x) are not necessarily in the same range of values. We note that the confidence intervals
for ρx achieve quite reasonable coverage as soon as Nx is greater than, say, 1000. However, the
results for the confidence intervals of ϕ(x) obtained from the moment estimator ϕ̂(x) are very
poor, even when Nx is as large as 5000. A more detailed analysis of the Monte Carlo results
allows us to conclude that this comes from an under-evaluation of the asymptotic variance of
ϕ̂(x) given in Theorem 2.7. Indeed, in most of the cases, the Monte Carlo standard deviation of
ϕ̂(x) was larger than the asymptotic theoretical expression by a factor of the order 2–5 when Nx

equalled 1250, and by a factor of the order 1.3–1.7 when it equalled 5000. So, the poor behavior
seems to improve slightly when Nx increases, but at a very slow rate.

We could say that using the Pickands estimators ρ̂x and ϕ̂∗
1 (x) is only reasonable in our setup

when Nx is larger than, say, 1000. These estimators are highly sensitive to the choice of kn(x).
The moment estimators ρ̃x and ϕ̂(x) have a much better behavior in terms of bias and MSE, and
a greater stability with respect to the choice of kn(x), even for moderate sample sizes. When Nx

is very large (Nx = 5000), ρ̂x and ϕ̂∗
1 (x) become more accurate than the moment estimators. On

the other hand, the confidence intervals of ρx constructed from the asymptotic distribution of ρ̂x

provide more satisfactory results than those derived from the limit distribution of ρ̃x for large
values of Nx , say, Nx ≥ 1000. For inference purposes on the frontier function itself, the estimate
of the asymptotic variance of the moment estimator ϕ̂(x) does not provide reliable confidence
intervals, even for relatively large values of Nx . In the latter case, it would be better to use the
confidence intervals obtained from the asymptotic distribution of the Pickands estimator ϕ̂∗

1 (x).
So, in terms of bias and MSE computed over the 2000 random replications, as well as the

average lengths and the achieved coverages of the 95% asymptotic confidence intervals, the
moment estimators of ρx and ϕ(x) are sometimes preferable to the Pickands estimators and
sometimes not. It is difficult to imagine one procedure being preferable in all contexts. Hence,
a sensible practice is not to restrict the frontier analysis to one procedure, but rather to check
that both Pickands and moment estimators point toward similar conclusions. However, when ρx

is known, we have remarkable results for ϕ̃∗
1 (x), even when Nx is small, including remarkable

properties of the resulting normal confidence intervals, with great stability with respect to the
choice of kn(x). Recall that in most situations described thus far in the econometric literature on
frontier analysis, this tail index ρx is supposed to be known and equal to p + 1 (here, ρx = 2):
this corresponds to the common assumption that there is a jump of the joint density of (X,Y ) at
the frontier.

This might suggest the following strategy with a real data set. If ρx is known (typically equal
to p + 1 if the assumption of a jump at the frontier is reasonable), then we can use the estima-
tor ϕ̃∗

1 (x). If, on the other hand, ρx is unknown, we could consider using the following two-step
estimator: first, estimate ρx (the moment estimator of ρx seems the more appropriate, unless Nx

is large enough) and, second, use the estimator ϕ̃∗
1 (x), as if ρx were known, by substituting the

estimated value ρ̃x or ρ̂x in place of ρx . In a situation involving a real data set, the best approach
is not to favor the moment or the Pickands estimator of ρx in the first step, but to compute ϕ̃∗

1 (x)

by substituting in each of them, in the hope that the two resulting values of ϕ̃∗
1 (x) point toward

similar conclusions.
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It should be clear that the two-step estimator ϕ̃∗
1 (x), obtained by substituting in ρ̂x , does not

necessarily coincide with the Pickands estimator ϕ̂∗
1 (x), which is, instead, obtained by a simul-

taneous estimation of ρx and ϕ(x). Indeed, in our Monte Carlo exercise, we have observed that
the most favorable values of kn(x) for estimating ρx and ϕ(x) are not necessarily in the same
range of values. Thus, nothing guarantees that the selected value kn(x) when computing ρ̂x in
the first step is the same as the one selected when computing ϕ̂∗

1 (x). Of course, when Nx is very
large, the two values of kn(x) are expected to be similar, but the idea in the two-step procedure is
to use the asymptotic results of the more efficient estimator ϕ̃∗

1 (x) and not those of ϕ̂∗
1 (x). In the

next section, we suggest an ad hoc procedure for determining appropriate values of kn(x) with a
real data set.

3.2. A data-driven method for selecting kn(x)

The question of selecting the optimal value of kn(x) is still an open issue and is not addressed
here. We will simply suggest an empirical rule that turns out to give reasonable estimates of the
frontier in the simulated samples above.

First, we have observed in our Monte Carlo exercise that the optimal value for selecting kn(x)

when estimating the index ρx is not necessarily the same as the value for estimating ϕ(x).
The idea is thus to select first, for each x (in a chosen grid of values), a grid of values for kn(x)

for estimating ρx . For the Pickands estimator ρ̂x , we choose kn(x) = [Nx/4] − k + 1, where
k is an integer varying between 1 and [Nx/4], and for the moment estimator ρ̃x , we choose
kn(x) = Nx − k, where k is an integer varying between 1 and Nx . We then evaluate the esti-
mator ρ̂x(k) (resp., ρ̃x(k)) and select the k where the variation of the results is the smallest.
We achieve this by computing the standard deviations of ρ̂x(k) (resp., ρ̃x(k)) over a ‘window’
of 2 × [√Nx/4] (resp., 2 × [√Nx]) successive values of k. The value of k where this standard
deviation is minimal defines the value of kn(x).

We follow the same procedure for selecting a value for kn(x) for estimating the frontier ϕ(x)

itself. Here, in all of the cases, we choose a grid of values for kn(x) given by k = 1, . . . , [√Nx]
and select the k where the variation of the results is the smallest. To achieve this here, we
compute the standard deviations of ϕ̃∗

1 (x) (resp., ϕ̂∗
1 (x) and ϕ̂(x)) over a ‘window’ of size

2 × max(3, [√Nx/20]) (this corresponds to having a window large enough to cover around 10%
of the possible values of k in the selected range of values for kn(x)). From now on, we only
present illustrations for ϕ̃∗

1 (x) to save space.
For a sample generated with n = 1000 in the uniform case, we get the results shown in Fig. 1.
In Fig. 1, the estimator ϕ̃∗

1 (x) is first computed with the true value ρx = 2 (top panel of the
figure), then with a plug-in value of ρx estimated by the Pickands estimator (middle panel) and
finally with a plug-in value of ρ̃x estimated by the moment estimator (bottom panel). The point-
wise confidence intervals are also displayed. The three right-hand panels correspond to the same
data set plus one outlier. This allows us to see how our robust estimators behave in the presence
of outlying points, in contrast with the FDH estimator. In particular, due to the remarkable be-
havior of ϕ̃∗

1 (x) in the Monte Carlo experiment, if we know that ρx = 2, then we should use the
top panel results and, according to our suggestion at the end of the preceding section, if ρx is
unknown, we should use, in this particular example, the bottom panel results, where we replace
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Figure 1. Resulting estimator ϕ̃∗
1 (x) for a uniform data set of size n = 1000 (plus one outlier for the right

panels); from top to bottom, we have the cases ρx = 2, substituting in ρ̂x , substituting in ρ̃x .
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ρx by its moment estimator ρ̃x (since here Nx ≤ 1000) and continue as if ρx were known. It is
quite encouraging that the two panels are very similar.

3.3. An application

We use the same real data example as in [2], which undertook the frontier analysis of 9521 French
post offices observed in 1994, with X as the quantity of labor and Y as the volume of delivered
mail. In this illustration, we only consider the n = 4000 observed post offices with the smallest
levels xi . We used the empirical rules explained above for selecting reasonable values for kn(x).
The cloud of points and the resulting estimates are provided in Fig. 2.

To save space, we only represent ϕ̃∗
1 (x) when ρx is supposed to be equal to 2 (left-hand panels)

and when it is estimated by the moment estimator (right-hand panels). The FDH estimator is
clearly determined by only a few very extreme points. If we delete four extreme points from the
sample (represented by circles in the figure), then we obtain the pictures from the top panels:

Figure 2. The resulting estimator ϕ̃∗
1 (x) for the French post offices. We include four extreme data points

(circles) for the bottom panels. From left to right, we have the cases ρx = 2, substituting in ρ̃x .
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the FDH estimator changes drastically, whereas the extreme-value-based estimator ϕ̃∗
1 (x) is very

robust to the presence of these four extreme points. We also note the considerable stability of the
various forms of the estimator ϕ̃∗

1 (x).

4. Concluding remarks

In our approach, we provide the necessary and sufficient condition for the FDH estimator ϕ̂1(x) to
converge in distribution, we specify its asymptotic distribution with the appropriate convergence
rate and provide a limit theorem for moments in a general framework. We also provide further
insights and generalize the main result of [1] on robust variants of the FDH estimator, and we
provide strongly consistent and asymptotically normal estimators ρ̂x and ρ̃x of the unknown
conditional tail index ρx involved in the limit law of ϕ̂1(x). Moreover, when the joint density of
(X,Y ) decreases to zero or increases toward infinity at a speed of power βx > −1 of the distance
from the boundary, as is often assumed in the literature, we answer the question of how ρx is
linked to the data dimension p + 1 and to the shape parameter βx . The quantity βx �= 0 describes
the rate at which the density tends to infinity (in the case βx < 0) or to 0 (in the case βx > 0) at
the boundary. When βx = 0, the joint density is strictly positive on the frontier. We establish that
ρx = βx + (p + 1). As an immediate consequence, we extend the previous results of [12,14] to
the general setting where p ≥ 1 and β = βx may depend on x.

We propose new extreme-value-based frontier estimators ϕ̂∗
1 (x), ϕ̃∗

1 (x) and ϕ̂(x), which are
asymptotically normally distributed and provide useful asymptotic confidence bands for the
monotone frontier function ϕ(x). These estimators have the advantage of not being limited to
a bi-dimensional support and benefit from their explicit and easy formulations, which is not the
case for estimators defined by optimization problems, such as local polynomial estimators (see,
for example, [10]). Their asymptotic normality is derived under quite natural and general ex-
treme value conditions, without Lipschitz conditions on the boundary and without recourse to
assumptions either on the marginal distribution of X or on the conditional distribution of Y given
X = x, as is often the case in both statistical and econometrics literature on frontier estimation.
The study of the asymptotic properties of the different estimators considered in the present paper
is easily carried out by relating them to a simple dimensionless random sample and then applying
standard extreme value theory (for example, [5,6]).

Two closely related works in boundary estimation via extreme value theory are [9], in which
the estimation of the frontier function at a point x is based on an increasing number of higher
order statistics generated by the Yi observations falling into a strip around x, and [8], in which
estimators are instead based on a fixed number of higher order statistics. The main difference
with the present approach is that Hall et al. [9] only focus on estimation of the support curve
of a bivariate density (that is, p = 1) in the case βx > 1 (that is, the decrease in density is no
more than algebraically fast), where it is known that estimators based on an increasing number
of higher order statistics give optimal convergence rates. In contrast, Gijbels and Peng [8] con-
sider the maximum of all Yi observations falling into a strip around x and an end-point type
of estimator based on three large order statistics of the Yi ’s in the strip. This methodology is
closely related and comparable to our estimation method using the Pickands-type estimator, but,
like the procedure of [9], it is only valid in the simple case p = 1 and involves, in addition to
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the sequence kn, an extra smoothing parameter (bandwidth of the strip) which also needs to be
selected. Moreover, the asymptotic results in [8] are provided for densities of (X,Y ) decreasing
as a power of the distance from the boundary, whereas the setup in our approach is a general one.
Also, note that our transformed dimensionless data set (Zx

1 , . . . ,Zx
n) is constructed in such a way

as to take into account the monotonicity of the frontier (the end-point of the common distribution
of the Zx

i ’s coincides with the frontier function ϕ(x)), the univariate random variables Zx
i do

not depend on the sample size and they allow the available results from standard extreme value
theory to be easily employed, which is not the case for either of [8,9].

It should be clear that the monotonicity constraint on the frontier is the main difference with
most of the existing approaches in the statistical literature. Indeed, the joint support of a random
vector (X,Y ) is often described in the literature as the set {(x, y) | y ≤ φ(x)}, where the graph
of φ is interpreted as its upper boundary. As a matter of fact, the function of interest, ϕ, in our
approach is the smallest monotone non-decreasing function which is greater than or equal to the
frontier function φ. To our knowledge, only the estimators FDH and DEA estimate the quantity ϕ.
Of course, φ coincides with ϕ when the boundary curve is monotone, but the construction of
estimators of the end-point φ(x) of the conditional distribution of Y given X = x requires a
smoothing procedure, which is not the case when the distribution of Y is conditioned by X ≤ x.

We illustrate how the large-sample theory applies in practice by carrying out some Monte
Carlo experiments. Good estimates of ϕ(x) and ρx may require a large sample of the order
of several thousand. Theoretically selecting the optimal extreme conditional quantiles ϕ̂α(kn(x))

for estimating ϕ(x) and/or ρx is a difficult question that is worthy of future research. Here, we
suggest a simple automatic data-driven method that provides a reasonable choice of the sequence
{kn(x)} for large samples.

The empirical study reveals that the simultaneous estimation of the tail index and of the frontier
function requires large sample sizes to provide sensible results. The moment estimators of ρx and
of ϕ(x) sometimes provide better estimations than the Pickands estimates and sometimes not.
When considering bias and MSE, ϕ̂(x) and ρ̃x provide more accurate estimations, but when the
sample size is large enough, ϕ̂∗

1 (x) and ρ̂x significantly improve and even seem to outperform the
moment estimators. As far as the inference on ρx is concerned, ρ̃x also provides quite reliable
confidence intervals, but ρ̂x provides more satisfactory results for sufficiently large samples.
However, when inference about the frontier function itself is concerned, the moment estimator
provides very poor results compared with the Pickands estimator.

On the other hand, the performance of the estimator ϕ̃∗
1 (x), computed when ρx is known, is

quite remarkable, even compared with the popular FDH. The confidence intervals for ϕ(x) are
very easy to compute and have quite good coverages. In addition, the results are quite stable
with respect to the choice of the ‘smoothing’ parameter kn(x). As shown in our illustrations,
the estimates also have the advantage of being robust to extreme values. This suggests, even if
ρx is unknown, the use of a plug-in version of ϕ̃∗

1 (x) for making inference on ϕ(x): here, in a
first step, we estimate ρx (using the moment estimator, unless Nx is large enough), then we use
the asymptotic results for ϕ̃∗

1 (x), as if ρx was known. A sensible practice is not to restrict the
first step to one procedure, but rather to check that both Pickands and moment estimators point
toward similar conclusions.
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Appendix: Proofs

Proof of Theorem 2.1. Let Zx = Y1(X ≤ x) and Fx(·) = {1 − FX(x)[1 − F(·|x)]}1(· ≥ 0). It
can be easily seen that P(Zx ≤ y) = Fx(y) for any y ∈ R. Therefore, {Zx

i = Yi1(Xi ≤ x), i =
1, . . . , n} is an i.i.d. sequence of random variables with common distribution function Fx . More-
over, it is easy to see that the right end-point of Fx coincides with ϕ(x) and that maxi=1,...,n Zx

i

coincides with ϕ̂1(x). Thus, assertion (i) follows from the Fisher–Tippett theorem. It is well
known that the normalized maxima b−1

n (ϕ̂1(x)−ϕ(x))
d−→ G (that is, Fx belongs to the domain

of attraction of G = 	ρx ) if and only if

F̄x

(
ϕ(x) − 1/t

) ∈ RV−ρx , (A.1)

where F̄x = 1 − Fx . This necessary and sufficient condition is equivalent to (2.2). In this case,
the norming constant bn can be taken to be equal to ϕ(x) − inf{y ≥ 0 | Fx(y) ≥ 1 − 1

n
} =

ϕ(x) − inf{y ≥ 0 | F(y|x) ≥ 1 − 1
nFX(x)

}, which gives assertion (ii). For assertion (iii), since

(A.1) holds and E[|Zx |k] = FX(x)E(Y k|X ≤ x) ≤ ϕ(x)k , it is immediate (see [16], Proposi-
tion 2.1) that limn→∞ E{b−1

n (ϕ̂1(x) − ϕ(x))}k = (−1)k�(1 + k/ρx). Likewise, the last result
follows from [16], Corollary 2.3. �

Proof of Corollary 2.1. Following the proof of Theorem 2.1, we can set bn = ϕ(x) − F−1
x (1 −

1
n
), where F−1

x (t) = inf{y ∈]0, ϕ(x)] :Fx(y) ≥ t} for all t ∈]0,1]. It follows from (2.3) that
F−1

x (t) = ϕ(x)− ((1 − t)/
x)
1/ρx as t ↑ 1 and so bn = (1/n
x)

1/ρx for all n sufficiently large. �

Proof of Corollary 2.2. Under the given conditions, it can be easily seen from (2.3) that

f (x, y) = (
ϕ(x) − y

)ρx−(p+1)

×
[

xρx(ρx − 1) · · · (ρx − p)

∂

∂x1
ϕ(x) · · · ∂

∂xp
ϕ(x) + o(1)

]
as y ↑ ϕ(x),

where the term o(1) depends on the partial derivatives of x 
→ 
x , x 
→ ρx and x 
→ ϕ(x). �

For the next proofs, we need the following lemma whose proof is quite easy and is thus omit-
ted.

Lemma 1. Let Zx
(1) ≤ · · · ≤ Zx

(n) be the order statistics generated by the random variables
Zx

1 , . . . ,Zx
n :

(i) If F̂X(x) > 0, then ϕ̂1−k/(nF̂X(x))
(x) = Zx

(n−k) for each k ∈ {0,1, . . . , nF̂X(x) − 1}.
(ii) For any fixed integer k ≥ 0, we have ϕ̂1−k/(nF̂X(x))

(x) = Zx
(n−k) as n → ∞, with proba-

bility 1.
(iii) For any sequence of integers kn ≥ 0 such that kn/n → 0 as n → ∞, we have

ϕ̂1−kn/(nF̂X(x))
(x) = Zx

(n−kn) as n → ∞, with probability 1.
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Proof of Theorem 2.2. (i) Since ϕ(x) = F−1
x (1) and ϕ̂1(x) = Zx

(n) for all n ≥ 1, we have (ϕ̂1(x)

− ϕ(x)) = (Zx
(n)

− F−1
x (1)). Hence, if b−1

n (ϕ̂1(x) − ϕ(x))
d−→ Gx , then b−1

n (Zx
(n)

− F−1
x (1))

converges to the same distribution Gx . Therefore, following [18], Theorem 21.18, b−1
n (Zx

(n−k) −
F−1

x (1))
d→ Hx for any integer k ≥ 0, where Hx(y) = Gx(y)

∑k
i=0(− logG(y))i/i!. Fi-

nally, since Zx
(n−k)

a.s.= ϕ̂1−k/(nF̂X(x))
(x) as n → ∞, in view of Lemma 1(ii), we obtain

b−1
n (ϕ̂1−k/(nF̂X(x))

(x) − F−1
x (1))

d−→ Hx .

(ii) Writing b−1
n (ϕ̂α(x)−ϕ(x)) = b−1

n (ϕ̂α(x)− ϕ̂1(x))+b−1
n (ϕ̂1(x)−ϕ(x)), it suffices to find

an appropriate sequence α = αn → 1 such that b−1
n (ϕ̂αn(x)− ϕ̂1(x))

d−→ 0. Aragon et al. [1] (see
equation (20)) showed that |ϕ̂α(x)− ϕ̂1(x)| ≤ (1−α)nF̂X(x)F−1

Y (1), with probability 1, for any
α > 0. It thus suffices to choose α = αn → 1 such that nb−1

n (1 − αn) → 0. �

Proof of Theorem 2.3. (i) Let γx = −1/ρx in (A.1). The Pickands [15] estimate of the exponent
of variation γx < 0 is then given by γ̂x := (log 2)−1 log{(Zx

(n−k+1) − Zx
(n−2k+1))/(Z

x
(n−2k+1) −

Zx
(n−4k+1))}. Under (2.2), Condition (A.1) holds and so there exists bn > 0 such that

limn→∞ P[b−1
n (Zx

(n) − ϕ(x)) ≤ y] = 	−1/γx (y). Since this limit is unique only up to affine
transformations, we have

lim
n→∞ P

[
c−1
n

(
Zx

(n) − dn

) ≤ y
] = 	−1/γx (−γxy − 1) = exp{−(1 + γxy)−1/γx }

for all y ≤ 0, where cn = −γxbn and dn = ϕ(x)− bn. Thus, condition (1.1) from Dekkers and de

Haan [5] holds. Therefore, γ̂x
p→ γx if kn → ∞ and kn

n
→ 0, in view of [5], Theorem 2.1. This

gives the weak consistency of ρ̂x since γ̂x
a.s.= −1/ρ̂x as n → ∞, in view of Lemma 1(iii).

(ii) Likewise, if kn

n
→ 0 and kn

log logn
→ ∞, then γ̂x

a.s.−→ γx via [5], Theorem 2.2, and so

ρ̂x
a.s.−→ ρx .

(iii) We have U(t) = inf{y ≥ 0 | 1
1−Fx(y)

≥ t}, which corresponds to the inverse function

(1/(1 − Fx))
−1(t). Since ±t1−γx U ′(t) ∈ �(A) with γx = −1/ρx < 0, it follows from [5] (see

Theorem 2.3) that
√

kn(γ̂x − γx)
d−→ N (0, σ 2(γx)) with σ 2(γx) = γ 2

x (22γx+1 + 1)/{2(2γx −
1) log 2}2 for kn → ∞ satisfying kn = o(n/g−1(n)), where g(t) := t3−2γx {U ′(t)/A(t)}2. By us-
ing the fact that

√
kn(ρ̂x − ρx)

a.s.= √
kn(− 1

γ̂x
+ 1

γx
) as n → ∞, in view of Lemma 1(iii) and

applying the delta method, we conclude that
√

kn(ρ̂x − ρx)
d−→ N (0, σ 2(ρx)) with asymptotic

variance σ 2(ρx) = σ 2(γx)/γ
4
x .

(iv) Under the regularity condition, we have ±{t−1−1/γx F ′
x(ϕ(x) − 1

t
) − δFX(x)} ∈ RV−κ .

The conclusion then follows immediately from Theorem 2.5 of [5] in conjunction with
Lemma 1(iii). �

Proof of Theorem 2.4. We have, by Lemma 1(iii), that for each j = 1,2,

M
(j)
n = (1/k)

k−1∑
i=0

(
logZx

(n−i) − logZx
(n−k)

)j as n → ∞, with probability 1; (A.2)
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−1/ρ̃x then coincides almost surely, for all n large enough, with the well-known moment es-
timator γ̃x (given by [6], equation (1.7)) of the index defined in (A.1) by γx = −1/ρx . Hence,
Theorem 2.4(i) and (ii) follow from the weak and strong consistency of γ̃x proved in [6], Theo-
rem 2.1. Likewise, Theorem 2.4(iii) follows by applying [6], Corollary 3.2, in conjunction with
the delta method. �

Proof of Theorem 2.5. (i) Under the regularity condition, the distribution function Fx of Zx has
a positive derivative F ′

x(y) = FX(x)F ′(y|x) for all y > 0 such that F ′
x(ϕ(x) − 1

t
) ∈ RV1+1/γx .

Therefore, according to [5] (see Theorem 3.1),

√
2kn

Zx
(n−kn+1) − F−1

x (1 − pn)

Zx
(n−kn+1)

− Zx
(n−2kn+1)

is asymptotically normal with mean zero and variance 22γx+1γ 2
x /(2γx − 1)2. We conclude by

using the facts that F−1
x (1 − pn) = ϕ1−pn/FX(x)(x) and

√
2kn

Zx
(n−kn+1)

− F−1
x (1 − pn)

Zx
(n−kn+1) − Zx

(n−2kn+1)

a.s.= √
2kn

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − F−1

x (1 − pn)

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ̂1−(2kn−1)/(nF̂X(x))

(x)
as n → ∞.

(ii) We have ϕ̂∗
1 (x)

a.s.= Zx
(n−kn+1)

−Zx
(n−2kn+1)

2−γ̂x −1
+ Zx

(n−kn+1)
as n → ∞. Following [5], Theo-

rem 3.2,
√

2kn(ϕ̂
∗
1 (x) − ϕ(x))

Zx
(n−kn+1) − Zx

(n−2kn+1)

is then asymptotically normal with mean zero and variance 3γ 2
x 22γx−1/(2γx − 1)6.

(iii) Let E(1) ≤ · · · ≤ E(n) be the order statistics of i.i.d. exponential variables E1, . . . ,En.

Then, {Zx
(n−k+1)}nk=1

d= {U(eE(n−k+1) )}nk=1. Writing V (t) := U(et ), we obtain

√
2kn

{
1

2−γx − 1
+ Zx

(n−kn+1) − ϕ(x)

Zx
(n−kn+1) − Zx

(n−2kn+1)

}

d= √
2kn

{
1

2−γx − 1
+ V (E(n−kn+1)) − ϕ(x)

V (E(n−kn+1)) − V (E(n−2kn+1))

}

=
[
−√

2kn

{
V (∞) − V (logn/(2kn))

V ′(logn/(2kn))
+ 1

γx

}

+ √
2kn

{
V (E(n−kn+1)) − V (E(n−2kn+1))

2γx V ′(E(n−2kn+1))
− 1 − 2−γx

γx

}
2γx

1 − 2γx

V ′(E(n−2kn+1))

V ′(logn/(2kn))
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−
√

2kn

γx

{
V ′(E(n−2kn+1))

V ′(logn/(2kn))
− 1 − γx

V (E(n−kn+1)) − V (logn/(2kn))

V ′(logn/(2kn))

}]

× V ′(logn/(2kn))

V (E(n−kn+1)) − V (E(n−2kn+1))
.

The first term on the right-hand side tends to zero as established by Dekkers and de Haan ([5],
Proof of Theorem 3.2). The second term converges in distribution to N (0,1)× 2γx

1−2γx , in view of
Lemma 3.1 and [5], Corollary 3.1. The third term converges in probability to γx

2γx −1 by the same
Corollary 3.1. This ends the proof of (iii), in conjunction with the fact that

√
2kn

ϕ̃∗
1 (x) − ϕ(x)

ϕ̂1−(kn−1)/(nF̂X(x))
(x) − ϕ̂1−(2kn−1)/(nF̂X(x))

(x)

= √
2kn

{
1

2−γx − 1
+ Zx

(n−kn+1) − ϕ(x)

Zx
(n−kn+1)

− Zx
(n−2kn+1)

}
as n → ∞,

with probability 1. �

Proof of Theorem 2.6. Write F̄x(y) := FX(x)[1 − F(y|x)] and Fx(y) := 1 − F̄x(y) for all
y ≥ 0. Let Rx(y) := − log{F̄x(y)} for all y ∈ [0, ϕ(x)[ and let E(n−kn+1) be the statistic of order
n − kn + 1 generated by n independent standard exponential random variables. Zx

(n−kn+1) then

has the same distribution as R−1
x [E(n−kn+1)], where R−1

x (t) := inf{y ≥ 0 | Rx(y) ≥ t} = inf{y ≥
0 | Fx(y) ≥ 1 − e−t } := F−1

x (1 − e−t ). Hence,

Zx
(n−kn+1) − F−1

x

(
1 − kn

n

)

d= R−1
x

[
E(n−kn+1)

] − R−1
x

[
log

(
n

kn

)]

=
[
E(n−kn+1) − log

(
n

kn

)]
(R−1

x )′
[

log

(
n

kn

)]

+ 1

2

[
E(n−kn+1) − log

(
n

kn

)]2

(R−1
x )′′[δn],

provided that E(n−kn+1) ∧ log(n/kn) < δn < E(n−kn+1) ∨ log(n/kn). By the regularity condi-
tion (2.3), we have that R−1

x (t) = ϕ(x) − (e−t /
x)
1/γx for all t large enough. Therefore, for all n

sufficiently large,

{ρxk
1/2
n /(kn/n
x)

1/ρx }[Zx
(n−kn+1) − F−1

x (1 − kn/n)
]

d= k
1/2
n

[
E(n−kn+1) − log(n/kn)

]
− {k1/2

n /2ρx}
[
E(n−kn+1) − log(n/kn)

]2 exp{−[δn − log(n/kn)]/ρx}.
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Since k
1/2
n [E(n−kn+1) − log(n/kn)] d→ N (0,1) and |δn − log(n/kn)| ≤ |E(n−kn+1) −

log(n/kn)| p→ 0 as n → ∞, we obtain {ρxk
1/2
n /(kn/n
x)

1/ρx }[Zx
(n−kn+1) −F−1

x (1 − kn/n)] d−→
N (0,1) as n → ∞. Since F−1

x (t) = ϕ(x) − ((1 − t)/
x)
1/ρx for all t < 1 large enough, we have

ϕ(x) − F−1
x (1 − kn

n
) = (kn/n
x)

1/ρx for all n sufficiently large. Thus, {ρxk
1/2
n /(kn/n
x)

1/ρx } ×
[Zx

(n−kn+1) + (kn/n
x)
1/ρx − ϕ(x)] d→ N (0,1) as n → ∞. We conclude by using the fact that

Zx
(n−kn+1)

a.s.= ϕ̂1−(kn−1)/(nF̂X(x))
(x) as n → ∞. �

Proof of Theorem 2.7. (i) As shown in the proof of Theorem 2.5(i), we have F ′
x(ϕ(x) − 1

t
) ∈

RV1+1/γx . Then, by applying Dekkers et al. [6], Theorem 5.1, in conjunction with (A.2), we get

√
kn

{
Zx

(n−kn) − F−1
x (1 − pn)

}
/M(1)

n Zx
(n−kn)

d−→ N
(
0,V4(−1/γx)

)
.

The proof is completed by simply using the fact that F−1
x (1 − pn) = ϕ1−pn/(FX(x))(x) and

Zx
(n−kn)

a.s.= ϕ̂1−kn/(nF̂X(x))
(x) as n → ∞.

(ii) Since Zx
(n−kn)

a.s.= ϕ̂1−kn/(nF̂X(x))
(x) and γ̃x

a.s.= −1/ρ̃x as n → ∞, we have ϕ̂(x)
a.s.=

Zx
(n−kn)M

(1)
n (1 − 1/γ̃x) + Zx

(n−kn) as n → ∞. It is then easy to see from (A.2) that ϕ̂(x) co-

incides almost surely, for all n large enough, with the end-point estimator x̂∗
n of F−1

x (1) intro-
duced by [6], equation (4.8). It is also easy to check that U(t) = (1/(1 − Fx))

−1(t) satisfies the
conditions of [6], Theorem 3.1, with γx = −1/ρx < 0. According to [6], Theorem 5.2, we then

have
√

kn{x̂∗
n − F−1

x (1)}/M(1)
n Zx

(n−kn)
(1 − γ̃x)

d−→ N (0,V5(−1/γx)), which gives the desired
convergence in distribution of Theorem 2.7(ii) since F−1

x (1) = ϕ(x), x̂∗
n

a.s.= ϕ̂(x), γ̃x
a.s.= −1/ρ̃x

and Zx
(n−kn)

a.s.= ϕ̂1−kn/(nF̂X(x))
(x) as n → ∞. �
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