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We study conditions under which

P{Sτ > x} ∼ P{Mτ > x} ∼ EτP{ξ1 > x} as x → ∞,

where Sτ is a sum ξ1 + · · · + ξτ of random size τ and Mτ is a maximum of partial sums Mτ = maxn≤τ Sn.
Here, ξn,n = 1,2, . . . , are independent identically distributed random variables whose common distribution
is assumed to be subexponential. We mostly consider the case where τ is independent of the summands;
also, in a particular situation, we deal with a stopping time.

We also consider the case where Eξ > 0 and where the tail of τ is comparable with, or heavier than, that
of ξ , and obtain the asymptotics

P{Sτ > x} ∼ EτP{ξ1 > x} + P{τ > x/Eξ} as x → ∞.

This case is of primary interest in branching processes.
In addition, we obtain new uniform (in all x and n) upper bounds for the ratio P{Sn > x}/P{ξ1 > x}

which substantially improve Kesten’s bound in the subclass S ∗ of subexponential distributions.

Keywords: convolution equivalence; heavy-tailed distribution; random sums of random variables;
subexponential distribution; upper bound

1. Introduction

Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables with a finite mean. We
assume that their common distribution F is right unbounded, that is, F(x) ≡ P{ξ > x} > 0 for
all x. Moreover, we assume that F has a heavy (right) tail. Recall that a random variable η has
a heavy-tailed distribution if Eeεη = ∞ for all ε > 0 and a light-tailed distribution otherwise.

Let S0 = 0 and Sn = ξ1 + · · · + ξn, n = 1,2, . . . , and let Mn = max0≤i≤n Si be the partial
maxima. Denote by F ∗n the distribution of Sn.

Let τ be a counting random variable with a finite mean. In this paper, we study the asymptotics
for the tail probabilities P{Sτ > x} and P{Mτ > x} as x → ∞.

1350-7265 © 2010 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/10-BEJ251
mailto:dennissov@googlemail.com
mailto:Denisov@ma.hw.ac.uk
mailto:Foss@ma.hw.ac.uk
mailto:Foss@math.nsc.ru
mailto:Korshunov@math.nsc.ru


972 D. Denisov, S. Foss and D. Korshunov

It is known that for any distribution F on R+ and any counting random variable τ which is
independent of the sequence {ξn},

lim inf
x→∞

P{Sτ > x}
F(x)

≥ Eτ ;

see, for example, [13,39]. It was proven in the series of papers [12,13,17] that if F is a heavy-
tailed distribution on R+ with finite mean and if P{cτ > x} = o(F (x)) as x → ∞, for some
c > Eξ , then

lim inf
x→∞

P{Sτ > x}
F(x)

= Eτ. (1)

This gives us an idea of what asymptotic behaviour of P{Sτ > x} should be expected, at least if
the tail of τ is lighter than that of ξ . In particular, by considering the case τ = 2, we conclude that
if F is a heavy-tailed distribution on R+ and if P{S2 > x} ∼ cF (x) as x → ∞, for some c, then
necessarily c = 2 (see [17]). By the latter observation, we restrict our attention to subexponential
distributions only.

A distribution F on R+ with unbounded support is called subexponential, F ∈ S , if
F ∗ F(x) ∼ 2F(x) as x → ∞. A distribution F on R is called subexponential if its condi-
tional distribution on R+ is subexponential. It is well known that any subexponential distribution
is heavy-tailed and, furthermore, is long-tailed. A distribution F with right-unbounded support
is called long-tailed if F(x + y) ∼ F(x) as x → ∞, for any fixed y.

The key result in the theory of subexponential distributions is the following: if F is subexpo-
nential and if τ does not depend on the summands and is light-tailed, then

P{Sτ > x} ∼ EτF (x) as x → ∞; (2)

see, for example, [2,15] and references therein. A converse result also holds: if, for a distribu-
tion F on R+ and for an independent counting random variable τ ≥ 2, P{Sτ > x} ∼ EτF (x) as
x → ∞, then F is subexponential (see, e.g., [14]).

The intuition behind relation (2) is the principle of one big jump: in the case of heavy tails,
for x large, the most probable way that the event {Sn > x} arises is that one of the n summands
ξ1, . . . , ξn is large while all others are relatively small. Asymptotically, this gives the probability
nF(x) and conditioning on τ yields the multiplier Eτ . The keystone of the proof is Kesten’s
bound: for any subexponential distribution F and any ε > 0, there exists K = K(F, ε) such that
the inequality

F ∗n(x) ≤ K(1 + ε)nF (x)

holds for all x and n; see, for example, [3], Section IV.4, [2,15]. Clearly, this estimate does not
help to prove (2) if the distribution of τ is heavy-tailed. So the important question here is the
following: if we fix a subexponential distribution F , what are the weakest natural conditions
on τ which still guarantee relation (2) to hold? Intuitively, the light-tailedness assumption seems
to be very strong. The study of this problem is one of the main topics of the present paper.
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In order to state our first result, we need to introduce the notion of an S ∗-distribution. A dis-
tribution F on R with a finite mean belongs to the class S ∗ if∫ x

0
F(x − y)F (y)dy ∼ 2aF(x) as x → ∞,

where a = 2
∫ ∞

0 F(y)dy. It is known (see [22]) that any distribution from the class S ∗ is subex-
ponential. Although these two classes, S ∗ and S , are considered to be rather similar, there ex-
ist subexponential distributions which are not in S ∗; see, for example, [11] and the discussion
in Section 2. Classical examples of distributions from the class S ∗ are Pareto, log-normal and
Weibull with parameter β ∈ (0,1).

Theorem 1. Assume that a counting random variable τ is independent of {ξn}. Let F ∈ S ∗.

(i) If Eξ < 0, then

P{Sτ > x} ∼ P{Mτ > x} ∼ EτF (x) as x → ∞. (3)

(ii) If Eξ ≥ 0 and there exists c > Eξ such that

P{cτ > x} = o(F (x)) as x → ∞, (4)

then asymptotics (3) again hold.

The latter theorem shows that if we restrict our attention from the class of all heavy-tailed
distributions to the class S ∗, then we obtain equivalence (3) which is stronger than assertion (1)
for the ‘lim inf’. We should definitely assume the subexponentiality of F in order to obtain (3). At
the end of Section 4, we construct an example demonstrating that the stronger condition F ∈ S ∗
is essential for the statement to hold in its full generality and cannot be replaced by the condition
F ∈ S .

The proof of Theorem 1 is carried out in Section 4. Statement (i) can be found in [19]; in
Section 4, we give an alternative proof of (i). Note that these two cases, the negative and positive
means of ξ , are substantially different in nature.

Condition (4) seems to be essential, since, for any c < Eξ ,

P{Sτ > x} = P{Sτ > x, cτ ≤ x} + P{Sτ > x, cτ > x}
≥ (

Eτ + o(1)
)
F(x) + (

1 + o(1)
)
P{cτ > x}

as x → ∞, due to the convergence P{Sτ > x|cτ > x} → 1, by the law of large numbers. In partic-
ular, for τ with a regularly varying tail distribution, condition (4) is necessary for the asymptotic
relation (3) to hold. Further discussion of condition (4) can be found in Section 4.

Stam in [41], Theorem 5.1, and Borovkov and Borovkov in [4], Section 7.1, obtained as-
ymptotics (3) under condition (4) for regularly varying F . Some results from [41] have been
proven again in [16]. The case where F is a dominated varying distribution was studied in [34]
and [9]. A subclass of the so-called semi-exponential F was considered in [4], Section 7.2.
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In [19], Corollary 2, asymptotics (3) were obtained in the case Eξ ≥ 0 under the extra assump-
tion P{τ > h(x)} = o(F (x)) for some function h(x) → ∞ such that F(x ± h(x)) ∼ F(x).

In Section 2, we derive simple new uniform upper bounds for the ratio F ∗n(x)/F (x) which
generalize Kesten’s bound for S ∗-distributions. We prove the following theorem.

Theorem 2. Assume that F ∈ S ∗. If Eξ < 0, then there exists a constant K such that

F ∗n(x)

F (x)
≤ Kn for all n and x.

If Eξ ∈ [0,∞), then, for any c > Eξ , there exists K such that

F ∗n(x)

F (x)
≤ K

F(cn)
for all n and x.

The latter estimates are also of interest in their own right. They substantially improve similar
bounds in [40], Theorems 1 and 2 (see also [9], Theorem 3). In Theorem 4, Section 2, we show
that the condition F ∈ S ∗ is essential for the statement of Theorem 2 to hold; more precisely, we

construct a distribution F ∈ S \ S ∗ with negative mean such that supn,x
F ∗n(x)

nF (x)
= ∞.

A closely related topic involves the asymptotics of the type P{Sn > x} ∼ nF(x) as n, x → ∞,
these having been extensively studied since the 1960s. The earliest works in this area are the
remarkable papers [25,29,30] (in the latter, in a special case, the asymptotics are stated, but the
key relation (10.10) on page 303 is not supported by a proof) and, later on, [8,27,28], where, in
particular, the regularly varying distributions were considered. Namely, if F is regularly varying
with the parameter α > 2 and Eξ1 = 0, Eξ2

1 = 1, then, under mild technical conditions (see [27],
[32], Theorem 1.9, or [36], Theorem 6), the following asymptotics hold:

P{Sn > x} ∼ �
(
x/

√
n
) + nF(x) as x → ∞ uniformly in n ≤ x2;

here, � is the tail function of the standard normal law. Further, it follows that if x≤√
(α−2−ε)n lnn, then the asymptotics follow the central limit theorem, while if x >√
(α − 2 + ε)n lnn, then the probability of a single big jump dominates. For Weibull-type distri-

butions, the situation is more complicated; see, for example, [28,31,37,38]. Detailed overviews
of results in the theory of large deviations for random walks with subexponential increments are
given in [32] and [26]. There is still ongoing research in this area; see the recent works [4,5,10]
and references therein. In Section 3 of this paper, for an arbitrary distribution F ∈ S ∗, we find a
range for n = n(x) where the asymptotics P{Sn > x} ∼ nF(x) hold. The corresponding proof is
surprisingly short.

In Section 5, we study the case where the tail distributions of τ and ξ are asymptotically
comparable and, for a subclass of subexponential distributions, we obtain the asymptotics for
P{Sτ > x} which differ from (3); see Theorem 8. This generalizes results in [4] and [41]; see
Section 5 for further comments. As a corollary, in Section 6, we obtain new tail asymptotics for
Galton–Watson branching processes.
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In Section 7, we study the case where τ may depend on {ξn} and, in particular, where τ is
a stopping time. First, we prove Theorem 9, where we obtain equivalence (3) for bounded τ .
In the proof, we adapt the approach developed in [20] and generalize Greenwood’s result to
the whole class of subexponential distributions. We then consider an unbounded τ and prove
Theorem 10, which states that equivalence (3) holds under a stronger assumption than (4) (see
condition (37)). Theorem 10 generalizes earlier results from [21] and [6]; see Corollary 3 and the
comments which follow it. Concerning the asymptotics for the maximum, it was shown in [19]
(see also [18]) that the equivalence P{Mτ > x} ∼ EτF (x) holds without any further assumptions
on the tail distribution of τ if Eξ < 0 and under condition (37) otherwise.

2. Uniform upper bounds for tails; proof of Theorem 2

In this section, for the ratios F ∗n(x)/F (x), we derive upper bounds more precise than Kesten’s
bound, which are again uniform in x. We consider two cases, Eξ < 0 and Eξ ≥ 0, separately. We
need the following result.

Theorem 3 ([24] and [11], Corollary 4). Assume that F ∈ S ∗ and Eξ < 0. Then, as x → ∞
and uniformly in n ≥ 1,

P{Mn > x} ∼ 1

|Eξ |
∫ x+n|Eξ |

x

F (y)dy.

Proof of Theorem 2. First, we consider the case (i) of negative mean. Taking into account the
inequality Sn ≤ Mn, Theorem 3 and the inequality

1

|Eξ |
∫ x+n|Eξ |

x

F (y)dy ≤ nF(x), (5)

we obtain statement (i) of the theorem.
Now, consider the case (ii) where Eξ ≥ 0. Take c > Eξ . Put ξ̃i = ξi − c and S̃n = ξ̃1 +· · ·+ ξ̃n.

Then Ẽξ = Eξ − c < 0 and we can again apply Theorem 3. Thus, there exists a constant K1 such
that, for all x and n,

F̃ ∗n(x) ≤ K1

∫ n|Ẽξ |

0
F̃ (x + y)dy,

where F̃ in the distribution of ξ̃ . Therefore,

P{Sn > x} = P{S̃n > x − nc} ≤ K1

∫ nc

0
F̃ (x − nc + y)dy

= K1

∫ nc

0
F̃ (x − y)dy.
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Since F ∈ S ∗, the distribution F is long-tailed and, hence, F̃ (x) ∼ F(x) as x → ∞. It then
follows that

P{Sn > x} ≤ K2

∫ nc

0
F(x − y)dy (6)

for some constant K2 and all x ≥ 0. If x ≥ nc, then∫ nc

0
F(x − y)dy ≤

∫ nc

0
F(x − y)

F (y)

F (nc)
dy

≤
∫ x

0
F(x − y)

F (y)

F (nc)
dy ≤ K3

F(x)

F (nc)
,

where

K3 = sup
x≥0

1

F(x)

∫ x

0
F(x − y)F (y)dy

is finite, owing to the fact that F ∈ S ∗. If x < nc, then

F ∗n(x) ≤ 1 ≤ F(x)

F (nc)
.

These two bounds together with (6) complete the proof of the second assertion of Theorem 2. �

From Theorem 2 and the dominated convergence theorem, we deduce the following corollary.

Corollary 1. Tail equivalence (3) holds if F ∈ S ∗ and Eξ ≥ 0, provided that

∞∑
n=1

P{τ = n}
F(cn)

< ∞ for some c > Eξ.

The latter condition is stronger than condition (4) because

P{τ > k}
F(ck)

≤
∑
n>k

P{τ = n}
F(cn)

.

Let us now discuss the importance of the condition F ∈ S ∗ in Theorem 2. The following ob-
servation shows the essence of the difference between two classes of distributions, S and S ∗. Let
a long-tailed distribution F be absolutely continuous with density f . For any function h(x) > 0,∫ x−h(x)

h(x)

F (x − y)F (dy) =
∫ x−h(x)

h(x)

F (x − y)f (y)dy.

F is then subexponential if and only if∫ x−h(x)

h(x)

F (x − y)f (y)dy = o(F (x)) as x → ∞
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holds for any function h(x) → ∞ or, equivalently, if it holds for some function h(x) → ∞ such
that F(x − h(x)) ∼ F(x). On the other hand, F ∈ S ∗ if and only if∫ x−h(x)

h(x)

F (x − y)F (y)dy = o(F (x)) as x → ∞.

In typical cases, f (x) = o(F (x)) and, hence,∫ x−h(x)

h(x)

F (x − y)f (y)dy = o

(∫ x−h(x)

h(x)

F (x − y)F (y)dy

)
as x → ∞.

This means that the subexponentiality of F is more likely than F ∈ S ∗. The latter observation
provides an idea of how to show that the condition F ∈ S ∗ in Theorem 2 cannot be extended to
the subexponentiality of F .

Theorem 4. There exists a subexponential distribution F on R with a negative mean such that

F ∗nk (xk) ≥ c
n2

k

lnnk

F (xk)

for some c > 0 and for some sequences nk , xk → ∞.

The latter theorem yields that, for some distribution F ∈ S \ S ∗ with negative mean, the first

estimate of Theorem 2 fails, that is, supn,x
F ∗n(x)

nF (x)
= ∞.

Proof of Theorem 4. We start with a construction of a specific subexponential distribution G on
the positive half-line. Let R0 = 0, R1 = 1 and Rk+1 = eRk/Rk for k ≥ 1. Since ex/x is increasing
for x ≥ 1, the sequence Rk is increasing and

Rk = o(Rk+1) as k → ∞. (7)

Set tk = R2
k . Define the hazard function R(x) ≡ − lnG(x) as

R(x) = Rk + rk(x − tk) for x ∈ (tk, tk+1],
where

rk = Rk+1 − Rk

tk+1 − tk
= 1

Rk+1 + Rk

∼ 1

Rk+1
(8)

by (7). In other words, the hazard rate r(x) = R′(x) is defined as r(x) = rk for x ∈ (tk, tk+1],
where rk is given by (8). By the construction, we have G(tk) = e−√

tk so that at points tk , the
tail of G behaves like the Weibull tail with parameter 1/2. Between these points, the tail decays
exponentially with indices rk .

We now prove that G has finite mean and is subexponential. Since, by (8),∫ tk+1

tk

e−R(y) dy = r−1
k (e−Rk − e−Rk+1) ∼ r−1

k e−Rk ∼ Rk+1e−Rk = 1/Rk,
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the mean of G, ∫ ∞

0
G(y)dy =

∞∑
k=0

∫ tk+1

tk

G(y)dy

is finite.
It follows from the definition that r(x) decreases to 0. We can then apply Pitman’s crite-

rion [35] which states that G is subexponential if the function eyr(y)−R(y)r(y) is integrable over
[0,∞). In order to estimate the integral of this function, let

Ik =
∫ tk+1

tk

eyr(y)−R(y)r(y)dy.

We then have

Ik = rk

∫ tk+1

tk

eyrk−(Rk+rk(y−tk)) dy ≤ rke−Rk+rktk tk+1.

Since

rktk+1 = rkR
2
k+1 ∼ Rk+1 (9)

by (8) and

rktk = rkR
2
k ∼ R2

k/Rk+1 = R3
ke−Rk → 0,

we get Ik ≤ 2Rk+1e−Rk ∼ 2/Rk for k sufficiently large. Therefore,

∫ ∞

0
eyr(y)−R(y)r(y)dy =

∞∑
k=0

Ik < ∞

and G is indeed subexponential.
In the sequel, we need to know the asymptotic behaviour of the following internal part of the

convolution integral at point tk :

Jk =
∫ 3tk/4

tk/4
G(tk − y)G(dy) =

∫ 3tk/4

tk/4
e−R(tk−y)e−R(y)r(y)dy.

Owing to (7), tk−1 = o(tk). Thus, (tk/4,3tk/4] ⊂ (tk−1, tk − tk−1] for all sufficiently large k. For
those values of k, we have

Jk = G(tk)

∫ 3tk/4

tk/4
e−(−rk−1y)e−(Rk−1+rk−1(y−tk−1))rk−1 dy

≥ G(tk)(tk/2)e−Rk−1rk−1.

Applying (9) and the equality eRk−1 = RkRk−1, we obtain, for all sufficiently large k,

Jk ≥ G(tk)e
−Rk−1Rk/3 = G(tk)/3Rk−1. (10)
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Let η1, η2, . . . be independent random variables with common distribution G and put Tn =
η1 + · · · + ηn. For any n, we have

P{Tn > x} ≥
∑

1≤i<j≤n

P{Tn > x,ηi > n,ηj > n,ηl ≤ n for all l 
= i, j}

= n(n − 1)

2
P{Tn > x,η1 > n,η2 > n,η3 ≤ n, . . . , ηn ≤ n}.

Since the η’s are positive, the latter probability is not smaller than

P{η1 + η2 > x,η1 > n,η2 > n}P{η3 ≤ n, . . . , ηn ≤ n}.
The mean of η is finite, thus G(n) = o(1/n) as n → ∞ and

P{η3 ≤ n, . . . , ηn ≤ n} = (
1 − G(n)

)n−2 → 1.

Putting all of this together, we get, for all sufficiently large n, the following estimate from below:

P{Tn > x} ≥ n2

3
P{η1 + η2 > x,η1 > n,η2 > n}. (11)

Now take n = nk = [√tk] = [Rk]. Then, for all sufficiently large k (at least for those k where
nk < tk/4),

P{η1 + η2 > tk, η1 > nk,η2 > nk} ≥ Jk.

Therefore, by (11) and (10), for all sufficiently large k,

P{Tnk
> tk} ≥ n2

kG(tk)/9Rk−1 ∼ n2
kG(tk)/9 lnnk,

due to Rk−1 ∼ lnRk ∼ lnnk .
Let b = Eη1. If we set ξi = ηi − 2b, then the ξ ’s have negative mean and Sn = Tn − 2nb.

Denote by F the distribution of ξ1; it is subexponential because G is.
Take x = xk = tk − 2nkb so that xk ∼ n2

k . By the latter inequality, we have

P{Snk
> xk} = P{Tnk

> tk} ≥ n2
kG(tk)/10 lnnk.

Also, note that

F(xk) = G(tk − 2nkb) = G(tk)e
rk−12nkb ≤ G(tk)e

2b

because rk−1nk ≤ rk−1Rk ≤ 1 by (8). Therefore, the inequality

P{Snk
> xk} ≥ n2

kF (xk)e
−2b/10 lnnk

holds which yields the conclusion of the theorem. �
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The subexponential distribution G constructed in the latter proof cannot belong to the class S ∗
because otherwise the theorem’s conclusion fails, as follows from Theorem 2. The fact that G /∈

S ∗ can also be proven directly. Klüppelberg’s criterion [22] states that G ∈ S ∗ if and only if∫ x

0
eyr(x)−R(y) dy →

∫ ∞

0
G(y)dy as x → ∞.

In our construction,

∫ tk−0

0
eyr(tk−0)−R(y) dy ≥

∫ tk

tk−1

eyrk−1−R(y) dy

≥ (tk − tk−1)e
−Rk−1

∼ R2
ke−Rk−1 = eRk−1/R2

k−1 → ∞
as k → ∞. Hence, G /∈ S ∗.

3. On the asymptotics P{Sn > x} ∼ nF(x)

As before, we assume Eξ to be finite. Then, by the strong law of large numbers,

P{Sn > −An} → 1 as A → ∞ uniformly in n ≥ 1 (12)

and, by Chebyshev’s inequality,

P{ξ1 > An} ≤ E|ξ1|/An for all A > 0 and n ≥ 1. (13)

Theorem 5. Let F ∈ S ∗ and let an increasing function h(x) > 0 be such that F(x ± h(x)) ∼
F(x). Then P{Sn > x} ∼ nF(x) as x → ∞ uniformly in n ≤ h(x).

Proof. Proof of the lower bound is similar to that in [10], Section 4. Fix A > 0. We use the
following inequalities:

P{Sn > x} ≥
n∑

i=1

P{Sn > x, ξi > x + An, ξj ≤ An for all j 
= i}

≥ nP{Sn − ξ1 > −An, ξ1 > x + An, ξ2 ≤ An, . . . , ξn ≤ An}
= nF(x + An)P{Sn−1 > −An, ξ1 ≤ An, . . . , ξn−1 ≤ An}.

We have F(x + An) ∼ F(x) as x → ∞ uniformly in n ≤ h(x). Also taking into account the fact
that

P{Sn−1 > −An, ξ1 ≤ An, . . . , ξn−1 ≤ An} ≥ P{Sn−1 > −An} − (n − 1)P{ξ1 > An},
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we get, for any fixed A > 0,

lim inf
x→∞ inf

n≤h(x)

P{Sn > x}
nF(x)

≥ inf
n

(
P{Sn−1 > −An} − (n − 1)P{ξ1 > An}).

Since the infimum on the right goes to 1 as A → ∞ owing to (12) and (13), we arrive at the
following lower bound:

lim inf
x→∞ inf

n≤h(x)

P{Sn > x}
nF(x)

≥ 1.

To prove the upper bound, we apply Theorem 3 to the random variables ξ̃i = ξi −Eξ1 −1 with
negative mean Ẽξi = −1 and to S̃n = Sn − n(Eξ1 + 1). Thus,

P{Sn > x} = P{S̃n > x − n(Eξ1 + 1)}

≤ (
1 + o(1)

)∫ x−nEξ1

x−n(Eξ1+1)

F̃ (x + u)du

≤ (
1 + o(1)

)
nF̃

(
x − n(Eξ1 + 1)

)
as x → ∞, where F̃ is the distribution of ξ̃ . If n ≤ h(x), then F̃ (x − n(Eξ1 + 1)) ∼ F(x) as
x → ∞ and the proof is complete. �

The range n ≤ h(x) is usually more narrow than one could expect. For instance, for regu-
larly varying distributions (more generally, for intermediate regularly varying distributions – see
the definition in Section 5), we can take h(x) = o(x). We then get the range n = o(x), while
(if the mean is zero and the second moment is finite) the standard range is x2 > cn lnn; in
the class of distributions with finite mean, the relation P{Sn > x} ∼ nF(x) holds in the range
x > (Eξ + ε)n, ε > 0; see [33]. The advantage of the result in Theorem 5 is its simplicity and
universality since it is valid for all distributions from S ∗ without any further moment or regu-
larity assumptions (cf. the series of results in [4,5,10] where the hazard rate is assumed to be
sufficiently smooth).

As follows from [10], if the mean is zero and the second moment is finite, then the right range
should be n ≤ h2(x), roughly speaking. Our technique allows the lower bound for this range to
be proven.

Theorem 6. Let Eξ = 0 and Eξ2 < ∞. Let F be a long-tailed distribution and let an increasing
function h(x) > 0 be such that F(x ± h(x)) ∼ F(x). Then P{Sn > x} ≥ (1 + o(1))nF (x) as
x → ∞ uniformly in n ≤ h2(x).

Proof. Fix A > 0. By Chebyshev’s inequality,

P
{
ξ1 > A

√
n
} ≤ Eξ2/A2n and P

{
Sn > −A

√
n
} ≥ 1 − Eξ2/A2. (14)
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In this proof, we use a slightly different inequality than in the previous theorem:

P{Sn > x} ≥
n∑

i=1

P
{
Sn > x, ξi > x + A

√
n, ξj ≤ A

√
n for all j 
= i

}
≥ nP

{
Sn − ξ1 > −A

√
n, ξ1 > x + A

√
n, ξ2 ≤ A

√
n, . . . , ξn ≤ A

√
n
}

= nF
(
x + A

√
n
)
P
{
Sn−1 > −A

√
n, ξ1 ≤ A

√
n, . . . , ξn−1 ≤ A

√
n
}
.

Since n ≤ h2(x), F(x + A
√

n) ∼ F(x) as x → ∞. Applying (14), we obtain

P
{
Sn−1 > −A

√
n, ξ1 ≤ A

√
n, . . . , ξn−1 ≤ A

√
n
}

≥ P
{
Sn−1 > −A

√
n
} − (n − 1)P

{
ξ1 > A

√
n
}

≥ 1 − 2Eξ2/A2 → 1 as A → ∞.

The lower bound for P{Sn > x} now follows. �

4. Proof of Theorem 1

Since τ is independent of the ξ ’s, we can use the following decomposition:

P{Sτ > x} =
∞∑

n=0

P{τ = n}F ∗n(x).

By the subexponentiality, the nth term here is equivalent to nP{τ = n}F(x) as x → ∞. In par-
ticular, by Fatou’s lemma,

lim inf
x→∞

P{Sτ > x}
F(x)

≥
∞∑

n=0

nP{τ = n} = Eτ, (15)

without any condition on the sign of Eξ . In the case of negative mean, the nth term is bounded
from above by nF(x); see (5). The dominated convergence for series then yields statement (i) of
the theorem.

We now turn to the proof of statement (ii) where Eξ ≥ 0. Since Sτ ≤ Mτ , it follows from (15)
that it is sufficient to prove that

P{Mτ > x} ∼ EτF (x) as x → ∞. (16)

To prove the latter relation, we start with the following representation: for any N ,

P{Mτ > x} = P{Mτ > x, τ ≤ N} + P{Mτ > x, τ ∈ (N,x/c]} + P{Mτ > x, cτ > x}
(17)

≡ P1 + P2 + P3.
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Since any S ∗-distribution is subexponential and Sn ≤ Mn ≤ ξ+
1 + · · · + ξ+

n , we have

P{Mn > x} ∼ nF(x)

as x → ∞, for any n. Thus, for any fixed N ,

P{Mτ > x, τ ≤ N} =
N∑

n=1

P{τ = n}P{Mn > x} ∼ E{τ ; τ ≤ N}F(x)

as x → ∞, which implies the existence of an increasing function N(x) → ∞ such that

P1 = P{Mτ > x, τ ≤ N(x)} ∼ EτF (x). (18)

In what follows, we use representation (17) with N(x) in place of N . We further estimate the
second term on the right-hand side of (17). Let ε = (c−Eξ)/2 > 0 and b = (Eξ +c)/2. Consider
ξ̃n = ξn −b, S̃n = ξ̃1 +· · ·+ ξ̃n and M̃n = max(S̃1, . . . , S̃n). Then Ẽξ = −ε < 0 and we can apply
Theorem 3. Taking into account the fact that Mn ≤ M̃n + bn, we obtain that there exists K such
that, for all x and n,

P{Mn > x} ≤ P{M̃n > x − bn} ≤ K

∫ nε

0
F̃ (x − nb + y)dy ≤ K

∫ nε

0
F(x − nb + y)dy.

Hence,

P2 = P
{
Mτ > x, τ ∈ (

N(x), x/c
]} ≤ K

[x/c]∑
n=N(x)

P{τ = n}
∫ nε

0
F(x − nb + y)dy.

Since b − ε = Eξ , ∫ nε

0
F(x − nb + y)dy =

∫ nb

nEξ

F (x − y)dy.

We then have

P2 ≤ K

∫ b[x/c]

N(x)Eξ

F (x − y)dy

[x/c]∑
n=max(N(x),[y/b]+1)

P{τ = n}

≤ K

∫ bx/c

N(x)Eξ

F (x − y)P{τ > y/b}dy (19)

≤ K

∫ bx/c

N(x)Eξ

F (x − y)P{τ > y/c}dy

because b < c. By condition (4), P{τ > y/c} ≤ K1F(y) for some K1 and all y. Therefore, the
inequality

P2 ≤ KK1

∫ bx/c

N(x)Eξ

F (x − y)F (y)dy = o(F (x)) as x → ∞ (20)
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follows from b/c < 1 and from F ∈ S ∗. Indeed, for any S ∗-distribution,

∫ x−h(x)

h(x)

F (x − y)F (y)dy = o(F (x)) as x → ∞ (21)

for any function h(x) → ∞ such that h(x) ≤ x/2 (see, e.g., [22]).
We now estimate the third term on the right-hand side of (17) using condition (4):

P3 ≤ P{cτ > x} = o(F (x)) as x → ∞. (22)

Relations (18), (20) and (22) together complete the proof of Theorem 1.
We now provide an example where

P{Sτ > x}
F(x)

→ ∞,

given that condition (4) is satisfied only for c = Eξ > 0 and not for any larger c. Assume that F is
a Weibull distribution on the positive half-line with parameter β ∈ (1/2,1), that is, F(x) = e−xβ

.
Let τ have a distribution such that P{cτ > x} ∼ x−1e−xβ

as x → ∞. We consider the following
lower bound:

P{Sτ > x} ≥ P
{
Sτ > x|cτ > x − √

x
}
P
{
cτ > x − √

x
}
.

By the central limit theorem,

δ ≡ lim inf
x→∞ P

{
Sτ > x|cτ > x − √

x
} ≥ lim inf

x→∞ P
{
S[(x−√

x)/c] > x
}

> 0.

Hence,

lim inf
x→∞

P{Sτ > x}
F(x)

≥ δ lim inf
x→∞

P{cτ > x − √
x}

F(x)
= δ lim inf

x→∞
exβ−(x−√

x)β

x − √
x

= ∞

because β > 1/2.
We conclude this section with an example showing that the conclusion of Theorem 1 cannot

hold for all subexponential distributions. Indeed, take F with negative mean, as described in The-
orem 4. Without loss of generality, we assume that the series

∑
k n−1

k lnnk converges. Consider τ

taking values nk with probabilities c ln2 nk/n2
k , where c is the normalizing constant. τ then has a

finite mean, but

P{Sτ > xk} ≥ P{Snk
> xk}P{τ = nk} ≥ c

n2
k

lnnk

F (xk)
ln2 nk

n2
k

so that, as k → ∞,

P{Sτ > xk}
F(xk)

→ ∞.
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5. The case where ξ and τ may be tail-comparable

In this section, we do not assume condition (4) to hold. Such a situation is of particular impor-
tance for branching processes. To begin, we define two important classes of distributions.

A distribution F is called dominated varying if there exists c such that F(x) ≤ cF (2x) for
all x. It is known that any long-tailed and dominated varying distribution with a finite mean
belongs to the class S ∗; see [22].

We say that a distribution G is intermediate regularly varying at infinity (due to [7]) if

lim
ε↓0

lim sup
x→∞

G((1 − ε)x)

G(x)
= 1. (23)

In particular, any regularly varying at infinity distribution satisfies the latter relation. Any in-
termediate regularly varying distribution is long-tailed and dominated varying; in particular, it
belongs to the class S ∗, provided its mean is finite.

Theorem 7. Assume that a counting random variable τ is independent of {ξn}. Let F ∈ S ∗,
Eξ > 0 and

F(x) = O(P{τ > x}) as x → ∞. (24)

If the distribution of τ is intermediate regularly varying, then

P{Sτ > x} ∼ P{Mτ > x} ∼ EτF (x) + P{τ > x/Eξ} as x → ∞. (25)

We strongly believe that the statement of the theorem stays valid in a more general setting
where the distribution of τ is assumed to be square root insensitive, that is, P{τ > x ± √

x} ∼
P{τ > x}, and the variance of ξ is finite. Probably, some further minor regularity assumptions
are required. For example, the Weibull distribution F(x) = e−xβ

with parameter β < 1/2 is
square root insensitive. For a distribution which is not square root insensitive, the asymptotics
are different and more complicated.

Proof of Theorem 7. Since the distribution of τ is intermediate regularly varying (23), for any
fixed δ > 0, we can choose a < Eξ and c > Eξ sufficiently close to Eξ such that

1 − δ/2 ≤ lim inf
x→∞

P{aτ > x}
P{τ > x/Eξ} ≤ lim sup

x→∞
P{cτ > x}

P{τ > x/Eξ} ≤ 1 + δ/2.

Then, due to Sτ ≤ Mτ , it is sufficient to prove the lower bound for the sum,

P{Sτ > x} ≥ (
Eτ + o(1)

)
F(x) + (

1 + o(1)
)
P{τ > x/a}, (26)

and the upper bound for the maximum,

P{Mτ > x} ≤ (
Eτ + o(1)

)
F(x) + (

1 + o(1)
)
P{τ > x/c} as x → ∞. (27)
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We have

P{Sτ > x} = P{Sτ > x, τ ≤ x/a} + P{Sτ > x, τ > x/a}.
Since a < Eξ , P{Sτ > x|τ > x/a} → 1 as x → ∞, by the law of large numbers. The standard
arguments now lead to (26).

To prove the upper bound, we use a representation similar to (17) (see the previous proof):

P{Mτ > x} = P{Mτ > x, τ ≤ N(x)} + P{Mτ > x, τ ∈ (N(x), x/c]} + P{Mτ > x, cτ > x}
≡ P1 + P2 + P3.

The first summand, P1, can be treated as before. The second summand, P2, can be estimated as
follows: if condition (24) holds, then, by estimate (19),

P2 ≤ KK2

∫ bx/c

N(x)Eξ

P{τ > x − y}P{τ > y}dy

for some K2. Since the distribution of τ is intermediate regularly varying and, therefore, belongs
to S ∗, we have

P2 = o(P{τ > x}).
Also taking into account the fact that P3 ≤ P{cτ > x}, we finally get

P{Mτ > x} ≤ (
Eτ + o(1)

)
F(x) + P{τ > x/c} + o(P{τ > x}) as x → ∞.

Since the distribution of τ is (in particular) dominated varying, P{τ > x} = O(P{τ > x/c}).
Therefore, (27) is proved and the conclusion of Theorem 7 follows. �

Theorem 8. Assume that a counting random variable τ is independent of {ξn}. Let Eξ > 0 and
let τ have an intermediate regularly varying distribution. If the distribution F is long-tailed and
dominated varying, then (25) holds.

A particular corollary is that if both ξ and τ have regularly varying tail distributions, then
asymptotics (25) hold; this result was proven in [41], Theorems 1.3 and 1.4, for positive ξ and
in [4], Section 7.1, for signed ξ . Also, Theorems 7 and 8 generalize and improve [1], Theo-
rem 1.3.

Proof of Theorem 8. This follows along the lines of the previous proof with only the term P2
needing a different estimate. From the bound (19), we get

[P2 ≤ KF(x − bx/c)

∫ bx/c

N(x)Eξ

P{cτ > y}dy.

Since F is dominated varying, F(x − bx/c) = O(F (x)) as x → ∞. Therefore, P2 = o(F (x))

and the proof is complete. �
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6. Applications to branching processes

A Galton–Watson process is a stochastic process {Xn} which evolves according to the recurrence
formula X0 = 1 and

Xn+1 =
Xn∑
j=1

ξ
(n+1)
j ,

where {ξ (n)
j } is a family of independent identically distributed non-negative integer-valued ran-

dom variables with a finite mean and such that their common distribution does not depend on n.
Here, Xn is the number of items in the nth generation. Taking into account the fact that any in-
termediate regularly varying distribution with finite mean belongs to the class S ∗, we obtain the
following application of Theorem 7 to the branching process.

Corollary 2. Let the common distribution of the ξ ’s be intermediate regularly varying. Then, as
x → ∞,

P{X2 > x} ∼ EξP{ξ > x} + P{ξ > x/Eξ}.

In particular, if the branching process is critical, that is, if Eξ = 1, then

P{X2 > x} ∼ 2P{ξ > x} as x → ∞.

More generally, by induction arguments, the tail of the distribution of the number of items
in the nth generation is asymptotically equivalent to nP{ξ > x}. A similar result (for critical
processes) was obtained in [42], Theorem 2, in the case of regularly varying distribution of ξ ’s
and for possibly growing n.

7. Equivalences in the case where a counting random variable τ
may depend on ξ ’s

We continue to assume that the random variables {ξn} are independent and identically distrib-
uted. For any family 
 of random variables, denote by σ(
) the σ -algebra generated by 
.
Traditionally, a counting random variable τ is called a stopping time for a sequence {ξn} if
{τ ≤ n} ∈ σ(ξ1, . . . , ξn) for all n.

We say that a counting random variable τ does not depend on the future of the sequence {ξn}
if the family (ξ1, . . . , ξn, I{τ ≤ n}) is independent of (ξj , j ≥ n + 1) for all n. Dependence of
this type goes back to [23], wherein Wald’s identity is proved under the condition that the event
{τ ≤ n} is independent of ξj for all n ≥ 1 and j ≥ n + 1.

Provided we have independence of ξ ’s, any stopping time τ does not depend on the future of
the sequence {ξn}. If a counting random variable τ is independent of the ξ ’s, then it does not
depend on the future of the sequence {ξn}.
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Let Fn be a filtration of σ -algebras. A counting random variable τ is called a stopping time for
this filtration if {τ ≤ n} ∈ Fn for all n. In this terminology, τ is a stopping time for a sequence {ξn}
if and only if τ is a stopping time for the natural filtration Fn = σ(ξ1, . . . , ξn).

Consider a special filtration Fn = σ(ξk, I{τ = k}, k ≤ n). Then τ is a stopping time for this
filtration. In addition, τ does not depend on the future of the sequence {ξn} if and only if the
family (ξj , j ≥ n + 1) is independent of Fn for all n.

We start with a result for a bounded counting stopping time (recall that a random variable is
bounded if its distribution has a bounded support).

Theorem 9. Let ξ have a subexponential distribution F on R (we do not assume finite mean) and
let the counting variable τ not depend on the future. If τ is bounded, then P{Sτ > x} ∼ EτF (x)

as x → ∞.

Similar result for Mτ may be found in [18], Theorem 1. Note that one cannot expect the latter
asymptotics to hold for any τ with unbounded support, which may depend on {ξn} – even for a
stopping time. Indeed, consider a stopping time τ = min{n :Sn ≤ 0}. If Eξ < 0, then Eτ is finite
but P{Sτ > x} = 0 for any x > 0.

Proof of Theorem 9. We adopt the corresponding proof from [20] where a stopping time and
regularly varying tails were considered. Let N be such that P{τ ≤ N} = 1. The starting point of
the proof is the following representation:

P{Sτ > x} =
N∑

n=1

(P{Sn > x, τ ≥ n} − P{Sn > x, τ ≥ n + 1})

= P{S1 > x, τ ≥ 1} +
N∑

n=2

(P{Sn > x, τ ≥ n} − P{Sn−1 > x, τ ≥ n}).

Therefore,

P{Sτ > x} = F(x) +
N∑

n=2

(P{Sn−1 ≤ x,Sn > x, τ ≥ n} − P{Sn−1 > x,Sn ≤ x, τ ≥ n}).

It now suffices to show that, for each n,

P1 ≡ P{Sn−1 ≤ x,Sn > x, τ ≥ n} ∼ F(x)P{τ ≥ n} (28)

and

P2 ≡ P{Sn−1 > x,Sn ≤ x, τ ≥ n} = o(F (x)). (29)

The subexponentiality of F implies that, for each n ≥ 2,

P{Sn > x} ∼ nF(x) as x → ∞. (30)
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In particular, there exists c such that, for all n = 2, . . . ,N ,

P{Sn > x} ≤ cF (x) for all x. (31)

The subexponentiality of F also implies, for any A(x) → ∞ such that F(x +A(x)) ∼ F(x), that∫ x+A(x)

A(x)

F (x − y)F (dy) = o(F (x)) as x → ∞. (32)

To establish (28), we first note that {τ ≥ n} = {τ ≤ n − 1} and thus σ(Sn−1, I{τ ≥ n}) is inde-
pendent of ξn since τ does not depend on the future. This implies that

P1 =
∫ ∞

0
P{Sn−1 ∈ (x − y, x], ξn ∈ dy, τ ≥ n}

=
∫ ∞

0
P{Sn−1 ∈ (x − y, x], τ ≥ n}F(dy).

We use the following decomposition, A > 0:

P1 =
(∫ A

0
+

∫ x+A

A

+
∫ ∞

x+A

)
P{Sn−1 ∈ (x − y, x], τ ≥ n}F(dy)

(33)
≡ I1 + I2 + I3.

By (30) and by the long-tailedness of F , for any fixed A,

I1 ≤ P{Sn−1 ∈ (x − A,x]} = o(F (x)) as x → ∞. (34)

By (31) and (32), we get, for A = A(x) → ∞,

I2 ≤
∫ x+A

A

P{Sn−1 > x − y}F(dy)

≤ c

∫ x+A

A

F(x − y)F (dy) = o(F (x)) as x → ∞. (35)

Uniformly in y ≥ x + A(x), P{Sn−1 ∈ (x − y, x], τ ≥ n} → P{τ ≥ n} as x → ∞. Thus,

I3 ∼ P{τ ≥ n}F (
x + A(x)

) ∼ P{τ ≥ n}F(x) as x → ∞. (36)

Substituting (34)–(36) into (33), we get (28).
To prove (29), we note that

P2 ≤ P{Sn−1 ∈ (x, x + A]} + P{Sn−1 > x + A}F(−A).

As in (34), the first term on the right-hand side is of order o(F (x)). Due to (31), the second term
is not greater than cF (x)F (−A), where F(−A) can be made as small as we please by the choice
of sufficiently large A. The proof is thus complete. �
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Here is our general result for a counting random variable with, possibly, unbounded support.

Theorem 10. Let E|ξ | < ∞ and let a counting variable τ not depend on the future. Assume that
F ∈ S ∗ and that there exists an increasing function h(x) such that

F
(
x ± h(x)

) ∼ F(x) and P{τ > h(x)} = o(F (x)) as x → ∞. (37)

Then P{Sτ > x} ∼ EτF (x) as x → ∞.

Proof. This follows from Lemmas 1 and 2. Condition (37) is stronger than condition (4). At the
end of this section, we provide an example of a stopping time which shows that condition (37) is
essential and cannot be weakened to (4). �

Lemma 1. Let Eξ > 0 and let a counting variable τ not depend on the future. If F is long-tailed,
then

lim inf
x→∞

P{Sτ > x}
F(x)

≥ Eτ.

If, in addition, F ∈ S ∗ and condition (37) holds, then P{Sτ > x} ∼ EτF (x) as x → ∞.

Proof. Fix a positive integer N and a positive A. The following lower bound holds, for x > A:

P{Sτ > x} ≥
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], ξj > x + 2A,Sτ > x, τ ≥ j}

≥
N∑

j=1

P
{
S1, . . . , Sj−1 ∈ [−A,A], ξj > x + 2A,min

i>j
(Si − Sj ) > −A,τ ≥ j

}
.

Since {τ ≥ j} = {τ ≤ j − 1} and since τ does not depend on the future,

P{Sτ > x} ≥
N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], τ ≥ j}P
{
ξj > x + 2A,min

i>j
(Si − Sj ) > −A

}

= F(x + 2A)P
{

min
i≥1

Si > −A
} N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], τ ≥ j}.

By the long-tailedness of F ,

lim inf
x→∞

P{Sτ > x}
F(x)

≥ P
{

min
i≥1

Si > −A
} N∑

j=1

P{S1, . . . , Sj−1 ∈ [−A,A], τ ≥ j}.
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Since the mean of ξ is positive, P{mini≥1 Si > −A} → 1 as A → ∞. Hence, for any N ,

lim inf
x→∞

P{Sτ > x}
F(x)

≥
N∑

j=1

P{τ ≥ j}.

Now, letting N → ∞ completes the proof of the lower bound.
The upper bound,

lim sup
x→∞

P{Sτ > x}
F(x)

≤ Eτ,

follows from [19], Corollary 3, which states that, under the conditions F ∈ S ∗ and (37), P{Mτ >

x} ∼ F(x)Eτ as x → ∞. The proof is thus complete. �

Lemma 2. Let Eξ ≤ 0 and let a counting variable τ not depend on the future. If F ∈ S ∗, then

lim sup
x→∞

P{Sτ > x}
F(x)

≤ Eτ.

Under the additional condition (37), P{Sτ > x} ∼ EτF (x) as x → ∞.

Proof. The upper bound follows from [19], Corollary 3, in the same way as the upper bound in
the previous proof. To obtain the lower bound, take any positive ε and consider a random walk
S̃n = Sn + n(|Eξ | + ε) with a positive drift. We have

P{Sτ > x} = P{S̃τ > x + (|Eξ | + ε)τ } ≥ P{S̃τ > x + (|Eξ | + ε)h(x)} − P{τ > h(x)}.
Here the last term on the right-hand side is o(F (x)) and, by Lemma 1, the first term is equivalent
to EτF (x + (|Eξ | + ε)h(x)) ∼ EτF (x) as x → ∞. This completes the proof. �

For intermediate regularly varying tail distributions, Theorem 10 implies the following result.

Corollary 3. Let E|ξ | < ∞ and let a counting variable τ not depend on the future. Assume
that F is an intermediate regularly varying distribution and that

P{τ > x} = o(F (x)) as x → ∞. (38)

Then P{Sτ > x} ∼ EτF (x) as x → ∞.

This corollary generalizes the corresponding result, [21], Theorem 1, where a regularly vary-
ing F and a stopping time τ were considered. In [6], Theorem 2, an upper bound for the tail
distribution of Sτ was obtained, assuming that the tail distributions of ξ1 and τ are both bounded
from above by the same dominated varying distribution.

Proof of Corollary 3. From condition (38), for any ε > 0,

P{τ > εx} = o(F (εx)) = o(F (x)) as x → ∞
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since F is intermediate regularly varying. Thus, there exists an increasing function h(x) = o(x)

such that P{τ > h(x)} = o(F (x)) as x → ∞. Again by the intermediate regular variation of F ,
for any h(x) = o(x), F(x ± h(x)) ∼ F(x). So, condition (37) is fulfilled and we can conclude
the desired asymptotics from Theorem 10.

We conclude with an example of a stopping time τ showing that condition (37) is essential for
the conclusion of Theorem 10. Consider a distribution F on [1,∞). Take an increasing function
H(x) : R → Z+ such that H(x) < x/2. The counting random variable τ = H(2ξ1) + 1 is a
stopping time. On the event ξ1 > x − H(x), we have τ ≥ H(2(x − H(x))) + 1 ≥ H(x) + 1.
Hence,

P{Sτ > x} ≥ P{ξ1 > x − H(x), ξ2 + · · · + ξτ ≥ H(x)} = P{ξ1 > x − H(x)},

due to ξ ≥ 1. For a Weibull-type distribution, namely F(x) = e−xβ
, 0 < β < 1, x ≥ 1, we can

choose H(x) in such a way that H(x) = o(x) and H(x)/x1−β → ∞ as x → ∞. Condition (4)
then holds, but asymptotics (3) do not because F(x − H(x))/F (x) → ∞ and

P{Sτ > x}
F(x)

→ ∞.

In this example, there is no function h(x) such that condition (37) holds. Indeed, if F(x−h(x)) ∼
F(x), then h(x) = o(x1−β) and H−1(h(x) − 1) = o(x), which implies that

P{τ > h(x)}/F (x) = P{H(2ξ) > h(x) − 1}/F (x) → ∞ as x → ∞. �
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[1] Aleškevičienė, A., Leipus, R. and Šiaulys, J. (2008). Tail behavior of random sums under consistent
variation with applications to the compound renewal risk model. Extremes 11 261–279. MR2429907

[2] Asmussen, S. (2003). Applied Probability and Queues, 2nd ed. New York: Springer. MR1978607
[3] Athreya, K.B. and Ney, P.E. (1972). Branching Processes. New York: Springer. MR0373040
[4] Borovkov, A.A. and Borovkov, K.A. (2008). Asymptotic Analysis of Random Walks: Heavy-Tailed

Distributions. Cambridge: Cambridge Univ. Press. MR2424161
[5] Borovkov, A.A. and Mogul’skii, A.A. (2006). Integro-local and integral theorems for sums of random

variables with semiexponential distributions. Siberian Math. J. 47 990–1026. MR2302841
[6] Borovkov, A.A. and Utev, S.A. (1993). Estimates for distributions of sums stopped at a Markov time.

Theory Probab. Appl. 38 214–225. MR1317979

http://www.ams.org/mathscinet-getitem?mr=2429907
http://www.ams.org/mathscinet-getitem?mr=1978607
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=2424161
http://www.ams.org/mathscinet-getitem?mr=2302841
http://www.ams.org/mathscinet-getitem?mr=1317979


Asymptotics of randomly stopped sums in the presence of heavy tails 993

[7] Cline, D.B.H. (1994). Intermediate regular and π variation. Proc. London Math. Soc. 68 594–616.
MR1262310

[8] Cline, D.B.H. and Hsing, T. (1998). Large deviation probabilities for sums of random variables with
heavy or subexponential tails. Technical report, Texas A&M University.

[9] Daley, D.J., Omey, E. and Vesilo, R. (2007). The tail behaviour of a random sum of subexponential
random variables and vectors. Extremes 10 21–39. MR2397550

[10] Denisov, D., Dieker, A.B. and Shneer, V. (2008). Large deviations for random walks under subexpo-
nentiality: the big-jump domain. Ann. Probab. 36 1946–1991. MR2440928

[11] Denisov, D., Foss, S. and Korshunov, D. (2004). Tail asymptotics for the supremum of a random walk
when the mean is not finite. Queueing Systems 46 15–33. MR2072274

[12] Denisov, D., Foss, S. and Korshunov, D. (2008). On lower limits and equivalences for distribution tails
of randomly stopped sums. Bernoulli 14 391–404. MR2544093

[13] Denisov, D., Foss, S. and Korshunov, D. (2008). Lower limits for distribution tails of randomly stopped
sums. Theory Probab. Appl. 52 690–699.

[14] Embrechts, P., Goldie, C.M. and Veraverbeke, N. (1979). Subexponentiality and infinite divisibility.
Z. Wahrsch. Verw. Gebiete 49 335–347. MR0547833

[15] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and
Finance. Berlin: Springer. MR1458613

[16] Faÿ, G., González-Arévalo, B., Mikosch, T. and Samordnitsky, G. (2006). Modeling teletraffic arrivals
by a Poisson cluster process. Queueing Systems 54 121–140. MR2268057

[17] Foss, S. and Korshunov, D. (2007). Lower limits and equivalences for convolution tails. Ann. Probab.
35 366–383. MR2303954

[18] Foss, S., Palmowski, Z. and Zachary S. (2005). The probability of exceeding a high boundary on a
random time interval for a heavy-tailed random walk. Ann. Appl. Probab. 15 1936–1957. MR2152249

[19] Foss, S. and Zachary, S. (2003). The maximum on a random time interval of a random walk with
long-tailed increments and negative drift. Ann. Appl. Probab. 13 37–53. MR1951993

[20] Greenwood, P. (1973). Asymptotics of randomly stopped sequences with independent increments.
Ann. Probab. 1 317–321. MR0350846

[21] Greenwood, P. and Monroe, I. (1977). Random stopping preserves regular variation of process distri-
butions. Ann. Probab. 5 42–51. MR0426139

[22] Klüppelberg, C. (1988). Subexponential distributions and integrated tails. J. Appl. Probab. 25 132–
141. MR0929511

[23] Kolmogorov, A.N. and Prokhorov, Y.V. (1949). On sums of a random number of random terms
(Russian). Uspehi Matem. Nauk IV 168–172. MR0031215

[24] Korshunov, D. (2002). Large-deviation probabilities for maxima of sums of independent random
variables with negative mean and subexponential distribution. Theory Probab. Appl. 46 355–366.
MR1968696

[25] Linnik, Y.V. (1961). On the probability of large deviations for the sums of independent variables. In
Proc. Fourth Berkeley Symp. Math. Statist. Probability, Univ. Calif. Press 2 289–306. Berkeley, CA:
Univ. California Press. MR0137142

[26] Mikosch, T. and Nagaev, A.V. (1998). Large deviations of heavy-tailed sums with applications in
insurance. Extremes 1 81–110. MR1652936

[27] Nagaev, A.V. (1969). Limit theorems that take into account large deviations when Cramer’s condition
is violated (Russian). Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 13 17–22. MR0282396

[28] Nagaev, A.V. (1969). Integral limit theorems taking large deviations into account when Cramér’s
condition does not hold I, II. Theory Probab. Appl. 14 51–64, 193–208. MR0247651

[29] Nagaev, S.V. (1960). Local limit theorems for large deviations (Russian). Theory Probab. Appl. 5
259–261.

http://www.ams.org/mathscinet-getitem?mr=1262310
http://www.ams.org/mathscinet-getitem?mr=2397550
http://www.ams.org/mathscinet-getitem?mr=2440928
http://www.ams.org/mathscinet-getitem?mr=2072274
http://www.ams.org/mathscinet-getitem?mr=2544093
http://www.ams.org/mathscinet-getitem?mr=0547833
http://www.ams.org/mathscinet-getitem?mr=1458613
http://www.ams.org/mathscinet-getitem?mr=2268057
http://www.ams.org/mathscinet-getitem?mr=2303954
http://www.ams.org/mathscinet-getitem?mr=2152249
http://www.ams.org/mathscinet-getitem?mr=1951993
http://www.ams.org/mathscinet-getitem?mr=0350846
http://www.ams.org/mathscinet-getitem?mr=0426139
http://www.ams.org/mathscinet-getitem?mr=0929511
http://www.ams.org/mathscinet-getitem?mr=0031215
http://www.ams.org/mathscinet-getitem?mr=1968696
http://www.ams.org/mathscinet-getitem?mr=0137142
http://www.ams.org/mathscinet-getitem?mr=1652936
http://www.ams.org/mathscinet-getitem?mr=0282396
http://www.ams.org/mathscinet-getitem?mr=0247651


994 D. Denisov, S. Foss and D. Korshunov

[30] Nagaev, S.V. (1962). An integral limit theorem for large deviations. (Russian). Izv. Akad. Nauk UzSSR
Ser. Fiz.-Mat. Nauk 1962 37–43. MR0150839

[31] Nagaev, S.V. (1973). Large deviations for sums of independent random variables. In Trans. Sixth
Prague Conf. (1971). Inform. Theory, Statist. Decision Functions, Random Processes 657–674.
Prague: Academia. MR0362460

[32] Nagaev, S.V. (1979). Large deviations of sums of independent random variables. Ann. Probab. 7 745–
789. MR0542129

[33] Nagaev, S.V. (1981). On asymptotic behaviour of probabilities of one-sided large deviations. Theory
Probab. Appl. 26 362–366. MR0616627

[34] Ng, K.W., Tang, Q.H. and Yang, H. (2002). Maxima of sums of heavy-tailed random variables. ASTIN
Bull. 32 43–55. MR1928012

[35] Pitman, E.J.G. (1980). Subexponential distribution functions. J. Austral. Math. Soc. Ser. A 29 337–
347. MR0569522

[36] Rosovskii, L.V. (1990). Probabilities of large deviations of sums of independent random variables with
common distribution function in the domain of attraction of the normal law. Theory Probab. Appl. 34
625–644.

[37] Rosovskii, L.V. (1993). Probabilities of large deviations on the whole axis. Theory Probab. Appl. 38
53–79. MR1317784

[38] Rosovskii, L.V. (1997). Probabilities of large deviations for sums of independent random variables
with a common distribution function from the domain of attraction of an asymmetric stable law. The-
ory Probab. Appl. 42 454–482. MR1618791

[39] Rudin, W. (1973). Limits of ratios of tails of measures. Ann. Probab. 1 982–994. MR0358919
[40] Shneer, V. (2004). Estimates for distributions of sums of random variables with subexponential distri-

butions. Siberian Math. J. 45 1143–1158. MR2123303
[41] Stam, A.J. (1973). Regular variation of the tail of a subordinated probability distribution. Adv. in Appl.

Probab. 5 308–327. MR0339353
[42] Wachtel, V. (2008). Limit theorems for probabilities of large deviations of a critical Galton–Watson

process having power tails. Theory Probab. Appl. 52 674–688.

Received January 2009 and revised October 2009

http://www.ams.org/mathscinet-getitem?mr=0150839
http://www.ams.org/mathscinet-getitem?mr=0362460
http://www.ams.org/mathscinet-getitem?mr=0542129
http://www.ams.org/mathscinet-getitem?mr=0616627
http://www.ams.org/mathscinet-getitem?mr=1928012
http://www.ams.org/mathscinet-getitem?mr=0569522
http://www.ams.org/mathscinet-getitem?mr=1317784
http://www.ams.org/mathscinet-getitem?mr=1618791
http://www.ams.org/mathscinet-getitem?mr=0358919
http://www.ams.org/mathscinet-getitem?mr=2123303
http://www.ams.org/mathscinet-getitem?mr=0339353

	Introduction
	Uniform upper bounds for tails; proof of Theorem 2
	On the asymptotics P{Sn>x}nF(x)
	Proof of Theorem 1
	The case where xi and tau may be tail-comparable
	Applications to branching processes
	Equivalences in the case where a counting random variable tau may depend on xi's
	Acknowledgements
	References

