Ball throwing on spheres

ANNE ESTRADE ${ }^{1}$ and JACQUES ISTAS ${ }^{2}$
${ }^{1}$ MAP5 UMR CNRS 8145, Université Paris Descartes, 45 rue des Saints-Pères, F-75270 Paris cedex 06 \& ANR-05-BLAN-0017. E-mail: anne.estrade @parisdescartes.fr
${ }^{2}$ Laboratoire Jean Kuntzmann, Université de Grenoble et CNRS, F-38041 Grenoble cedex 9.
E-mail: Jacques.Istas@imag.fr

Ball throwing on Euclidean spaces has been considered for some time. A suitable renormalization leads to a fractional Brownian motion as limit object. In this paper, we investigate ball throwing on spheres. A different behavior is exhibited: we still get a Gaussian limit, but it is no longer a fractional Brownian motion. However, the limit is locally self-similar when the self-similarity index H is less than $1 / 2$.

Keywords: fractional Brownian motion; overlapping balls; scaling; self-similarity; spheres

1. Introduction

Random balls models have been studied for a long time and are known as germ-grain models, shot noise or micropulses. The common feature of those models consists in throwing balls that eventually overlap at random in an n-dimensional space. Many random phenomena can be modelled through this procedure and there are many fields of application: Internet traffic in one dimension, communication networks or imaging in two dimensions and biology or material sciences in three dimensions. A pioneering work is due to Wicksell [24], dealing with the study of corpuscles. The literature on germ-grain models involves two main currents: the research either focuses on the geometrical or morphological aspect of the union of random balls (see [20] or [21] and references therein), or it is concerned with the number of balls covering each point. This second approach is currently known as shot noise or spot noise (see [6], for instance). In three dimensions, the shot noise process is a natural candidate for modelling porous or granular media, and, more generally, heterogeneous media with irregularities at any scale. The idea is to build a microscopic model which yields a macroscopic field with self-similar properties. The same idea is expected in one dimension for Internet traffic, for instance [25]. A common method for finding self-similarity is to deal with scaling limits. Roughly speaking, the balls are dilated with a scaling parameter λ and one lets λ go either to 0 or to infinity. We quote, for instance, [4] and [12] for the case $\lambda \rightarrow 0^{+}$, [11] and [2] for the case $\lambda \rightarrow+\infty$, and [5] and [3] where both cases are considered.

In the present paper, we follow a procedure which is similar to [2] and [3]. Let us describe it precisely. A collection of random balls in \mathbb{R}^{n} whose centers and radii are chosen according to a random Poisson measure on $\mathbb{R}^{n} \times \mathbb{R}^{+}$is considered. The Poisson intensity is given as follows:

$$
\nu(\mathrm{d} x, \mathrm{~d} r)=r^{-n-1+2 H} \mathrm{~d} x \mathrm{~d} r,
$$

for some real parameter H. Since the Lebesgue measure $\mathrm{d} x$ is invariant with respect to isometry, so is the random balls model, and so will be any (eventual) limit. As the distribution of
the radii follows a homogeneous distribution, a self-similar scaling limit may be expected. Indeed, with additional technical conditions, the scaling limits of such random balls models are isometry-invariant self-similar Gaussian fields. The self-similarity index depends on the parameter H. When $0<H<1 / 2$, the Gaussian field is nothing but the well-known fractional Brownian motion [16,18,19].

Manifold-indexed fields that share properties with Euclidean self-similar fields have been, and still are, extensively studied (for example, [8,9,13-15,17,22,23]). In this paper, we consider what happens when balls are thrown onto a sphere, rather than a Euclidean space. More precisely, is there a scaling limit of random balls models and, if it exists, is this scaling limit a fractional Brownian field indexed by the surface for $0<H<1 / 2$?

The random field is still obtained by throwing overlapping balls in a Poissonian way. The Poisson intensity is chosen as follows:

$$
\nu(\mathrm{d} x, \mathrm{~d} r)=f(r) \sigma(\mathrm{d} x) \mathrm{d} r
$$

The Lebesgue measure $\mathrm{d} x$ has been replaced by the surface measure $\sigma(\mathrm{d} x)$. The function f, which controls the distribution of the radii, is still equivalent to $r^{-n-1+2 H}$, at least for small r, where n stands for the surface dimension. It turns out that the results are completely different in the two cases (Euclidean, spherical). In the spherical case, there is a Gaussian scaling limit for any H, but it is no longer a fractional Brownian field, as defined by [13]. We then investigate the local behavior, in the tangent bundle, of this scaling limit, in the spirit of local self-similarity [$1,7,15]$. It is locally asymptotically self-similar with a Euclidean fractional Brownian field as tangent field. Our microscopic model has led to a local self-similar macroscopic model.

The paper is organized as follows. In Section 2, the spherical model is introduced and we prove the existence of a scaling limit. In Section 3, we study the locally self-similar property of the asymptotic field. Section 4 is devoted to a comparative analysis between the Euclidean and spherical cases. Eventually, some technical computations are presented in the Appendix.

2. Scaling limit

We work on \mathbb{S}_{n}, the n-dimensional unit sphere, $n \geq 1$:

$$
\mathbb{S}_{n}=\left\{\left(x_{i}\right)_{1 \leq i \leq n+1} \in \mathbb{R}^{n+1} ; \sum_{1 \leq i \leq n+1} x_{i}^{2}=1\right\}
$$

2.1. Spherical caps

For $x, y \in \mathbb{S}_{n}$, let $d(x, y)$ denote the distance between x and y on \mathbb{S}_{n}, that is, the non-oriented angle between $O x$ and $O y$, where O denotes the origin of \mathbb{R}^{n+1}. For $r \geq 0, B(x, r)$ denotes the closed ball on S centered at x with radius r :

$$
B(x, r)=\left\{y \in \mathbb{S}_{n} ; d(x, y) \leq r\right\}
$$

Let us note that for $r<\pi, B(x, r)$ is a spherical cap on the unit sphere \mathbb{S}_{n}, centered at x with opening angle r and that for $r \geq \pi, B(x, r)=\mathbb{S}_{n}$.

Denoting by $\sigma(\mathrm{d} x)$ the surface measure on \mathbb{S}_{n}, we define $\phi(r)$ as the surface of any ball on \mathbb{S}_{n} with radius r :

$$
\phi(r):=\sigma(B(x, r)), \quad x \in \mathbb{S}_{n}, r \geq 0
$$

We also introduce the following function defined for z and z^{\prime}, two points in \mathbb{S}_{n} and $r \in \mathbb{R}^{+}$:

$$
\begin{equation*}
\Psi\left(z, z^{\prime}, r\right):=\int_{\mathbb{S}_{n}} \mathbf{1}_{d(x, z)<r} \mathbf{1}_{d\left(x, z^{\prime}\right)<r} \sigma(\mathrm{~d} x) \tag{1}
\end{equation*}
$$

Actually, $\Psi\left(z, z^{\prime}, r\right)$ denotes the surface measure of the set of all points in \mathbb{S}_{n} that belong to both balls $B(z, r)$ and $B\left(z^{\prime}, r\right)$. Clearly, $\Psi\left(z, z^{\prime}, r\right)$ depends only on the distance $d\left(z, z^{\prime}\right)$ between z and z^{\prime}. We write

$$
\begin{equation*}
\psi\left(d\left(z, z^{\prime}\right), r\right)=\Psi\left(z, z^{\prime}, r\right) \tag{2}
\end{equation*}
$$

and note that it satisfies the following: $\forall(u, r) \in[0, \pi] \times \mathbb{R}^{+}$,

- $0 \leq \psi(u, r) \leq \sigma\left(\mathbb{S}_{n}\right) \wedge \phi(r)$;
- if $r<u / 2$, then $\psi(u, r)=0$ and if $r>\pi$, then $\psi(u, r)=\sigma\left(\mathbb{S}_{n}\right)$;
- $\psi(0, r)=\phi(r) \sim c r^{n}$ as $r \rightarrow 0^{+}$.

In what follows, we consider a family of balls $B\left(X_{j}, R_{j}\right)$ generated at random, following a strategy described in the next section.

2.2. Poisson point process

We consider a Poisson point process $\left(X_{j}, R_{j}\right)_{j}$ in $\mathbb{S}_{n} \times \mathbb{R}^{+}$or, equivalently, $N(\mathrm{~d} x, \mathrm{~d} r)$, a Poisson random measure on $\mathbb{S}_{n} \times \mathbb{R}^{+}$with intensity

$$
\nu(\mathrm{d} x, \mathrm{~d} r)=f(r) \sigma(\mathrm{d} x) \mathrm{d} r
$$

where f satisfies the following assumptions $\mathbf{A}(H)$ for some $H>0$:

- $\operatorname{supp}(f) \subset[0, \pi)$;
- f is bounded on any compact subset of $(0, \pi)$;
- $f(r) \sim r^{-n-1+2 H}$ as $r \rightarrow 0^{+}$.

Remarks.

(1) The first condition ensures that no balls of radius R_{j} on the sphere self-intersect.
(2) Since $\phi(r) \sim c r^{n}, r \rightarrow 0^{+}$, the last condition implies that $\int_{\mathbb{R}^{+}} \phi(r) f(r) \mathrm{d} r<+\infty$, which means that the mean surface, with respect to f, of the balls $B\left(X_{j}, R_{j}\right)$ is finite.

2.3. Random field

Let \mathcal{M} denote the space of signed measures μ on \mathbb{S}_{n} with finite total variation $|\mu|\left(\mathbb{S}_{n}\right)$, with $|\mu|$ the total variation measure of μ. For any $\mu \in \mathcal{M}$, we define

$$
\begin{equation*}
X(\mu)=\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r)) N(\mathrm{~d} x, \mathrm{~d} r) \tag{3}
\end{equation*}
$$

Note that the stochastic integral in (3) is well defined since

$$
\begin{aligned}
\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}}|\mu(B(x, r))| f(r) \sigma(\mathrm{d} x) \mathrm{d} r & \leq \int_{\mathbb{S}_{n}} \int_{\mathbb{S}_{n}} \int_{\mathbb{R}^{+}} \mathbf{1}_{d(x, y)<r} f(r) \sigma(\mathrm{d} x)|\mu|(\mathrm{d} y) \mathrm{d} r \\
& =|\mu|\left(\mathbb{S}_{n}\right)\left(\int_{\mathbb{R}^{+}} \phi(r) f(r) \mathrm{d} r\right)<+\infty .
\end{aligned}
$$

In the particular case where μ is a Dirac measure δ_{z} for some point $z \in \mathbb{S}_{n}$, we simply write

$$
\begin{equation*}
X(z)=X\left(\delta_{z}\right)=\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mathbf{1}_{B(x, r)}(z) N(\mathrm{~d} x, \mathrm{~d} r) \tag{4}
\end{equation*}
$$

The pointwise field $\left\{X(z) ; z \in \mathbb{S}_{n}\right\}$ corresponds to the number of random balls (X_{j}, R_{j}) covering each point of \mathbb{S}_{n}. Each random variable $X(z)$ has a Poisson distribution with mean $\int_{\mathbb{R}^{+}} \phi(r) f(r) \mathrm{d} r$.

Furthermore, for any $\mu \in \mathcal{M}$,

$$
\mathbb{E}(X(\mu))=\mu\left(\mathbb{S}_{n}\right)\left(\int_{\mathbb{R}^{+}} \phi(r) f(r) \mathrm{d} r\right)
$$

and

$$
\operatorname{Var}(X(\mu))=\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r))^{2} f(r) \sigma(\mathrm{d} x) \mathrm{d} r \in(0,+\infty]
$$

2.4. Key lemma

For $H>0$, we would like to compute the integral

$$
\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r))^{2} r^{-n-1+2 H} \sigma(\mathrm{~d} x) \mathrm{d} r,
$$

which is a candidate for the variance of an eventual scaling limit. We first introduce \mathcal{M}^{H}, the set of measures for which the above integral does converge:

$$
\mathcal{M}^{H}=\mathcal{M} \quad \text { if } 2 H<n ; \quad \mathcal{M}^{H}=\left\{\mu \in \mathcal{M} ; \mu\left(\mathbb{S}_{n}\right)=0\right\} \quad \text { if } 2 H>n
$$

The following lemma deals with the function ψ defined by (2).

Lemma 2.1. Let $H>0$ with $2 H \neq n$. We introduce

$$
\psi^{(H)}=\psi \quad \text { if } 0<2 H<n, \quad \psi^{(H)}=\psi-\sigma\left(\mathbb{S}_{n}\right) \quad \text { if } 2 H>n .
$$

Then, for all $u \in[0, \pi]$,

$$
\int_{\mathbb{R}^{+}}\left|\psi^{(H)}(u, r)\right| r^{-n-1+2 H} \mathrm{~d} r<+\infty .
$$

Furthermore, letting

$$
\begin{equation*}
K_{H}(u)=\int_{\mathbb{R}^{+}} \psi^{(H)}(u, r) r^{-n-1+2 H} \mathrm{~d} r \tag{5}
\end{equation*}
$$

for any u in $[0, \pi]$, we have, for all $\mu \in \mathcal{M}^{H}$,

$$
0 \leq \int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r))^{2} r^{-n-1+2 H} \sigma(\mathrm{~d} x) \mathrm{d} r=\int_{\mathbb{S}_{n} \times \mathbb{S}_{n}} K_{H}\left(d\left(z, z^{\prime}\right)\right) \mu(\mathrm{d} z) \mu\left(\mathrm{d} z^{\prime}\right)<+\infty
$$

Remark 2.2.

(1) For x, y in \mathbb{S}_{n}, the difference of Dirac measures $\delta_{x}-\delta_{y}$ belongs to \mathcal{M}^{H} for any H.
(2) In the case $2 H>n$, since any $\mu \in \mathcal{M}^{H}$ is centered, the integral on the right-hand side is not changed when a constant is added to the kernel K_{H}.
(3) This lemma proves that the kernel K_{H} defines a covariance function on \mathcal{M}^{H}.

Proof of Lemma 2.1. Using the properties of ψ, we get, in the case $0<2 H<n$, that

$$
\begin{aligned}
0 & \leq \int_{\mathbb{R}^{+}} \psi(u, r) r^{-n-1+2 H} \mathrm{~d} r \\
& \leq \int_{(0, \pi)} \phi(r) r^{-n-1+2 H} \mathrm{~d} r+\sigma\left(\mathbb{S}_{n}\right) \int_{(\pi, \infty)} r^{-n-1+2 H} \mathrm{~d} r \\
& <+\infty
\end{aligned}
$$

In the same vein, in the case $2 H>n$, we get

$$
\begin{aligned}
0 & \leq \int_{\mathbb{R}^{+}}\left(\sigma\left(\mathbb{S}_{n}\right)-\psi(u, r)\right) r^{-n-1+2 H} \mathrm{~d} r \\
& \leq \sigma\left(\mathbb{S}_{n}\right) \int_{(0, \pi)} r^{-n-1+2 H} \mathrm{~d} r \\
& <+\infty
\end{aligned}
$$

We have just established that there exists a finite constant C_{H} such that

$$
\begin{equation*}
\forall u \in[0, \pi], \quad \int_{\mathbb{R}^{+}}\left|\psi^{(H)}(u, r)\right| r^{-n-1+2 H} \mathrm{~d} r \leq C_{H} \tag{6}
\end{equation*}
$$

The first statement is proved.
Let us define, for $\mu \in \mathcal{M}^{H}$,

$$
I_{H}(\mu)=\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r))^{2} r^{-n-1+2 H} \sigma(\mathrm{~d} x) \mathrm{d} r
$$

and start by proving that $I_{H}(\mu)$ is finite. We will essentially use Fubini's theorem in the following lines:

$$
\begin{aligned}
I_{H}(\mu) & =\int_{\mathbb{R}^{+}}\left(\int_{\mathbb{S}_{n}} \mu(B(x, r))^{2} \sigma(\mathrm{~d} x)\right) r^{-n-1+2 H} \mathrm{~d} r \\
& =\int_{\mathbb{R}^{+}}\left(\int_{\mathbb{S}_{n} \times \mathbb{S}_{n}} \Psi\left(z, z^{\prime}, r\right) \mu(\mathrm{d} z) \mu\left(\mathrm{d} z^{\prime}\right)\right) r^{-n-1+2 H} \mathrm{~d} r .
\end{aligned}
$$

Since $\mu \in \mathcal{M}^{H}$ is centered in the case $2 H>n$, one can change ψ into $\psi^{(H)}$ inside the previous integral. Then

$$
\begin{aligned}
I_{H}(\mu) & \leq \int_{\mathbb{R}^{+}}\left(\int_{\mathbb{S}_{n} \times \mathbb{S}_{n}}\left|\psi^{(H)}\left(d\left(z, z^{\prime}\right), r\right)\right||\mu|(\mathrm{d} z)|\mu|\left(\mathrm{d} z^{\prime}\right)\right) r^{-n-1+2 H} \mathrm{~d} r \\
& \leq \int_{\mathbb{S}_{n} \times \mathbb{S}_{n}}\left(\int_{\mathbb{R}^{+}}\left|\psi^{(H)}\left(d\left(z, z^{\prime}\right), r\right)\right| r^{-n-1+2 H} \mathrm{~d} r\right)|\mu|(\mathrm{d} z)|\mu|\left(\mathrm{d} z^{\prime}\right) \\
& \leq C_{H}|\mu|\left(\mathbb{S}_{n}\right)^{2}<+\infty
\end{aligned}
$$

Following the same lines (except for the last one) without the ' $|\cdot|$ ' allows the computation of $I_{H}(\mu)$ and completes the proof.

An explicit value for the kernel K_{H} is available, starting from its definition. The point is to compute $\psi^{(H)}$. In the Appendix, we provide a recurrence formula for $\psi^{(H)}$, based on the dimension n of the unit sphere \mathbb{S}_{n} (see Lemma 4.1).

2.5. Scaling

Let $\rho>0$ and λ be any positive function on $(0,+\infty)$. We consider the scaled Poisson measure N_{ρ} obtained from the original Poisson measure N by taking the image under the map $(x, r) \in$ $S \times \mathbb{R}^{+} \mapsto(x, \rho r)$ and multiplying the intensity by $\lambda(\rho)$. Hence, N_{ρ} is still a Poisson random measure with intensity

$$
v_{\rho}(\mathrm{d} x, \mathrm{~d} r)=\lambda(\rho) \rho^{-1} f\left(\rho^{-1} r\right) \sigma(\mathrm{d} x) \mathrm{d} r
$$

We also introduce the scaled random field X_{ρ} defined on \mathcal{M} by

$$
\begin{equation*}
X_{\rho}(\mu)=\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r)) N_{\rho}(\mathrm{d} x, \mathrm{~d} r) \tag{7}
\end{equation*}
$$

Theorem 2.3. Let $H>0$ with $2 H \neq n$ and let f satisfy $\mathbf{A}(H)$. For all positive functions λ such that $\lambda(\rho) \rho^{n-2 H} \underset{\rho \rightarrow+\infty}{\longrightarrow}+\infty$, the limit

$$
\left\{\frac{X_{\rho}(\mu)-\mathbb{E}\left(X_{\rho}(\mu)\right)}{\sqrt{\lambda(\rho) \rho^{n-2 H}}} ; \mu \in \mathcal{M}^{H}\right\} \underset{\rho \rightarrow+\infty}{\stackrel{f d d}{\rightarrow}}\left\{W_{H}(\mu) ; \mu \in \mathcal{M}^{H}\right\}
$$

holds in the sense of finite-dimensional distributions of the random functionals. Here, W_{H} is the centered Gaussian random linear functional on \mathcal{M}^{H} with

$$
\begin{equation*}
\operatorname{Cov}\left(W_{H}(\mu), W_{H}(\nu)\right)=\int_{\mathbb{S}_{n} \times \mathbb{S}_{n}} K_{H}\left(d\left(z, z^{\prime}\right)\right) \mu(\mathrm{d} z) v\left(\mathrm{~d} z^{\prime}\right) \tag{8}
\end{equation*}
$$

where K_{H} is the kernel introduced in Lemma 2.1.
The theorem can be rephrased in term of the pointwise field $\left\{X(z) ; z \in \mathbb{S}_{n}\right\}$ defined in (4).
Corollary 2.4. Let $H>0$ with $2 H \neq n$ and let f satisfy $\mathbf{A}(H)$. For all positive functions λ such that $\lambda(\rho) \rho^{n-2 H} \underset{\rho \rightarrow+\infty}{\longrightarrow}+\infty$,

- if $0<2 H<n$, then

$$
\left\{\frac{X_{\rho}(z)-\mathbb{E}\left(X_{\rho}(z)\right)}{\sqrt{\lambda(\rho) \rho^{n-2 H}}} ; z \in \mathbb{S}_{n}\right\} \underset{\rho \rightarrow+\infty}{\stackrel{f d d}{\rightarrow}}\left\{W_{H}(z) ; z \in \mathbb{S}_{n}\right\}
$$

where W_{H} is the centered Gaussian random field on \mathbb{S}_{n} with

$$
\operatorname{Cov}\left(W_{H}(z), W_{H}\left(z^{\prime}\right)\right)=K_{H}\left(d\left(z, z^{\prime}\right)\right) ;
$$

- if $2 H>n$, then for any fixed point $z_{0} \in \mathbb{S}_{n}$,

$$
\left\{\frac{X_{\rho}(z)-X_{\rho}\left(z_{0}\right)}{\sqrt{\lambda(\rho) \rho^{n-2 H}}} ; z \in \mathbb{S}_{n}\right\} \underset{\rho \rightarrow+\infty}{\stackrel{f d d}{\rightarrow}}\left\{W_{H, z 0}(z) ; z \in \mathbb{S}_{n}\right\}
$$

where $W_{H, z_{0}}$ is the centered Gaussian random field on \mathbb{S}_{n} with

$$
\operatorname{Cov}\left(W_{H, z_{0}}(z), W_{H, z_{0}}\left(z^{\prime}\right)\right)=K_{H}\left(d\left(z, z^{\prime}\right)\right)-K_{H}\left(d\left(z, z_{0}\right)\right)-K_{H}\left(d\left(z^{\prime}, z_{0}\right)\right)+K_{H}(0)
$$

Proof of Theorem 2.3. Let us define $n(\rho):=\sqrt{\lambda(\rho) \rho^{n-2 H}}$. The characteristic function of the normalized field $\left(X_{\rho}(\cdot)-\mathbb{E}\left(X_{\rho}(\cdot)\right)\right) / n(\rho)$ is then given by

$$
\begin{equation*}
\mathbb{E}\left(\exp \left(\mathrm{i} \frac{X_{\rho}(\mu)-\mathbb{E}\left(X_{\rho}(\mu)\right)}{n(\rho)}\right)\right)=\exp \left(\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} G_{\rho}(x, r) \mathrm{d} r \sigma(\mathrm{~d} x)\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\rho}(x, r)=\left(\mathrm{e}^{\mathrm{i} \mu(B(x, r)) / n(\rho)}-1-\mathrm{i} \frac{\mu(B(x, r))}{n(\rho)}\right) \lambda(\rho) \rho^{-1} f\left(\rho^{-1} r\right) \tag{10}
\end{equation*}
$$

We will make use of Lebesgue's theorem in order to get the limit of $\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} G_{\rho}(x, r) \mathrm{d} r \sigma(\mathrm{~d} x)$ as $\rho \rightarrow+\infty$.

On the one hand, $n(\rho)$ tends to $+\infty$ so that $\left(\mathrm{e}^{\mathrm{i} \mu(B(x, r)) / n(\rho)}-1-\mathrm{i} \frac{\mu(B(x, r))}{n(\rho)}\right)$ behaves like $-\frac{1}{2}\left(\frac{\mu(B(x, r))}{n(\rho)}\right)^{2}$. Together with the assumption $\mathbf{A}(H)$, it yields the following asymptotic result: for all $(x, r) \in \mathbb{S}_{n} \times \mathbb{R}^{+}$,

$$
\begin{equation*}
G_{\rho}(x, r) \underset{\rho \rightarrow+\infty}{\longrightarrow}-\frac{1}{2} \mu(B(x, r))^{2} r^{-n-1+2 H} . \tag{11}
\end{equation*}
$$

On the other hand, since $\frac{|\mu|(B(x, r))}{n(\rho)} \leq|\mu|\left(\mathbb{S}_{n}\right)$ for ρ large enough, we note that there exists some positive constant K such that for all x, r, ρ,

$$
\left|\mathrm{e}^{\mathrm{i} \mu(B(x, r)) / n(\rho)}-1-\mathrm{i} \frac{\mu(B(x, r))}{n(\rho)}\right| \leq K\left(\frac{\mu(B(x, r))}{n(\rho)}\right)^{2}
$$

Therefore,

$$
\left|G_{\rho}(x, r)\right| \leq K \mu(B(x, r))^{2} \rho^{-n-1+2 H} f\left(\rho^{-1} r\right) .
$$

There exists $C>0$ such that for all $r \in \mathbb{R}^{+}, f(r) \leq C r^{-n-1+2 H}$. We then get

$$
\begin{equation*}
\left|G_{\rho}(x, r)\right| \leq K C \mu(B(x, r))^{2} r^{-n-1+2 H} \tag{12}
\end{equation*}
$$

where the right-hand side is integrable on $\mathbb{S}_{n} \times \mathbb{R}^{+}$, by Lemma 2.1.
Applying Lebesgue's theorem yields

$$
\begin{aligned}
\int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} G_{\rho}(x, r) \sigma(\mathrm{d} x) \mathrm{d} r \underset{\rho \rightarrow+\infty}{\longrightarrow} & -\frac{1}{2} \int_{\mathbb{S}_{n} \times \mathbb{R}^{+}} \mu(B(x, r))^{2} r^{-n-1+2 H} \sigma(\mathrm{~d} x) \mathrm{d} r \\
& =-\frac{1}{2} \int_{\mathbb{S}_{n} \times \mathbb{S}_{n}} K_{H}\left(d\left(z, z^{\prime}\right)\right) \mu(\mathrm{d} z) \mu\left(\mathrm{d} z^{\prime}\right) .
\end{aligned}
$$

Hence, $\left(X_{\rho}(\mu)-\mathbb{E}\left(X_{\rho}(\mu)\right)\right) / n(\rho)$ converges in distribution to the centered Gaussian random variable $W(\mu)$ whose variance is equal to

$$
\mathbb{E}\left(W(\mu)^{2}\right)=C \int_{\mathbb{S}_{n} \times \mathbb{S}_{n}} K_{H}\left(d\left(z, z^{\prime}\right)\right) \mu(\mathrm{d} z) \mu\left(\mathrm{d} z^{\prime}\right)
$$

By linearity, the covariance of W satisfies (8).

Remark 2.5.

(1) The pointwise limit field $\left\{W_{H}(z) ; z \in \mathbb{S}_{n}\right\}$ in Corollary 2.4 is stationary, that is, its distribution is invariant under the isometry group of \mathbb{S}_{n}, whereas the increments of $\left\{W_{H, z_{0}}(z) ; z \in \mathbb{S}_{n}\right\}$ are distribution-invariant under the group of all isometries of \mathbb{S}_{n} which keep the point z_{0} invariant.
(2) When $0<H<1 / 2$, the Gaussian field W_{H} does not coincide with the field introduced in [13] as the spherical fractional Brownian motion on \mathbb{S}_{n}.

Indeed, let us consider the case $n=1$. It is easy to obtain the following piecewise expression for $\psi=\psi_{1}: \forall(u, r) \in[0, \pi] \times \mathbb{R}^{+}$,

$$
\begin{aligned}
\psi_{1}(u, r) & =0 \quad \text { for } 0 \leq r<u / 2 \\
& =2 r-u \quad \text { for } u / 2 \leq r \leq \pi-u / 2 \\
& =4 r-2 \pi \quad \text { for } \pi-u / 2 \leq r \leq \pi \\
& =2 \pi \quad \text { for } r>\pi
\end{aligned}
$$

It is also easy to compute

$$
K_{H}(u)=\frac{1}{H(1-2 H) 2^{2 H}}\left(2(2 H)^{2 H}-u^{2 H}-(2 \pi-u)^{2 H}\right) .
$$

Actually, we compute the variance of the increments of W_{H} :

$$
\begin{aligned}
\mathbb{E}\left(W_{H}(z)-W_{H}\left(z^{\prime}\right)\right)^{2} & =2 K_{H}(0)-2 K_{H}\left(d\left(z, z^{\prime}\right)\right) \\
& =\frac{2}{H(1-2 H) 2^{2 H}}\left[d^{2 H}\left(z, z^{\prime}\right)+\left(2 \pi-d\left(z, z^{\prime}\right)\right)^{2 H}-(2 \pi)^{2 H}\right] .
\end{aligned}
$$

The spherical fractional Brownian motion B_{H}, introduced in [13], satisfies

$$
\mathbb{E}\left(B_{H}(z)-B_{H}\left(z^{\prime}\right)\right)^{2}=d^{2 H}\left(z, z^{\prime}\right)
$$

Even up to a constant, the processes W_{H} and B_{H} are clearly different. The Euclidean situation is therefore different. Indeed, [3], the variance of the increments of the corresponding field W_{H} is proportional to $\left|z-z^{\prime}\right|^{2 H}$.

3. Local self-similar behavior

We consider whether the limit field W_{H} obtained in the previous section satisfies a local asymptotic self-similar (LASS) property. More precisely, we will let a 'dilation' of order ε act on W_{H} near a fixed point A in \mathbb{S}_{n} and, as in [15], up to a renormalization factor, we look for an asymptotic behavior as ε goes to 0 . An H-self-similar tangent field T_{H} is expected. Recall that W_{H} is defined on a subspace \mathcal{M}^{H} of measures on \mathbb{S}_{n} so that T_{H} will be defined on a subspace of measures on the tangent space $\mathcal{T}_{A} \mathbb{S}_{n}$ of \mathbb{S}_{n}.

3.1. Dilation

Let us fix a point A in \mathbb{S}_{n} and consider $\mathcal{T}_{A} \mathbb{S}_{n}$, the tangent space of \mathbb{S}_{n} at A. It can be identified with \mathbb{R}^{n} and A with the null vector of \mathbb{R}^{n}.

Let $1<\delta<\pi$. The exponential map at point A, denoted by exp, is a diffeomorphism between the Euclidean ball $\left\{y \in \mathbb{R}^{n},\|y\|<\delta\right\}$ and $\stackrel{\circ}{B}(A, \delta) \subset \mathbb{S}_{n}$, where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^{n} and $\stackrel{\circ}{B}(A, \delta)$ the open ball with center A and radius δ in \mathbb{S}_{n}.

Furthermore, for all $y, y^{\prime} \in \mathbb{R}^{n}$ such that $\|y\|,\left\|y^{\prime}\right\|<\delta$,

$$
d(A, \exp y)=\|y\| \quad \text { and } \quad d\left(\exp y, \exp y^{\prime}\right) \leq\left\|y-y^{\prime}\right\|
$$

We refer to [10] for details on the exponential map.
Let τ be a signed measure on \mathbb{R}^{n}. We define the dilated measure τ_{ε} by

$$
\forall B \in \mathcal{B}\left(\mathbb{R}^{n}\right) \quad \tau_{\varepsilon}(B)=\tau(B / \varepsilon)
$$

and then map it by the application of \exp, defining the measure $\mu_{\varepsilon}=\exp ^{*} \tau_{\varepsilon}$ on $\stackrel{\circ}{B}(A, \delta)$ by

$$
\begin{equation*}
\forall C \in \mathcal{B}(\stackrel{\circ}{B}(A, \delta)) \quad \mu_{\varepsilon}(C)=\exp ^{*} \tau_{\varepsilon}(C)=\tau_{\varepsilon}\left(\exp ^{-1}(C)\right) \tag{13}
\end{equation*}
$$

We then consider the measure μ_{ε} as a measure on the whole sphere \mathbb{S}_{n} with support included in ${ }^{\circ}(A, \delta)$.

Finally, we define the dilation of W_{H} within a 'neighborhood of A ' by the following procedure. For any finite measure τ on \mathbb{R}^{n}, we consider $\mu_{\varepsilon}=\exp ^{*} \tau_{\varepsilon}$, as defined by (13), and compute $W_{H}\left(\mu_{\varepsilon}\right)$. We will establish the convergence in distribution of $\varepsilon^{-H} W_{H}\left(\exp ^{*} \tau_{\varepsilon}\right)$ for any τ in an appropriate space of measures on \mathbb{R}^{n}. Since $W_{H}\left(\mu_{\varepsilon}\right)$ is Gaussian, we will focus on its variance.

3.2. Asymptotics of the kernel $\boldsymbol{K}_{\boldsymbol{H}}$

For $0<H<1 / 2$, we have already mentioned that the kernel $K_{H}(0)-K_{H}(u)$ is not proportional to $u^{2 H}$. As a consequence, one cannot expect W_{H} to be self-similar. Nevertheless, as we are looking for an asymptotic local self-similarity, only the behavior of K_{H} near zero is relevant. Actually, we will establish that, up to a constant, $K_{H}(0)-K_{H}(u)$ behaves like $u^{2 H}$ when $u \rightarrow 0^{+}$.

Lemma 3.1. Let $0<H<1 / 2$. The kernel K_{H} defined by (5) satisfies

$$
K_{H}(u)=K_{1}-K_{2} u^{2 H}+o\left(u^{2 H}\right), \quad u \rightarrow 0^{+}
$$

where $K_{1}=K_{H}(0)$ and K_{2} are non-negative constants.
Proof. Let us state that the assumption $H<1 / 2$ implies that $H<n / 2$ so that, in that case, K_{H} is given by

$$
K_{H}(u)=\int_{\mathbb{R}^{+}} \psi(u, r) r^{-n-1+2 H} \mathrm{~d} r, \quad u \in[0, \pi]
$$

We note that $K_{H}(0)<+\infty$ since $\psi(0, r) \sim c r^{n}$ as $r \rightarrow 0^{+}$and $\psi(0, r)=\sigma\left(\mathbb{S}_{n}\right)$ for $r>\pi$. Then, subtracting $K_{H}(0)$ and observing that $\psi(0, r)=\psi(u, r)=\sigma\left(\mathbb{S}_{n}\right)$ for $r>\pi$, we write

$$
\begin{aligned}
K_{H}(0)-K_{H}(u)= & \int_{0}^{\pi}(\psi(0, r)-\psi(u, r)) r^{-n-1+2 H} \mathrm{~d} r \\
= & \int_{0}^{\delta}(\psi(0, r)-\psi(u, r)) r^{-n-1+2 H} \mathrm{~d} r \\
& +\int_{\delta}^{\pi}(\psi(0, r)-\psi(u, r)) r^{-n-1+2 H} \mathrm{~d} r
\end{aligned}
$$

where we recall that $\delta \in(1, \pi)$ is such that the exponential map is a diffeormorphism between $\{\|y\|<\delta\} \subset \mathbb{R}^{n}$ and $\stackrel{\circ}{B}(A, \delta) \subset \mathbb{S}_{n}$.

The second term is of order u and is therefore negligible with respect to $u^{2 H}$ since ψ is clearly Lipschitz on the compact interval $[\delta, \pi]$.

We now focus on the first term. Performing the change of variable $r \mapsto r / u$, we write it as

$$
\begin{gathered}
\int_{0}^{\delta}(\psi(0, r)-\psi(u, r)) r^{-n-1+2 H} \mathrm{~d} r \\
\quad=u^{2 H} \int_{\mathbb{R}^{+}} \Delta(u, r) r^{-n-1+2 H} \mathrm{~d} r
\end{gathered}
$$

where

$$
\Delta(u, r):=\mathbf{1}_{u r<\delta} u^{-n}(\psi(u, u r)-\psi(0, u r)) .
$$

It only now remains to prove that $\int_{\mathbb{R}^{+}} \Delta(u, r) r^{-n-1+2 H} \mathrm{~d} r$ admits a finite limit K_{2} as $u \rightarrow 0^{+}$. We will use Lebesgue's theorem and start by establishing the simple convergence of $\Delta(u, r)$ for any given $r \in \mathbb{R}^{+}$.

We fix a unit vector \mathbf{v} in \mathbb{R}^{n} and a point $A^{\prime}=\exp \mathbf{v}$ in \mathbb{S}_{n}. We then consider, for any $u \in(0, \delta)$, the point $A_{u}^{\prime}:=\exp (u \mathbf{v}) \in \mathbb{S}_{n}$ located on the geodesic between A and A^{\prime} such that $d\left(A, A_{u}^{\prime}\right)=$ $\|u \mathbf{v}\|=u$. We can then use (1) and (2) to write

$$
\psi(u, \cdot)=\Psi\left(A, A_{u}^{\prime}, \cdot\right)=\int_{\mathbb{S}_{n}} \mathbf{1}_{d(A, z)<\cdot} \mathbf{1}_{d\left(A_{u}^{\prime}, z\right)<\cdot} \mathrm{d} \sigma(z)
$$

and

$$
\psi(0, \cdot)=\Psi(A, A, \cdot)=\int_{\mathbb{S}_{n}} \mathbf{1}_{d(A, z)<\cdot} \mathrm{d} \sigma(z)
$$

in order to express $\Delta(u, r)$ as

$$
\Delta(u, r)=\mathbf{1}_{u r<\delta} u^{-n} \int_{\mathbb{S}_{n}} \mathbf{1}_{d(A, z)<u r} \mathbf{1}_{d\left(A_{u}^{\prime}, z\right)>u r} \mathrm{~d} \sigma(z)
$$

Since $u r<\delta$, the above integral runs on $\stackrel{\circ}{B}(A, u r) \subset \stackrel{\circ}{B}(A, \delta)$ and we can perform the exponential change of variable to get

$$
\begin{aligned}
\Delta(u, r) & =\mathbf{1}_{u r<\delta} u^{-n} \int_{\mathbb{R}^{n}} \mathbf{1}_{\|y\|<u r} \mathbf{1}_{d(\exp (u \mathbf{v}), \exp (y)))>u r} \mathrm{~d} \sigma(\exp (y)) \\
& =\mathbf{1}_{u r<\delta} \int_{\mathbb{R}^{n}} \mathbf{1}_{\|y\|<r} \mathbf{1}_{d(\exp (u \mathbf{v}), \exp (u y))>u r} \tilde{\sigma}(u y) \mathrm{d} y .
\end{aligned}
$$

In the last integral, the image under exp of the surface measure $\mathrm{d} \sigma(\exp (y))$ is written as $\tilde{\sigma}(y) \mathrm{d} y$, where $\mathrm{d} y$ denotes the Lebesgue measure on \mathbb{R}^{n}.

We use the fact that $d\left(\exp (u x), \exp \left(u x^{\prime}\right)\right) \sim u\left\|x-x^{\prime}\right\|$ as $u \rightarrow 0^{+}$to obtain the following limit for the integrand:

$$
\mathbf{1}_{d(\exp (u \mathbf{v}), \exp (u y))<u r} \tilde{\sigma}(u y) \longrightarrow \mathbf{1}_{\|\mathbf{v}-y\|>r} \tilde{\sigma}(0)
$$

Since the integrand is clearly dominated by

$$
\|\sigma\|_{\infty}:=\sup \{\tilde{\sigma}(y),\|y\| \leq \delta\}
$$

Lebesgue's theorem yields, for all $r \in \mathbb{R}^{+}$,

$$
\Delta(u, r) \longrightarrow \tilde{\sigma}(0) \int_{\mathbb{R}^{n}} \mathbf{1}_{\|y\|<r} \mathbf{1}_{\|v-y\|>r} \mathrm{~d} y
$$

We recall that $d\left(\exp x, \exp x^{\prime}\right) \leq\left\|x-x^{\prime}\right\|$ for all $x, x^{\prime} \in \mathbb{R}^{n}$ with norm less than δ. Therefore, for all u,

$$
\Delta(u, r) \leq\|\sigma\|_{\infty} \int_{\mathbb{R}^{n}} \mathbf{1}_{\|y\|<r} \mathbf{1}_{\|v-y\|>r} \mathrm{~d} y
$$

where the right-hand side belongs to $L^{1}\left(\mathbb{R}^{+}, r^{-n-1+2 H} \mathrm{~d} r\right)$ (see [2], Lemma A.2).
Using Lebesgue's theorem for the last time, we obtain

$$
\int_{\mathbb{R}^{+}} \Delta(u, r) r^{-n-1+2 H} \mathrm{~d} r \underset{u \rightarrow 0^{+}}{\longrightarrow} K_{2}
$$

where

$$
K_{2}=\tilde{\sigma}(0) \int_{\mathbb{R}^{n} \times \mathbb{R}^{+}} \mathbf{1}_{\|y\|<r} \mathbf{1}_{\|\mathbf{v}-y\|>r} r^{-n-1+2 H} \mathrm{~d} y \mathrm{~d} r \in(0,+\infty)
$$

Let us remark that the proof makes it clear that the case $H>1 / 2$ is dramatically different. The kernel $K_{H}(0)-K-H(u)$ behaves like u near zero and loses its $2 H$ power.

3.3. Main result

Let $0<H<1 / 2$. We consider the following space of measures on $\mathcal{T}_{A} \mathbb{S}_{n} \cong \mathbb{R}^{n}$:

$$
\begin{aligned}
\mathfrak{M}^{H}= & \left\{\text { measures } \tau \text { on } \mathbb{R}^{n}\right. \text { with finite total variation such that } \\
& \left.\tau\left(\mathbb{R}^{n}\right)=0 \text { and } \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left\|x-x^{\prime}\right\|^{2 H}|\tau|(\mathrm{d} x)|\tau|\left(\mathrm{d} x^{\prime}\right)<+\infty\right\} .
\end{aligned}
$$

For any measure $\tau \in \mathfrak{M}^{H}$, we compute the variance of $W_{H}\left(\mu_{\varepsilon}\right)$, where $\mu_{\varepsilon}=\exp ^{*} \tau_{\varepsilon}$ is defined by (13).

By Lemma 2.1, since μ_{ε} belongs to $\mathcal{M}=\mathcal{M}^{H}$ in the case $H<1 / 2$,

$$
\operatorname{var}\left(W_{H}\left(\mu_{\varepsilon}\right)\right)=\int_{B(A, \delta) \times B(A, \delta)} K_{H}\left(d\left(z, z^{\prime}\right)\right) \mu_{\varepsilon}(\mathrm{d} z) \mu_{\varepsilon}\left(\mathrm{d} z^{\prime}\right)
$$

Performing an exponential change of variable followed by a dilation in \mathbb{R}^{n}, we get

$$
\begin{aligned}
\operatorname{var}\left(W_{H}\left(\mu_{\varepsilon}\right)\right) & =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \mathbf{1}_{\|y\|<\delta} \mathbf{1}_{\left\|y^{\prime}\right\|<\delta} K_{H}\left(d\left(\exp (y), \exp \left(y^{\prime}\right)\right)\right) \tau_{\varepsilon}(\mathrm{d} y) \tau_{\varepsilon}\left(\mathrm{d} y^{\prime}\right) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \mathbf{1}_{\|x\|<\delta / \varepsilon} \mathbf{1}_{\left\|x^{\prime}\right\|<\delta / \varepsilon} K_{H}\left(d\left(\exp (\varepsilon x), \exp \left(\varepsilon x^{\prime}\right)\right)\right) \tau(\mathrm{d} x) \tau\left(\mathrm{d} x^{\prime}\right)
\end{aligned}
$$

Defining $\widetilde{K_{H}}(u)=K_{H}(u)-K_{H}(0)$, we have

$$
\begin{aligned}
\operatorname{var}\left(W_{H}\left(\mu_{\varepsilon}\right)\right)= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \mathbf{1}_{\|x\|<\delta / \varepsilon} \mathbf{1}_{\left\|x^{\prime}\right\|<\delta / \varepsilon \widetilde{K_{H}}}\left(d\left(\exp (\varepsilon x), \exp \left(\varepsilon x^{\prime}\right)\right)\right) \tau(\mathrm{d} x) \tau\left(\mathrm{d} x^{\prime}\right) \\
& +K_{H}(0) \tau(\{\|x\|<\delta / \varepsilon\})^{2} .
\end{aligned}
$$

Let us temporarily accept that

$$
\begin{equation*}
\frac{\tau(\{\|x\|<\delta / \varepsilon\})^{2}}{\varepsilon^{2 H}} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} 0 \tag{14}
\end{equation*}
$$

Then, applying Lebesgue's theorem with the convergence argument on $\widetilde{K_{H}}$ obtained in Lemma 3.1 yields

$$
\begin{equation*}
\frac{\operatorname{var}\left(W_{H}\left(\mu_{\varepsilon}\right)\right)}{\varepsilon^{2 H}} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow}-K_{2} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left\|x-x^{\prime}\right\|^{2 H} \tau(\mathrm{~d} x) \tau\left(\mathrm{d} x^{\prime}\right) . \tag{15}
\end{equation*}
$$

Let us now establish (14), where we recall that τ is any measure in \mathfrak{M}^{H}. In particular, the total mass of τ is zero so that

$$
\frac{\tau(\{\|x\|<\delta / \varepsilon\})}{\varepsilon^{H}}=-\frac{\tau(\{\|x\|>\delta / \varepsilon\})}{\varepsilon^{H}}=-\int_{\mathbb{R}^{n}} \varepsilon^{-H} \mathbf{1}_{\|x\|>\delta / \varepsilon} \tau(\mathrm{d} x) .
$$

For any fixed $x \in \mathbb{R}^{n}, \varepsilon^{-H} \mathbf{1}_{\|x\|>\delta / \varepsilon}$ is zero when ε is small enough. Moreover, $\varepsilon^{-H} \mathbf{1}_{\|x\|>\delta / \varepsilon}$ is dominated by $\delta^{-H}\|x\|^{H}$, which belongs to $L^{1}\left(\mathbb{R}^{n},|\tau|(\mathrm{d} x)\right)$ since τ belongs to \mathfrak{M}^{H}. Lebesgue's theorem applies once more.

From the asymptotic result (15), we deduce the following theorem.
Theorem 3.2. Let $0<H<1 / 2$. The limit

$$
\frac{W_{H}\left(\exp ^{*} \tau_{\varepsilon}\right)}{\varepsilon^{H}} \underset{\varepsilon \rightarrow 0^{+}}{\text {fdd }} T_{H}(\tau)
$$

holds for all $\tau \in \mathfrak{M}^{H}$, in the sense of finite-dimensional distributions of the random functionals. Here, T_{H} is the centered Gaussian random linear functional on \mathfrak{M}^{H} with

$$
\begin{equation*}
\operatorname{Cov}\left(T_{H}(\tau), T_{H}\left(\tau^{\prime}\right)\right)=-K_{2} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left\|x-x^{\prime}\right\|^{2 H} \tau(\mathrm{~d} x) \tau^{\prime}\left(\mathrm{d} x^{\prime}\right) \tag{16}
\end{equation*}
$$

As for Theorem 2.3, Theorem 3.2 can be rephrased in terms of pointwise fields. Indeed, $\delta_{x}-\delta_{O}$ belongs to \mathfrak{M}^{H} for all x in \mathbb{R}^{n}. Let us apply Theorem 3.2 with $\tau=\delta_{x}-\delta_{O}$. Then $T_{H}\left(\delta_{x}-\delta_{O}\right)$ has the covariance

$$
\operatorname{Cov}\left(T_{H}\left(\delta_{x}-\delta_{O}\right), T_{H}\left(\delta_{x^{\prime}}-\delta_{O}\right)\right)=K_{2}\left(\|x\|^{2 H}+\left\|x^{\prime}\right\|^{2 H}-\left\|x-x^{\prime}\right\|^{2 H}\right)
$$

and the field $\left\{T_{H}\left(\delta_{x}-\delta_{O}\right) ; x \in \mathbb{R}^{n}\right\}$ is a Euclidean fractional Brownian field.

4. Comparative analysis

In this section, we will discuss the differences and similarities between the Euclidean and spherical cases.

Let us first consider the existence of a scaling limit random field. The variance of this limit field should be

$$
\mathbf{V}=\int_{\mathbb{M}_{n}} \int_{\mathbb{R}^{+}} \mu(B(x, r))^{2} \sigma(\mathrm{~d} x) r^{-n-1+2 H} \mathrm{~d} r
$$

where \mathbb{M}_{n} is the n-dimensional corresponding surface with its surface measure σ. When speaking of the Euclidean case $\mathbb{M}_{n}=\mathbb{R}^{n}$, we refer to [3]. In the present paper, we have studied the case $\mathbb{M}_{n}=\mathbb{S}_{n}$. Moreover, in this discussion, the hyperbolic case $\mathbb{M}_{n}=\mathbb{H}_{n}=\left\{\left(x_{i}\right)_{1 \leq i \leq n+1} \in\right.$ $\left.\mathbb{R}^{n+1} ; x_{n+1}^{2}-\sum_{1 \leq i \leq n} x_{i}^{2}=1, x_{n+1} \geq 1\right\}$ is invoked.

In the Euclidean case, the random fields are defined on the space of measures with vanishing total mass. So, let us first consider measures μ such that $\mu\left(\mathbb{M}_{n}\right)=0$. In this case, whatever the surface \mathbb{M}_{n}, the integral \mathbf{V} involves the integral of the surface of the symmetric difference between two balls with the same radius r. As r goes to infinity, three different behaviors emerge:

- $\mathbb{M}_{n}=\mathbb{S}_{n}$: this surface vanishes;
- $\mathbb{M}_{n}=\mathbb{R}^{n}$: the order of magnitude of this surface is r^{n-1};
- $\mathbb{M}_{n}=\mathbb{H}_{n}$: the surface grows exponentially.

The consequences are the following:

- $\mathbb{M}_{n}=\mathbb{S}_{n}$: any positive H is admissible;
- $\mathbb{M}_{n}=\mathbb{R}^{n}$: the range of admissible H is $(0,1 / 2)$;
- $\mathbb{M}_{n}=\mathbb{H}_{n}$: no H is admissible.

In the Euclidean case, the restriction $\mu\left(\mathbb{R}^{n}\right)=0$ is mandatory, whereas it is unnecessary in the spherical case for $H<n / 2$. Indeed, the integral \mathbf{V} is clearly convergent.

Let us now discuss the (local) self-similarity of the limit field. Of course, we no longer consider the hyperbolic case.

- $\mathbb{M}_{n}=\mathbb{R}^{n}$: dilating a ball is a homogeneous operation. Therefore, the limit field is selfsimilar.
- $\mathbb{M}_{n}=\mathbb{S}_{n}$: dilation is no longer homogeneous. Only local self-similarity can be expected. The natural framework of this local self-similarity is the tangent bundle, where the situation is Euclidean. Therefore, we must return to the restricting condition $H<1 / 2$.

Appendix

Recurrence formula for the $\psi_{\boldsymbol{n}}$'s

Recall that the functions ψ_{n} are defined by (1) and (2):

$$
\begin{aligned}
\psi_{n}(u, r) & =\Psi_{n}\left(M, M^{\prime}, r\right) \\
& =\int_{\mathbb{S}_{n}} \mathbf{1}_{d(M, N)<r} \mathbf{1}_{d\left(M^{\prime}, N\right)<r} \mathrm{~d} \sigma_{n}(N), \quad(u, r) \in[0, \pi] \times \mathbb{R}^{+}
\end{aligned}
$$

for any pair $\left(M, M^{\prime}\right)$ in \mathbb{S}_{n} such that $d\left(M, M^{\prime}\right)=u$. Here, σ_{n} stands for the surface measure on \mathbb{S}_{n}.

Lemma 4.1. The family of functions $\psi_{n}, n \geq 2$, satisfies the following recursion: $\forall(u, r) \in$ $[0, \pi] \times \mathbb{R}^{+}$,

$$
\psi_{n}(u, r)=\int_{-\sin r}^{\sin r}\left(1-a^{2}\right)^{n / 2} \psi_{n-1}\left(u, \arccos \left(\frac{\cos r}{\sqrt{1-a^{2}}}\right)\right) \mathrm{d} a .
$$

Proof. An arbitrary point of \mathbb{S}_{n} is parameterized either in Cartesian coordinates, $\left(x_{i}\right)_{1 \leq i \leq n+1}$, or in spherical ones,

$$
\left(\phi_{i}\right)_{1 \leq i \leq n} \in[0, \pi)^{n-1} \times[0,2 \pi)
$$

with

$$
\begin{aligned}
x_{1} & =\cos \phi_{1}, \\
x_{2} & =\sin \phi_{1} \cos \phi_{2}, \\
x_{3} & =\sin \phi_{1} \sin \phi_{2} \cos \phi_{3}, \\
& \vdots \\
x_{n} & =\sin \phi_{1} \sin \phi_{2} \cdots \sin \phi_{n-1} \cos \phi_{n}, \\
x_{n+1} & =\sin \phi_{1} \sin \phi_{2} \cdots \sin \phi_{n-1} \sin \phi_{n} .
\end{aligned}
$$

Let M be the point $\left(\phi_{i}\right)_{1 \leq i \leq n}=(0, \ldots, 0)$. One can write the ball $B_{n}(M, r)$ of radius r, which is a spherical cap on \mathbb{S}_{n} with opening angle r, as follows:

$$
B_{n}(M, r)=\left\{\left(\phi_{i}\right)_{1 \leq i \leq n} \in \mathbb{S}_{n} ; \phi_{1} \leq r\right\} ;
$$

or, in Cartesian coordinates,

$$
B_{n}(M, r)=\left\{\left(x_{i}\right)_{1 \leq i \leq n+1} \in \mathbb{S}_{n} ; x_{1} \geq \cos r\right\} .
$$

Let $a \in(-1,1)$ and let P_{a} be the hyperplane of \mathbb{R}^{n+1} defined by $x_{n+1}=a$. Let us consider the intersection $P_{a} \cap B_{n}(M, r)$.

- If $1-a^{2}<\cos ^{2} r$, then $P_{a} \cap B_{n}(M, r)=\emptyset$.
- If $1-a^{2} \geq \cos ^{2} r$, then

$$
\begin{aligned}
P_{a} \cap B_{n}(M, r) & =\left\{\left(x_{i}\right)_{1 \leq i \leq n+1} \in \mathbb{S}_{n} ; x_{1} \geq \cos r \text { and } x_{n+1}=a\right\} \\
& =\left\{\left(x_{i}\right)_{1 \leq i \leq n} \in \mathbb{R}^{n} ; x_{1} \geq \cos r \text { and } \sum_{1 \leq i \leq n} x_{i}^{2}=1-a^{2}\right\} \times\{a\} .
\end{aligned}
$$

In other words, denoting by $\mathbb{S}_{n-1}(R)$ the $(n-1)$-dimensional sphere of radius R,

$$
P_{a} \cap B_{n}(M, r)=B_{n-1, \sqrt{1-a^{2}}}(M(a), r(a)) \times\{a\},
$$

where $B_{n-1, \sqrt{1-a^{2}}}(M(a), r(a))$ is the spherical cap on $\mathbb{S}_{n-1}\left(\sqrt{1-a^{2}}\right)$, centered at $M(a)=$ $\left(\sqrt{1-a^{2}}, 0, \ldots, 0\right)$ and with opening angle $r(a)=\arccos \left(\frac{\cos r}{\sqrt{1-a^{2}}}\right)$.

Now, let M^{\prime} be defined in spherical coordinates by $\left(\phi_{i}\right)_{1 \leq i \leq n}=(u, 0, \ldots, 0)$ so that $d\left(M, M^{\prime}\right)=u$. The intersection $P_{a} \cap B_{n}\left(M^{\prime}, r\right)$ is the map of $P_{a} \cap B_{n}(M, r)$ by the rotation of angle u and center C in the plane $x_{3}=\cdots=x_{n+1}=0$. So,

- if $1-a^{2}<\cos ^{2} r$, then $P_{a} \cap B_{n}\left(M^{\prime}, r\right)=\emptyset$;
- if $1-x_{0}^{2} \geq \cos ^{2} r$, then

$$
P_{a} \cap B_{n}\left(M^{\prime}, r\right)=B_{n-1, \sqrt{1-a^{2}}}\left(M^{\prime}(a), r(a)\right) \times\{a\}
$$

where the $(n-1)$-dimensional spherical cap $B_{n-1, \sqrt{1-a^{2}}}\left(M^{\prime}(a), r(a)\right)$ is now centered at $M^{\prime}(a)=\left(\sqrt{1-a^{2}} \cos u, \sqrt{1-a^{2}} \sin u, 0, \ldots, 0\right)$.

We define $\psi_{n-1, R}(u, r)$ as the intersection surface of two spherical caps on $\mathbb{S}_{n-1}(R)$, whose centers are at a distance $R u$ and with the same opening angle r.

By homogeneity, this leads to

$$
\psi_{n-1, R}(u, r)=R^{n-1} \psi_{n-1,1}(u, r)=R^{n} \psi_{n-1}(u, r)
$$

The surface measure σ_{n} of \mathbb{S}_{n} can be written as

$$
\mathrm{d} \sigma_{n}\left(x_{1}, \ldots, x_{n}, a\right)=\sqrt{1-a^{2}} \mathrm{~d} \sigma_{n-1, \sqrt{1-a^{2}}}\left(x_{1}, \ldots, x_{n}\right) \times \mathrm{d} a
$$

where $\sigma_{n-1, R}$ is the surface measure of $\mathbb{S}_{n-1}(R)$.
We then obtain

$$
\begin{aligned}
\psi_{n}(u, r) & =\int_{-1}^{1} \mathbf{1}_{1-a^{2} \geq \cos ^{2} r} \psi_{n-1, \sqrt{1-a^{2}}}\left(u, \arccos \left(\frac{\cos r}{\sqrt{1-a^{2}}}\right)\right) \sqrt{1-a^{2}} \mathrm{~d} a \\
& =\int_{-\sin r}^{\sin r}\left(\sqrt{1-a^{2}}\right)^{n} \psi_{n-1}\left(u, \arccos \left(\frac{\cos r}{\sqrt{1-a^{2}}}\right)\right) \mathrm{d} a,
\end{aligned}
$$

and Lemma 4.1 is proved.

Acknowledgement

The authors are very grateful to the referee for careful reading of the paper and useful comments.

References

[1] Benassi, A., Jaffard, S. and Roux, D. (1997). Gaussian processes and Pseudodifferential Elliptic operators. Rev. Mat. Iberoamericana 13 19-90. MR1462329
[2] Biermé, H. and Estrade, A. (2006). Poisson random balls: Self-similarity and X-ray images. Adv. in Appl. Probab. 38 853-872. MR2285684
[3] Biermé, H., Estrade, A. and Kaj, I. (2010). Self-similar random fields and rescaled random balls model. J. Theoret. Probab. To appear. Available at http://hal.archives-ouvertes.fr/hal-00161614_v2/.
[4] Cioczek-Georges, R. and Mandelbrot, B.B. (1995). A class of micropulses and antipersistent fractional Brownian motion. Stochastic Process. Appl. 60 1-18. MR 1362316
[5] Cohen, S. and Taqqu, M. (2004). Small and large scale behavior of the Poissonized Telecom Process. Methodol. Comput. Appl. Probab. 6 363-379. MR2108557
[6] Dalay, D.J. (1971). The definition of multi-dimensional generalization of shot-noise. J. Appl. Probab. 8 128-135. MR0278408
[7] Dobrushin, R.L. (1980). Automodel generalized random fields and their renorm group. In Multicomponent Random Systems (R.L. Dobrushin and Y.G. Sinai, eds.) 153-198. New York: Dekker. MR0599535
[8] Faraut, J. (1973). Fonction brownienne sur une variété riemannienne. Séminaire de probabilités de Strasbourg 7 61-76. MR0391284
[9] Gangolli, R. (1967). Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. H. Poincaré 3 121-226. MR0215331
[10] Helgason, S. (1962). Differential Geometry and Symmetric Spaces. New York: Academic Press. MR0145455
[11] Heinrich, L. and Schmidt, V. (1985). Normal convergence of multidimensional shot noise and rate of this convergence. Adv. in Appl. Probab. 17 709-730. MR0809427
[12] Kaj, I., Leskelä, L., Norros, I. and Schmidt, V. (2007). Scaling limits for random fields with long-range dependence. Ann. Probab. 35 528-550. MR2308587
[13] Istas, J. (2005). Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10 254-262. MR2198600
[14] Istas, J. (2006). On fractional stable fields indexed by metric spaces. Electron. Commun. Probab. 11 242-251. MR2266715
[15] Istas, J. and Lacaux, C. (2009). On locally self-similar fractional random fields indexed by a manifold. Preprint.
[16] Kolmogorov, A. (1940). Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS 26 115-118. MR0003441
[17] Lévy, P. (1965). Processus stochastiques et mouvement brownien. Paris: Gauthier-Villars. MR0190953
[18] Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review 10 422-437. MR0242239
[19] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. New York: Chapman \& Hall. MR 1280932
[20] Serra, J. (1984). Image Analysis and Mathematical Morphology. London: Academic Press. MR0753649
[21] Stoyan, D., Kendall, W.S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd ed. Chichester: Wiley. MR0895588
[22] Takenaka, S. (1991). Integral-geometric construction of self-similar stable processes. Nagoya Math. J. 123 1-12. MR1126180
[23] Takenaka, S., Kubo, I. and Urakawa, H. (1981). Brownian motion parametrized with metric space of constant curvature. Nagoya Math. J. 82 131-140. MR0618812
[24] Wicksell, S.D. (1925). The corpuscle problem: A mathematical study of a biometric problem. Biometrika 17 84-99.
[25] Willingsler, W., Taqqu, M.S., Sherman, R. and Wilson, D.V. (1997). Self-similarity through high variability: Statistical analysis of Ethernet LAN traffic at source level. IEE/ACM Transactions in Networking 571-86.

Received October 2009 and revised June 2009

