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We consider a symmetric, finite-range contact process with two types of infection; both have the same
(supercritical) infection rate and heal at rate 1, but sites infected by Infection 1 are immune to Infection 2.
We take the initial configuration where sites in (−∞,0] have Infection 1 and sites in [1,∞) have Infection 2,
then consider the process ρt defined as the size of the interface area between the two infections at time t . We
show that the distribution of ρt is tight, thus proving a conjecture posed by Cox and Durrett in [Bernoulli 1
(1995) 343–370].
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1. Introduction

This paper addresses a conjecture of Cox and Durrett [3] concerning interfaces naturally arising
in supercritical contact processes on Z1.

The contact process on Zd is a spin system with operator

�f (η) =
∑
x

(
f (ηx) − f (η)

)
c(x, η), η ∈ {0,1}Z

d

,

where {
ηx(y) = η(y), if y �= x,
ηx(x) = 1 − η(x),

and flip rates c(x, η) are given by

c(x, η) =
{

1, if η(x) = 1,

λ
∑

p(y − x)η(y), if η(x) = 0

for λ > 0 and probability kernel p(·).
In the following, we take p(·) to have finite range (that is, ∃M < ∞ :p(x) = 0 for |x| > M)

and to be symmetric, though this latter hypothesis can be dispensed with via the techniques and
results of Bezuidenhout and Gray [1].
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Often the contact process is used as a model of the spread of an infection and a configuration
η ∈ {0,1}Z

d
represents the state where there is an infection at x ∈ Zd if and only if η(x) = 1.

We will adopt this point of view and speak of a site x being infected at time t (for a process
(ηt : t ≥ 0)) if ηt (x) = 1. We will sometimes identify configurations in {0,1}Z

d
with their sets of

infected sites (that is, we will write ξ instead of {x : ξ(x) = 1}). As defined above, the contact
process is attractive (see [8] for fundamental results associated with this property). Thus, for
two configurations ξ0 and ζ0 satisfying ξ0 ≤ ζ0 under the natural partial order, it is possible to
construct in a single probability space two processes, (ξt : t ≥ 0) starting at ξ0 and (ζt : t ≥ 0)

starting at ζ0, satisfying, with probability one, ξt ≤ ζt for all t .
A consequence is that ∃λ1

c such that for λ > λ1
c , the invariant limit limt→∞ δ1S(t) is a non-

trivial measure and for λ < λ1
c , this limit is δ0. There also exists λ2

c such that for λ > λ2
c,P

{0}(τ =
∞) > 0 for τ = inf{t :ηt ≡ 0}, and for λ < λ2

c,P
{0}(τ = ∞) = 0. In fact, via duality (see, for

example, [5] or [8]), λ1
c = λ2

c , and this critical value will henceforth be denoted by λc.
We now introduce some notation. Suppose we are given independent Poisson processes on

[0,∞), {Dx}x∈Zd of rate 1 and {N(x,y)}x,y∈Zd of rate λp(y − x). Denote by H a realization of
all these independent processes; we say that H is a Harris construction. H is thus a Poisson
measure on (Zd ∪ (Zd)2) × [0,∞) such that, if y, z ∈ Zd and I is a Borelian subset of [0,∞),
we have H({z} × I ) = Dz(I) and H({(y, z)} × I ) = N(y,z)(I ). Given a Harris construction H

and (x, t) ∈ Zd × [0,∞), denote by H(x,t) the Harris construction obtained by shifting H so
that the space origin becomes x and the time origin becomes t . Formally, if y, z ∈ Zd and I is a
Borelian subset of [0,∞), then H(x,t)({z}×I ) = H({z+x}× (I + t)) and H(x,t)({(y, z)}×I ) =
H({(y + x, z + x)} × (I + t)).

Given a Harris construction H = {(Dx)x∈Zd , (N(x,y))x,y∈Zd } and (x, s), (y, t) ∈ Zd ×R+ with
s < t , we write (x, s) ↔ (y, t) (in H ) if there exists a piecewise constant γ : [s, t] → Zd such
that:

(i) γ (s) = x, γ (t) = y;
(ii) γ (r) �= γ (r−) only if r ∈ Nγ(r−),γ (r);

(iii) � ∃s ≤ r ≤ t with r ∈ Dγ(r).

Given A,B,C ⊂ Zd and s, t ∈ R+, we write A × s ↔ B × t if (x, s) ↔ (y, t) for some x ∈ A,
y ∈ B . Additionally, A × {s} ↔ B × {t} inside C if there exists a path connecting A × {s} and
B × {t} and with image contained in C.

Given ξ0 ∈ {0,1}Z
d

and a Harris construction H , we construct a trajectory (η
ξ0
t (H) : t ≥ 0) by

specifying η
ξ0
0 (H) = ξ0 and [ηξ0

t (H)](x) = 1 if and only if ξ0 × {0} ↔ (x, t) in H .

A moment’s reflection shows that, under the law of H,(η
ξ0
t (H))t≥0 is a contact process with

initial condition ξ0 and, if ξ0 ≤ ζ0, then putting ξt = η
ξ0
t (H) and ζt = η

ζ0
t (H), we obtain the

claimed coupling of two processes, one of which is always inferior to the other.
As noted, we will be concerned with one-dimensional contact processes with λ > λc. Define

r
ξ0
t (H) = sup{x : [ηξ0

t (H)](x) = 1}. We will usually omit the dependency on H and when we
omit the initial condition and simply write rt , we take ξ0 = I(−∞,0]. If ξ0 is such that

∑
x ξ0(x) =

∞ and sup{x : ξ0(x) = 1} < ∞, then almost surely η
ξ0
t �= 0 and r

ξ0
t < ∞ for all t . It is classical

that rt
t

t→∞−→ α = α(λ) > 0; see Theorems 2.19 and 2.27 in [8] (even though the process treated
there is nearest-neighbor, the proof works for the finite-range case as well).
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We consider the following question. Define

lt = lt (H) = inf
{
x :

[
η

(−∞,0]
t (H)

]
(x) �= [η1

t (H)](x)
}
,

ρt = r
(−∞,0]
t − lt , ρ+

t = max{ρt ,0}, ρ−
t = max{−ρt ,0}.

While it is easy to see that {rt < lt } and {lt < rt } are events of strictly positive probability, it is
reasonable to believe that the two quantities are close. Cox and Durrett conjectured that {|ρt |}t≥0
would be a tight collection of random variables. We answer the conjecture affirmatively.

Theorem 1.1. The law of {ρt }t≥0 is tight. That is, for any δ > 0, there exists L > 0 such that
P(|ρt | > L) < δ for every t ≥ 0.

From the joint process ((η1
t , η

(−∞,0]
t ) : t ≥ 0), we can define a process (χt : t ≥ 0) on {0,1,2}Z

by

χt (x) =

⎧⎪⎨
⎪⎩

0, if η
(−∞,0]
t (x) = η1

t (x) = 0,

1, if η
(−∞,0]
t (x) = 1,

2, if η
(−∞,0]
t (x) = 0, η1

t (x) = 1.

It is not difficult to see that χt is a realization of a process taking values in {0,1,2}Z with initial
configuration equal to I(−∞,0] + 2 · I(0,∞) and the following rates:

0 → 1 at rate λ
∑

p(y − x)Iχ(y)=1;
0 → 2 at rate λ

∑
p(y − x)Iχ(y)=2;

2 → 0 at rate 1;
1 → 0 at rate 1;
2 → 1 at rate λ

∑
p(y − x)Iχ(y)=1.

The particle system with the above transition rates is a model for hierarchical competition
considered in [6] and [7]; the following interpretation is provided. Sites in state 0 are said to
contain grass, in state 1 to contain trees and in state 2 to contain bushes. When trees attempt to
occupy new territory, they are able to displace bushes, but bushes cannot displace trees. Since,
in our case, we take the initial configuration I(−∞,0] + 2 · I(0,∞), we expect the area taken by
trees to grow to the right towards the area originally taken by bushes. However, since we allow
for non-nearest-neighbor interactions, we may observe a mixed area where the two coexist. With
the above notation, this area appears when ρt > 0. Alternatively, it may happen that there is no
mixed area and a gap of grass appears between the two homogeneous zones (in the case ρt < 0).
Theorem 1.1 states that with large probability, and uniformly in time, neither the mixed nor the
intermediate grass area is too large.

The proof is divided into two parts. The first part, namely the proof of tightness of {ρ+
t }, is

given at the end of Section 2. The key ingredients are the celebrated result of Bezuidenhout
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and Grimmett [2], the renormalization arguments employed by, among others, Durrett (see [5])
and the construction carried out in [10]. These permit us to argue that from a single (x, t) with
η

(−∞,0]
t (x) = 1, there will be positive probability that inside a cone Cx,t = {(y, s) : |y − x| ≤

β(s − t)}, η1 and η(−∞,0] are equal. In Section 3, a much simpler argument is employed to
establish tightness of {ρ−

t }.

2. Tightness of {ρ+
t }

2.1. Right edge speed

Given γ > 0, we say that (0,0) ∈ Z × [0,∞) is γ -slow up to time T if rt ≤ γ t ∀t ≤ T . If this is
satisfied for all T , then we say that (0,0) is γ -slow.

Lemma 2.1. (i) For any ε > 0, there exists γ > 0 such that P((0,0) is γ -slow) > 1 − ε.
(ii) For any γ > α, we have

P((0,0) is γ -slow) > 0 (2.1)

and there exist c,C > 0 such that

P((0,0) is γ -slow up to time T but not γ -slow) ≤ Ce−cT . (2.2)

Proof. Almost surely, t �→ rt is right-continuous with left limits, identically zero in a neigh-
borhood of 0 and satisfies rt /t → α. It follows that almost surely, {rt /t : t ≥ 0} is bounded,
hence we have (i). It also follows that, given γ > α, we can obtain R > 0 such that
P(rt /t < R/t + γ ∀t) > 0. Now,

P((0,0) is γ -slow) ≥ P
(
rt ≤ 0∀t ∈ [0,R/γ ], r(−∞,0]

s

(
H(rR/γ ,R/γ )

)
< R + γ s ∀s ≥ 0

)
.

The first event on the above probability depends only on the Harris construction H on [0,R/γ ],
whereas the second depends only on H on [R/γ,+∞), so they are independent. Also noting
that P(r

(−∞,0]
s (H (rR/γ ,R/γ )) < R + γ s ∀s ≥ 0) = P(rs < R + γ s ∀s ≥ 0), we get, by translation

invariance,

P((0,0) is γ -slow) ≥ P(rt ≤ 0∀t ∈ [0,R/γ ]) · P(rs < R + γ s ∀s ≥ 0).

The second probability above is positive by our choice of R. The first one is also positive because
it contains the event {(−∞,0]×[0,R/γ ] � (0,+∞)×[0,R/γ ]}, which has positive probability
since it corresponds to a finite number of Poisson processes having no arrivals in a finite time
interval. We thus have (2.1).

To establish (2.2), fix γ ′ ∈ (α, γ ) and note that

P(rt ≤ γ t for all t ∈ [0, T ] but not for all t ≥ 0)

≤ P(∃t > T : rt > γ t) ≤ P(∃t > T : rt > γ t, rT ≤ γ ′T ) + P(rT > γ ′T ).
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By Lemma 2 in [10] (a large deviations result for rt ), γ ′ > α implies that the second term
in the sum decays exponentially fast in T and, by translation invariance, the first term is less
than P(∃s > 0 : rs > (γ − γ ′)T + γ s). It will therefore suffice to prove that P(∃s > 0 : rs >

k + γ s) decays exponentially fast as k tends to infinity. Indeed, put θ = P(∃t > 0 : rt ≥ M + γ t)

(remember that M is the range of the process) and TN = inf{t ≥ 0 : rt ≥ 2MN + γ t} for N ≥ 1.
We have θ < 1 by (2.1) and

P(TN+1 < ∞) = P
(∃t > 0 : rt ≥ 2M(N + 1) + γ t

)
≤ P

(
TN < ∞,∃s > 0 : r(−∞,0]

s

(
H(rTN

,TN )
) ≥ M + γ s

)
= P(TN < ∞) · P(∃s > 0 : rs > M + γ s) = P(TN < ∞) · θ.

Thus P(TN < ∞) ≤ θN . Now, if k ≥ 1, then

P(∃s > 0 : rs > k + γ s) ≤ P(∃s > 0 : rs ≥ 2Mσ + γ s) ≤ P(Tσ < ∞) ≤ θσ ,

where σ denotes the largest integer strictly smaller than k/2M . �

2.2. Descendancy barriers

In this section, we define an event called the formation of a descendancy barrier. This will mean
that, inside a certain area delimited by a vertical cone that grows upward from the origin, all
infected sites will be connected to the origin. Additionally, no infection from one side of the
cone will be able to pass to the other side without being connected to the origin. These barriers,
which appear with positive probability, as we will show, are the essential structure in our proof
of tightness of {ρ+

t }.
We first give a brief exposition of oriented percolation and state a result that will be needed

later. For a detailed treatment of the subject, see the survey [4].
Let � = {(m,n) ∈ Z × Z+ :m + n is even},� = {0,1}� and F be the σ -algebra generated by

cylinder sets of �. Points of � will be denoted by � , with �(m,n) ∈ {0,1} for (m,n) ∈ �. Pp

will denote the product measure (pδ1 + (1 − p)δ0)
⊗�. The vertical axis of � will be interpreted

as time.
Given k ≥ 1, ε > 0 and a probability P on F , we say that (�, F ,P) is a k-dependent oriented

percolation system with closure below ε if

P
(
�(mi,n) = 0,1 ≤ i ≤ r | {�(m, s) : 1 ≤ s < n, (m, s) ∈ �}) < εr, (2.3)

where r ≥ 1, (mi, n) ∈ �∀i and |mi1 − mi2 | > 2k when i1 �= i2.
Given � ∈ �, we say that two points (x,m), (y,n) ∈ � with m < n are connected by an open

path if there exists a sequence x0 = x, x1, . . . , xn−m = y in Z such that |xi+1 − xi | = 1∀i ∈
{0, . . . , n − m − 1} and �(xi,m + i) = 1∀i ∈ {0, . . . , n − m}. We say that (x,m) percolates up
to time n when it is connected by an open path to a point at height n. Finally, we say that (x,m)

percolates when there is an infinite open path starting from it.
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In [4], it is proved that if p is sufficiently large, then the origin percolates with positive proba-
bility in (�, F ,Pp). Moreover, the rightmost particle connected to the origin at time n, denoted
Rn, almost surely satisfies limRn/n = α̃(p) > 0 as n → ∞. To obtain similar results for k-
dependent systems, we use the following particular case of Theorem 0.0 in [9].

Lemma 2.2. Fix k ∈ N and 0 < p < 1. There exists ε > 0 such that if (�, F ,P) is a k-dependent
oriented percolation system with closure below ε, then P stochastically dominates Pp .

Using these facts and an argument similar to the one used in Lemma 2.1, we can prove the
following lemma.

Lemma 2.3. Fix an arbitrary 0 < β < 1 and define the events

�(i) =
{

There exist two open paths, one starting at (−2,0), the other at (2,0)

and both reaching time i. Neither of them intersects {(m,n) :−βn ≤ m ≤ βn}
}

,

(2.4)

� =
{

There exist two infinite open paths, one starting at (−2,0)

and the other at (2,0). Neither of them intersects {(m,n) : −βn ≤ m ≤ βn}
}

.

For any k and δ̄ > 0, there exists ε > 0 such that if (�, F ,P) is a k-dependent percolation system
with closure below ε, then:

(i) P(�) > 1 − δ̄;
(ii) P(�(i)\�) ≤ De−di for some d,D > 0.

We now construct a mapping H �→ �H of Harris constructions into points of �; this is es-
sentially a repetition of the mapping developed in [10]. The construction will depend on large
integers K and N (in particular, much larger than the range M) whose choice will be described
in Proposition 2.4. Given m ∈ Z, n ∈ Z+, define

Im =
(

mN

2
− N

2
,
mN

2
+ N

2

]
∩ Z,

(2.5)

J(m,n) =
[
mN

2
− M,

mN

2
+ M

]
× [KNn,KN(n + 1)] ∩ Z × [0,+∞).

We start defining an auxiliary �H ∈ {0,1,2}�. Given (m,0) ∈ �, put �H (m,0) = 1 if H and
the trajectory η1(H) satisfy the following conditions:

there is no vacant interval at time KN of length N1/2 inside Im−1 ∪ Im+1; (2.6)

every occupied site in Im−1 ∪ Im+1 at time KN is a descendant of Im × {0}; (2.7)

there does not exist (z, s) ∈ J(m,0) such that
(2.8)

Im × {0} � (z, s) and (IC
m × [0, s]) ↔ (z, s);
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put �H (m,0) = 0 otherwise. Given (m,n) ∈ � with n ≥ 1, put �H (m,n) = 1 if

1 ∈ {�H (m − 1, n − 1),�H (m + 1, n − 1)}; (2.9)

there is no vacant interval at time KN(n + 1)
(2.10)

of length N1/2 inside Im−1 ∪ Im+1;

every occupied site in Im−1 ∪ Im+1 at time KN(n + 1)
(2.11)

is a descendant of (Im ∩ η1
KNn) × KNn;

there does not exist (z, s) ∈ J(m,n) such that
(2.12)(

(Im ∩ η1
KNn) × KNn

)
� (z, s) and (IC

m × [KNn, s]) ↔ (z, s).

If (2.9) fails, put �H (m,n) = 2, and in every other case, put �H (m,n) = 0. Finally, set

�H (m,n) =
{

0, if �H (m,n) = 0,
1, otherwise.

Note that, with this construction, if there is an infinite open path {(mi, ni)}i≥0 leaving the
origin in �H , we must have �H (mi,ni) = 1 for every i.

We now have the following proposition.

Proposition 2.4 (Mountford and Sweet [10]). There exist k,K – depending only on the para-
meter λ of the contact process – with the following property: for any ε > 0, there exists N such
that �H defined from K and N is a k-dependent percolation system with closure below ε.

Remark 2.5. Conditions (2.6) and (2.10) are only necessary to establish Proposition 2.4 and will
not be used in the sequel. Also, N in Proposition 2.4 can be chosen as large as we want; in
particular, as already mentioned, we take both K and N to be larger than the range M .

In what follows, the oriented percolation dependency parameter k, the constant β and associ-
ated events �,�(i), the renormalization constants N,K and the closure density ε will be fixed
in the following way:

• K and k are functions of λ, as explained in the last proposition above;
• β will be any fixed number in (0,1);
• � and �(i) will be defined from β , as in (2.4);
• δ > 0 will be given during the proof of Theorem 1.1;
• ε will be chosen corresponding to δ̄ = δ/6, k,β , as in Lemma 2.3;
• N will be chosen corresponding to ε, as in Proposition 2.4.
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Introducing some more terminology, we call the origin β-expanding when:

If x ∈ Z, y ∈ I−2 ∪ I0 ∪ I2, x �= y, t ≤ 1 and (x,0) ↔ (y, t), then (0,0) ↔ (y, t); (2.13)

D0 ∩ [0,1] = ∅; (2.14)

(0,0) ↔ (z,1)∀z ∈ I−2 ∪ I0 ∪ I2; (2.15)

�H(0,1) ∈ �. (2.16)

Condition (2.13) means that whenever an infection is transmitted to a site in I−2 ∪ I0 ∪ I2 be-
fore time 1, there must exist an earlier/simultaneous (possibly indirect) transmission from (0,0)

to the same site. Condition (2.14) means that there is no healing at {0} × [0,1]. Condition (2.15)
means that at time 1, every site in I−2 ∪ I0 ∪ I2 carries an infection that descends from the origin.
Condition (2.16) states that the percolation structure defined after placing the origin at (0,1) has
the properties defined in (2.4). The β dependency is in the third event since � depends on β , and
also in the choice of the parameters of the renormalization.

We say that (0,0) is β-expanding up to a time T > 1 when (2.13)–(2.15) are satisfied and
�H(0,1) ∈ �(i), where i satisfies T ∈ (1 + KN(i − 1),1 + KNi]. We then have the following
lemma.

Lemma 2.6. (i) P((0,0) is β-expanding) > 0.
(ii) P((0,0) is β-expanding up to time T , but not β-expanding) ≤ D̄e−d̄T for some d̄, D̄ > 0.

Proof. It is clear that with positive probability, (2.13)–(2.15) happen simultaneously. Also, they
are independent of (2.16), which, in turn, has positive probability, by Lemma 2.3, since �H is
supercritical. Hence, the origin has positive probability of being β-expanding, proving (i). Now,
note that

{(0,0) is β-expanding up to time T , but not β-expanding}
⊂ {

�H(0,1) ∈ �
(�(T − 1)/KN�)\�}

,

where �x� denotes the integer part of x. The probability of the last event in the above expression
is bounded by De−d(�(T −1)/KN�), by Lemma 2.3, so we have (ii). �

Let us now present the properties that motivated this construction. We start defining, for ρ > 0,

V (ρ) = {(z, s) ∈ Z × [0,+∞) :−ρs ≤ z ≤ ρs}.
We then have the following proposition.

Proposition 2.7. Suppose that the origin is β-expanding. There then exists a (deterministic)
0 < β̄ < 1 with the following three properties:

(i) if x, z ∈ Z, (x,0) ↔ (z, s) and (z, s) ∈ V (β̄), then (0,0) ↔ (z, s);

(ii) r0
s ≥

{
β̄s, if s ≥ 1
0, if s < 1

≥ max{0, β̄s − 1} ∀s ≥ 0;
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(iii) if x, z ∈ Z have different signs and (x,0) ↔ (z, s), then (0,0) ↔ (z, s).

Proof. If s ≤ 1 in parts (i), (ii) or (iii), then the statements hold for any β̄ < 1, by (2.13) and
(2.14). Hence, from now on, we assume that s > 1 in all three parts. Suppose that the origin is
β-expanding. Since �H(0,1) ∈ �, there exist sequences {mr

n}n≥0, {ml
n}n≥0 in Z such that

ml
0 = −2, mr

0 = 2,

|ml
n+1 − ml

n| = |mr
n+1 − mr

n| = 1,
(2.17)

�H(0,1) (m
l
n, n) = �H(0,1) (m

r
n, n) = 1,

ml
n < −βn < βn < mr

n, n ≥ 0.

Define

Bl =
∞⋃

n=0

[
(Iml

n
× KNn) ∪ J(ml

n,n)

]
, Br =

∞⋃
n=0

[
(Imr

n
× KNn) ∪ J(mr

n,n)

]
,

B = Bl ∪ Br ∪ (I0 × {0}).
Bl is a union of horizontal lines (the “Im ×KNn”’s), one for each height level KNn, and rec-

tangles of base 2M and height KN (the “J(m,n)”’s); each rectangle connects a pair of horizontal
lines. Bl is thus a connected subset of R × [0,+∞). The same can be said about Br . So, B is
also connected and its complement in R × [0,+∞) has two connected components, which will
be referred to as “above” and “below” B . Also, note that since N > 2M,∀(x, t) ∈ B , we either
have [x − M,x] × {t} ⊂ B or [x, x + M] × {t} ⊂ B . In other words, the three sets whose union
defines B (Bl , Br and I0 × {0}) have width larger than M at any time level.

Putting together (2.7), (2.8), (2.11), (2.12) and the three first conditions in (2.17), we can
conclude that in the trajectory η1(H (0,1)), every infected site in (0,1)+B := {(z,1+ s) : (z, s) ∈
B} descends from (I−2 ∪ I0 ∪ I2) × {1}. Then, because of (2.15), in the trajectory η1(H), every
infected site in (0,1) + B descends from (0,0).

It follows from the last condition of (2.17) that there exists 0 < β̄ < 1 such that V (β̄) is
contained in the union of (I−2 ∪ I0 ∪ I2) × [0,1] and the area above (0,1) + B .

Now, take x and z as in (i). Since s > 1 and (z, s) ∈ V (β̄), (z, s) must be above (0,1)+B . So,
any path starting from (x,0) and reaching (z, s) must have a point (y, t) ∈ (0,1) + B and thus,
as we have seen, it must be the case that (0,0) ↔ (y, t) ↔ (z, s).

Part (ii) follows from the facts that for any s > 1, (β̄s, s) is to the left of (0,1) + Br , and that
η0

s ∩ {x : (x, s) ∈ Br} �= ∅.

Finally, take x, z as in (iii) and let ζ be the path linking (x,0) and (z, s). We separately consider
the two cases: there exist y �= x and t < 1 such that (y, t) ∈ ζ or not. In the first case, (iii) follows
from (2.13). In the second case, noting that x and z have different signs and ζ has horizontal
displacements of size at most M , and using our remarks about B being connected and its width
being larger than M at any time level, we conclude that (γ (t), t) ∈ (0,1)+B for some t ∈ [0, s].
(iii) then follows from the fact that any infection in (0,1) + B descends from (0,0). �
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2.3. Proof of tightness of {ρ+
t }

Call the origin (β, γ )-good up to time T (resp., (β, γ )-good) when it is both β-expanding and γ -
slow up to time T (resp., β-expanding and γ -slow). Additionally, call a point (x, t) β-expanding,
γ -slow or (β, γ )-good when (0,0) has the corresponding property on H(x,t).

Lemma 2.8. For γ > 0 sufficiently large, we have:

(i) P((0,0) is (β, γ )-good) > 0;
(ii) P((0,0) is (β, γ )-good up to time T but not (β, γ )-good) ≤ F e−f T for some f,F > 0;

(iii) given 0 ≤ a < b,P((rt , t) is not (β, γ )-good for any t ∈ [a, b]) ≤ Ge−g
√

b−a for some
g,G > 0 not depending on a, b.

Proof. The only point that does not follow directly from Lemmas 2.1 and 2.6 is (iii). We
start proving the result when a = 0. Given a Harris construction H , define μ(H) = sup{t ≥
0 : (0,0) is (β, γ )-good up to time t in H },

σ1(H) =
{1, if μ(H) < 1,

KN(n + 1) + 1, if μ(H) ∈ [
KNn + 1,KN(n + 1) + 1

)
,

+∞, if μ(H) = +∞,

σ0(H) = 0 and σi+1(H) = σi(H) + σ(H(rσi (H),σi (H))) if i ≥ 1 and σi(H) < +∞. (The rσi
that

appears is defined with respect to the original trajectory η(−∞,0](H), with no change of coordi-
nates.) Each σi is a stopping time for the process t �→ Ht . It follows from the strong Markov prop-
erty and translation invariance of the law of H that the law of H(rσi

,σi ) conditioned to {σi < +∞}
is the same as that of H . In particular, conditioned on {σi < +∞}, σi+1 − σi has the law of σ1,
which satisfies:

• P(σ1 = +∞) ≡ θ > 0, by (i);
• P(T < σ1 < +∞) < F̄ e−f̄ T for some f̄ , F̄ > 0, by (ii).

Let τ = inf{s : (rs, s) is (β, γ )-good}. Now, if i0 is the first i such that σi+1 = +∞, we have
τ ≤ σi0 and

P(τ > b) ≤ P(σi0 > b) ≤ P
(
i0 >

√
b
) + P

(
i0 ≤ √

b,σi0 > b
)

≤ (1 − θ)
√

b + P
(
i0 ≤ √

b,σj+1 − σj >
√

b for some 1 ≤ j ≤ i0
)

≤ (1 − θ)
√

b + √
b · F̄ e−f̄

√
b ≤ Ge−g

√
b

for some suitably chosen g,G.
For a > 0, repeat the proof starting from (ra, a) instead of (0,0) and note that the constants f̄

and F̄ do not depend on a. �

Proof of Theorem 1.1 (First part). Fix δ > 0. This is the δ that takes part in our renormalization
construction, as mentioned in the paragraph after Proposition 2.4. We want to prove that for
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any T , ρT < L with probability larger than 1 − δ. To this end, we will proceed in two steps.
First, we will define a “good event” depending on T , H(T ), with P(H(T )) > 1 − δ. We will
then choose L > 0 and see that in H(T ), every infection in η1

T that is to the left of rT − L must
descend from (−∞,0] × 0.

(A) Choice of the good event. By Lemma 2.1(i), we can choose γ > 0 such that the event

H1 = {(0,0) is γ -slow}
has probability larger than 1 − δ/3. We can also assume that γ satisfies (iii) in Lemma 2.8.

We can choose S > 0 such that{∃x ∈ [−S,0] such that H(x,0) satisfies (2.13)–(2.15)
}

has probability larger than 1 − δ/6; note that this event depends only on the Harris construction
on the time interval [0,1]. Also, for any x, we have P(�H(x,1) ∈ �) = P(�H ∈ �) > 1 − δ/6, by
our choice of ε (see the remark after Proposition 2.4); for any x, this event depends only on the
Harris construction on the time interval [1,+∞) and is thus independent of the former event.
Therefore, putting

H2 = {there exists x ∈ [−S,0] such that (x,0) is β-expanding},
we have P(H2) > 1 − δ/3.

Now, choose R > 0 such that
∑∞

n=1 Ge−g
√

R+n < δ/3, where g,G are defined in
Lemma 2.8(iii). Given R̄ > 0, define the time intervals

I0 = [0, R̄], In = (sup In−1, sup In−1 + R + n] for n ≥ 1,

so that In = (R̄ + (n − 1)R + n(n−1)
2 , R̄ + nR + n(n+1)

2 ], |In| = R + n for n ≥ 1. We now choose
R̄ large enough so that

∀n ≥ 2,∀t ∈ In−1
2β̄t − S

β̄ + γ
> |In−1 ∪ In|. (2.18)

Given T > 0, define n̄(T ) = sup{n ≥ 1 : In ⊂ [0, T ]}; if I0 ∪ I1 � [0, T ], put n̄(T ) = −∞. The
idea is that, given the time interval [0, T ], we will place the intervals In from top to bottom, that
is, T − I0, T − I1, . . . , up to the last one that fits, which will be In̄(T ). Now, define the event

H3 = H3(T ) = {for each n ∈ [1, n̄(T )], there exists t ∈ T − In

such that (rt , t) is (β, γ )-good};
if n̄(T ) = −∞, simply take H3 to be the whole space. Now, as a consequence of Lemma 2.8(iii),
we obtain

P(H3(T )) ≥ 1 −
n̄(T )∑
n=1

P
(
(t, rt ) is never (β, γ )-good when t ∈ T − In

)

≥ 1 −
∞∑

n=1

Ge−g
√|In| = 1 −

∞∑
n=1

Ge−g
√

R+n > 1 − δ/3.
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In conclusion, if H(T ) = H1 ∩ H2 ∩ H3(T ), then P(H(T )) > 1 − δ for any T .
(B) Choice of L and proof that the interface area is smaller than L in the good event. Let L =

γ (R + R̄ + 1) + S; note that L does not depend on T . We first treat the case T ≤ R̄ + R + 1. We
might omit it: since supt≤T |ρt | < ∞ almost surely, it suffices to prove its tightness in [T ,+∞)

for sufficiently large T . However, we find that this case illustrates the main idea of the proof
without the technical complications that appear in the general picture.

Let V = V (β̄) = {(z, s) ∈ Z × [0,+∞) :−β̄s ≤ z ≤ β̄s}, where β̄ > 0 is such that the
conclusion of part (i) of Proposition 2.7 holds. Given A ⊂ Z × [0,+∞) and t ≥ 0, define
�t(A) = {z : (z, t) ∈ A}.

Fix H ∈ H(T ). Since H ∈ H2, we can take x ∈ [−S,0] such that (x,0) is β-expanding. Also,
since H ∈ H1, (0,0) is γ -slow and, in particular, rT < γT . Thus,

rT − L < γT − L ≤ γ (R̄ + R + 1) − γ (R̄ + R + 1) − S

= −S < x + β̄T < sup�T

(
(x,0) + V

) + 1;

the +1 is required because x + β̄T may not be an integer. Assume that for y > 0 and w satisfying
rT − w > L, we have (y,0) ↔ (w,T ). Note that w < rT − L ≤ sup�T ((x,0) + V ). If w ∈
�T ((x,0) + V ), then it follows from Proposition 2.7(i) and translation invariance that (x,0) ↔
(w,T ). If w < inf�T ((x,0) + V ), then w and y are in opposite sides of x and it follows from
Proposition 2.7(ii) and translation invariance that (x,0) ↔ (w,T ). This shows that any infection
in (−∞, rT − L] × T that descends from [1,+∞) × 0 must also descend from (−∞,0] × 0,
completing the proof of this case.

Before starting the other case, we make some trivial remarks. Suppose (a, s), (b, t) ∈ Z ×
[0,+∞) are such that a ≤ b and s < t . Let ζ ∗ be the smallest value of ζ at which �ζ ((a, s) +
V )∩�ζ ((b, t)+V ) �= ∅. ζ ∗ is either t (in the case (b, t) ∈ (a, s)+V ) or the time of intersection
of the lines ζ �→ a + β̄(ζ − s) and ζ �→ b − β̄(ζ − t), that is,

ζ ∗((a, s), (b, t)) = max

{
t,

b − a + β̄(t + s)

2β̄

}
. (2.19)

Also,

ζ > ζ ∗((a, s), (b, t)) �⇒ �ζ

(
(a, s) + V

) ∪ �ζ

(
(b, t) + V

)
is an interval. (2.20)

Now, take T > R̄ + R + 1 and H ∈ H(T ). Again, (0,0) is γ -slow and there exists x ∈
[−S,0] such that (x,0) is β-expanding. Also, since H ∈ H3(T ), there exist t1 ∈ T − In̄, t2 ∈
T − In̄−1, . . . , tn̄ ∈ T − I1 such that (rti , ti ) is (β, γ )-good for i = 1, . . . , n̄. Note that since (0,0)

and each (rti , ti ) is γ -slow, we have

rt1 ≤ γ t1,

rtn+1 ≤ rtn + γ (tn+1 − tn), n = 1, . . . , n̄ − 1, (2.21)

rT ≤ rtn̄ + γ (T − tn̄),
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and by Proposition 2.7(ii) and translation invariance, we have

rt1 ≥ x,
(2.22)

rtn+1 ≥ rtn , n = 1, . . . , n̄ − 1.

We claim that the cones (rti , ti ) + V each overlap with their neighbors before time T , that is,

ζ ∗((x,0), (rt1 , t1)) < T ,
(2.23)

ζ ∗((rti , ti ), (rti+1 , ti+1)) < T , i = 1, . . . , n̄ − 1.

Let us prove the first expression in (2.23). If (rt1 , t1) ∈ (x,0) + V , then ζ ∗((x,0), (rt1 , t1)) =
t1 < T . Assume that (rt1 , t1) /∈ (x,0)+V . Since −S ≤ x < rt1 ≤ γ t1, we have rt1 − x ≤ γ t1 + S.
Also,

0 ∈ T − In̄+1 �⇒ T ∈ In̄+1
(2.18)�⇒ 2β̄T − S

β̄ + γ
> |In̄+1 ∪ In̄+2| > |In̄ ∪ In̄+1|

and since we also have that t1 ∈ T − In̄, we obtain t1 = t1 − 0 < |In̄ ∪ In̄+1| <
2β̄T −S

β̄+γ
. Putting

these inequalities together and using (2.19), we get

ζ ∗((x,0), (rt1 , t1)) = rt1 − x + β̄t1

2β̄
≤ γ t1 + S + β̄t1

2β̄

<
S

2β̄
+ 2β̄T − S

β̄ + γ
· γ + β̄

2β̄
= T .

For the second expression in (2.23), if (rti+1 , ti+1) ∈ (rti , ti )+V , then ζ ∗((rti , ti ), (rti+1 , ti+1)) =
ti+1 < T . Assume that (rti+1 , ti+1) /∈ (rti , ti ) + V and write

ζ ∗((rti , ti ), (rti+1 , ti+1)) = rti+1 − rti + β̄(ti+1 + ti )

2β̄
≤ γ (ti+1 − ti ) + β̄(ti+1 + ti )

2β̄

= γ (ti+1 − ti )

2β̄
+ ti+1 + ti

2
.

Since ti ∈ T − In̄−i+1 and ti+1 ∈ T − In̄−i , we have ti+1 − ti ≤ |In̄−i ∪ In̄−i+1| ≤ 2β̄t−S

β̄+γ
for any

t ∈ In̄−i , by (2.18). In particular, this holds for t = T − ti+1. Therefore,

ζ ∗((rti , ti ), (rti+1 , ti+1)) ≤ γ

2β̄
· 2β̄(T − ti+1) − S

β̄ + γ
≤ 2β̄(T − ti+1) − S

2β̄
+ ti+1 + ti

2

≤ T − ti+1 + ti+1 + ti

2
≤ T .



922 Andjel, Mountford, Pimentel and Valesin

Now, define the union of cones U = [⋃n̄
n=1((rtn , tn) + V )] ∪ [(x,0) + V ]. Using (2.20) and

(2.23), we conclude that �T (U) is an interval.
Since tn̄ ∈ T − I1, we have T − tn̄ ≤ R̄ + R + 1. Also, using the last inequality in (2.21), we

obtain

rT < rtn̄ + γ (T − tn̄) < rtn̄ + γ (R̄ + R + 1),

so, using L = γ (R̄ + R + 1) + S, we have

rT − L < rtn̄ + γ (R̄ + R + 1) − γ (R̄ + R + 1) − S < rtn̄ < sup�T (U). (2.24)

As before, take y > 0 and w satisfying rT −w > L and (y,0) ↔ (w,T ). Since w < rT −L <

sup�T (U) and �T (U) is an interval, there are two possibilities:

(a) w ∈ �T (U)

In this case, by the definition of U , we either have w ∈ �T ((x,0) + V ) (hence (x,0) ↔
(w,T ), as we already saw) or w ∈ �T ((rti , ti)+V ) for some i. In this last case, there exists
z such that (z, ti ) ↔ (w,T ) and hence, by part (i) of Proposition (2.7), (rti , ti ) ↔ (w,T ),
which implies that (−∞,0] × {0} ↔ (w,T ).

(b) w < inf�T (U)

By the same argument that was used in the case T < R̄ +R + 1, we have (x,0) ↔ (w,T ).

In conclusion, in any case, we have (−∞,0]×0 ↔ (w,T ). We have thus shown that any point
(w,T ) that is connected to [1,+∞) but not to (−∞,0] must be to the right of (rT − L,T ), that
is, that ρT < L, as required. �

3. Tightness of {ρ−
t }

In the following lemma, we will reuse the renormalization structure built in the last section. We
fix an arbitrary β ∈ (0,1) and k,K as in Proposition 2.4, then choose a closure density ε such
that the event � of Lemma 2.3 has positive probability. Finally, we choose N such that �H has
closure density below ε (again as in Proposition 2.4).

Lemma 3.1. For any σ > 0, there exists L > 0 such that for any T > 0,

P(there exists t ≤ T such that rt > rT + L) < σ. (3.1)

Proof. As in the proof of Theorem 1.1, we will define an event G = G1 ∩ G2 ∩ G3(T ) such that
P(G) > 1 − σ and choose an appropriate L > 0; we will then show that in G , we have

rt < rT + L ∀t ≤ T . (3.2)

The first event is the same as before: G1 = {(0,0) is γ -slow}, with γ chosen so that this has
probability > 1 − σ/3 (see Lemma 2.1). Put G2 = {rt > −S ∀t ≥ 0} with S > 0 chosen such that
this has probability greater than 1 − σ/3; this is possible because inf{rt : t ≥ 0} > −∞ almost
surely.
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Increasing γ so that the conclusions of Lemma 2.8 hold, we may choose R > 0 such that∑∞
n=0 Ge−g

√
R+n < σ/3, where g,G are as in part (iii) of Lemma 2.8. We then put

I0 = [0,R), In = [sup In−1, sup In−1 + R + n) for n ≥ 1,

so that In = [nR + (n−1)n
2 , (n + 1)R + (n+1)n

2 ), |In| = R + n when n ≥ 0. We also put n̄(T ) =
sup{n ≥ 0 : In ⊂ [0, T ]}; if I0 � [0, T ], then put n̄(T ) = −∞. Next, define

G3(T ) = {for each n ∈ [0, n̄(T )], there exists t ∈ T − In such that (rt , t) is (β, γ )-good};
if n̄(T ) = −∞, take G3 to be the whole space. By the choice of R and Lemma 2.8(iii),
P(G3(T )) > 1 − σ/3. Thus, P(G) > 1 − σ , as required.

Let us recall that

(rs, s) is (β, γ )-good, s′ > s �⇒ rs + β̄(s′ − s) − 1 ≤ rs′ ≤ rs + γ (s′ − s), (3.3)

where β̄ is defined in Proposition 2.7. Choose L such that

L ≥ γ (2R + 1) + S and (3.4)

L ≥ S + γ (2R + 2n + 1) − β̄

(
nR + n(n − 1)

2

)
+ 1 ∀n ≥ 0. (3.5)

We proceed to prove that (3.2) is satisfied in G . Fix 0 < t < T . We deal with three cases:

• t < T ≤ 2R + 1. Since the origin is γ -slow, we have rt ≤ γ t ≤ γ (2R + 1). Since we are in

G2, we have rT > −S. Therefore, rT + L > −S + L
(3.4)≥ γ (2R + 1) ≥ rt .

• T > 2R + 1, t ∈ (T − In̄) ∪ (T − In̄+1) (the point being that t is close to zero, so there
does not necessarily exist a (β, γ )-good point below (rt , t)). By the definition of n̄, we have
0 ∈ In̄+1, so t < |In̄ ∪ In̄+1| = 2R + 2n̄ + 1 and rt < γ t < γ (2R + 2n̄ + 1). Also, by the
definition of G3, there exists t∗ ∈ T − In̄ such that (rt∗ , t∗) is (β, γ )-good. t∗ ∈ T − In̄

implies that T − t∗ ≥ inf In̄ = n̄R + (n̄−1)n̄
2 . We then have

rT + L
(3.3)≥ rt∗ + β̄(T − t∗) + L − 1 > −S + β̄

(
n̄R + (n̄ − 1)n̄

2

)
+ L − 1

(3.5)≥ γ (2R + 2n̄ + 1) ≥ rt .

• T > 2R + 1, t ∈ T − In with n < n̄. Here, n+ 1 ≤ n̄, so there exists t∗ ∈ T − In+1 such that
(rt∗ , t∗) is (β, γ )-good. Note that t > t∗, t − t∗ < |In ∪ In+1| = 2R + 2n + 1, so (3.3) gives

rt ≤ rt∗ + γ (t − t∗) ≤ rt∗ + γ (2R + 2n + 1). (3.6)

On the other hand, T − t∗ ≥ |I0 ∪ · · · ∪ In| = (n + 1)R + (n+1)n
2 , so

rT + L
(3.3)≥ rt∗ + β̄(T − t∗) + L − 1 ≥ rt∗ + β̄

(
nR + (n + 1)n

2

)
+ L − 1

(3.5)≥ rt∗ + γ (2R + 2n + 1)
(3.6)≥ rt . �
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Lemma 3.2. For any σ > 0, there exists L > 0 such that for any T > 0,

P
([0,+∞) × 0 ↔ [0,L] × T inside (0,+∞)

)
> 1 − σ. (3.7)

This follows from the fact that rt has positive asymptotic speed and a simple duality argument;
we omit the proof.

For T > 0, define qT = max{rt : 0 ≤ t ≤ T }. We now proceed to complete the proof of Theo-
rem 1.1.

Proof of Theorem 1.1 (Second part). Fix δ > 0. By Lemmas 3.1 and 3.2, we can obtain
L1,L2 > 0 such that

P(qT ≤ rT + L1) >
√

1 − δ,

P
([0,+∞) × 0 ↔ [0,L2] × T inside {(x, t) :x ≥ 0}) >

√
1 − δ.

Put L = L1 + L2 + M . For any T > 0, we have

P(ρt ≥ −L) = P
(
(0,+∞) × 0 ↔ (rT , rT + L] × T

)
≥ P

(
qT ≤ rT + L1, [rT + L1 + M + 1,+∞) × 0

↔ [rT + L1 + M + 1, rT + L] × T inside [rT + L1 + M + 1,+∞)
)

=
+∞∑

x=−L1

P
(
rT = x, qT ≤ x + L1, [x + L1 + M + 1,+∞) × 0

↔ [x + L1 + M + 1, x + L] × T inside [x + L1 + M + 1,+∞)
)
.

(The sum starts at −L1 because qT ≥ 0, so we can only have qT ≤ rT + L1 when rT ≥ −L1.)
Now, in each of the above probabilities, the first two events depend on the Harris construction on
the set (−∞, x +L1 +M]×[0,+∞), whereas the third event depends on the Harris construction
on [x + L1 + M + 1,+∞) × [0,+∞). They are thus independent and the sum becomes

+∞∑
x=−L1

P(rT = x, qT ≤ x + L1) · P
([x + L1 + M + 1,+∞) × 0

↔ [x + L1 + M + 1, x + L] × T

inside [x + L1 + M + 1,+∞)
)

= P
([0,+∞) × 0 ↔ [0,L2] × T inside [0,+∞)

) ·
+∞∑

x=−L1

P(rT = x, qT ≤ x + L1)

= P
([0,+∞) × 0 ↔ [0,L2] × T inside [0,+∞)

) · P(qT ≤ rT + L1) > 1 − δ,

completing the proof. �



Tightness for the interface of the contact process 925

References

[1] Bezuidenhout, C. and Gray, L. (1994). Critical attractive spin systems. Ann. Probab. 22 1160–1194.
MR1303641

[2] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18
1462–1486. MR1071804

[3] Cox, J. and Durrett, R. (1995). Hybrid zones and voter model interfaces. Bernoulli 1 343–370.
MR1369166

[4] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–1040. MR0757768
[5] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Belmont, CA: Wadsworth.

MR0940469
[6] Durrett, R. and Møller, A. (1991). Complete convergence theorem for a competitive model. Probab.

Theory Related Fields 88 121–136. MR1094080
[7] Durrett, R. and Swindle, G. (1991). Are there bushes in a forest? Stochastic Process. Appl. 37 19–31.

MR1091691
[8] Liggett, T. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften

276. New York: Springer. MR0776231
[9] Liggett, T., Schonmann, R. and Stacy, A. (1997). Domination by product measures. Ann. Probab. 25

71–95. MR1428500
[10] Mountford, T. and Sweet, T. (2000). An extension of Kuczek’s argument to nonnearest neighbor con-

tact process. J. Theoret. Probab. 13 1061–1081. MR1820502

Received March 2009 and revised September 2009

http://www.ams.org/mathscinet-getitem?mr=1303641
http://www.ams.org/mathscinet-getitem?mr=1071804
http://www.ams.org/mathscinet-getitem?mr=1369166
http://www.ams.org/mathscinet-getitem?mr=0757768
http://www.ams.org/mathscinet-getitem?mr=0940469
http://www.ams.org/mathscinet-getitem?mr=1094080
http://www.ams.org/mathscinet-getitem?mr=1091691
http://www.ams.org/mathscinet-getitem?mr=0776231
http://www.ams.org/mathscinet-getitem?mr=1428500
http://www.ams.org/mathscinet-getitem?mr=1820502

	Introduction
	Tightness of {rhot+}
	Right edge speed
	Descendancy barriers
	Proof of tightness of {rhot+}

	Tightness of {rhot-}
	References

