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Functional linear regression analysis aims to model regression relations which include a functional pre-
dictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-
response linear regression models is a regression parameter function in one or two arguments. If, in addition,
one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how
to incorporate these into a functional regression model. We study a varying-coefficient approach where the
scalar covariates are modeled as additional arguments of the regression parameter function. This extension
of the functional linear regression model is analogous to the extension of conventional linear regression
models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the
details of this extension are more challenging in the functional case. Our methodology combines smoothing
methods with regularization by truncation at a finite number of functional principal components. A practical
version is developed and is shown to perform better than functional linear regression for longitudinal data.
We investigate the asymptotic properties of varying-coefficient functional linear regression and establish
consistency properties.

Keywords: asymptotics; eigenfunctions; functional data analysis; local polynomial smoothing; longitudinal
data; varying-coefficient models

1. Introduction

Functional linear regression analysis is an extension of ordinary regression to the case where pre-
dictors include random functions and responses are scalars or functions. This methodology has
recently attracted increasing interest due to its inherent applicability in longitudinal data analysis
and other areas of modern data analysis. For an excellent introduction, see Ramsay and Silver-
man (2005). Assuming that predictor process X possesses a square-integrable trajectory (i.e.,
X ∈ L2(S), where S ⊂ R), commonly considered functional linear regression models include

E(Y |X) = μY +
∫

S
β(s)

(
X(s) − μX(s)

)
ds, (1.1)

with a scalar response Y ∈ R, and

E(Y(t)|X) = μY (t) +
∫

S
β(s, t)

(
X(s) − μX(s)

)
ds, (1.2)
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with a functional response Y ∈ L2(T ) and T being a subset of the real line R, where μX(s) =
E(X(s)), s ∈ S and μY (t) = E(Y(t)), t ∈ T (Ramsay and Dalzell (1991)). In analogy to the
classical regression case, estimating equations for the regression function are based on minimiz-
ing the deviation

β∗(s, t) = argmin
β∈L2(S×T )

E

{∫
T

(
Y(t) − μY (t) −

∫
S

β(s, t)[X(s) − μX(s)]ds

)2

dt

}
,

and analogously for (1.1). To provide a regularized estimator, one approach is to expand β(·, ·)
in terms of the eigenfunctions of the covariance functions of X and Y , and to use an appropri-
ately chosen finite number of the resulting functional principal component (FPC) scores of X

as predictors; see, for example, Silverman (1996), Ramsay and Silverman (2002, 2005), Besse
and Ramsay (1986), Ramsay and Dalzell (1991), Rice and Silverman (1991), James et al. (2000),
Cuevas et al. (2002), Cardot et al. (2003), Hall and Horowitz (2007), Cai and Hall (2006), Cardot
(2007) and many others.

Advances in modern technology enable us to collect massive amounts of data at fairly low
cost. In such settings, one may observe scalar covariates, in addition to functional predictor and
response trajectories. For example, when predicting a response such as blood pressure from func-
tional data, one may wish to utilize functional covariates, such as body mass index, and also
additional non-functional covariates Z, such as the age of a subject. It is often realistic to expect
the regression relation to change as an additional covariate such as age varies. To broaden the ap-
plicability of functional linear regression models, we propose to generalize models (1.1) and (1.2)
by allowing the slope function to depend on some additional scalar covariates Z. Previous work
on varying-coefficient functional regression models, assuming the case of a scalar response and
of continuously observed predictor processes, is due to Cardot and Sarda (2008) and recent in-
vestigations of the varying-coefficient approach include Fan et al. (2007) and Zhang et al. (2008).

For ease of presentation, we consider the case of a one-dimensional covariate Z ∈ Z ⊂ R,
extending (1.1) and (1.2) to the varying-coefficient functional linear regression models

E(Y |X,Z) = μY |Z +
∫

S
β(Z, s)

(
X(s) − μX|Z(s)

)
ds (1.3)

and

E(Y(t)|X,Z) = μY |Z(t) +
∫

S
β(Z, s, t)

(
X(s) − μX|Z(s)

)
ds (1.4)

for scalar and functional responses, respectively, with corresponding characterizations for the
regression parameter functions

β∗(z, s) = argmin
β(z,·)∈L2(S)

E

{(
Y − μY |Z −

∫
S

β(Z, s)[X(s) − μX|Z(s)]ds

)2 ∣∣∣ Z = z

}
,

β∗(z, s, t) = argmin
β(z,·,·)∈L2(S×T )

E

{∫
T

(
Y(t) − μY |Z(t)

−
∫

S
β(Z, s, t)[X(s) − μX|Z(s)]ds

)2

dt

∣∣∣ Z = z

}
.
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Here, μX|Z(s) and μY |Z(t) denote the conditional mean function of X and Y , given Z.
Intuitively, after observing a sample of n observations, {Xi,Yi,Zi}ni=1, the estimation of the

varying slope functions can be achieved using kernel methods, as follows:

β̃∗(z, s) = argmin
n∑

i=1

Kb(Zi − z)

[
Yi − μY |Zi

−
∫

S
β(Zi, s)[Xi(s) − μX|Zi

(s)]ds

]2

and

β̃∗(z, s, t) = argmin
n∑

i=1

Kb(Zi − z)

×
∫

T

[
Yi(t) − μY |Zi

(t) −
∫

S
β(Zi, s, t)[Xi(s) − μX|Zi

(s)]ds

]2

dt

for (1.3) and (1.4), respectively, where Kb(z) = K(z/b)/b for a kernel function K(·) and a band-
width b > 0. The necessary regularization of the slope function is conveniently achieved by trun-
cating the Karhunen–Loève expansion of the covariance function for the predictor process (and
the response process, if applicable). To avoid difficult technical issues and enable straightforward
and rapid implementation, it is expedient to adopt the two-step estimation scheme proposed and
extensively studied by Fan and Zhang (2000).

To this end, we first bin our observations according to the values taken by the additional co-
variate Z into a partition of Z . For each bin, we obtain the sample covariance functions based on
the observations within this bin. Assuming that the covariance functions of the predictor and re-
sponse processes are continuous in z guarantees that these sample covariance functions converge
to the corresponding true covariance functions evaluated at the bin centers as bin width goes to
zero and sample size increases. This allows us to estimate the slope function at each bin center
consistently, using the technique studied in Yao et al. (2005b), providing initial raw estimates.
Next, local linear smoothing (Fan and Gijbels (1996)) is applied to improve estimation efficiency,
providing our final estimator of the slope function for any z ∈ Z .

The remainder of the paper is organized as follows. In Section 2, we introduce basic notation
and present our estimation scheme. Asymptotic consistency properties are reported in Section 3.
Finite-sample implementation issues are discussed in Section 4, results of simulation studies in
Section 5 and real data applications in Section 6, with conclusions in Section 7. Technical proofs
and auxiliary results are given in the Appendix.

2. Varying coefficient functional linear regression for sparse
and irregular data

To facilitate the presentation, we focus on the case of a functional response, which remains
largely unexplored. The case with a scalar response can be handled similarly. We also emphasize
the case of sparse and irregularly observed data with errors, due to its relevance in longitudinal
studies. The motivation of the varying-coefficient functional regression models (1.3) and (1.4)
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is to borrow strength across subjects, while adequately reflecting the effects of the additional
covariate. We impose the following smoothness conditions:

[A0] The conditional mean and covariance functions of the predictor and response processes
depend on Z and are continuous in Z, that is, μX,z(s) = E(X(s)|Z = z), μY,z(t) =
E(Y(t)|Z = z), GX,z(s1, s2) = cov(X(s1),X(s2)|Z = z), GY,z(t1, t2) = cov(Y (t1),

Y (t2)|Z = z) and CXY,z(s, t) = cov(X(s), Y (t)|Z = z) are continuous in z and their
respective arguments, and have continuous second order partial derivatives with respect
to z.

Note that [A0] implies that the conditional mean and covariance functions of predictor and
response processes do not change radically in a small neighborhood of Z = z. This facilitates
the estimation of β(z, s, t), using the two-step estimation scheme proposed by Fan and Zhang
(2000). While, there, the additional covariate Z is assumed to take values on a grid, in our case,
Z is more generally assumed to be continuously distributed. In this case, we assume that the
additional variable Z has a compact domain Z and its density fZ(z) is continuous and bounded
away from both zero and infinity.

[A1] Z is compact, fZ(z) ∈ C0, fZ = infz∈Z fZ(z) > 0 and f̄Z = supz∈Z fZ(z) < ∞.

2.1. Representing predictor and response functions via functional
principal components for sparse and irregular data

Suppose that we have observations on n subjects. For each subject i, conditional on Zi = zi , the
square-integrable predictor trajectory Xi and response trajectory Yi are unobservable realizations
of the smooth random processes (X,Y |Z = zi), with unknown mean and covariance functions
(condition [A0]). The arguments of X(·) and Y(·) are usually referred to as time. Without loss
of generality, their domains S and T are assumed to be finite and closed intervals. Adopting
the general framework of functional data analysis, we assume, for each z, that there exist or-
thogonal expansions of the covariance functions GX,z(·, ·) (resp. GY,z(·, ·)) in the L2 sense via
the eigenfunctions ψz,m (resp. φz,k), with non-increasing eigenvalues ρz,m (resp. λz,k), that is,
GX,z(s1, s2) = ∑∞

m=1 ρz,mψz,m(s1)ψz,m(s2), GY,z(t1, t2) = ∑∞
k=1 λz,kφz,k(t1)φz,k(t2).

Instead of observing the full predictor trajectory Xi and response trajectory Yi , typical longi-
tudinal data consist of noisy observations that are made at sparse and irregularly spaced locations
or time points, providing sparse measurements of predictor and response trajectories that are con-
taminated with additional measurement errors (Staniswalis and Lee (1998), Rice and Wu (2001),
Yao et al. (2005a, 2005b)). To adequately reflect the situation of sparse, irregular and possibly
subject-specific time points underlying these measurements, we assume that a random number
Li (resp. Ni ) of measurements for Xi (resp. Yi ) is made, at times denoted by Si1, Si2, . . . , SiLi

(resp. Ti1, Ti2, . . . , TiNi
). Independent of any other random variables, the numbers of points sam-

pled from each trajectory correspond to random variables Li and Ni that are assumed to be
i.i.d. as L and N (which may be correlated), respectively. For 1 ≤ i ≤ n, 1 ≤ l ≤ Li , 1 ≤ j ≤ Ni ,
let Uil (resp. Vij ) be the observation of the random trajectory Xi (resp. Yi ) made at a random
time Sil (resp. Tij ), contaminated with measurement errors εil (resp. εij ). Here, the random mea-
surement errors εil and εij are assumed to be i.i.d., with mean zero and variances σ 2

X and σ 2
Y ,
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respectively. They are independent of all other random variables. The following two assumptions
are made.

[A2] For each subject i, Li
i.i.d.∼ L (resp. Ni

i.i.d.∼ N ) for a positive discrete-valued random
variable with EL < ∞ (resp. EN < ∞) and P(L > 1) > 0 (resp. P(N > 1) > 0).

[A3] For each subject i, observations on Xi (resp. Yi ) are independent of Li (resp. Ni ), that is,
{(Sil,Uil : l ∈ Li )} is independent of Li for any Li ⊂ {1,2, . . . ,Li} (resp. {(Tij ,Vij ): j ∈
Ni} is independent of Ni for any Ni ⊂ {1,2, . . . ,Ni}).

It it surprising that under these “longitudinal assumptions”, where the number of observations
per subject is fixed and does not increase with sample size, one can nevertheless obtain asymp-
totic consistency results for the regression relation. This phenomenon was observed in Yao et al.
(2005b) and is due to the fact that, according to (2.3), the target regression function depends only
on localized eigenfunctions, localized eigenvalues and cross-covariances of localized functional
principal components. However, even though localized, these eigenfunctions and moments can
be estimated from pooled data and do not require the fitting of individual trajectories. Even for
the case of fitted trajectories, conditional approaches have been implemented successfully, even
allowing reasonable derivative estimates to be obtained from very sparse data (Liu and Müller
(2009)).

Conditional on Zi = z, the FPC scores of Xi and Yi are ζz,im = ∫ [Xi(s)−μX,z(s)]ψz,m(s)ds

and ξz,ik = ∫ [Yi(s) − μY,z(s)]φz,k(s)ds, respectively. For all z, these FPC scores ζz,im satisfy
Eζz,im = 0, corr(ζz,im1, ζz,im2) = 0 for any m1 �= m2 and var(ζz,im) = ρz,m; analogous results
hold for ξz,ik . With this notation, using the Karhunen–Loève expansion as in Yao et al. (2005b),
conditional on Zi , the available measurements of the ith predictor and response trajectories can
be represented as

Uil = Xi(Sil) + εil

(2.1)

= μX,Zi
(Sil) +

∞∑
m=1

ζZi,imψZi,m(Sil) + εil, 1 ≤ l ≤ Li,

Vij = Yi(Tij ) + εij

(2.2)

= μY,Zi
(Tij ) +

∞∑
k=1

ξZi,ikφZi,k(Tij ) + εij , 1 ≤ j ≤ Ni.

2.2. Estimation of the slope function

For estimation of the slope function, one standard approach is to expand it in terms of an ortho-
normal functional basis and to estimate the coefficients of this expansion to estimate the slope
function in the non-varying model (1.2) (Yao et al. (2005b)). As a result of the non-increasing
property of the eigenvalues of the covariance functions, such expansions of the slope function
are often efficient and require only a few components for a good approximation. Truncation at a
finite number of terms provides the necessary regularization. Departing from Yao et al. (2005b),



Varying-coefficient functional linear regression 735

we assume here that an additional covariate Z plays an important role and must be incorpo-
rated into the model, motivating (1.4). To make this model as flexible as possible, the conditional
mean and covariance functions of the predictor and response processes are allowed to change
smoothly with the value of the covariate Z (Assumption [A0]), which facilitates implementation
and analysis of the two-step estimation scheme, as in Fan and Zhang (2000).

Efficient implementation of the two-step estimation scheme begins by binning subjects ac-
cording to the levels of the additional covariate Zi , i = 1,2, . . . , n. For ease of presentation,
we use bins of equal width, although, in practice, non-equidistant bins can occasionally be
advantageous. Denoting the bin centers by z(p),p = 1,2, . . . ,P , and the bin width by h, the
pth bin is [z(p) − h

2 , z(p) + h
2 ) with h = |Z |

P
, where |Z| denotes the size of the domain of

Z, z(1) − h/2 ≡ inf{z: z ∈ Z} and z(P ) + h/2 ≡ sup{z: z ∈ Z} (note that the last bin is
[z(P ) − h/2, z(P ) + h/2]). Let Nz,h = {i: Zi ∈ [z − h

2 , z + h
2 )} be the index set of those sub-

jects falling into bin [z − h
2 , z + h

2 ) and nz,h = #Nz,h the number of those subjects.

2.2.1. Raw estimates

For each bin [z(p)− h
2 , z(p)+ h

2 ), we use the Yao et al. (2005a) method to obtain our raw estimates
μ̃X,z(p) (·) and μ̃Y,z(p) (·) of the conditional mean trajectories and the raw slope function estimate
β̃(z(p), s, t). The corresponding raw estimates of σ 2

X and σ 2
Y are denoted by σ̃ 2

X,z(p) and σ̃ 2
Y,z(p)

for p = 1,2, . . . ,P . For each 1 ≤ p ≤ P , the local linear scatterplot smoother of μ̃X,z(p) (s) is
defined through minimizing

∑
i∈N

z(p),h

Ni∑
j=1

κ1

(
Sij − s

bX,z(p)

)(
Uij − d0 − d1(Sij − s)

)2

with respect to d0 and d1, and setting μ̃X,z(p) (s) to be the minimizer d̂0, where κ1(·) is a ker-
nel function and bX,z(p) is the smoothing bandwidth, the choice of which will be discussed
in Section 4. We define a similar local linear scatterplot smoother of μ̃Y,z(p) (t). According to
Lemma 2 in the Appendix, raw estimates μ̃X,z(p) (s) and μ̃Y,z(p) (t) are consistent uniformly for
z(p), p = 1,2, . . . ,P , for appropriate bandwidths bX,z(p) and bY,z(p) .

Extending Yao et al. (2005b), the conditional slope function can be represented as

β(z, s, t) =
∞∑

k=1

∞∑
m=1

Eζz,mξz,k

Eζ 2
z,m

ψz,m(s)φz,k(t) (2.3)

for each z, where ψz,m(·) and φz,k(·) are the eigenfunctions of covariance functions GX,z(·, ·)
and GY,z(·, ·), respectively, and ζz,m and ξz,k are the functional principal component scores of X

and Y , respectively, conditional on Z = z.
To obtain raw slope estimates β̃(z(p), s, t) for p = 1,2, . . . ,P , we first estimate the conditional

covariance functions GX,z(p) (s1, s2), GY,z(p) (t1, t2) and CXY,z(p) (s, t) at each bin center, based
on the observations falling into the bin, using the approach of Yao et al. (2005b). From “raw”
covariances, GX,i,z(p) (Sij , Sik) = (Uij − μ̃X,z(p) (Sij ))(Uik − μ̃X,z(p) (Sik)) for 1 ≤ j, k ≤ Li , i ∈
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Nz(p),h and p = 1,2, . . . ,P , and the locally smoothed conditional covariance G̃X,z(p) (s1, s2) is

defined as the minimizer b̂0 of the local linear problem

min
b0,b11,b12

∑
i∈N

z(p),h

∑
1≤j �=l≤Li

κ2

(
Sij − s1

hX,z(p)

,
Sil − s2

hX,z(p)

)

× [GX,i,z(p) (Sij , Sil) − b0 − b11(Sij − s1) − b12(Sil − s2)]2,

where κ2(·, ·) is a bivariate kernel function and hX,z(p) a smoothing bandwidth. The diagonal
“raw” covariances GX,i,z(p) (Sij , Sij ) are removed from the objective function of the above min-
imization problem because EGX,i,z(p) (Sij , Sil) ≈ cov(X(Sij ),X(Sil)) + δjlσ

2
X , where δjl = 1

if j = l and 0 otherwise. Analogous considerations apply for G̃Y,z(p) (Tij , Til). The diago-
nal “raw” covariances GX,i,z(p) (Sij , Sij ) and GY,i,z(p) (Tij , Tij ) can be smoothed with band-
widths bX,z(p),V and bY,z(p),V , respectively, to estimate VX,z(p) (s) = GX,z(p) (s, s) + σ 2

X and

VY,z(p) (t) = GY,z(p) (t, t) + σ 2
Y , respectively. The resulting estimators are denoted by ṼX,z(p) (s)

and ṼY,z(p) (t), respectively, and the differences (ṼX,z(p) (s) − G̃X,z(p) (s, s)) (and analogously for
Y ) can be used to obtain estimates σ̃ 2

X,z(p) for σ 2
X and σ̃ 2

Y,z(p) for σ 2
Y , by integration. Furthermore,

“raw” conditional cross-covariances Ci,z(p) (Sil, Tij ) = (Uil − μ̃X,z(p) (Sil))(Vij − μ̃Y,z(p) (Tij ))

are used to estimate CXY,z(p) (s, t), by minimizing

∑
i∈N

z(p),h

∑
1≤l≤Li

∑
1≤j≤Ni

κ2

(
Sij − s

h1,z(p)

,
Tij − t

h2,z(p)

)

× [Ci,z(p) (Sil, Tij ) − b0 − b11(Sil − s) − b12(Tij − t)]2

with respect to b0, b11 and b12, and setting C̃XY,z(p) (s, t) to be the minimizer b̂0, with smoothing
bandwidths h1,z(p) and h2,z(p) .

In (2.3), the slope function may be represented via the eigenvalues and eigenfunctions of the
covariance operators. To obtain the estimates ρ̃z(p),m and ψ̃z(p),m(·) (resp. λ̃z(p),k and φ̃z(p),k(·))
of eigenvalue–eigenfunction pairs ρz(p),m and ψz(p),m(·) (resp. λz(p),k and φz(p),k(·)), we use con-

ditional functional principal component analysis (CFPCA) for G̃X,z(p) (·, ·) (resp. G̃Y,z(p) (·, ·)),
by numerically solving the conditional eigenequations∫

S
G̃X,z(p) (s1, s2)ψ̃z(p),m(s1)ds1 = ρ̃z(p),mψ̃z(p),m(s2), m = 1,2, . . . , (2.4)

∫
T

G̃Y,z(p) (t1, t2)φ̃z(p),k(t1)dt1 = λ̃z(p),kφ̃z(p),k(t2), k = 1,2, . . . . (2.5)

Note that we estimate the conditional mean functions and conditional covariance functions over
dense grids of S and T . Numerical integrations like the one on the left-hand side of (2.4) are
done over these dense grids using the trapezoid rule. Note, further, that integrals over individual
trajectories are not needed for the regression focus, in that we use conditional expectation to
estimate principal component scores, as in (4.1).
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Due to the fact that

CXY,z(s, t) = cov
(
X(s),Y (t)|Z = z

) =
∞∑

k=1

∞∑
m=1

E(ζz,mξz,k)ψz,m(s)φz,k(t),

we then obtain preliminary estimates of σz,mk = E(ζz,mξz,k) at the bin centers z(p), p =
1,2, . . . ,P , by numerical integration,

σ̃z(p),mk =
∫

T

∫
S

ψ̃z(p),m(s)C̃XY,z(p) (s, t)φ̃z(p),k(t)ds dt. (2.6)

With (2.3), (2.4), (2.5) and (2.6), the raw estimates of β(z(p), s, t) are

β̃
(
z(p), s, t

) =
K∑

k=1

M∑
m=1

σ̃z(p),mk

ρ̃z(p),m

ψ̃z(p),m(s)φ̃z(p),k(t). (2.7)

Further details on the “global” case can be found in Yao et al. (2005b).

2.2.2. Refining the raw estimates

We establish in the Appendix that the raw estimates μ̃X,z(p) (s), μ̃Y,z(p) (t) and β̃(z(p), s, t) are
consistent. As has been demonstrated in Fan and Zhang (2000), there are several reasons to
refine such raw estimates. For example, the raw estimates are generally not smooth and are based
on local observations, hence inefficient. Most importantly, applications require that the function
β(z, s, t) is available for any z ∈ Z .

To refine the raw estimates, the classical approach is smoothing, for which we adopt the local
polynomial smoother. Defining cp = (1, z(p) − z, . . . , (z(p) − z)r )T , p = 1,2, . . . ,P , the local
polynomial smoothing weights for estimating the qth derivative of an underlying function are

ωq,r+1
(
z(p), z, b

) = q!eT
q+1,r+1(C

T WC)−1cpKb

(
z(p) − z

)
, p = 1,2, . . . ,P ,

where C = (c1, c2, . . . , cP )T , W = diag(Kb(z
(1) − z),Kb(z

(2) − z), . . . ,Kb(z
(P ) − z)) and

eq+1,r+1 = (0, . . . ,0,1,0, . . . ,0)T is a unit vector of length r + 1 with the (q + 1)th element
being 1 (see Fan and Gijbels (1996)). Our final estimators are given by

μ̂X,z(s) =
P∑

p=1

ω0,2
(
z(p), z, b

)
μ̃X,z(p) (s),

μ̂Y,z(t) =
P∑

p=1

ω0,2
(
z(p), z, b

)
μ̃Y,z(p) (t),

β̂(z, s, t) =
P∑

p=1

ω0,2
(
z(p), z, b

)
β̃
(
z(p), s, t

)
.
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Due to the assumption that the variance of the measurement error does not depend on the addi-
tional covariate, the final estimators of σ 2

X and σ 2
Y can be taken as simple averages,

σ̂ 2
X =

P∑
p=1

σ̃ 2
X,z(p)/P and σ̂ 2

Y =
P∑

p=1

σ̃ 2
Y,z(p)/P . (2.8)

Remark 1. The localization to Z = z, as needed for the proposed varying coefficient model,
coupled with the extreme sparseness assumption [A2], which adequately reflects longitudinal de-
signs, is not conducive to obtaining explicit results in terms of convergence rates for the general
case. However, by suitably modifying our arguments and coupling them with the rates of con-
vergence provided on page 2891 of Yao et al. (2005b), we can obtain rates if desired. These are
the rates given there, which depend on complex intrinsic properties of the underlying processes,
provided that the sample size n is everywhere replaced by nh, the sample size for each bin.

Remark 2. In this work, we focus on sparse and irregularly observed longitudinal data. For
the case where entire processes are observed without noise and are error-free, one can estimate
the localized eigenfunctions at rates of L2-convergence of (nh̃)−1/2 (see Hall et al. (2006)),
where h̃ is the smoothing bandwidth. For the moments of the functional principal components,
a smoothing step is not needed. Known results will be adjusted by replacing n with nh when
conditioning on a fixed covariate level Z = z; see Cai and Hall (2006) and Hall and Horowitz
(2007).

3. Asymptotic properties

We establish some key asymptotic consistency properties for the proposed estimators. Detailed
technical conditions and proofs can be found in the Appendix.

The observed data set is denoted by {Zi, (Sil,Uil)
Li

l=1, (Tij ,Vij )
Ni

j=1: i = 1,2, . . . , n}. We as-
sume that it comes from (1.2) and satisfies [A0], [A1], [A2] and [A3].

For ñ ∝ √
n, define the event

En = {minnz(p),h > ñ}, (3.1)

where nz(p),h is the number of observations in the pth bin and ñ ∝ √
n means that there exist c0

and C0 such that 0 < c0 ≤ ñ/
√

n ≤ C0 < ∞. It is shown in Proposition 1 in the Appendix that
P(En) → 1 as n → ∞ for P ∝ n1/8, as specified by condition (xi).

The global consistency of the final mean and slope function estimates follows from the fol-
lowing theorem.

Theorem 1 (Consistency of time-varying functional regression). Under conditions [A0],
[A1], [A2] and [A3] in Section 2 and conditions [A4], [A5] and (i)–(xi) in the Appendix, on
the event En with P(En) → 1 as n → ∞, we have∫

Z

∫
R

(
μ̂W,z(r) − μW,z(r)

)2 dr dz
P→ 0 for W = X, R = S and W = Y, R = T ,
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and ∫
Z

∫
T

∫
S

(
β̂(z, s, t) − β(z, s, t)

)2 ds dt dz
P→ 0.

To study prediction through time-varying functional regression, consider a new predictor
process X∗ with associated covariate Z∗. The corresponding conditional expected response
process Y ∗ and its prediction Ŷ ∗ are given by

Y ∗(t) = E(Y(t)|X∗,Z∗)
(3.2)

= μY,Z∗(t) +
∫

S
β(Z∗, s, t)

(
X∗(s) − μX,Z∗(s)

)
ds,

Ŷ ∗(t) = μ̂Y,Z∗(t) +
∫

S
β̂(Z∗, s, t)

(
X∗(s) − μ̂X,Z∗(s)

)
ds. (3.3)

Theorem 2 (Consistency of prediction). For a new predictor process X∗ with associated co-

variate Z∗, it holds under the conditions of Theorem 1 that
∫

T (Y ∗(t) − Ŷ ∗(t))2 dt
P→ 0, where

Y ∗(t) and Ŷ ∗(t) are given by (3.2) and (3.3).

4. Finite-sample implementation

For the finite-sample case, several smoothing parameters need to be chosen. Following Yao et al.
(2005a), the leave-one-curve-out cross-validation method can be used to select smoothing pa-
rameters bX,z(p) , bY,z(p) , bX,z(p),V , bY,z(p),V , hX,z(p) , hY,z(p) , h1,z(p) and h2,z(p) , individually for
each bin. Further required choices concern the bin width h, the smoothing bandwidth b and the
numbers M and K of included expansion terms in (2.7). The method of cross-validation could
also be used for these additional choices, but this incurs a heavy computational load. A fast alter-
native is a pseudo-Akaike information criterion (AIC) (or pseudo-Bayesian information criterion
(BIC)).

[1] Choose the number of terms in the truncated double summation representation β̃(z(p), s, t)

for M(n) and K(n), using AIC or BIC, as in Yao et al. (2005b).
[2] For each bin width h, choose the best smoothing bandwidth b∗(h) by minimizing AIC or

BIC.
[3] Choose the bin width h∗ which minimizes AIC or BIC, while, for each h investigated, we

use b∗(h) for b.

For [1], we will choose M and K simultaneously for all bins, minimizing the conditional
penalized pseudo-deviance given by

C(K) =
P∑

p=1

∑
i∈Np

{
1

σ̃ 2
Y,z(p)

ε̃T
i ε̃i + Ni log(2π) + Ni log σ̃ 2

Y,z(p)

}
+ P ,
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where P = 2PK for AIC and P = (logn)PK for BIC, with respect to K . Here, for i ∈ Np ,
ε̃i = Vi − μ̃Y,z(p),i − ∑K

k=1 ξ̃∗
z(p),k,i

φ̃z(p),k,i with μ̃Y,z(p),i = (μ̃Y,z(p) (Ti1), . . . , μ̃Y,z(p) (TiNi
))T ,

Vi = (Vi1, . . . , ViNi
)T , φ̃z(p),k,i = (φ̃z(p),k(Ti1), . . . , φ̃z(p),k(TiNi

))T and with estimated principal
components

ξ̃∗
z(p),k,i

= λ̃z(p),kφ̃
T

z(p),k,i �̃
−1
Y,z(p),i

(Vi − μ̃Y,z(p),i ), (4.1)

where �̃Y,z(p),i is an Ni -by-Ni matrix whose (j, k)-element is G̃Y,z(p) (Tij , Tik) + σ̃ 2
Y,z(p)δjk .

Analogous criteria are used for the predictor process X, selecting K by minimizing AIC(K)

and BIC(K). Marginal versions of these criteria are also available.
In step [2], for each bin width h, we first select the best smoothing bandwidth b∗(h) based on

AIC or BIC and then select the final bin width h∗ by a second application of AIC or BIC, plug-
ging b∗(h) into this selection as follows. For a given bin width h, define the P -by-P smoothing
matrix S0,2 whose (p1,p2)th element is ω0,2(z

(p1), z(p2), b). The effective number of parameters
of the smoothing matrix is then the trace of ST

0,2S0,2 (cf. Wahba (1990)). This suggests minimiza-
tion of

AIC(b|h) =
n∑

i=1

{
1

σ̂ 2
Y

ε̂T
i ε̂i + Ni log(2π) + Ni log σ̂ 2

Y

}
+ 2 tr(ST

0,2S0,2),

leading to b∗(h), where

ε̂i = Vi − μ̂Y,zi ,i
−

P∑
p=1

ω0,2
(
z(p), zi, b

) M,K∑
m,k=1

σ̃z(p),mk

ρ̃z(p),m

ζ̂ ∗
z(p),m,i

φ̃z(p),k,i

with μ̂Y,zi ,i
= (μ̂Y,zi

(Ti1), . . . , μ̂Y,zi
(TiNi

))T and estimated principal component scores

ζ̂ ∗
z(p),m,i

= ρ̃z(p),kψ̃
T

z(p),m,i�̃
−1
X,z(p),i

(Ui − μ̂X,zi ,i
).

The definition of pseudo-BIC scores is analogous.
In step [3], to select the bin width h∗, we minimize

AIC(h, b∗(h)) =
n∑

i=1

{
1

σ̂ 2
Y

ε̂T
i ε̂i + Ni log(2π) + Ni log σ̂ 2

Y

}
+ 2MKP,

or the analogous BIC score, using b∗(h) for each h, as determined in the previous step.

5. Simulation study

We compare global functional linear regression and varying-coefficient functional linear regres-
sion through simulated examples with a functional response. For the case of a scalar response, the
proposed varying-coefficient functional linear regression approach achieves similar performance
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improvements (results not reported). For the finite-sample case, there are several parameters to
be selected (see Section 4). In the simulations, we use pseudo-AIC to select bin width h and
pseudo-BIC to select the smoothing bandwidth b and the number of regularization terms M(n)

and K(n).
The domains of predictor and response trajectories are chosen as S = [0,10] and T = [0,10],

respectively. The predictor trajectories X are generated as X(s) = μX(s) + ∑3
m=1 ζmψm(s)

for s ∈ S , with mean predictor trajectory μX(s) = (s + sin(s)), the three eigenfunctions are

ψ1(s) = −
√

1
5 cos(πs/5), ψ2(s) =

√
1
5 sin(πs/5), ψ3(s) = −

√
1
5 cos(2πs/5) and their cor-

responding functional principal components are independently distributed as ζ1 ∼ N(0,22),

ζ2 ∼ N(0,
√

2
2
), ζ3 ∼ N(0,12). The additional covariate Z is uniformly distributed over

[0,1]. For z ∈ [0,1], the slope function is linear in z, β(z, s, t) = (z + 1)(ψ1(s)ψ1(t) +
ψ2(s)ψ2(t) + ψ3(s)ψ3(t)) and the conditional response trajectory is E(Y(t)|X,Z = z) =
μY,z(t) + ∫ 10

0 β(z, s, t)(X(s) − μX(s))ds, where μY,z(t) = (1 + z)(t + sin(t)). We consider the
following two cases.

Example 1 (Regular case). The first example focuses on the regular case with dense measure-
ment design. Observations on the predictor and response trajectories are made at sj = (j − 1)/3
for j = 1,2, . . . ,31 and tj = (j − 1)/3 for j = 1,2, . . . ,31, respectively. We assume the mea-
surement errors on both the predictor and response trajectories are distributed as N(0,12), that
is, σ 2

X = 1 and σ 2
Y = 1.

Example 2 (Sparse and irregular case). In this example, we make a random number of
measurements on each trajectory in the training data set, chosen with equal probability from
{2,3, . . . ,10}. We note that, for the same subject, the number of measurements on the predictor
and the number of measurements on the response trajectory are independent. For any trajectory,
given the number of measurements, the measurement times are uniformly distributed over the
corresponding trajectory domain. The measurement error is distributed as N(0,12) for both the
predictor and the response trajectories.

In both examples, the training sample size is 400. An independent test set of size 1000 is
generated with the predictor and response trajectories fully observed. We compare performance
using mean integrated squared prediction error (MISPE)

1

1000

1000∑
j=1

∫
T

[
E(Y ∗

j (t)|X∗
j ,Z

∗
j )

−
(

μ̂Y,Z∗
j
(t) +

∫
S

β̂(Z∗
j , s, t)

(
X∗

j (s) − μ̂X,Z∗
j
(s)

)
ds

)]2

dt
/|T |,

analogously for the global functional linear regression, where (X∗
j , Y

∗
j ,Z∗

j ) denotes the data of
the j th subject in the independent test set. In Table 1, we report the mean and standard deviation
(in parentheses) of the MISPE of the global and varying-coefficient functional linear regres-
sion over 100 repetitions for each case. This shows that in this simulation setting, the proposed
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Table 1. Simulation results: mean and standard deviation of MISPE for
global and varying-coefficient functional linear regression with a func-
tional response, for both regular and sparse cases

Functional linear Varying-coefficient functional
regression linear regression

Regular 4.0146 (1.6115) 0.7836 (0.4734)
Sparse and irregular 4.0013 (0.8482) 1.0637 (0.3211)

varying-coefficient functional linear regression approach reduces MISPE drastically, compared
with the global functional linear regression, both for regular and sparse irregular designs.

To visualize the differences between predicted conditional expected response trajectories, for
a small random sample, in both the regular and sparse and irregular design cases, we randomly
choose four subjects from the test set with median values of the integrated squared prediction
error (ISPE) for the varying-coefficient functional linear regression. The true and predicted con-
ditional expected response trajectories are plotted in Figure 1, where the left four panels corre-
spond to the regular design case and the right four to the sparse irregular case. Clearly, the locally
varying method is seen to be superior.

6. Applications

We illustrate the comparison of the proposed varying-coefficient functional linear model with the
global functional linear regression in two applications.

Figure 1. In one random repetition, the true (solid) conditional expected response trajectories and predicted
conditional expected response trajectories via the global functional linear regression (dot-dashed) and the
varying-coefficient functional linear regression (dashed) are plotted for four randomly selected subjects in
the independent test set with median integrated squared prediction error. The left four panels and the right
four correspond to the regular and sparse irregular cases, respectively.
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6.1. Egg-laying data

The egg-laying data represent the entire reproductive history of one thousand Mediterranean fruit
flies (‘medflies’ for short), where daily fecundity, quantified by the number of eggs laid per day,
was recorded for each fly during its lifetime; see Carey et al. (1998) for details of this data set
and experimental background.

We are interested in predicting future egg-laying patterns over an interval of fixed length,
but with potentially different starting time, based on the daily fecundity information during a
fixed earlier period. The predictor trajectories were chosen as daily fecundity between day 8 and
day 17. This interval covers the tail of an initial rapid rise to peak egg-laying and the initial part
of the subsequent decline and, generally, the egg-laying behavior at and near peak egg-laying is
included. It is of interest to study in what form the intensity of peak egg-laying is associated with
subsequent egg-laying behavior, as trade-offs may point to constraints that may play a role in the
evolution of longevity.

While the predictor process is chosen with a fixed domain, the response process has a moving
domain, with a fixed length of ten days, but a different starting age for each subject, which serves
as the additional covariate Z. Due to the limited number of subjects in this study, we use a
pre-specified discrete set for the values of Z: Z = {17,19,21,23,25,27,29,31,33} with a pre-
specified bin width h = 2. For subject i with zi ∈ Z , measurements Uij on the predictor trajectory
are the daily numbers of eggs on day j + 7, and measurements Vik on the response trajectory
correspond to the daily number of eggs on day k + zi for j = 1,2, . . . ,10 and k = 1,2, . . . ,10.
The numbers of subjects in these bins are 30, 29, 18, 29, 22, 19, 19, 17 and 36, respectively.
For each bin, we randomly select 15 subjects as the training set and the remaining subjects
are used to evaluate the prediction performance, comparing the performance of the global and
the varying-coefficient functional linear regression. The prediction performance is quantified by
mean squared prediction error (MSPE), defined for each subject i in the test set as

MSPEg(i) = 1

10

10∑
k=1

(ŷ
g
ik − Vik)

2 and MSPEl (i) = 1

10

10∑
k=1

(ŷl
ik − Vik)

2,

where ŷ
g
ik and ŷl

ik denote the predicted daily fecundities corresponding to Vik using the global
(resp. the proposed varying-coefficient (local)) functional linear regression.

Through pseudo-AIC, the global functional linear regression selects two and three principal
components for the predictor and response trajectories, respectively, while the varying-coefficient
functional linear regression uses two principal components for both trajectories. After smooth-
ing, the slope functions estimated by the varying-coefficient models are plotted in Figure 2 for
different values of Z and the estimated slope function for the global functional linear regression
is plotted in the left panel of Figure 3. Box plots of the ratio MSPEl (i)/MSPEg(i) for subjects
in the test data set are shown in the right panel of Figure 3 for different levels of the covariate Z.
There is one outlier above the maximum value for Z = 18 which is not shown. For most bins,
the median ratios are seen to be smaller than 1, indicating an improvement of our new varying-
coefficient functional linear regression. Denoting the average MSPE (over the independent test
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Figure 2. The slope functions estimated by the varying-coefficient functional linear regression at different
levels of the additional covariate z for the egg-laying data.

data set) of the global and the varying-coefficient functional linear regression by MSPEg and
MSPEl , respectively, the relative performance gain (MSPEl − MSPEg)/MSPEg is found to be
−0.0810 so that the prediction improvement of the varying-coefficient method is 8.1%.

Besides prediction, it is of interest to study the dependency of the future egg-laying behavior
on peak egg-laying. From the changing slope functions in Figure 2, we find that, for the seg-
ments close to the peak segments, the egg-laying pattern is inverting the peak pattern, meaning
that sharper and higher peaks are associated with sharp downturns, pointing to a near-future ex-
haustion effect of peak egg-laying. In contrast, the shape of egg-laying segments further into the
future is predicted by the behavior of the first derivative over the predictor segment so that slow
declines near the end of peak egg-laying are harbingers of future robust egg-laying. This is in
accordance with a model of exponential decline in egg-laying that has been proposed by Müller
et al. (2001).
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Figure 3. The left panel plots the slope function estimated by the global functional linear regression for the
egg-laying data and the right panel corresponds to box plots of the ratios of MSPE of the varying-coefficient
functional linear regression to that of the global functional linear regression for the subjects in the test data
set for different levels of the additional covariate Z.

6.2. BLSA data with scalar response

As a second example, we use a subset of data from the Baltimore Longitudinal Study of Ag-
ing (BLSA), a major longitudinal data set for human aging (Shock et al. (1984), Pearson et al.
(1997)). The data consist of 1590 male volunteers who were scheduled to be seen twice per year.
However, many participants missed scheduled visits or were seen at other than scheduled times so
that the data are sparse and irregular with unequal numbers of measurements and different mea-
surement times for each subject. For each subject, current age and systolic blood pressure (SBP)
were recorded during each visit. We quantify how the SBP trajectories of a subject available in a
middle age range between age 48 and age 53 affect the average of the SBP measurements made
during the last five years included in this study, at an older age. The predictor domain is therefore
of length five years and the response is scalar. The additional covariate for each subject is the
beginning age of the last five-year interval included in the study. After excluding subjects with
less than two measurements in the predictor, 214 subjects were included for whom the additional
covariate ranged between 55 and 75. We bin the data according to the additional covariate, with
bin centers at ages 56.0, 59.0, 62.0, 65.0, 68.5 and 73.0 years and the numbers of subjects in each
of these bins are 38, 33, 38, 32, 39 and 34.

We randomly selected 25 subjects from each bin for model estimation and used the remaining
subjects to evaluate the prediction performance. In contrast to the egg-laying data, the predictor
measurements in this longitudinal study are sparse and irregular. Pseudo-BIC selects two prin-
cipal components for the predictor trajectories for both global and varying-coefficient functional
linear regressions. Using the same criterion for relative performance gain as in the previous exam-
ple, the varying-coefficient functional linear regression achieves 11.8% improvement compared
to the global functional linear regression. Estimated slope functions are shown in Figure 5 and
predictor trajectories in Figure 4.
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Figure 4. Plots of predictor processes: the left panel for the global functional linear regression and the
right panel for different bins according to the additional covariate in the varying-coefficient functional
linear regression.

The shape changes of the slope functions with changing covariate indicate that the negative
derivative of SBP during the middle-age period is associated with near-future SBP. Further into
the future, this pattern is reversed and an SBP increase near the right end of the initial period is
becoming predictive.

7. Concluding remarks

Our results indicate that established functional linear regression models can be improved when
an available covariate is incorporated. We implement this idea by extending the functional linear
model to a varying-coefficient version, inspired by the analogous, highly successful extension of
classical regression models. In both application examples, the increased flexibility that is inherent
in this extension] leads to clear gains in prediction error. In addition, it is often of interest to

Figure 5. The estimated slope function via the global functional linear regression and the new proposed
varying-coefficient functional linear regression (for different levels of Z) are plotted as the solid lines in the
left and right panels, respectively.
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ascertain the effect of the additional covariate. This can be done by plotting the regression slopes
for each bin defined by the covariate and observing the dependency of this function or surface on
the value of the covariate.

Further extensions that are of interest in many applications concern the case of multivariate
covariates. If the dimension is low, the smoothing methods and binning methods that we propose
here can be extended to this case. For higher-dimensional covariates or covariates that are not
continuous, one could form a single index to summarize the covariates and thus create a new
one-dimensional covariate which then enters the functional regression model in the same way as
the one-dimensional covariate that we consider.

As seen in the data applications, the major applications of the proposed methodology are
expected to come from longitudinal studies with sparse and irregular measurements, where the
presence of additional non-functional covariates is common.

Appendix: Auxiliary results and proofs

We note that further details, such as omitted proofs, can be found in a technical report that is
available at http://www4.stat.ncsu.edu/~wu/WuFanMueller.pdf.

A bivariate kernel function κ2(·, ·) is said to be of order (ν, �) with ν = (ν1, ν2) if it satisfies

∫
u�1v�2κ2(u, v)dudv =

{0, 0 ≤ �1 + �2 < �,�1 �= ν1, �2 �= ν2,

ν!, �1 = ν1, �2 = ν2,

�= 0, �1 + �2 = �,
(A.1)

and ∫
|u�1v�2κ2(u, v)|dudv < ∞ for any �1 + �2 = �, (A.2)

where ν! = ν1! · ν2!. Similarly, a univariate kernel function κ1(·) is of order (ν, �) for a univariate
ν = ν1 when (A.1) and (A.2) hold for �2 ≡ 0 on the right-hand side while integrating over the
univariate argument u on the left.

We introduce the following technical conditions:

(i) The variable S has compact domain S . Given Z = z, S has conditional density fS,z(s).

Assume, uniformly in z ∈ Z , that ∂�

∂s� fS,z(s) exists and is continuous for � = 2 on S
and, further, infs∈S fS,z(s) > 0, analogously for T .

(ii) Denote the conditional density functions of (S,U) and (T ,V ) by gX,z(s, u) and

gY,z(t, v), respectively. Assume that the derivative ∂�

∂s� gX,z(s, u) exists for all arguments
(s, u), is uniformly continuous on S × R and is Lipschitz continuous in z, for � = 2,
analogously for gY,z(t, v).

(iii) Denote the conditional density functions of quadruples (S1, S2,U1,U2) and (T1, T2,V1,

V2) by g2X,z(s1, s2, u1, u2) and g2Y,z(t1, t2, v1, v2), respectively. For simplicity, the
corresponding marginal conditional densities of (S1, S2) and (T1, T2) are also de-
noted by g2X,z(s1, s2) and g2Y,z(t1, t2), respectively. Denote the conditional density
of (S,T ,U,V ) given Z = z by gXY,z(s, t, u, v) and, similarly, its corresponding

http://www4.stat.ncsu.edu/~wu/WuFanMueller.pdf
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conditional marginal density of (S,T ) by gXY,z(s, t). Assume that the derivatives
∂�

∂s
�1
1 ∂s

�2
2

g2X,z(s1, s2, u1, u2) exist for all arguments (s1, s2, u1, u2), are uniformly con-

tinuous on S 2 ×R
2 and are Lipschitz continuous in z for �1 +�2 = �, 0 ≤ �1, �2 ≤ � = 2,

analogously for g2Y,z(t1, t2, v1, v2) and gXY,z(s, t, u, v).
(iv) For every p = 1,2, . . . ,P , bX,z(p) → 0, nz(p),hb

4
X,z(p) → ∞, nz(p),hb

6
X,z(p) < ∞,

bY,z(p) → 0, nz(p),hb
4
Y,z(p) → ∞ and nz(p),hb

6
Y,z(p) < ∞ as n → ∞.

(v) For every p = 1,2, . . . ,P , hX,z(p) → 0, nz(p),hh
6
X,z(p) → ∞, nz(p),hh

8
X,z(p) < ∞,

hY,z(p) → 0, nz(p),hh
6
Y,z(p) → ∞ and nz(p),hh

8
Y,z(p) < ∞ as n → ∞.

(vi) For every p = 1,2, . . . ,P , h1,z(p)/h2,z(p) → 1, h1,z(p) → 0, nz(p),hh
6
1,z(p) → ∞ and

nz(p),hh
8
1,z(p) < ∞ as n → ∞.

(vii) For every p = 1,2, . . . ,P , bX,z(p),V → 0, nz(p),hb
4
X,z(p),V

→ ∞, nz(p),hb
6
X,z(p),V

< ∞,

bY,z(p),V → 0, nz(p),hb
4
Y,z(p),V

→ ∞ and nz(p),hb
6
Y,z(p),V

< ∞ as n → ∞.

(viii) Univariate kernel κ1 and bivariate kernel κ2 are compactly supported, absolutely inte-
grable and of orders (ν, �) = (0,2) and ((0,0),2), respectively.

(ix) Assume that sup(z,s)∈Z ×S E(E(X(s) − μX,Z(s))4|Z = z)) < ∞, and analogously
for Y .

(x) The slope function β(z, s, t) is twice differentiable in z, that is, for any (s, t) ∈ S × T ,
∂2

∂z2 β(z, s, t) exists and is continuous in z.
(xi) The bin width h and smoothing bandwidth b are such that b/h < ∞ as n → ∞. The

bin width h is chosen such that P ∝ n1/8.

Proposition 1. For En defined in (3.1), under (xi), it holds that P(En) → 1 as n → ∞.

Proof. First, note that P(minnz(p),h > ñ) ≥ 1 − ∑P
p=1 P(nz(p),h < ñ). Consider the pth

bin and let πp = P(Z ∈ [z(p) − h
2 , z(p) − h

2 )). Then nz(p),h is asymptotically distributed as
N(nπp,nπp(1 − πp)) due to the normal approximation to a binomial random variable. Thus,
P(nz(p),h > ñ) → fN(0,1)(ap)/ap with ap = −(ñ − nπp)/

√
nπp(1 − πp), where fN(0,1)(·) is

the probability density function of the standard normal distribution. Due to [A1], πp is bounded
between fZ/(fZ + (P −1)f̄Z) and f̄Z/((P −1)fZ + f̄Z). It follows that P(En) → 1 as n → ∞
by noting that ñ ∝ √

n, P ∝ n1/8, and fN(0,1)(x)/x decays exponentially in x. �

We next prove the consistency of the raw estimate of the mean functions of predictor and
response trajectories within each bin. Consider a generic bin [z − h/2, z + h/2), with bin center
z and bandwidth h, and let bX,z and bY,z be smoothing bandwidths used to estimate μX,z(s) and
μY,z(t), hX,z and hY,z for GX,z(s1, s2) and GY,z(t1, t2), respectively, h1,z and h2,z for CXY,z(s, t),
and bX,z,V and bY,z,V for VX,z(s) = GX,z(s, s)+ σ 2

X and VY,z(t) = GY,z(t, t)+ σ 2
Y , respectively.

For a positive integer l ≥ 1, let {ψp(t, v),p = 1,2, . . . , l} be a collection of real functions
ψp : R2 → R satisfying the following conditions:

[C1.1a] The derivative functions ∂�

∂t�
ψp(t, v) exist for all arguments (t, v) and are uniformly

continuous on T × R.
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[C1.2a]
∫ ∫

ψ2
p(t, v)gY,z(t, v)dv dt < ∞.

[C2.1a] Uniformly in z ∈ Z , bandwidths bY,z for one-dimensional smoothers are such that
bY,z → 0, nz,hb

ν+1
Y,z → ∞ and nz,hb

2�+2
Y,z < ∞ as n → ∞.

Define μpψ,z = μpψ,z(t) = dν

dtν

∫
ψp(t, v)gY,z(t, v)dv and

�pn,z = �pn,z(t) = 1

nz,hb
ν+1
Y,z

∑
i∈Nz,h

1

EN

Ni∑
j=1

ψp(Tij ,Vij )κ1

(
Tij − t

bY,z

)
,

where gY,z(t, v) is the conditional density of (T ,V ), given Z = z.

Lemma 1. Under conditions [A0]–[A3] (i), (ii), (viii), [C1.1a], [C1.2a] and [C2.1a], we have
τpn = sup(z,t)∈Z ×T |�pn,z(t) − μpψ,z(t)|/(h + (

√
nz,hb

ν+1
Y,z )−1) = Op(1).

Proof. Note that |�pn,z(t) − μpψ,z(t)| ≤ |�pn,z(t) − E�pn,z(t)| + |E�pn,z(t) − μpψ,z(t)| and
E|τpn| = O(1) implies that τpn = Op(1). Standard conditioning techniques lead to

E�pn,z(t) = 1

bν+1
Y,z

E

(
E

(
ψp(Ti1,Vi1)κ1

(
Ti1 − t

bY,z

) ∣∣∣ z − h

2
≤ Zi <

h

2

))
.

For Zi = zi ∈ [z − h/2, z + h/2), perform a Taylor expansion of order � on the integrand:

E

[
ψp(Ti1,Vi1)κ1

(
Ti1 − t

bY,z

)]

=
∫ ∫

ψp(t1, v1)gY,zi
(t1, v1)κ1

(
t1 − t

bY,z

)
dt1 dv1

=
∫ ∫ (

∂ν

∂tν
(ψp(t, v1)gY,zi

(t, v1))

)
(t1 − t)ν

ν! κ1

(
t1 − t

bY,z

)
dt1 dv1

+
∫ ∫ (

∂�

∂t�
(ψp(t, v1)gY,zi

(t, v1))

) ∣∣∣∣
t=t∗

(t1 − t)�

�! κ1

(
t1 − t

bY,z

)
dt1 dv1,

where t∗ is between t and t1. Hence, |E[ψp(Ti1,Vi1)κ1(
Ti1−t
bY,z

)] − μpψ,zi
(t)bν+1

Y,z | ≤ c0
b�+1
Y,z

�! ×∫ |u�κ1(u)|du due to [C1.2a] and the assumption that the kernel function κ1(·) is of type (ν, �),

where c0 is bounded according to [C1.1a], c0 ≤ sup(zi ,t)∈Z ×T | ∂�

∂t�

∫
ψp(t, v1)gY,zi

(t, v1)dv1| <
∞. Furthermore, using (ii), we may bound

sup
t∈T

|E�pn,z(t) − μpψ,z(t)|

≤ c0b
�−ν
Y,z /(�!)

∫
|u�κ1(u)|du (A.3)
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+ E

{
E

[
sup
t∈T

|μpψ,Zi
(t) − μpψ,z(t)|

∣∣∣ z − h

2
≤ Zi <

h

2

]}

≤ c0

(∫
|u�κ1(u)|du

)
b�−ν
Y,z /(�!) + c1h,

where the constants do not depend on z. To bound E supt∈T |�pn,z(t) − E�pn,z(t)|, we
denote the Fourier transform of κ1(·) by ζ1(t) = ∫

e−iutκ1(u)du, and letting ϕpn,z(u) =
1

nz,h

∑
m∈Nz,h

1
EN

∑Nm

j=1 eiuTmj ψp(Tmj ,Ymj ), we have

�pn,z = 1

nz,hb
ν+1
Y,z

∑
m∈Nz,h

1

EN

Nm∑
j=1

κ1

(
Tmj − t

bY,z

)
ψp(Tmj ,Ymj )

= 1

2πbν
Y,z

∫
ϕpn,z(u)e−ituζ1(ubY,z)du

and supt∈T |�pn,z(t) − E�pn,z(t)| ≤ 1
2πbν

Y,z

∫ |ϕpn,z(u) − Eϕpn,z(u)| · |ζ1(ubY,z)|du.

Decomposing ϕpn,z(·) into real and imaginary parts,

ϕpn,z,R(u) = 1

nz,h

∑
m∈Nz,h

1

EN

Nm∑
j=1

cos (uTmj )ψp(Tmj ,Ymj ),

ϕpn,z,I (u) = 1

nz,h

∑
m∈Nz,h

1

EN

Nm∑
j=1

sin (uTmj )ψp(Tmj ,Ymj ),

we obtain E|ϕpn,z(u) − Eϕpn,z(u)| = E|ϕpn,z,R(u) − Eϕpn,z,R(u)| + E|ϕpn,z,I (u) −
Eϕpn,z,I(u)|. Note the inequality E|ϕpn,z,R(u)−Eϕpn,z,R(u)| ≤

√
E|ϕpn,z,R(u) − Eϕpn,z,R(u)|2

and the fact that {[Zi,Ni, (Tij , Yij )
Ni

j=1]: i ∈ Nz,h} are i.i.d. implies that

var(ϕpn,z,R(u)) ≤ 1

nz,h

E
{
E

(
ψ2

p(Tm1, Ym1)|z − h/2 ≤ Zm < z + h/2
)}

,

where m ∈ Nz,h, analogously for the imaginary part. As a result, we have

E sup
t∈T

|�pn,z(t) − E�pn,z(t)|

≤
2
√

E{E(ψ2
p(Tm1, Ym1)|z − h/2 ≤ Zm < z + h/2)} ∫ |ζ1(u)|du

2π
√

nz,hb
ν+1
Y,z

.
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Note that E(ψ2
p(Tm1, Ym1)) as a function of Zm is continuous over the compact domain Z and

is consequently bounded. Let c2 = 2 supZm∈Z
√

E(ψ2
p(Tm1, Ym1)) < ∞. Hence, we have

E sup
t∈T

|�pn,z(t) − E�pn,z(t)| ≤ c2
∫ |ζ1(u)|du

2π

(√
nz,hb

ν+1
Y,z

)−1
, (A.4)

where the constant c2(
∫ |ζ1(u)|du)/(2π) does not depend on z.

The result follows as condition [A1] implies that nz,h goes to infinity uniformly for z ∈ Z as
n → ∞ and nz,hb

2�+2
Y,z < ∞ implies that b�−ν

Y,z = O(1/(
√

nz,hb
ν+1
Y,z )). We next extend Theorem 1

in Yao et al. (2005a) under some additional conditions. �

[C3] Uniformly in z ∈ Z , bX,z → 0, nz,hb
4
X,z → ∞, nz,hb

6
X,z < ∞, bY,z → 0, nz,hb

4
Y,z → ∞

and nz,hb
6
Y,z < ∞ as n → ∞.

Lemma 2. Under conditions [A0]–[A3], (i), (ii), (viii), (ix) and [C3], we have

sup
(z,s)∈Z ×S

|μ̃X,z(s) − μX,z(s)|
h + (

√
nz,hbX,z)−1

= Op(1) and

(A.5)

sup
(z,t)∈Z ×T

|μ̃Y,z(t) − μY,z(t)|
h + (

√
nz,hbY,z)−1

= Op(1).

Proof. The proof is similar to the proof of Theorem 1 in Yao et al. (2005a). �

Our next two lemmas concern the consistency for estimating the covariance functions, based
on the observations in the generic bin [z − h/2, z + h/2). Let {θp(r1, r2, v1, v2),p = 1,2, . . . , l}
be a collection of real functions θp : R4 → R with the following properties:

[C1.1b] the derivatives ∂�

∂r
�1
1 ∂r

�2
2

θp(r1, r2, v1, v2) exist for all arguments (r1, r2, v1, v2) and are

uniformly continuous on R1 × R2 × R
2 for �1 + �2 = �, 0 ≤ �1, �2 ≤ �, � = 0,1,2;

[C1.2b] the expectation
∫ ∫ ∫ ∫

θ2
p(r1, r2, v1, v2)g(r1, r2, v1, v2)dr1 dr2 dv1 dv2 exists and is

finite, uniformly bounded on Z ;
[C2.1b] uniformly in z ∈ Z , bandwidths hY,z for the two-dimensional smoother satisfy

hY,z → 0, nz,hh
|ν|+2
Y,z → ∞, nz,hh

2�+4
Y,z < ∞ as n → ∞.

Define �pθ,z = �pθ,z(t1, t2) = ∂ |ν|
∂t

ν1
1 ∂t

ν2
2

∫ ∫
θp(t1, t2, v1, v2)g2Y,z(t1, t2, v1, v2)dv1 dv2 and

�pn,z(t1, t2) = 1

nz,hh
|ν|+2
Y,z

∑
i∈Nz,h

1

EN(EN − 1)

×
∑

1≤j �=k≤Ni

θp(Tij , Tik,Vij ,Vik)κ2

(
Tij − t1

hY,z

,
Tik − t2

hY,z

)
.
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Lemma 3. Under conditions [A0]–[A3], (i), (ii), (iii), (viii), [C1.1b] with R1 = T and R2 = T ,
[C1.2b] with g(·, ·, ·, ·) = g2Y,z(·, ·, ·, ·) and [C2.1b], we have

ϑpn = sup
(z,t1,t2)∈Z ×T ×T

|�pn,z − �pθ,z|
h + (

√
nz,hh

|ν|+2
Y,z )−1

= Op(1).

Proof. This is analogous to the proof of Lemma 1. �

[C4] Uniformly in z ∈ Z , hX,z → 0, nz,hh
6
X,z → ∞, nz,hh

8
X,z < ∞, hY,z → 0, nz,hh

6
Y,z → ∞

and nz,hh
8
Y,z < ∞ as n → ∞.

The proof of the next result is omitted.

Lemma 4. Under conditions [A0]–[A3], (i)–(iii), (viii), (ix), [C3] and [C4], we have

sup
(z,s1,s2)∈Z ×S 2

|G̃X,z(s1, s2) − GX,z(s1, s2)|
(h + (

√
nz,hh

2
X,z)

−1)
= Op(1), (A.6)

sup
(z,t1,t2)∈Z ×T 2

|G̃Y,z(t1, t2) − GY,z(t1, t2)|
(h + (

√
nz,hh

2
Y,z)

−1)
= Op(1). (A.7)

To estimate variance of the measurement errors, as in Yao et al. (2005a), we first estimate
GX,z(s, s)+σ 2

X (resp. GY,z(t, t)+σ 2
Y ) using a local linear smoother based on GX,i,z(Sil, Sil) for

l = 1,2, . . . ,Li , i ∈ Nz,h (resp. GY,i,z(Tij , Tij ) for j = 1,2, . . . ,Ni , i ∈ Nz,h) with smoothing
bandwidth bX,z,V (resp. bY,z,V ) and denote the estimates by ṼX,z(s) (resp. ṼY,z(t)), removing
the two ends of the interval S (resp. T ) to get more stable estimates of σ 2

X (resp. σ 2
Y ). Denote the

estimates based on the generic bin [z − h/2, z + h/2) by σ̃ 2
X,z and σ̃ 2

Y,z, let |S| denote the length
of S and let S1 = [inf{s: s ∈ S} + |S|/4, sup{s : s ∈ S} − |S|/4]. Then

σ̃ 2
X,z = 2

|S|
∫

S1

[ṼX(s) − G̃X,z(s, s)]ds,

and analogously for σ̃ 2
Y,z. Lemmas 2 and 4 imply the convergence of σ̃ 2

X,z and σ̃ 2
Y,z, as stated in

Corollary 1.

[C5] Uniformly in z ∈ Z , bX,z,V → 0, nz,hb
4
X,z,V → ∞, nz,hb

6
X,z,V < ∞, bY,z,V → 0,

nz,hb
4
Y,z,V → ∞ and nz,hb

6
Y,z,V < ∞ as n → ∞.

Corollary 1. Under condition [C5] and the conditions of Lemmas 2 and 4,

sup
z∈Z

|σ̃ 2
X,z − σ 2

X|/(h + (√
nz,hbX,z,V

)−1 + (√
nz,hh

2
X,z

)−1) = Op(1),

and analogously for σ̃ 2
X,z.
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Proposition 2. Under conditions [A0]–[A3] in Section 2 and (i)–(ix), the final estimates of σ 2
X

and σ 2
Y (2.8) converge in probability to their corresponding true counterparts, that is,

σ̂ 2
X

P→ σ 2
X, σ̂ 2

Y

P→ σ 2
Y .

Proof. The result follows straightforwardly from Corollary 1. �

While Lemma 3 implies consistency of the estimator of the variance, we also require an ex-
tension regarding estimation of the cross-covariance function. Let {θ̃p(s, t, u, v),p = 1,2, . . . , l}
be a collection of real functions θ̃p : R4 → R.

[C2.1c] For � ≥ |ν| + 2 and any pair of �1 and �2 such that � = �1 + �2, �1 ≥ ν1 + 1 and
�2 ≥ ν2 + 1, we have, uniformly in z ∈ Z , bandwidth h1,z and h2,z satisfy h1,z → 0,
h1,z/h2,z → 1, nz,hh

|ν|+2
1,z → ∞, nz,hh

2�+4
1,z < ∞ as n → ∞.

Define �pθ̃,z = �pθ̃,z(s, t) = ∂ |ν|
∂sν1 ∂tν2

∫ ∫
θ̃p(s, t, u, v)gXY,z(s, t, u, v)dudv and

�̃pn,z = �̃pn,z(s, t)

= 1

nz,hh
ν1+1
1,z h

ν2+1
2,z

∑
i∈Nz,h

1

EN

∑
1≤j≤Ni

θ̃p(Sij , Tij ,Uij ,Vij )κ2

(
Sij − s

h1,z

,
Tij − t

h2,z

)
.

Lemma 5. Under conditions [A0]–[A3], (i), (ii), (iii), (viii), [C1.1b] with R1 = S and R2 = T ,
[C1.2b] with g(·, ·, ·, ·) = gXY,z(·, ·, ·, ·) and [C2.1c] (with �1 = �2 = 1 and ν1 = ν2 = 0), we
have ϑ̃pn = sup(z,s,t)∈Z ×S×T |�̃pn,z(s, t) − �pθ̃,z(s, t)|/(h + (

√
nz,hh

ν1+1
Y,1 h

ν2+1
Y,2 )−1) = Op(1).

Proof. The proof is analogous to that of Lemmas 1 and 3. �

[C6] Uniformly in z ∈ Z , bandwidths h1,z and h2,z satisfy h1,z → 0, h1,z/h2,z → 1,
nz,hh

6
1,z → ∞, nz,hh

8
1,z < ∞ as n → ∞.

Lemma 6 (Convergence of the cross-covariance function between X and Y ). Under condi-
tions [A0]–[A3], (i), (ii), (iii), (viii), (ix), [C3] and [C6],

sup
(z,s,t)∈Z ×S×T

|C̃XY,z(s, t) − CXY,z(s, t)|/
(
h + (√

nz,hh1,zh2,z

)−1) = Op(1).

Proof. The proof is similar to that of Lemma 4. �

Consider the real separable Hilbert space L2
Y (T ) ≡ HY (resp. L2

X(S) ≡ HX) endowed with
inner product 〈f,g〉HY

= ∫
T f (t)g(t)dt (resp. 〈f,g〉HX

= ∫
S f (s)g(s)ds) and norm ‖f ‖HX

=√〈f,f 〉HX
(resp. ‖f ‖HY

= √〈f,f 〉HY
) (Courant and Hilbert (1953)). Let I ′

Y,z (resp. I ′
X,z)

be the set of indices of the eigenfunctions φz,k(t) (resp. ψz,m(s)) corresponding to eigen-
values λz,k (resp. ρz,m) of multiplicity one. We obtain the consistency of λ̃z,k (resp. ρ̃z,m)
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for λz,k (resp. ρz,m), the consistency of φ̃z,k(t) (resp. ψ̃z,m(s)) for φz,k(t) (resp. ψz,m(s))
in the L2

Y - (resp. L2
X-) norm ‖ · ‖HX

(resp. ‖ · ‖HY
) when λz,k (resp. ρz,m) is of multiplic-

ity one, and the uniform consistency of φ̃z,k(t) (resp. ψ̃z,m(s)) for φz,k(t) (resp. ψz,m(s)) as
well.

For f,g,h ∈ HY , define the rank one operator f ⊗ g :h → 〈f,h〉g. Denote the separable
Hilbert space of Hilbert–Schmidt operators on HY by FY ≡ σ2(HY ), endowed with 〈T1, T2〉FY

=
tr(T1T

∗
2 ) = ∑

j 〈T1uj ,T2uj 〉HY
and ‖T ‖2

FY
= 〈T ,T 〉FY

, where T1, T2, T ∈ FY , T ∗
2 is the ad-

joint of T2 and {uj : j ≥ 1} is any complete orthonormal system in HY . The covariance op-
erator GY,z (resp. G̃Y,z) is generated by the kernel GY,z (resp. G̃Y,z), that is, GY,z(f ) =∫

T GY,z(t1, t)f (t1)dt1 (resp. G̃Y,z(f ) = ∫
T G̃Y,z(t1, t)f (t1)dt1). Obviously, GY,z and G̃Y,z

are Hilbert–Schmidt operators. As a result of (A.7), we have supz∈Z ‖G̃Y,z − GY,z‖FY
/(h +

(
√

nz,hh
2
Y,z)

−1) = Op(1).
Let IY,z,i = {j : λz,j = λz,i} and I ′

Y,z = {i: |IY,z,i | = 1}, where |IY,z,i | denotes the number

of elements in IY,z,i . Define PY
z,j = ∑

k∈IY,z,j
φz,k ⊗ φz,k and P̃Y

z,j = ∑
k∈IY,z,j

φ̃z,k ⊗ φ̃z,k to
be the true and estimated orthogonal projection operators from HY to the subspace spanned by
{φz,k: k ∈ IY,z,j }. Set δY

z,j = 1
2 min{|λz,l −λz,j |: l /∈ IY,z,j } and �δY

z,j
= {c ∈ C: |c−λz,j | = δY

z,j },
where C stands for the complex numbers. Let RY,z (resp. R̃Y,z) be the resolvent of GY,z

(resp. G̃Y,z), that is, RY,z(c) = (GY,z − cI)−1 (resp. R̃Y,z(c) = (G̃Y,z − cI)−1). Let AδY
z,j

=
sup{‖RY,z(c)‖FY

: c ∈ �δY
z,j

} and

αX = (δX
z,j (AδX

z,j
)2)/

((
h + (√

nz,hh
2
X,z

)−1)−1 − AδX
z,j

)
. (A.8)

Parallel notation is assumed for the Y process.

Proposition 3. Under conditions [A0]–[A3] in Section 2 and conditions (i)–(iii), (viii), (ix),
[C3], [C4] and [C6], it holds that

|ρ̃z,m − ρz,m| = Op(αX), (A.9)

‖ψ̃z,m − ψz,m‖HX
= Op(αX), m ∈ I ′

X,z, (A.10)

sup
s∈S

|ψ̃z,m(s) − ψz,m(s)| = Op(αX), m ∈ I ′
X,z, (A.11)

|λ̃z,k − λz,k| = Op(αY ), (A.12)

‖φ̃z,k − φz,k‖HY
= Op(αY ), k ∈ I ′

Y,z, (A.13)

sup
t∈T

|φ̃z,k(t) − φz,k(t)| = Op(αY ), k ∈ I ′
Y,z, (A.14)

|σ̃z,mk − σz,mk| = Op

(
max

(
αX,αY ,h + (√

nz,hh1,zh2,z

)−1))
, (A.15)
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where the norms on HX and HY are defined on page 29, both αX,αY are defined in (A.8) and
converge to zero as n → ∞ and the above Op terms are uniform in z ∈ Z .

Proof. The proof is similar to the proof of Theorem 2 in Yao et al. (2005a). The uniformity
result follows from that of Lemmas 4 and 6. �

Note that

β(z, s, t) =
∞∑

k=1

∞∑
m=1

E(ζz,mξz,k)

E(ζ 2
z,m)

ψz,m(s)φz,k(t). (A.16)

To define the convergence of the right-hand side of (A.16), in the L2 sense, in (s, t) and uniformly
in z, we require that [A4]

∑∞
k=1

∑∞
m=1 σ 2

z,mk/ρ
2
z,m < ∞ uniformly for z ∈ Z .

The proof of the following result is straightforward.

Lemma 7. Under condition [A4], uniformly in z ∈ Z , the right-hand side of (A.16) converges
in the L2 sense.

The next result is stated without proof and requires assumptions [A4] and the following:

M(n)∑
m=1

δX
z,m(AδX

z,m
)2

(h + (
√

nz,hh
2
X,z)

−1)−1 − AδX
z,m

→ 0,

[A5]
K(n)∑
k=1

δY
z,k(AδY

z,k
)2

(h + (
√

nz,hh
2
Y,z)

−1)−1 − AδY
z,k

→ 0 uniformly in z ∈ Z ,

MK
(
h + (√

nz,hh1,zh2,z

)−1) → 0.

Lemma 8. Under conditions of Proposition 3, [A4] and [A5],

lim
n→∞ sup

z∈Z

∫
S

∫
T

[β̃(z, s, t) − β(z, s, t)]2 = 0 in probability. (A.17)

Proof of Theorem 1. We consider only the convergence of β̂(z, s, t). The consistency of μ̂X,z(s)

and μ̂Y,z(t) is analogous. First, note that∫
T

∫
S

(
β̂(z, s, t) − β(z, s, t)

)2 ds dt

≤ 2(2b/h + 1)

P∑
p=1

ω0,2
(
z(p), z, b

)2
∫

T

∫
S

(
β̃
(
z(p), s, t

) − β
(
z(p), s, t

))2 ds dt (A.18)

+ 2
∫

T

∫
S

(
P∑

p=1

ω0,2
(
z(p), z, b

)
β
(
z(p), s, t

) − β(z, s, t)

)2

ds dt,
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where the 2b/h + 1 in the last inequality is due to the fact that the kernel function K(·) is of
bounded support [−1,1]. Let a(k) = ∑P

p=1 Kb(z
(p) − z)(z(p) − z)k , b(k) = ∑P

p=1 Kb(z
(p) −

z)2(z(p) − z)k , μk = ∫
K(u)uk du and νk = ∫

(K(u))2uk du. We then have

a(k) = μk

bk

h

(
1 + o(1)

)
and b(k) = νk

bk−1

h

(
1 + o(1)

)
for small h (large P ∝ 1/h) and small b. Moreover, the usual boundary techniques can be applied
near the two end points. Consequently,we have

P∑
p=1

ω0,2
(
z(p), z, b

)2 = eT
1,2(C

T WC)−1(CT WWC)(CT WC)−1e1,2

= eT
1,2

(
a(0) a(1)

a(1) a(2)

)−1 (
b(0) b(1)

b(1) b(2)

)(
a(0) a(1)

a(1) a(2)

)−1

e1,2

=
(

μ2
2ν0 − 2μ1μ2ν1 + μ2

1ν2

μ0μ2 − μ2
1

)(
b

h

)(
1 + o(1)

)
.

Due to the compactness of Z , the above o-term is uniform in z ∈ Z . This implies that

∫
Z

P∑
p=1

ω0,2
(
z(p), z, b

)2
dz =

(
μ2

2ν0 − 2μ1μ2ν1 + μ2
1ν2

μ0μ2 − μ2
1

)(
b

h

)
|Z|(1 + o(1)

)
(A.19)

for small h and b, where |Z| denotes the Lebesgue measure of Z . Hence, (A.19) and the consis-
tency of β̃(z, s, t) in the L2 sense in (s, t) and uniformly in z due to (A.17) imply that

∫
Z

[
P∑

p=1

ω0,2
(
z(p), z, b

)2
∫

T

∫
S

((
β̃
(
z(p), s, t

) − β
(
z(p), s, t

)))2
ds dt

]
dz

P→ 0. (A.20)

For the second part in (A.18), applying a Taylor expansion of β(z(p), s, t) at each z, we have

P∑
p=1

ω0,2
(
z(p), z, b

)
β
(
z(p), s, t

)

= eT
1,2

(
a(0) a(1)

a(1) a(2)

)−1 (
a(0)

a(1)

)
β(z, s, t) + eT

1,2

(
a(0) a(1)

a(1) a(2)

)−1 (
a(1)

a(2)

)
∂

∂z
β(z, s, t)

+ 1

2
eT

1,2

(
a(0) a(1)

a(1) a(2)

)−1 (
a(2)

a(3)

)
∂2

∂z2
β(z, s, t) + higher order terms

= β(z, s, t) + 1

2
b2 μ2

2 − μ1μ3

μ0μ2 − μ2
1

∂2

∂z2
β(z, s, t) + higher order terms.
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Hence,
∑P

p=1 ω0,2(z
(p), z, b)β(z(p), s, t) − β(z, s, t) = 1

2b2 μ2
2−μ1μ3

μ0μ2−μ2
1

∂2

∂z2 β(z, s, t)(1 + o(1)) and

∫
Z

∫
T

∫
S

(
P∑

p=1

ω0,2
(
z(p), z, b

)
β
(
z(p), s, t

) − β(z, s, t)

)2

ds dt dz

(A.21)

= 1

2
b2 μ2

2 − μ1μ3

μ0μ2 − μ2
1

(∫
Z

∫
T

∫
S

∂2

∂z2
β(z, s, t)ds dt dz

)(
1 + o(1)

) → 0.

Combining (A.20) and (A.21), and further noting condition (xi), completes the proof. �

Proof of Theorem 2. Note that

Y ∗(t) − Ŷ ∗(t) = μY,Z∗(t) − μ̂Y,Z∗(t) +
∫

S

(
β(Z∗, s, t) − β̂(Z∗, s, t)

)(
X∗(s) − μX,Z∗(s)

)
ds

−
∫

S
β̂(Z∗, s, t)

(
μX,Z∗(s) − μ̂X,Z∗(s)

)
ds.

The convergence results in Theorem 1 imply that
∫

T (Y ∗(t) − Ŷ ∗(t))2 dt
P→ 0, as desired. �
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