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Ball throwing on spheres
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Ball throwing on Euclidean spaces has been considered for some time. A suitable renormalization leads
to a fractional Brownian motion as limit object. In this paper, we investigate ball throwing on spheres.
A different behavior is exhibited: we still get a Gaussian limit, but it is no longer a fractional Brownian
motion. However, the limit is locally self-similar when the self-similarity index H is less than 1/2.
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1. Introduction

Random balls models have been studied for a long time and are known as germ-grain mod-
els, shot noise or micropulses. The common feature of those models consists in throwing balls
that eventually overlap at random in an n-dimensional space. Many random phenomena can be
modelled through this procedure and there are many fields of application: Internet traffic in one
dimension, communication networks or imaging in two dimensions and biology or material sci-
ences in three dimensions. A pioneering work is due to Wicksell [24], dealing with the study
of corpuscles. The literature on germ-grain models involves two main currents: the research ei-
ther focuses on the geometrical or morphological aspect of the union of random balls (see [20] or
[21] and references therein), or it is concerned with the number of balls covering each point. This
second approach is currently known as shot noise or spot noise (see [6], for instance). In three
dimensions, the shot noise process is a natural candidate for modelling porous or granular media,
and, more generally, heterogeneous media with irregularities at any scale. The idea is to build
a microscopic model which yields a macroscopic field with self-similar properties. The same
idea is expected in one dimension for Internet traffic, for instance [25]. A common method for
finding self-similarity is to deal with scaling limits. Roughly speaking, the balls are dilated with
a scaling parameter A and one lets A go either to O or to infinity. We quote, for instance, [4] and
[12] for the case A — 0T, [11] and [2] for the case A — +00, and [5] and [3] where both cases
are considered.

In the present paper, we follow a procedure which is similar to [2] and [3]. Let us describe it
precisely. A collection of random balls in R” whose centers and radii are chosen according to a
random Poisson measure on R” x R¥ is considered. The Poisson intensity is given as follows:

v(dx,dr) = r " 12H gy dr,)

for some real parameter H. Since the Lebesgue measure dx is invariant with respect to isom-
etry, so is the random balls model, and so will be any (eventual) limit. As the distribution of
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the radii follows a homogeneous distribution, a self-similar scaling limit may be expected. In-
deed, with additional technical conditions, the scaling limits of such random balls models are
isometry-invariant self-similar Gaussian fields. The self-similarity index depends on the parame-
ter H. When 0 < H < 1/2, the Gaussian field is nothing but the well-known fractional Brownian
motion [16,18,19].

Manifold-indexed fields that share properties with Euclidean self-similar fields have been, and
still are, extensively studied (for example, [8,9,13-15,17,22,23]). In this paper, we consider what
happens when balls are thrown onto a sphere, rather than a Euclidean space. More precisely, is
there a scaling limit of random balls models and, if it exists, is this scaling limit a fractional
Brownian field indexed by the surface for 0 < H < 1/2?

The random field is still obtained by throwing overlapping balls in a Poissonian way. The Pois-
son intensity is chosen as follows:

v(dx,dr) = f(r)o(dx)dr.

The Lebesgue measure dx has been replaced by the surface measure o (dx). The function f,
which controls the distribution of the radii, is still equivalent to " 1H2H ot least for small r,
where n stands for the surface dimension. It turns out that the results are completely different in
the two cases (Euclidean, spherical). In the spherical case, there is a Gaussian scaling limit for
any H, but it is no longer a fractional Brownian field, as defined by [13]. We then investigate
the local behavior, in the tangent bundle, of this scaling limit, in the spirit of local self-similarity
[1,7,15]. It is locally asymptotically self-similar with a Euclidean fractional Brownian field as
tangent field. Our microscopic model has led to a local self-similar macroscopic model.

The paper is organized as follows. In Section 2, the spherical model is introduced and we
prove the existence of a scaling limit. In Section 3, we study the locally self-similar property of
the asymptotic field. Section 4 is devoted to a comparative analysis between the Euclidean and
spherical cases. Eventually, some technical computations are presented in the Appendix.

2. Scaling limit

We work on S,,, the n-dimensional unit sphere, n > 1:

Snz{(xi)1§i§n+1€Rn+l; Z x?:l},

I<i<n+l

2.1. Spherical caps

For x,y € Sy, let d(x, y) denote the distance between x and y on S,, that is, the non-oriented
angle between Ox and Oy, where O denotes the origin of R Forr >0, B(x, r) denotes the
closed ball on S centered at x with radius r:

B(x,r)={yeSp;d(x,y) <r}.
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Let us note that for » < 7, B(x, r) is a spherical cap on the unit sphere S,, centered at x with
opening angle r and that for r > 7, B(x,r) =S,.

Denoting by o (dx) the surface measure on S,;, we define ¢ (r) as the surface of any ball on S,
with radius r:

¢(r):=0(B(x,r)), x€S,,r>0.

We also introduce the following function defined for z and z/, two points in S, and r € R™:
W(z,7,r) = [S Lioy<rlag.z)y<ro (dx). €]

Actually, W (z, 7/, r) denotes the surface measure of the set of all points in S, that belong to both
balls B(z,r) and B(z/,r). Clearly, ¥(z, ', r) depends only on the distance d(z, z") between z
and 7. We write

Y(d(z,2),r)=¥(z.2',r) 2
and note that it satisfies the following: V(u, r) € [0, ] X RY,

e 0<Y(u,r)<o(S,) Np(r);
o if r <u/2,then ¥ (u,r) =0and if r > 7, then ¥ (u,r) = o (S,);
o Y(0,1)=¢(r)~ecr"asr— 0%,

In what follows, we consider a family of balls B(X;, R;) generated at random, following a
strategy described in the next section.

2.2. Poisson point process

We consider a Poisson point process (X ;, R;); in'S, x R or, equivalently, N (dx, dr), a Poisson
random measure on S, x R* with intensity

v(dx,dr) = f(r)o(dx)dr,

where f satisfies the following assumptions A(H) for some H > 0:

o supp(f) C [0, m);
e f is bounded on any compact subset of (0, 1);
o f(r)~r " 1H2H 35 5 0.

Remarks.

(1) The first condition ensures that no balls of radius R; on the sphere self-intersect.
(2) Since ¢ (r) ~ cr", r — 0T, the last condition implies that fR+ ¢ (r) f(r)dr < 400, which
means that the mean surface, with respect to f, of the balls B(X;, R;) is finite.
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2.3. Random field

Let M denote the space of signed measures p on S, with finite total variation |u|(S,), with |u|
the total variation measure of . For any u € M, we define

XGo= [ wBG)N @), )
Sp xR+
Note that the stochastic integral in (3) is well defined since

/s R+IIL(B(x,r))If(r)O(dX)drS/ / /R+ld(x,y)<rf(r)0(dX)|MI(dy)dr

= IMI(Sn)(/ ¢(r)f(r)dr> < +o00.
R+

In the particular case where u is a Dirac measure &, for some point z € S,;, we simply write

X(Z)ZX((SZ):/

Sy xR

. 13(x,r) (z)N (dx, dr). “)

The pointwise field {X (z); z € S,} corresponds to the number of random balls (X;, R;) cov-
ering each point of §,. Each random variable X (z) has a Poisson distribution with mean

fRJr o(r)f(r)dr.
Furthermore, for any u € M,

E(X (w)) = u(Sy) (/R+ ¢(r)f(r) dr)

and

Var(X (n)) = / n(B(x, r))2f(r)a(dx) dr € (0, +o0].

Sy xRt

2.4. Key lemma

For H > 0, we would like to compute the integral
/ p(Bx, )’ r "2 g (dx) dr,
, xRt

which is a candidate for the variance of an eventual scaling limit. We first introduce M| the set
of measures for which the above integral does converge:

MP =M if2H <n; MU ={pe M;u@S,) =0}  if2H > n.

The following lemma deals with the function v defined by (2).
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Lemma 2.1. Let H > O with 2H # n. We introduce
v =y if0<2H <n, v =y —6(S,)  if2H >n.
Then, for all u € [0, 7],
/R+ |1p(H)(u, r)|r*"*1+2H dr < +o0.

Furthermore, letting
K= [ v g )
R+
for any u in [0, 7], we have, for all i € MH,

0< / W(Br, )22 g () dr = / K (d(z, 2)(dnyn(ds) < +oo.
Sy xR+t Sp xSy

Remark 2.2.

(1) For x, y in S,, the difference of Dirac measures 8, — J, belongs to MH for any H.

(2) In the case 2H > n, since any u € M is centered, the integral on the right-hand side is
not changed when a constant is added to the kernel K.

(3) This lemma proves that the kernel K defines a covariance function on M# .

Proof of Lemma 2.1. Using the properties of i, we get, in the case 0 < 2H < n, that
0< / Y, ryr R gy
R+

< ¢(r)r_”_l+2H dr +o(S,) 20 g,
0,m) (7t,00)
< +o0.

In the same vein, in the case 2H > n, we get

0< / (0 (Sp) — Y, r))r 12 gr
R+

< +o00.

We have just established that there exists a finite constant Cy such that

Yu € [0, ], / [y @, r)[r= 12 dr < Cy. (6)
R+
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The first statement is proved.
Let us define, for u € M,

In(p) = fS . w(B(x,r))2r "2 5 (dx) dr

and start by proving that I () is finite. We will essentially use Fubini’s theorem in the following
lines:

I () = f ( / u(B(x,r))za<dx>>r—”—l+”’dr
R+

n

=f (f \Il(z,z/,r)u(dz),u(dz/))r_”_H'zH dr.
R+ \JS, xS,

Since 1 € MH is centered in the case 2H > n, one can change v into ¥ () inside the previous
integral. Then

= | ( /. |1/f(H)(d(Z,Z/),r)|Iul(dz)|u|(dz/)>r—"—1+2Hd,,

S/ <./ |w(H)(d(Z,Z/),r)|rn1+2Hdr>|ﬂ|(dz)|ﬂ|(dz/)
Sy xSy R+

< CHIRI(Sy)? < +oo.

Following the same lines (except for the last one) without the ‘| - |” allows the computation of
Iy (1) and completes the proof. (|

An explicit value for the kernel Ky is available, starting from its definition. The point is
to compute ¥ ). In the Appendix, we provide a recurrence formula for "), based on the
dimension n of the unit sphere S, (see Lemma 4.1).

2.5. Scaling

Let p > 0 and A be any positive function on (0, +00). We consider the scaled Poisson measure
N, obtained from the original Poisson measure N by taking the image under the map (x,r) €
S x Rt (x, pr) and multiplying the intensity by A(p). Hence, N, is still a Poisson random
measure with intensity

vp(dx, dr) =A(p)p~ " f(p~'r)o (dx) dr.
We also introduce the scaled random field X, defined on M by

X, (1) = /S (B )N, @, dr). ™
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Theorem 2.3. Let H > 0 with 2H # n and let f satisfy A(H). For all positive functions A such
that A(p)p"~*H —. oo the limit
p—>—+00

{Xp(u) —EX,(w)

holds in the sense of finite-dimensional distributions of the random functionals. Here, Wy is the
centered Gaussian random linear functional on MH with

MGMH} T Wy e M
p—>—+00

Cov(Wy (1), Wr (v)) =/ Kp(d(z,2)p(dz)v(dz), ®)

n XSy

where Ky is the kernel introduced in Lemma 2.1.
The theorem can be rephrased in term of the pointwise field {X (z); z € S,;} defined in (4).

Corollary 2.4. Let H > O with 2H # n and let f satisfy A(H). For all positive functions A such

that 1(p)p" 2 — +o0,
p—>+00

e if0<2H <n, then

{Xp(Z) —EX, ()

4
Va(p)pr—2H

where Wy is the centered Gaussian random field on S, with

dd
eSn} H W)z €S,
p—>+00

Cov(Wr(2), Wi (2) = Kn(d(z,2));
e if2H > n, then for any fixed point zg € S,;,

Xp(2) = X,(20) . fad |
{W’ZE ”}p?oo{WHvzo@,zeSn},

where Wy -, is the centered Gaussian random field on S, with

Cov(Wi 2(2), Wi 20(2) = Kn (d(z, 7)) — Kr(d(z, 20)) — Ku(d(Z', 20)) + K1 (0).

Proof of Theorem 2.3. Let us define n(p) := /A(p)p" 2. The characteristic function of the
normalized field (X, (-) — E(X,(-)))/n(p) is then given by

E(exp(ixp(“) _E(X”(“))» =exp<f Gp(x,r)dro(dx)>, ©)
n(p) Su xR+
where
Gplx,r) = (ei*“B(x””/"“’) —1- i%’;’)”))x(mp—lﬂp—lr» (10)



960 A. Estrade and J. Istas

We will make use of Lebesgue’s theorem in order to get the limit of fSn «r+ Gplx,r)dro(dx)
as p — +o00. .
On the one hand, n(p) tends to 400 so that (e*(B&-")/np) _ 1 _ iM) behaves like

(“ (5 E; r)))2 Together with the assumption A(H), it yields the following asymptotic result:

forall(x res, xRt

Go(x,r) —> —Lu(B(x,r)?r 1120, (11)
p—>+00

On the other hand, since W < |ul(S,) for p large enough, we note that there exists
some positive constant K such that for all x, r, p,

(B0 /n(p) _ | _iM(B(Xﬂ’)) _ K(ﬂ(B(x,r)))z
n(p) n(p) '

Therefore,
1Gp(x, )| < Kpu(B(x, ) p "2 £(p=1r).
There exists C > 0 such that for all » € R*, f(r) < Cr 112 We then get
|Gp(x,r)| < KCu(B(x,r)2r =124 (12)

where the right-hand side is integrable on S,, x R™, by Lemma 2.1.
Applying Lebesgue’s theorem yields

1
/ G,(x,r)o(dx)dr — —_/ w(B(x, r)?r "2 g (dx) dr
, X R+ p—>+oo 2 Sp xR

1
- / Ki(d(z, 2)u(d)udz).
Sp xS,

Hence, (X, (u) —E(X,(1)))/n(p) converges in distribution to the centered Gaussian random
variable W (u) whose variance is equal to

E(W (1)*) = C/ Kp(d(z, 2)pu(d2)u(dz).

By linearity, the covariance of W satisfies (8). ]

Remark 2.5.

(1) The pointwise limit field {Wg (z); z € S} in Corollary 2.4 is stationary, that is, its distri-
bution is invariant under the isometry group of S,, whereas the increments of {Wy - (2); z € S}
are distribution-invariant under the group of all isometries of S,, which keep the point zg invari-
ant.
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(2) When 0 < H < 1/2, the Gaussian field Wy does not coincide with the field introduced
in [13] as the spherical fractional Brownian motion on S,,.

Indeed, let us consider the case n = 1. It is easy to obtain the following piecewise expression
for ¥ = yr: Y(u,r) € [0, m] x RT,

Yi(u,r)=0 forO<r <u/2

=2r—u foru/2<r<mn—u/2
=4r — 27 form—u/2<r<m
=27 for r > m.

It is also easy to compute

Knw) =— eH* —u* — 2n —u)*H).

(1 —2H)22H

Actually, we compute the variance of the increments of Wy :

E(Wg(2) — Wi (2))” = 2Kp(0) — 2K g (d(z, 7))
2

2H
T H(1 - 2H)22H[ )

d*?(z, )+ (2n —d(z,2))" — 2em)*H].

The spherical fractional Brownian motion By, introduced in [13], satisfies

E(Bu(2) — Bu () =d*" (z,2).

Even up to a constant, the processes Wy and By are clearly different. The Euclidean situation is
therefore different. Indeed, [3], the variance of the increments of the corresponding field Wy is
proportional to |z — z'|*H

3. Local self-similar behavior

We consider whether the limit field Wy obtained in the previous section satisfies a local asymp-
totic self-similar (LASS) property. More precisely, we will let a ‘dilation’ of order ¢ act on Wg
near a fixed point A in S, and, as in [15], up to a renormalization factor, we look for an asymp-
totic behavior as ¢ goes to 0. An H-self-similar tangent field Ty is expected. Recall that Wy
is defined on a subspace M’ of measures on S, so that Ty will be defined on a subspace of
measures on the tangent space 74S, of S,.

3.1. Dilation

Let us fix a point A in S, and consider 74S,,, the tangent space of S,, at A. It can be identified
with R" and A with the null vector of R".
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Let 1 < § < m. The exponential map at point A, denoted by exp, is a diffeomorphism between
the Euclidean ball {y € R", ||y|| < §} and 13 (A,8) CS,, where | - || denotes the Euclidean norm

in R” and 103 (A, §) the open ball with center A and radius § in S,,.
Furthermore, for all y, y' € R" such that ||y|], ||y’ <8,

d(A,expy) =yl and d(expy,expy’) <|y—Y].

We refer to [10] for details on the exponential map.
Let 7 be a signed measure on R”. We define the dilated measure 7, by

VB € B(R") 7.(B) = t(B/¢)
and then map it by the application of exp, defining the measure . = exp* t. on 1}3 (A,d) by

VCeB(B(A.8)  pe(C)=exp* o(C) = Telexp ™ (O)). 13)

We then consider the measure . as a measure on the whole sphere S, with support included in
B (A, ).

Finally, we define the dilation of Wy within a ‘neighborhood of A’ by the following proce-
dure. For any finite measure t on R”, we consider u, = exp* t,, as defined by (13), and com-
pute Wg (ue). We will establish the convergence in distribution of e Hwy (exp* 7) for any t
in an appropriate space of measures on R”. Since W (1) is Gaussian, we will focus on its
variance.

3.2. Asymptotics of the kernel Ky

For 0 < H < 1/2, we have already mentioned that the kernel Ky (0) — Ky (4) is not propor-
tional to u>f. As a consequence, one cannot expect Wy to be self-similar. Nevertheless, as we
are looking for an asymptotic local self-similarity, only the behavior of Ky near zero is rele-
vant. Actually, we will establish that, up to a constant, K 5 (0) — K i (1) behaves like u?f when
u—0t.

Lemma 3.1. Let O < H < 1/2. The kernel K iy defined by (5) satisfies
Ky =Ky — Koa*? +o@®),  u— 0%,
where K1 = Ky (0) and K, are non-negative constants.

Proof. Let us state that the assumption H < 1/2 implies that H < n/2 so that, in that case,
K g is given by

KH(u)zf W(u, r)r " I2H g u €0, 7).
R+
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We note that Ky (0) < 400 since ¥ (0,r) ~ cr” as r — 0% and ¥ (0,r) = o (S,) for r > 7.
Then, subtracting K i (0) and observing that ¥ (0, r) = ¥ (u, r) = o (S,) for r > 1, we write

Kg0)— Kg(u) = /n(l/,(o,r) —_ I/I(M7r))r7n71+2H dr
0
B

= / (W O.r) =Y, )r 12 g
0

+ /n(w(o, r) =y, r)r 2 g
)

where we recall that § € (1, i) is such that the exponential map is a diffeormorphism between
{llyll <8} CR"and B (A,68) CS,.

The second term is of order u and is therefore negligible with respect to u>
Lipschitz on the compact interval [§, 1t].

We now focus on the first term. Performing the change of variable r — r/u, we write it as

H since y is clearly

)
/ (1//(0, r)— v (u, r))r_"_1+2H dr
0
= qu/ A, ryr " 1H2H gy
R+

where
A, r) = Lypesu™" (Y, ur) — ¥ (0, ur)).

It only now remains to prove that [, A(u, r)r ="~ +2H dr admits a finite limit K, as u — 0F.
We will use Lebesgue’s theorem and start by establishing the simple convergence of A(u, r) for
any given r € R,

We fix a unit vector v in R” and a point A’ = expv in S,. We then consider, for any u € (0, §),
the point A/, := exp(uv) € S, located on the geodesic between A and A’ such that d(A, A) =
|[uv|| = u. We can then use (1) and (2) to write

W(M,')Z‘I’(A,AL,')Z/S Laca,z)<laca, 2)< do(2)

and

v(0,)=V(A, A, :/s Laca,5)<-do(z)

n

in order to express A(u, r) as

Au,r) = 1ur<3u_n/ 1d(A,z)<ur1d(A’u,z)>ur do (2).

n
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Since ur < &, the above integral runs on 13 (A,ur) C }c} (A, 8) and we can perform the exponen-
tial change of variable to get

Au,r) = 1ypsu™" / 1\|y||<ur1d(exp(uv),exp(y))>ur do (exp(y))
R’l
=1,r<s f lllyl\<r1d(exp(uv),exp(uy))>ur6(uy) dy.
R)l

In the last integral, the image under exp of the surface measure do (exp(y)) is written as & (y) dy,
where dy denotes the Lebesgue measure on R”.

We use the fact that d(exp(ux), exp(ux’)) ~ u|lx — x'|| as u — O to obtain the following
limit for the integrand:

Laexpuv),exp@uy)) <ur® (Uy) —> Ljy_y|>,0(0).
Since the integrand is clearly dominated by
o lloc := sup{o (y), Iyl <8},

Lebesgue’s theorem yields, for all r € RT,
Adu,r) — 5(0)/ Lyj<rdjy—y>r dy.
Rn

We recall that d(exp x, expx’) < ||x — x'|| for all x, x” € R” with norm less than §. Therefore, for
all u,

Au,r) < IIGIIOO/ Ljyj<rLjv—yj>r dy,
Rll

where the right-hand side belongs to L' (R, r7*~1#2H dr) (see [2], Lemma A.2).
Using Lebesgue’s theorem for the last time, we obtain

/ A, ryr 120 gy 5 K,
R+

u—0t

where

Ky = 5—(0)/ Lyj<rLjy—yj=rr "1 dy dr € (0, +00). O
R xR+

Let us remark that the proof makes it clear that the case H > 1/2 is dramatically different.
The kernel K5 (0) — K — H (1) behaves like u near zero and loses its 2H power.
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3.3. Main result

Let 0 < H < 1/2. We consider the following space of measures on 74S, = R":

omt = {measures 7 on R” with finite total variation such that

7(R") =0 and /

llx — x'I1*H 7] (dx)| o] (dx) < +oo}.
R xR2

965

For any measure 7 € M we compute the variance of Wy (i), where e = exp* t. is defined

by (13).
By Lemma 2.1, since u, belongs to M = M in the case H < 1/2,

var(We (ie)) :/ Kp(d(z,2) e (dz) pe (d2).
B(A,8)xB(A,8)

Performing an exponential change of variable followed by a dilation in R", we get

var(Wy (1)) =/Rn - 1y <s1yy<s Ku(d(exp(y), exp(y)) e (dy)ze (dy")

= /R . 1y <s/edyxj<s/e K (d(exp(ex), exp(ex))) T (dx) T (dx').
ﬂ>< n
Defining Kz (1) = K () — K 57 (0), we have

var(W (p1e)) = fR i L) <8/e 1 <5/ K (d (exp(ex), exp(ex'))) T (dx) T (dx)
nX n
+ Ky O)t({llxl <8/eh?.
Let us temporarily accept that

t({llxll < 8/ep?
e

0.
g2H e—0t

(14)

Then, applying Lebesgue’s theorem with the convergence argument on Ky obtained in

Lemma 3.1 yields

14
W — —K2/ llx — x/ 12 7 (dx) T (dx').
€ e—=>0F R" xR"

as)

Let us now establish (14), where we recall that t is any measure in M  In particular, the total

mass of 7 is zero so that

{llxll <d/¢}) {llxll > d/e}) _
T xg; /€ _ T xg; /e Z_/Rng H1||x||>8/gf(dx).
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For any fixed x € R", e 15/, is zero when ¢ is small enough. Moreover, ¢ 1) /. is
dominated by 8 ||x||¥, which belongs to L' (R, |z|(dx)) since 7 belongs to M . Lebesgue’s
theorem applies once more.

From the asymptotic result (15), we deduce the following theorem.

Theorem 3.2. Let 0 < H < 1/2. The limit

%% * dd
H(@;P Te) fdd (o)
& e—01

holds for all T € MY | in the sense of finite-dimensional distributions of the random functionals.
Here, Ty is the centered Gaussian random linear functional on M with

Cov(Tu (1), Tu(t) = —K» / lx — x1*H 7 (dx) 7’ (dx). (16)
R" xR

As for Theorem 2.3, Theorem 3.2 can be rephrased in terms of pointwise fields. Indeed,
8¢ — 80 belongs to M for all x in R”. Let us apply Theorem 3.2 with T = 8, — §¢. Then
Ty (8x — 80) has the covariance

Cov(Ty (Sx —80), TH(Bv — 80)) = K2(lIx P + Ix'II7H — |lx — x1*H)

and the field {Ty (6, — 80); x € R"} is a Euclidean fractional Brownian field.

4. Comparative analysis

In this section, we will discuss the differences and similarities between the Euclidean and spher-
ical cases.

Let us first consider the existence of a scaling limit random field. The variance of this limit
field should be

V:/ / w(B(x, r) 2o (dx)r "~ 121 g,
M, JR*

where M], is the n-dimensional corresponding surface with its surface measure 0. When speak-
ing of the Euclidean case M, = R", we refer to [3]. In the present paper, we have studied the
case M, = S,. Moreover, in this discussion, the hyperbolic case M, = H,, = {(x;)1<i<n+1 €
R X2 = Y e &7 = 1, Xpq1 = 1} is invoked.

In the Euclidean case, the random fields are defined on the space of measures with vanish-
ing total mass. So, let us first consider measures p such that w(M,,) = 0. In this case, what-
ever the surface M, the integral V involves the integral of the surface of the symmetric differ-
ence between two balls with the same radius r. As r goes to infinity, three different behaviors

emerge:

o M, =S,: this surface vanishes;
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e M, = R": the order of magnitude of this surface is -l
o M, = H,,: the surface grows exponentially.

The consequences are the following:

e M, =S, any positive H is admissible;
e M, = R": the range of admissible H is (0, 1/2);
e M, =H,: no H is admissible.

In the Euclidean case, the restriction w(R”) = 0 is mandatory, whereas it is unnecessary in the
spherical case for H < n/2. Indeed, the integral V is clearly convergent.

Let us now discuss the (local) self-similarity of the limit field. Of course, we no longer consider
the hyperbolic case.

e M, = R": dilating a ball is a homogeneous operation. Therefore, the limit field is self-
similar.

e M, =S, dilation is no longer homogeneous. Only local self-similarity can be expected.
The natural framework of this local self-similarity is the tangent bundle, where the situation
is Euclidean. Therefore, we must return to the restricting condition H < 1/2.

Appendix
Recurrence formula for the ¥,,’s

Recall that the functions ¥, are defined by (1) and (2):
I/fn(u, r) = "I'[n(Mv M/v r)

:i/mmmquWWKm%wm (,r) € [0, 7] x RY,

n

for any pair (M, M') in S,, such that d(M, M') = u. Here, o, stands for the surface measure
onsS,.

Lemma 4.1. The family of functions Y, n > 2, satisfies the following recursion: ¥Y(u,r) €
[0, ] x R,

sinr 22 coSr
(u, 1) =/ (1—=a”) _1<u,arccos(7))da_
‘ﬂn —sinr wn V1 —(12

Proof. An arbitrary point of S, is parameterized either in Cartesian coordinates, (X;)1<j<n+1, OF
in spherical ones,

($i)1<i<n €10, 0" x [0,2m),
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with

X1 = cos ¢y,
Xy = sing cos ¢y,

X3 = sin ¢y sin ¢, cos ¢3,

X, = sin¢qsing; - - - sing,_1 cos ¢y,

Xp41 = singy singy - - - sin ¢, _1 sin ¢y, .

Let M be the point (¢;)1<i<n = (0, ..., 0). One can write the ball B,,(M, r) of radius r, which
is a spherical cap on S, with opening angle r, as follows:

B,(M,r) = {(d’i)lgifn €Sp; 1 <r};
or, in Cartesian coordinates,
By(M,r) = {(xi)1<i<n+1 € Sp; X1 > cosr}.

Leta € (—1, 1) and let P, be the hyperplane of R"*! defined by x,, 1| = a. Let us consider the
intersection P, N B, (M, r).

o If | —a? <cos?r, then P, N By(M,r)=0.
e If 1 —a? > cos?r, then

P,NB,(M,r) = {(xi)l§i§n+1 € Sy; x1 > cosr and Xn+1 =a}

= {(xi)lgign € R"; x; > cosr and Z xP=1 —az} x {a}.

1<i<n

In other words, denoting by S,,_1(R) the (n — 1)-dimensional sphere of radius R,
PaNBiM.)=B | =(M(@).r(@) x la),

where anl M(M(a), r(a)) is the spherical cap on S,,_{ (+/1 — a?), centered at M (a) =
(v1—a?,0,...,0) and with opening angle r(a) = arccos(j%).

Now, let M’ be defined in spherical coordinates by (¢;)i<i<n = (u,0,...,0) so that
d(M,M’) = u. The intersection P, N B,(M’,r) is the map of P, N B,(M,r) by the rotation
of angle u and center C in the plane x3 = --- = x,4+1 = 0. So,

o if 1 —a% <cos?r, then P, N By(M',r) =;
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o if 1 —xg > cos? r, then
PaOBu(M' 1) =B, ps(M'(@), (@) X la),

. . . , .
where the (n — 1)-dimensional spherical cap Bn_ 1 M(M (a), r(a)) is now centered at
M'(a) = (W1 —a2cosu,~1 —a%sinu,O0,...,0).

We define v,,_1 r(u, r) as the intersection surface of two spherical caps on S,_1(R), whose

centers are at a distance Ru and with the same opening angle r.

By homogeneity, this leads to
Va1 R 1) = R W11 (u,r) = R 1 (u. 7).
The surface measure o,, of S, can be written as

do, (x1,...,x,,a) = l—azdan_l,m(xl,...,xn)Xda,

where 0,1 r is the surface measure of S,,_1 (R).
We then obtain

1
cosr
Yn(u,r) =f ll_azzcoszrlﬂn_l - (u,arccos<7)>\/l—a2da
—1 4

V1 —a?
/Si“’ (\/72),1 cosr
= 1—a) ¢ _1<u,arccos<4>)da,
—sinr " V11— a?
and Lemma 4.1 is proved. ]
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