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This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial
logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models de-
rived under the assumption of random utility maximization, subject to the identification of an unknown
distribution G. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric
approach, using nonparametric priors on the unknown mixing distribution G, to estimate choice probabili-
ties. We provide an important theoretical support for the use of the proposed methodology by investigating
consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Con-
sistency is defined according to an L1-type distance on the space of choice probabilities and is achieved by
extending to a regression model framework a recent approach to strong consistency based on the summabil-
ity of square roots of prior probabilities. Moving to estimation, slightly different techniques for non-panel
and panel data models are discussed. For practical implementation, we describe efficient and relatively easy-
to-use blocked Gibbs sampling procedures. These procedures are based on approximations of the random
probability measure by classes of finite stick-breaking processes. A simulation study is also performed to
investigate the performance of the proposed methods.

Keywords: Bayesian consistency; blocked Gibbs sampler; discrete choice models; mixed multinomial
logit; random probability measures; stick-breaking priors

1. Introduction

Discrete choice models arise naturally in many fields of application, including marketing and
transportation science. Such choice models are based on the neoclassical economic theory of
random utility maximization (RUM). Given a finite set of choices C = {1, . . . , J }, it is assumed
that each individual has a utility function

Uj = x′
jβ + εj for j ∈ C.

The values x = (x1, . . . ,xJ ) are observed covariates, where xj ∈ R
d denote the covariates asso-

ciated with each choice {j} ∈ C, the coefficient β is an unknown (preference) vector in R
d and
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(ε1, . . . , εJ ) are random terms. Suppose that all Uj are distinct and that the individual makes a
choice {j} if and only if Uj > Ul ∀l �= j . The introduction of the random error terms εj represents
a departure from classical economic utility models. The random errors account for the discrep-
ancy between the actual utility, which is known by the chooser, and that which is deduced by the
experimenter who observes x and the choice made by the individual. Hence, the deterministic
statement of choice {j} is replaced by the probability of choosing {j}, that is, P{Uj > Ul ∀l �= j}.
The analysis of such a model depends on the specifications of the errors. McFadden (1974) shows
that the specification of independent Gumbel error terms leads to the tractable multinomial logit
(MNL) model. This representation is written as

P({j}|β,x) = exp{x′
jβ}∑

l∈C exp{x′
lβ} for j ∈ C.

The MNL possesses the property of independence from irrelevant alternatives (IIA), which
makes it inappropriate in many situations. The probit and the generalized extreme value models,
which do not exhibit the IIA property and are models derived from dependent error structures,
have been proposed as alternatives to the MNL. A drawback of the aforementioned procedures
is that they are not robust against model misspecification.

The mixed multinomial logit (MMNL) model, first introduced by Cardell and Dunbar (1980),
emerges as potentially the most attractive model. The book by Train (2003) includes a detailed
discussion of this model. The general MMNL choice probabilities are defined by mixing an MNL
model over a mixing distribution G. For a set of covariates x, the MMNL model is written as

P({j}|G,x) =
∫

Rd

exp{x′
jβ}∑

l∈C exp{x′
lβ}G(dβ) for j ∈ C. (1)

McFadden and Train (2000) establish the important result that, in theory, all RUM models can be
captured by correct specification of G. Thus, a robust approach amounts to being able to employ
statistical estimation methods based on a nonparametric assumption on G. However, statistical
techniques have only been developed for the case where G is given a parametric form. The most
popular model is when G is specified to be multivariate normal with unknown mean μ and
covariance matrix τ :

P({j}|μ,τ ,x) =
∫

Rd

exp{x′
jβ}∑

l∈C exp{x′
lβ}φ(β|μ,τ )dβ for j ∈ C, (2)

where φ(β|μ,τ ) represents a multivariate normal density with parameters μ and τ . We shall
refer to this as a Gaussian mixed logit (GML) model. Here, based on a sample of size n, one
estimates the choice probabilities by estimating μ and τ . Applications and discussions are found
in, among others, Bhat (1998), Brownstone and Train (1999), Erdem (1996), Srinivasan and
Mahmassani (2005) and Walker, Ben-Akiva and Bolduc (2007). Additionally, Dubé et al. (2002)
provide a discussion focused on applications to marketing. The GML model is popular since it
is flexible and relatively easy to estimate via simulated maximum likelihood techniques or via
Bayesian MCMC procedures. Other choices for G include the lognormal and uniform distribu-
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tions. Train (2003) discusses the merits and possible drawbacks of Bayesian MCMC procedures
versus simulated maximum likelihood procedures for various choices of G. However, despite the
attractive features of the GML, it does not encompass all RUM models, hence, it is not robust
against misspecification.

In this article, we develop a nonparametric Bayesian method for the estimation of the choice
probabilities and we prove consistency of the posterior distribution. The idea is to model the
mixing distribution G via a random probability measure in order to fully exploit the flexibil-
ity of the MMNL model. Many nonparametric priors are currently available for modeling G,
such as stick-breaking priors, normalized random measures with independent increments and
Dirichlet process mixtures. We establish consistency of the posterior distribution of G under
neat sufficient conditions which are readily verifiable for all of these nonparametric priors. Con-
sistency is defined according to an L1-type distance on the space of choice probabilities by
exploiting the square root approach to strong consistency of Walker (2003a, 2004). We essen-
tially show that the Bayesian MMNL model is consistent if the prior on G has the true mixing
distribution in its weak support and satisfies a mild condition on the tails of the prior predictive
distribution. We then move to estimation and divide our discussion into methods for non-panel
and panel data. Specifically, for non-panel data models, we use, as a prior for G, a mixture
of Dirichlet processes. Methods for panel data instead involve a Dirichlet mixture of normal
densities. For practical implementation, we describe efficient and relatively easy-to-use blocked
Gibbs sampling procedures, developed in Ishwaran and Zarepour (2000) and Ishwaran and James
(2001).

The rest of the paper is organized as follows. In Section 2, we describe the Bayesian non-
parametric approach by placing a nonparametric prior on the mixing distribution and present the
consistency result for the posterior distribution of G. In Section 3, we show how to implement
a blocked Gibbs sampling for drawing inference when a discrete nonparametric prior is used.
Section 4 deals with panel data with similar Bayesian nonparametric methods, where we define a
class of priors for G that preserves the distinct nature of individual preferences and specialize the
blocked Gibbs sampler to this setting. In Section 5, we provide an illustrative simulation study
which shows the flexibility and good performance of our procedures. Finally, in Section 6, we
provide a detailed proof of consistency.

2. Bayesian MMNL models

A Bayesian nonparametric MMNL model is specified by placing a nonparametric prior on the
mixing distribution G in (1):

P({j}|G̃,x) =
∫

Rd

exp{x′
jβ}∑

l∈C exp{x′
lβ}G̃(dβ) for j ∈ C. (3)

Here, G̃ denotes a random probability measure which takes values over the space P of probability
measures on R

d , the former endowed with the weak topology. The nonparametric distribution of
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G̃ is denoted by P . Model (3) can be equivalently expressed in hierarchical form as

Yi |βi

ind∼ exp{x′
iYi

βi}∑
j∈C exp{x′

ijβ i}
for i = 1, . . . , n and Yi ∈ C,

βi |G̃ iid∼ G̃ for i = 1, . . . , n, (4)

G̃ ∼ P

with xi = (xi1, . . . ,xiJ ) the covariates and Yi the choice observed for individual i.
One can choose G̃ to be a Dirichlet process (Ferguson (1973)), although there currently ex-

ist other nonparametric priors that can be used, like stick-breaking priors (Ishwaran and James
(2001)) and normalized random measure with independent increments (NRMI) (Regazzini, Lijoi
and Prünster (2003)). All of these priors select discrete distributions almost surely (a.s.), whereas
random probability measures whose support contains continuous distributions can be obtained
by using a Dirichlet process mixture of densities, in the spirit of Lo (1984). An important role
in the sequel will be played by the prior predictive distribution of G̃, denoted by H , which is an
element of P and is defined by

H(B) := E[G̃(B)] (5)

for all Borel sets B of R
d , where E(·) denotes expectation. In the next section, we show that an

essential condition for consistency of the posterior distribution is expressed in terms of H . This
yields an easy-to-use criterion for the choice of the prior for G̃ as H is readily obtained for all of
the nonparametric priors listed above. Furthermore, one can embed a parametric model, such as
the GML, within the nonparametric framework via a suitable specification of the distribution H .

2.1. Posterior consistency

Bayesian consistency deals with the asymptotic behavior of posterior distributions with respect
to repeated sampling. The problem can be set in general terms as follows: suppose the existence
of a “true” unknown distribution P0 that generates the data, then check whether the posterior
accumulates in suitably-defined neighborhoods of P0. There exist two main approaches to the
study of strong consistency, that is, consistency when the neighborhood of P0 is defined accord-
ing to the Hellinger metric on the space of density functions. One is based on the metric entropy
of the parameter space and was set forth in Barron, Schervish and Wasserman (1999) and Ghosal,
Ghosh and Ramamoorthi (1999). The second approach was introduced by Walker (2003a, 2004)
and has more of a Bayesian flavor, in the sense that it relies on the summability of square roots
of prior probabilities. For discussion, the reader is referred to Wasserman (1998), Walker, Li-
joi and Prünster (2005) and Choudhuri, Ghosal and Roy (2005). Strong consistency in mixture
models for density estimation is addressed by Ghosal, Ghosh and Ramamoorthi (1999) and Lijoi,
Prünster and Walker (2005), by using the metric entropy approach and the square root approach,
respectively. As for the non-identically distributed case, we mention Choi and Schervish (2007)
and Ghosal and Roy (2006), both of which follow the metric entropy approach. The square root
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approach is adopted by Walker (2003b) for nonparametric regression models and by Ghosal and
Tang (2006) for the estimation of transition densities in the context of Markov processes.

We face the issue of consistency for the MMNL model (3) by exploiting the square root ap-
proach of Walker and its variation proposed in Lijoi, Prünster and Walker (2005) which makes
use of metric entropy in an instrumental way. We assume the existence of a G0 ∈ P such that the
true distribution of Y given X = x is given by

P0({j}|x) =
∫

Rd

exp(x′
jβ)∑

l∈C exp(x′
lβ)

G0(dβ).

The variables Xi are taken as independent draws from a common distribution M(dx) which is
supported on X ⊂ R

Jd . The distribution of an infinite sequence (Yi,Xi )i≥1 will be then denoted
by P∞

(G0,M)
. Finally, let Pn denote the posterior distribution of G̃ given (Y1,X1), . . . , (Yn,Xn);

see also equation (19) in Section 6. In the sequel, we take the covariate distribution M to be a
fixed quantity so that the posterior distribution does not depend on the specific form of M . Note,
however, that the posterior evaluation is also not affected when M is considered as a parame-
ter with an independent prior since it is reasonable to assume that the choice probabilities are
unrelated to M .

We give conditions on G0 and the prior predictive distribution of G̃ such that the posterior
distribution Pn concentrates all probability mass in neighborhoods of G0 defined according to
strong consistency of choice probabilities. To this end, we look at the vector of choice probabil-
ities as a vector-valued function q : X → �, where � is the J -dimensional probability simplex.
We define

q(x;G) = [P({1}|G,x), . . . ,P({J }|G,x)] (6)

for any G ∈ P. On the space Q = {q(·;G): G ∈ P}, we define the L1-type distance

d(q1,q2) =
∫

X
|q1(x) − q2(x)|M(dx), (7)

where | · | denotes the Euclidean norm in �.

Definition 1. P is consistent at G0 if, for any ε > 0,

Pn{G: d(q(·;G),q(·;G0)) > ε} → 0, P∞
(G0,M)-a.s.

The main result is stated in the following theorem.

Theorem 1. Let P be a prior on P with predictive distribution H and G0 be in the weak support
of P . Suppose that X is a compact subset of R

Jd . If

(i) P0({j}|x) > 0 for any j ∈ C and x ∈ X ;
(ii)

∫
Rd |β|H(dβ) < +∞,

then P is consistent at G0.
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The compactness of the covariate space is a standard assumption in nonparametric regression
problems. Condition (i) is fairly reasonable since it is guaranteed by a correct specification of
the RUM model: one can always redefine the set of choices or the covariate space to fulfill this
requirement. Moreover, because of the compactness of X , condition (i) implies that G0 is a
proper distribution on R

d , that is, with no masses escaping at infinity. The verification that G0

belongs to the weak support of P is then an easy task: in general, it is sufficient that the prior
predictive distribution H has full support on R

d . Condition (ii) is a mild condition on the tails of
H : it is satisfied by any distribution with tails lighter than the Cauchy distribution.

2.2. Illustration

It is worth considering condition (ii) in more detail for a variety of Bayesian MMNL models,
obtained from different specifications of P . If G̃ is taken to be a Dirichlet process with base
measure α = aF , where a > 0 is a constant and F ∈ P, then F coincides with H in (5). A larger
class of Bayesian MMNL models arise when G̃ is chosen to be a stick-breaking prior:

G̃(·) =
∑
k≥1

pkδZk
(·), (8)

where the pk are positive random probabilities chosen to be independent of Zk and such that∑
k≥1 pk = 1 a.s. The Zk are random locations taken as independent draws from some non-

atomic distribution F in P. What characterizes a stick-breaking prior is that the random weights
are expressible as pk = Vk

∏k−1
i=1 (1 − Vi), where the Vk are independent beta-distributed random

variables of parameters ak, bk > 0; we write Vk ∼ beta(ak, bk). Examples of random probability
measures in this class are given in Ishwaran and James (2001); see also Pitman and Yor (1997)
and Ishwaran and Zarepour (2000). They represent extensions of the Dirichlet process, which
has ak = 1 and bk = a ∀k, and they all have in common that the prior predictive distribution H

coincides with F .
The class of NRMI is another valid choice for P . Specifically, one can take G̃(·) = μ̃(·)/

μ̃(Rd), where μ̃ is a completely random measure with Poisson intensity measure ν(dv,dz) =
ρ(dv|z)α(dz) on (0,+∞) × R

d . Here, ρ(·|z) is a Lévy density on (0,+∞) for any z and α is a
finite measure on R

d such that ψ(u) := ∫
Rd×R+(1 − e−uv)ρ(dv|z)α(dz) < ∞, which is needed

to guarantee that μ̃(Rd) < ∞ a.s. It can be shown that H(B) = ∫
B

∫ +∞
0 e−ψ(u){∫ +∞

0 e−uv ×
vρ(dv|z)}duα(dz) for any Borel set B of R

d ; see also James, Lijoi and Prünster (2009). When
ρ(dv|z) = ρ(dv) for each z (homogeneous case), the prior predictive distribution reduces to

H(B) = α(B)

α(Rd)
for any Borel B ⊂ R

d . (9)

The homogeneous NRMI includes, as a special case, the Dirichlet process and belongs, together
with the stick-breaking priors, to the class of species sampling models, for which (9) holds for
some finite measure α. Note that all of the nonparametric priors belonging to this class allow an
easy verification of condition (ii).
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The specification of the nonparametric prior in terms of a base measure α, as in (9), allows
more flexibility to be introduced via an additional level in the hierarchal structure (4). If we let
the base measure be indexed by a parameter θ , say αθ , and θ be random with probability density
π(θ) on some Euclidean space 
, then we obtain a mixture of Dirichlet process in the spirit of
Antoniak (1974). Condition (ii) must then be verified for the convolution

H(B) =
∫




∫
B

Hθ(dz)π(θ)dθ, where Hθ(dz) = αθ (dz)

αθ (Rd)
. (10)

It is quite straightforward to check that condition (ii) holds for the mixture of Dirichlet processes
implemented in the analysis of non-panel data in Section 3.

Finally, consider the case of Dirichlet process mixture models of Lo (1984), where G̃ is ab-
solutely continuous with respect to the Lebesgue measure on R

d with random density function
specified as

∫



K(β, θ)�̃(dθ). Here, K(β, θ) is a non-negative kernel defined on R
d × 
 such

that, for each θ ∈ 
,
∫

Rd K(z, θ)dz = 1, while �̃ is a Dirichlet process prior with base measure
aF and F a probability measure on 
. The distribution H is then absolutely continuous and is
given by

H(B) =
∫

B

∫



K(z, θ)F (dθ)dz.

As in (10), verifying condition (ii) requires a study of the tail properties of a convolution, this
time of K(z, θ) with respect to F(dθ). In the analysis of panel data (see Section 4), we adopt
a Dirichlet mixture model as continuous nonparametric prior for G̃ where the verification of
condition (ii) can be readily established.

3. Implementation for non-panel data

Assume that we have a single observation for each individual and that we want to account for
the possibility of ties among different individuals’ preferences. Therefore, we use a discrete non-
parametric prior for the mixing distribution. Take G̃ to be a Dirichlet process with base measure
aF and denote its law by P (dG|aF) (although the treatment can be easily extended to any other
stick-breaking prior). Representation (8) then holds with random probabilities p1,p2, . . . at lo-
cations Z1,Z2, . . . , which are i.i.d. draws from F . This translates into a Bayesian model for the
MMNL as

P({j}|G̃,x) =
∑
k≥1

pk

exp{x′
jZk}∑

l∈C exp{x′
lZk} for j ∈ C. (11)

One can then center G̃ on a parametric model like the GML in (2) by taking F to have normal
density φ(β|μ,τ ). In a parametric Bayesian framework, by placing priors on μ,τ , one is able to
get posterior estimates of μ,τ , but inference is restricted to the assumption of the GML model.
The flexibility of the Bayesian nonparametric approach allows one to choose F based on conve-
nience and ease of use and to utilize, for instance, the attractive features of GML models while
still maintaining the robustness of a nonparametric approach.
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In the case of the Dirichlet process, the parameters associated with F , for instance, μ and
τ , are considered fixed. As observed in Section 2, one can introduce more flexibility in the
model by treating such parameters as random. Specifying θ = (μ,τ ), Fθ(dβ) to have density
φ(β|θ)dβ and π(θ) to be the density function for θ , the law of G̃ is given by the mixture∫



P (dG|aFθ )π(dθ). Equivalently, using (8), a mixture of Dirichlet processes is defined by
specifying each Zk|θ to be i.i.d. Fθ . Note that, conditional on θ , a prior guess for the choice
probabilities is

E[P({j}|G̃,x)|θ ] =
∫

Rd

exp{x′
jβ}∑

l∈C exp{x′
lβ}Fθ(dβ) for j ∈ C. (12)

By the properties of the Dirichlet process, the prediction rule for the choice probabilities given
β1, . . . ,βn is given by

E[P({j}|G̃,x)|θ,β1, . . . ,βn]
(13)

= a

a + n
P({j}|Fθ ,x) +

n∑
i=1

1

a + n

exp{x′
jβ i}∑

l∈C exp{x′
lβ i}

,

where P({j}|Fθ ,x) := E[P({j}|G̃,x)|θ ] is given in (12) with a notation consistent with (1). How-
ever, the variables β i are not observable and hence one needs to implement computational pro-
cedures to draw from their posterior distribution.

In this framework, a reasonable algorithm to use is the blocked Gibbs sampler developed in
Ishwaran and Zarepour (2000) and Ishwaran and James (2001). Indeed, since the multinomial
logistic kernel does not form a conjugate pair for β , marginal algorithms suffer from slow con-
vergence, although strategies for overcoming this problem can be found in MacEachern and
Muller (1998).

3.1. Blocked Gibbs algorithm

In this section, we discuss how to implement a blocked Gibbs sampling algorithm for drawing
inference on a nonparametric hierarchical model with the structure

Yi |βi

ind∼ L(Yi,βi ) for i = 1, . . . , n and Yi ∈ C,

βi |G̃ iid∼ G̃ for i = 1, . . . , n,
(14)

G̃|θ ∼ P (dG|aFθ ),

θ ∼ π(dθ),

where L(Yi,β) = exp{x′
iYi

β}/∑
j∈C exp{x′

ijβ} is the probability for Yi conditional on β i . The
blocked Gibbs sampler utilizes the fact that a truncated Dirichlet process, discussed in Ishwaran
and Zarepour (2000) and Ishwaran and James (2001), serves as a good approximation to the
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random probability measure G̃|θ in (14). We replace the conditional law P (dG|aFθ ) with the
law of the random probability measure

G̃(·) =
N∑

k=1

pkδZk
(·), 1 ≤ N < ∞, (15)

where Zk|θ are i.i.d. Fθ and the random probabilities p1, . . . , pN are defined by the stick-
breaking construction

p1 = V1 and pk = (1 − V1) · · · (1 − Vk−1)Vk, k = 2, . . . ,N, (16)

with V1,V2, . . . , VN−1 i.i.d. beta(1, a) and VN = 1, which ensures that
∑N

k=1 pk = 1. The law of
G̃|θ in (15) is referred to as a truncated Dirichlet process and will be denoted P N(dG|αFθ ).
Moreover, the limit as N → ∞ will converge to a random probability measure with law
P (dG|aFθ ). Indeed, the method yields an accurate approximation of the Dirichlet process for
N moderately large since the truncation is exponentially accurate. Theorem 2 in Ishwaran
and James (2001) provides an L1-error bound for the approximation of conditional density of
Y = (Y1, . . . , Yn) given θ . Let

μN(Y|θ) =
∫ [

n∏
i=1

∫
Rd

L(Yi,βi )G(dβ i )

]
P N(dG|aFθ )

and μ(Y|θ) be its limit under the prior P (dG|aFθ ). One then has

‖μN − μ‖1 :=
∫ ∣∣μN(Y|θ) − μ(Y|θ)

∣∣dY ∼ 4ne−(N−1)/a,

where the integral above is considered over the counting measure on the n-fold product space
Cn. Moreover, Corollary 1 in Ishwaran and James (2002) can be used to show that the truncated
Dirichlet process also leads to asymptotic approximations to the posterior that are exponentially
accurate.

The key to working with random probability measures like (15) is that it allows blocked
updates to be performed for p = (p1, . . . , pn) and Z = (Z1, . . . ,Zn) by recasting the hierar-
chical model (14) completely in terms of random variables. To this aim, define the classification
variables K = {K1, . . . ,Kn} such that, conditional on p, each Ki is independent with distribution

P{Ki ∈ ·|p} =
N∑

k=1

pkδk(·).

That is, P{Ki = k|p} = pk for k = 1, . . . ,N so that Ki identifies the Zk associated with each
βi : β i = ZKi

. In this setting, a sample β1, . . . ,βn from (15) produces n0 ≤ min(n,N) distinct
values. The blocked Gibbs algorithm is based on sampling K,p,Z, θ from the distribution pro-
portional to [

n∏
i=1

L(Yi,βi )

][
n∏

i=1

N∑
k=1

pkδZk
(dβ i )

]
π(p)

[
N∏

k=1

Fθ(dZk)

]
π(dθ),



688 P. De Blasi, L.F. James and J.W. Lau

where π(p) denotes the distribution of p defined in (16). This augmented likelihood is an expres-
sion of the augmented density when P (dG|aFθ ) is replaced by P N(dG|aFθ ).

Before describing the algorithm, we specify choices for Fθ and θ which agree with the GML
model. Set θ = (μ,τ ) and specify the density of Fθ to be φ(β|μ,τ ). Let λ denote a positive
scalar. We choose a multivariate normal inverse Wishart distribution for μ,τ , where, specifically,
μ|τ is a multivariate normal vector with mean parameter m and scaled covariance matrix λ−1τ
and τ is drawn from an inverse Wishart distribution with degrees of freedom ν0 and scale matrix
S0. We denote this distribution for μ,τ as N-IW(m, λ−1τ , ν0,S0). Our specification is similar
to that used in Train (2003), Chapter 12, for a parametric GML model for panel data.

Algorithm 1.

1. Conditional draw for K. Independently sample Ki according to P{Ki ∈ ·|p,Z,Y} =∑N
k=1 pk,iδk(·) for i = 1, . . . , n, where

(p1,i , . . . , pN,i) ∝ (p1L(Yi,Z1), . . . , pNL(Yi,ZN)).

2. Conditional draw for p. p1 = V ∗
1 , pk = (1 − V ∗

1 ) · · · (1 − V ∗
k−1)V

∗
k , k = 2, . . . ,N − 1 and

V ∗
N = 1, where, if ek records the number of Ki values which equal k,

V ∗
k

ind∼ beta

(
1 + ek, a +

N∑
l=k+1

el

)
, k = 1, . . . ,N − 1.

3. Conditional draw for Z. Let {K∗
1 , . . . ,K∗

n0
} denote the unique set of Ki values.

For each k /∈ {K∗
1 , . . . ,K∗

n0
}, draw Zk|μ,τ from the prior multivariate normal den-

sity φ(Z|μ,τ ). For j = 1, . . . , n0, draw ZK∗
j

:= β∗
j from the density proportional to

φ(β∗
j |μ,τ )

∏
{i:Ki=K∗

j } L(Yi,β
∗
j ) by using, for example, a standard Metropolis–Hastings

procedure.
4. Conditional draw for θ = (μ,τ ). Conditional on τ ,K,Z,Y, draw μ from a multivariate

normal distribution with parameters

λm + n0β̄n0

λ + n0
and

τ

λ + n0
,

where β̄n0
= n−1

0

∑n0
j=1 β∗

j . Conditional on K,Z,Y, draw τ from an inverse Wishart dis-
tribution with parameters

ν0 + n0 and
ν0S0 + n0Sn0 + R(β̄n0

,m)

ν0 + n0
,

where

Sn0 = 1

n0

n0∑
j=1

(β∗
j − β̄n0

)(β∗
j − β̄n0

)′ and R(β̄n0
,m) = λn0

λ + n0
(β̄n0

− m)(β̄n0
− m)′.
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Notice that, when n0 = 1, Steps 3 and 4 reduce to the MCMC steps for a parametric Bayesian
model. Iterating the steps above produces a draw from the distribution Z,K,p, θ |Y. Thus, each
iteration m defines a probability measure G(m)(·) = ∑N

k=1 p
(m)
k δ

Z
(m)
k

(·), which eventually ap-

proximates draws from the posterior distribution of G̃|Y. Consequently, one can approximate
the posterior distributional properties of the choice probabilities P({j}|G̃,x) by constructing (it-
eratively)

P
({j}|G(m),x

) =
N∑

k=1

p
(m)
k

exp{x′
jZ

(m)
k }∑

l∈C exp{x′
lZ

(m)
k }

;

see (11). For instance, an histogram of the P({j}|G(m),x), for m = 1, . . . ,M , approximates the
posterior distribution. An approximation to the posterior mean E[P({j}|G̃,x)|Y] is obtained by
M−1 ∑M

m=1 P({j}|G(m),x) or, alternatively, by

P̂ ({j}|x) := 1

M

M∑
m=1

E
[
P({j}|G̃,x)|θ(m),β

(m)
1 , . . . ,β(m)

n

]
, (17)

where E[P({j}|G̃,x)|θ,β1, . . . ,βn] is given in (13) and β
(m)
i = Z

(m)

K
(m)
i

.

4. Bayesian modeling for panel data

The MMNL framework may also be used to model choice probabilities based on panel data. In
the panel data setting, each individual i is observed to make a sequence of choices at different
time points. The random utility for choosing j for individual i in choice situation t is given
by

Uijt = x′
ij tβ i + εij t , j ∈ C,

for times t = 1, . . . , Ti . The MMNL model can be described as follows [see Train (2003),
Section 6.7]: given β i , the probability that a person makes the sequence of choices Yi =
{Yi1, . . . , YiTi

} is the product of logit formulae

L(Yi ,βi ) =
Ti∏

t=1

exp{x′
iYit t

β i}∑
j∈C exp{x′

ij tβ i}
.

The MMNL model is completed by taking the βi to be from a distribution G so that the uncon-
ditional choice probability is specified by

P(Yi |G,xi ) =
∫

Rd

Ti∏
t=1

exp{x′
iYit t

β}∑
j∈C exp{x′

ij tβ}G(dβ) =
∫

Rd

L(Yi ,β)G(dβ),
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where xi = {xij t , j ∈ C, t = 1, . . . , Ti} denotes the array of covariates associated with the
sequence of choices of individual i. Similarly to the non-panel data setting, we wish to
model G as a random probability measure in a Bayesian framework. While it is possible
to choose G̃ to follow a Dirichlet process, this would result in possible ties among the in-
dividual’s preferences βi . In order to preserve the distinct nature of each individual’s pref-
erence, we assume that, given G̃, the βi are i.i.d. with distribution G̃, where G̃ is a mix-
ture of multivariate normal distributions with random mixing distribution �̃. That is, G̃ has
random density

∫



φ(β|μ,τ )�̃(dμ,dτ ), where 
 = R
d × S with S the space of covari-

ance matrices. Specifically, we take �̃ to be a Dirichlet process with shape aF , F a prob-
ability measure on 
. Hence, the Bayesian MMNL model for individual i is expressible
as

P(Yi |G̃,xi ) =
∫

Rd

L(Yi ,β)G̃(dβ) =
∫

Rd

∫



L(Yi ,β)φ(β|μ,τ )�̃(dμ,dτ )dβ.

While one may use any choice for F , we take F(dμ,dτ ) to be the multivariate normal inverse
Wishart distribution N-IW(m, λ−1τ ,S0, ν0) described in Section 3.

4.1. Blocked Gibbs algorithm for panel data

The explicit posterior analysis for the panel data case is quite similar to the non-panel case. The
main difference is that the (μi ,τ i ), i = 1, . . . , n, rather than β1, . . . ,βn, are drawn from the
Dirichlet process. Here, we will briefly focus on the relevant data structure and then proceed
to a description of how to implement the blocked Gibbs sampler. The joint distribution of the
augmented data can be expressed using a hierarchical model as follows:

Yi |βi

ind∼ L(Yi ,βi ) for i = 1, . . . , n and Yit ∈ C,

β i |μi ,τ i
ind∼ φ(βi |μi ,τ i ) for i = 1, . . . , n,

(18)
μi ,τ i |�̃ iid∼ �̃ for i = 1, . . . , n,

�̃ ∼ P (d�|aF).

Similar to the non-panel case, the blocked Gibbs sampler works by using the P N(d�|aF) in
place of the law of the Dirichlet process P (d�|aF). We now sample (K,p,Z,β1, . . . ,βn) from
the distribution proportional to[

n∏
i=1

L(Yi ,βi )φ(β i |μi ,τ i )

][
n∏

i=1

N∑
k=1

pkδZk
(dμi ,dτ i )

]
π(p)

N∏
k=1

F(dZk).

Here, we use the fact that (μi ,τ i ) = ZKi
for i = 1, . . . , n. To approximate the posterior law of

various functionals, we cycle through the following steps.
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Algorithm 2.

1. Conditional draw for K. Independently sample Ki according to

P{Ki ∈ ·|p,Z,β1, . . . ,βn,Y} =
N∑

k=1

pk,iδk(·) for i = 1, . . . , n,

where (p1,i , . . . , pN,i) ∝ (p1φ(β i |Z1), . . . , pNφ(βi |ZN)).
2. Conditional draw for p. p1 = V ∗

1 , pk = (1 − V ∗
1 ) · · · (1 − V ∗

k−1)V
∗
k , k = 2, . . . ,N − 1 and

V ∗
N = 1, where, if ek records the number of Ki values which equal k,

V ∗
k

ind∼ beta

(
1 + ek, a +

N∑
l=k+1

el

)
, k = 1, . . . ,N − 1.

3. Conditional draw for Z. Let {K∗
1 , . . . ,K∗

n0
} denote the unique set of Ki values. For each

k /∈ {K∗
1 , . . . ,K∗

n0
}, draw Zk = (μk,τ k) from the prior N-IW(m, λ−1τ ,S0, ν0). For j =

1, . . . , n0, draw ZK∗
j

:= (μ∗
j ,τ

∗
j ) as follows: (a) conditional on τ ∗

j ,K,β1, . . . ,βn,Y, draw

μ∗
j from a multivariate normal distribution with parameters

λm + eK∗
j
β̄

∗
j

λ + eK∗
j

and
τ ∗

j

λ + eK∗
j

,

where β̄
∗
j = (eK∗

j
)−1 ∑

{i:Ki=K∗
j } β i ; (b) conditional on K,β1, . . . ,βn,Y, draw τ ∗

j from an

inverse Wishart distribution with parameters

ν0 + eK∗
j

and
ν0S0 + eK∗

j
Sj + R(β̄

∗
j ,m)

ν0 + eK∗
j

,

where

Sj = 1

eK∗
j

∑
{i:Ki=K∗

j }
(β i − β̄

∗
j )(β i − β̄

∗
j )

′ and R(β̄
∗
j ,m) =

λeK∗
j

λ + eK∗
j

(β̄
∗
j − m)(β̄

∗
j − m)′.

4. Conditional draw for β1, . . . ,βn. For each j = 1, . . . , n0, independently draw β i , i ∈
{l: Kl = K∗

j }, from the density proportional to L(Yi ,βi )φ(β i |μ∗
j ,τ

∗
j ) by using, for ex-

ample, a standard Metropolis–Hastings procedure.

When n0 = 1, Steps 3 and 4 equate with a parametric MCMC procedure for panel data models
similar to the algorithm described in Train (2003), Section 12.
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5. Simulation study

In this section, we present some empirical evidence that shows how the MMNL procedures per-
form overall and relative to GML models and finite mixture (FM) of MNL models. We proceed
to the estimation of the choice probabilities based on simulated data. Two different artificial data
sets are generated for the simulation study: data set 1 is produced for studying non-panel data
models, while data set 2 is designed to study models with panel data. In both cases, we consider
a RUM model with three possible responses (J = 3) relative to the utilities U1,U2 and U3,{

U1 = x11β1 + x12β2 + ε1,

U2 = x21β1 + x22β2 + ε2,

U3 = x31β1 + x32β2 + ε3.

As for data set 1, we choose ε1, ε2, ε3
iid∼ standard Gumbel and β = (β1, β2)

′ iid∼ 0.5 × δ(−5,5) +
0.5 × δ(5,−5). For individual i, we randomly generate (componentwise) the covariate vector xi =
(x11, x12, x21, x22, x31, x32), independently from a Uniform(−2,2) distribution. Set Yi = j if
Uij > Uil , l �= j , for j = 1,2,3. Repeat this procedure n times independently to obtain a data
set with (Yi,xi ) for i = 1, . . . , n. As for data set 2, we assume that there are n individuals, each
making Ti = 10 choices for i = 1, . . . , n. We then simulate data using the same model used to
generate data set 1. The only change is that β is drawn from the two-component mixture of

bivariate normal distributions, β
iid∼ 0.5 × N((−5,5)′,2I) + 0.5 × N((5,−5)′,2I), where I is the

identity matrix.
We start by applying our procedures to the estimation of choice probabilities P({j}|x), for

j = 1,2,3, based on the set of covariates x = (1.0,−0.9,1.0,0.2,1.0,0.9). The prior parameters
for the specifications of the Bayesian MMNL models for panel and non-panel data (pertaining to
the explicit models in Sections 3 and 4) are set to be a = 1, ν0 = 2, m = (0,0)′, S0 = I and λ = 1.
Additionally, we use N = 100 for the truncation level in the blocked Gibbs Algorithms 1 and 2
given in Sections 3 and 4, respectively. A Bayesian GML model is also estimated for comparison
with the same specifications for ν0, m, S0 and λ. In all cases, we use the estimator (17) based
on an initial burn-in of 10,000 cycles and an additional 10,000 Gibbs cycles (M = 10,000) for
the estimation. In addition, to measure how good of our estimates are, we define a measure, root
mean square (RMS) value, as

RMS =

√√√√√ 1

J

∑
j∈C

1

M

M∑
m=1

(
P
({j}|G(m),x

) − P0({j}|x)
)2

,

where P0({j}|x) is the choice probability resulting from the data generating process.
Simulation results using data set 1 (n = 500) and data set 2 (n = 100, Ti = 10) are summarized

in Table 1, together with RMS values, for both the GML and the MMNL models. They show that
the performance of the nonparametric MMNL model is better than that of the parametric GML
model in the non-panel case, as indicated by a smaller RMS value and more accurate estimates
of choice probabilities, while the GML and MMNL models display similar performances in the
panel case. As expected, the GML model suffers from misspecification in the non-panel case,
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Table 1. Simulation results for data set 1 (columns 3–4) and for data set 2 (columns 5–6) with x =
(1.0,−0.9,1.0,0.2,1.0,0.9) – the estimates (Est.), the credible intervals (C.I.) and the root mean square
(RMS) values are presented; GML = Gaussian mixed logit, MMNL = mixed multinomial logit

Data set 1 (non-panel case) Data set 2 (panel case)
n = 500 n = 100, Ti = 10

True Est. (95% C.I.) RMS True Est. (95% C.I.) RMS

GML P({1}|x) 0.4980 0.3203 (0.2907, 0.3501) 0.4939 0.4585 (0.4476, 0.4685)
P({2}|x) 0.0167 0.3348 (0.3308, 0.3377) 0.0279 0.0521 (0.0378, 0.0675)
P({3}|x) 0.4853 0.3449 (0.3191, 0.3715) 0.4782 0.4894 (0.4717, 0.5061)

0.2258 0.0266

MMNL P({1}|x) 0.4980 0.4856 (0.4748, 0.4945) 0.4939 0.4586 (0.4495, 0.4670)
P({2}|x) 0.0167 0.0257 (0.0069, 0.0551) 0.0279 0.0494 (0.0329, 0.0679)
P({3}|x) 0.4853 0.4886 (0.4615, 0.5057) 0.4782 0.4920 (0.4705, 0.5107)

0.0137 0.0265

while the two-component mixture of bivariate normals used for generating data set 2 is correctly
accounted for by the GML because of the hyperprior on the parameter (μ,τ ) we are using. We
then get confirmation that the fit of the MMNL model is as good as that of the GML model.
We also performed estimation of the MMNL model for different choices of the scale parameter
λ (not reported here) which show two different behaviors for the non-panel and the panel case.
As for the non-panel case, RMS values and the estimates remain stable, whereas, in the panel
case, the estimates are more accurate when we decrease λ with slightly smaller RMS values.
An interpretation of an increase of accuracy is as follows: a smaller λ corresponds to a more
diffuse H , the prior predictive distribution of G̃. Since H is different from the distribution used
to simulate the β’s in the data generating process, we obtain evidence that a diffuse H helps in
capturing the true form of the mixing distribution G. Also, note that a smaller λ yields a smaller
RMS, the latter being a measure of the combination of the accuracy and the variability of the
posterior variates of P({j}|x). An examination of their autocorrelation functions along the chain
shows that a smaller λ causes a slower mixing of the blocked Gibbs sampler, which increases the
component of variability in the RMS; see Figure 1. The decrease in RMS then shows that such
precision loss is more than balanced by a higher accuracy of the estimate, although one should
also control the convergence properties of the sampler by avoiding taking λ too small.

We investigated the sensitivity of the results to the prior parameter ν0, where a larger ν0 corre-
sponds to a more concentrated inverse Wishart distribution on S0. However, we did not observe
substantial differences in the estimation by varying ν0 and we decided to set ν0 = 2 and S0 = I
as a default non-informative choice for these parameters; see Train (2003), Section 12. The non-
parametric prior on G̃ is also dependent on the total mass a, which is positively related to the
number of components in the mixture distribution of the β’s. Generally, a = 1 is considered a
default choice for a finite mixture model with a fixed, but uncertain, number of components. We
performed estimation for larger a, obtaining almost identical results: a = 1 was, in fact, sufficient
for detecting the two-component mixture we used in generating the data. Although we have not
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Figure 1. MMNL model: Autocorrelation functions for the choice probability P({1}|x) for data set 1 (left)
and data set 2 (right), obtained from the posterior sample of the β’s for the MMNL model with prior
hyperparameter λ = 0.01 (dashed) and λ = 1 (dotted).

done so, the blocked Gibbs procedures described in Sections 3 and 4 can be easily extended to
place an additional prior on a. Furthermore, the truncation level of N = 100 in (15) is sufficiently
large as we observed almost identical estimation results from runs of the blocked Gibbs sampler
with larger values of N .

The second simulation study aims at the verification of the consistency result of Section 2 by
estimating the MMNL model for increasing sample sizes for both data set 1 and data set 2. We
also sample β variates from their posterior distribution, thus obtaining approximated evaluation
of the mixing distribution G. The prior parameters are set as a = 1, ν0 = 2, m = (0,0)′, S0 = I,
N = 100 and λ = 1. Table 2 reports the results by showing, as expected, a noticeable decrease

Table 2. MMNL model: estimates and the root mean square (RMS) for data set 1 and for data set 2 with
x = (1.0,−0.9,1.0,0.2,1.0,0.9) and different sample sizes

Data set 1 (non-panel case) Data set 2 (panel case)

n = 10 n = 50 n = 100
True n = 50 n = 100 n = 500 True Ti = 10 Ti = 10 Ti = 10

P({1}|x) 0.4980 0.4927 0.5145 0.4856 0.4939 0.5956 0.4176 0.4586
P({2}|x) 0.0167 0.1046 0.0489 0.0257 0.0279 0.0527 0.0562 0.0494
P({3}|x) 0.4853 0.4027 0.4366 0.4886 0.4782 0.3517 0.5261 0.4920

RMS 0.0867 0.0440 0.0137 0.0977 0.0556 0.0265
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Figure 2. MMNL model: histogram estimate of the posterior marginal density of β1’s for data set 1 (top)
and for data set 2 (bottom) and different sample sizes. The solid lines represent the true mixing distribution.

of RMS for both non-panel and panel data as the number of observations increases. In addition,
Figure 2 reports the histograms of samples for β1 from its marginal posterior distribution against
the mixing distribution used in the data generating process: it shows how the approximation of
the true mixing distribution G improves as more and more data become available.

Finally, we evaluate the performance of the Bayesian MMNL model via a comparison with
the finite mixture (FM) MNL model estimated via the EM algorithm described in Train (2008),
Section 4. The FM MNL model can be considered nonparametric in the sense that the locations
and weights of the mixing distribution G are both assumed to be parameters. The selection of the
number of points in the mixing is based on the BIC information criterion. We consider 500 Monte
Carlo replicates of each of the following 6 situations: data set 1 with sample sizes n = 50,100
and 500; data set 2 with (n = 10, Ti = 10), (n = 50, Ti = 10) and (n = 100, Ti = 10). For a
given sample, the posterior estimate of P({j}|x) in equation (17) is computed, based on 6000
Gibbs cycles after a burn-in period of 4000 for j = 1,2,3 and for x in a 6-dimensional grid of
the hypercube (−2,2)6 of 56 equally-spaced points. At the same time, we compute the FM MNL
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Table 3. Average L1-error from 500 Monte Carlo replicates – FM MNL = finite mixture of multinomial
logit; MMNL = mixed multinomial logit

Data set 1 (non-panel case) Data set 2 (panel case)

n = 10 n = 50 n = 100
n = 50 n = 100 n = 500 Ti = 10 Ti = 10 Ti = 10

FM MNL 0.0521 0.0295 0.0107 0.0891 0.0505 0.0297
MMNL 0.0577 0.0316 0.011 0.0827 0.0467 0.0268

estimate of P({j}|x) for j = 1,2,3, evaluated on the same grid of x-points. We call q̂(x) and
q0(x) the estimated vector and the true vector of choice probabilities evaluated at x, respectively.
We measure the overall error of estimation with the L1-distance

∫
X |q̂(x) − q0(x)|dx, which

corresponds to the (rescaled) distance d(q̂,q0) in equation (7), with M(dx) being the uniform
distribution on the hypercube (−2,2)6. We compute the L1-error for the Bayesian MMNL esti-
mator and the FM MNL estimator, then average over the 500 Monte Carlo replicates. The results
are reported in Table 3 and show that the MMNL estimators outperform the FM MNL estimators
in the panel case for all sample sizes, while in the non-panel case, the situation is reversed, with a
similar performance for n = 500. Note, however, that data set 1 is generated exactly from a finite
mixture model so that the FM MNL model is expected to perform well. Overall, the decrease
in the average error for larger sample sizes is a further confirmation of the consistency result of
Section 2.

6. Proof of Theorem 1

Throughout this section, we work with the family of multinomial logistic kernels

kj (x,β) = exp(x′
jβ)∑

l∈C exp(x′
lβ)

, j = 1, . . . , J.

With qj (x;G) denoting the j th element of the vector q(x;G), we have that qj (x;G) =∫
Rd kj (x,β)G(dβ). Note that q

Y
(x;G0) is the joint density of (Y,X) with respect to the counting

measure on the integer set C and the measure M(dx) on X .
For the proof of Theorem 1, the following lemma is essential, stating that on the space P, the

weak topology and the topology induced by the L1-distance d defined in (7) are equivalent.

Lemma 1. Let dw be any distance that metrizes the weak topology on P and (Gn)n≥1 be a
sequence in P. Then dw(Gn,G0) → 0 if and only if d(q(·;Gn),q(·;G0)) → 0.

Proof. For the “if” part, it is sufficient that dw(Gn,G0) → 0 implies that
∫

X |qj (x;Gn) −
qj (x;G0)|M(dx) → 0 for an arbitrary j ∈ C. The latter is a consequence of the definition of
weak convergence and an application of Scheffé’s theorem since kj (x,β) is bounded and con-
tinuous in β for each x ∈ X . To show the converse, we prove that G being distant from G0 in the
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weak topology implies that q(·;G) is distant from q(·;G0) in the L1-distance d . Define a weak
neighborhood of G0 as

V =
{
G:

∣∣∣∣∫
Rd

∫
X

kj (x,β)M(dx)G(dβ) −
∫

Rd

∫
X

kj (x,β)M(dx)G0(dβ)

∣∣∣∣ < δ, j ∈ C
}
.

Since
∫

X kj (x,β)M(dx) is a bounded continuous function on R
d for each j , G ∈ V c implies

that dw(G,G0) > δ. Based on the inequalities

d(q(·;G),q(·;G0)) ≥ max
j∈C

∫
X

|qj (x;Gn) − qj (x;G0)|M(dx)

≥ max
j∈C

∣∣∣∣∫X

∫
Rd

kj (x,β)G(dβ)M(dx) −
∫

X

∫
Rd

kj (x,β)G0(dβ)M(dx)

∣∣∣∣
and an application of Fubini’s theorem, it follows that, for any ε < δ and any G ∈ V c,
d(q(·;G),q(·;G0)) > ε. The proof is then complete. �

Remark 1. Lemma 1 has two important consequences: (a) both Q and P are separable spaces
under the metric d ; (b) the statement of Theorem 1 is equivalent to saying that Pn accumulates
all probability mass in a weak neighborhood of G0.

Define �n(G) = ∏n
i=1 q

Yi
(Xi;G)/q

Yi
(Xi;G0) so that the posterior distribution of G̃ can be

written as

Pn(A) =
∫
A

�n(G)P (dG)∫
P
�n(G)P (dG)

. (19)

We now take A = {G: d(q(·;G),q(·;G0)) > ε} and will, as is usual in the Bayesian consistency
literature, separately consider the numerator and the denominator of (19). To this end, define
In = ∫

P
�n(G)P (dG). Relying on the separability of P under the topology induced by d (see

Remark 1), for any η > 0, we can cover A with a countable union of disjoint sets Aj such that

Aj ⊆ A∗
j = {G: d(q(·;G),q(·;Gj)) < η} (20)

and {Gj }j≥1 is a countable set in P such that d(q(·;Gj),q(·;G0)) > ε for any j . Consider the
fact that

Pn(A) =
∑
j≥1

Pn(Aj ) ≤
∑
j≥1

√
Pn(Aj ) =

∑
j≥1

√
I−1
n

∫
Aj

�n(G)P (dG).

Hence, Theorem 1 holds if we prove that, for all large n,

∀c > 0, In > exp(−nc) a.s. (21)

∃b > 0:
∑
j≥1

√∫
Aj

�n(G)P (dG) < exp(−nb) a.s. (22)



698 P. De Blasi, L.F. James and J.W. Lau

As for (21), consider the Kullback–Leibler (KL) support condition of P defined by

P
{
G:

∫
X

K(G0,G|x)M(dx) < ε

}
> 0 ∀ε > 0, (23)

where K(G0,G|x) = ∑
j∈C qj (x;G0) log[qj (x;G0)/qj (x;G)]. If P satisfies condition (23),

then (21) holds. To see this, it is sufficient to note that the KL divergence of q
Y
(X;G) from

q
Y
(X;G0) with respect to the measure M(dx) on X and the counting measure on C is given by∫
K(G,G0|x)M(dx). By the compactness of X , the law of large numbers then leads to

1

n

n∑
i=1

log
q

Yi
(Xi;G0)

q
Yi

(Xi;G)
→

∫
X

K(G0,G|x)M(dx) a.s.

The result in (21) then follows from standard arguments, see, for example, Wasserman (1998).
Lemma 2 below states that (23) is satisfied under the hypotheses of Theorem 1.

Lemma 2. If G0 lies in the weak support of P and condition (i) of Theorem 1 holds, then G0 is
in the KL support of P , according to (23).

Proof. It is sufficient to show that for any j ∈ C and any η < 1, there exists a δ such that
|qj (x;G)/qj (x;G0) − 1| ≤ η whenever G is in Wδ , a δ-weak neighborhood of G0. In fact, this
implies that∫

X
qj (x;G0) log

[
qj (x;G0)

qj (x;G)

]
M(dx) ≤

∫
X

qj (x;G0)

∣∣∣∣qj (x;G0)

qj (x;G)
− 1

∣∣∣∣M(dx)

≤
∫

X
qj (x;G0)

(
η

1 − η

)
M(dx)

≤ η

1 − η
,

which, in turn, leads to the thesis, by the arbitrary nature of j .
Let c = infx∈X qj (x;G0), which is positive by condition (i) of Theorem 1, and assume that

G ∈ Wδ for a δ that will be determined later. Note that, for any ρ > 0, one can set Mρ > 0
such that G0{β: |β| > Mρ − δ} < ρ. Then, using the Prokhorov metric, G ∈ Wδ implies that
G{β: |β| > Mρ} < ρ + δ. Also, note that the family of functions {kj (x,β),x ∈ X }, as β varies
in the compact set {|β| ≤ Mρ}, is uniformly equicontinuous. By an application of the Arzelà–
Ascoli theorem, we know that, given a γ > 0, there exist finitely many points x1, . . . ,xm such
that, for any x ∈ X , there is an index i such that

sup
|β|≤Mρ

|kj (x,β) − kj (xi ,β)| < γ. (24)
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For an arbitrary x ∈ X , choose the appropriate xi such that (24) holds, so that∣∣∣∣ qj (x;G)

qj (x;G0)
− 1

∣∣∣∣ ≤ 1

c

(∣∣∣∣∫ kj (xi ,β)G(dβ) −
∫

kj (xi ,β)G0(dβ)

∣∣∣∣
+

∫
|kj (x,β) − kj (xi ,β)|G(dβ) +

∫
|kj (x,β) − kj (xi ,β)|G0(dβ)

)
:= I1 + I2 + I3

c
.

We have that G ∈ Wδ implies I1 ≤ δ. As for I2, we have

I2 =
∫

|β|≤Mρ

|kj (x,β) − kj (xi ,β)|G(dβ) +
∫

|β|>Mρ

|kj (x,β) − kj (xi ,β)|G(dβ)

≤ γ + 2G{β: |β| > Mρ} ≤ γ + 2(ρ + δ).

Similar arguments lead to I3 ≤ γ + 2ρ. Finally, we get∣∣∣∣ qj (x;G)

qj (x;G0)
− 1

∣∣∣∣ ≤ 3δ + 2γ + 4ρ

c
,

so that, for given η < 1, it is always possible to choose δ, ρ (by tightness of G0) and γ (by
the Arzelà–Ascoli theorem) small enough such that the right-hand side in the last inequality is
smaller than η. The proof is then complete. �

We now aim to show that (22) holds under the hypotheses of Theorem 1, by extending the
method set forth by Walker (2004) for strong consistency. In order to simplify the notation, let
�nj = ∫

Aj
�n(G)P (dG), where (Aj )j≥1 is the covering of A in (20). The following identity is

the key:

�n+1j /�nj = q
nAj

Yn+1
(Xn+1)/qYn+1

(Xn+1;G0), (25)

where q
nAj

l (Xn+1) = ∫
P
ql(Xn+1;G)PnAj

(dG), l ∈ C and PnAj
is the posterior distribution

restricted, and normalized, to the set Aj . Note that (25) includes the case of n = 0 and
�0j = P (Aj ). By using conditional expectation, we have that

E[�1/2
n+1j |(Y1,X1), . . . , (Yn,Xn),Xn+1] = �

1/2
nj

∑
l∈C

√
q

nAj

l (Xn+1)ql(Xn+1;G0)

= �
1/2
nj

(
1 − h[qnAj (Xn+1),q(Xn+1;G0)]

)
,

where qnAj (Xn+1) = [qnAj

1 (Xn+1), . . . , q
nAj

J (Xn+1)] and, for q1,q2 ∈ �,

h(q1,q2) = 1 −
∑
j∈C

√
q1j q2j .
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Note that h(q1,q2) is a variation of the Hellinger distance
√∑

j∈C(q
1/2
1j − q

1/2
2j )2 on � and that

h(q1,q2) ≤ 1. By taking the conditional expectation with respect to (Y1,X1), . . . , (Yn,Xn) only,
we get the following identity:

E{�1/2
n+1j |(Y1,X1), . . . , (Yn,Xn)} = �

1/2
nj

(
1 −

∫
X

h[qnAj (x),q(x;G0)]M(dx)

)
. (26)

Since the Hellinger distance and the Euclidean distance are equivalent metrics in �, it can be
proven that, for (qn)n≥1 ∈ Q and q0 ∈ Q,∫

X
h[qn(x),q0(x)]M(dx) → 0 if and only if d(qn,q0) → 0. (27)

The equivalence in (27) can be used to show that
∫

X h[qnAj (x),q(x;G0)]M(dx) is bounded
away from zero. In fact, take Gj defined in (20) and note that, by the triangle inequality,∫

X
h[qnAj (x),q(x;G0)]M(dx) ≥

∫
X

h[q(x;Gj),q(x;G0)]M(dx)

−
∫

X
h[qnAj (x),q(x;Gj)]M(dx).

Since d(q(·;Gj),q(·;G0)) > ε, (27) ensures the existence of a positive constant, say ε2, such
that

∫
X h[q(x;Gj),q(x;G0)]M(dx) > ε2. Now, choose η in (20) such that, for each G ∈ Aj ,∫

X h[q(x;G),q(x;Gj)]M(dx) < ε2, where we have again used (27). Since qnAj (x) does not cor-
respond exactly to a particular G ∈ Aj , we use the convexity of the distance h[q(x;G),q(x;Gj)]
in its first argument to show that

∫
X h[qnAj (x),q(x;Gj)]M(dx) < ε2. Note that, in fact, by

Jensen’s inequality,

∫
X

h[qnAj (x),q(x;Gj)]M(dx) =
∫

X

(
1 −

∑
l∈C

√∫
P

ql(Xn+1;G)PnAj
(dG)ql(x;Gj)

)
M(dx)

≤
∫

P

∫
X

h[q(x;G),q(x;Gj)]M(dx)PnAj
(dG) < ε2.

Hence, there exists a ε3 > 0 such that
∫

X h[qnAj (x),q(x;G0)]M(dx) > ε3.
From (26), it now follows that

E(�
1/2
n+1j ) < (1 − ε3)

n
√

P (Aj )

and an application of Markov’s inequality leads to

P

{∑
j≥1

�
1/2
nj > exp(−nb)

}
< exp(nb)(1 − ε3)

n
∑
j≥1

√
P (Aj ).
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Therefore, (21) holds for any b < − log(1−ε3) from an application of the Borel–Cantelli lemma,
provided that the following summability condition is satisfied:∑

j≥1

√
P (Aj ) < +∞. (28)

Lemma 3 below shows that P satisfies condition (28) under the stated hypotheses and, in turn,
completes the proof of Theorem 1.

Lemma 3. Let H ∈ P be the prior predictive distribution of P and assume that condition (ii) of
Theorem 1 holds. Then (28) is verified.

Proof. The proof follows along the lines of arguments used by Lijoi, Prünster and Walker (2005).
Take δ to be any positive number in (0,1) and (an)n≥1 any increasing sequence of positive
numbers such that an → +∞. Also, let a0 = 0. Define Cn = {β: |β| ≤ an} and consider the
family of subsets of P defined by

Ban,δ = {G: G(Cn) ≥ 1 − δ,G(Cn−1) < 1 − δ} (29)

for each n ≥ 1. These sets are pairwise disjoint and
⋃

n Ban,δ = P. For the moment, let us assume
that the metric entropy of Ban,δ with respect to the distance d is uniformly bounded in n, that is,
the number of η-balls in the distance d that covers Ban,δ is finite for any n. Summability in (28)
is then implied by ∑

n≥1

√
P (Ban,δ) < +∞. (30)

In order to prove (30), note that Ban,δ ⊂ {G: G(Cc
n−1) > δ′} for some δ′ > δ. An appli-

cation of Markov’s inequality leads to P (Ban,δ) ≤ (1/δ′)H(Cc
n−1), hence (30) is implied by∑

n≥1

√
H(Cc

n−1) < +∞. Next, we have that

∫
Rd

|β|H(dβ) =
∑
n≥1

∫
Cc

n−1/Cc
n

|β|H(dβ) ≥
∑
n≥1

an−1[H(Cc
n−1) − H(Cc

n)],

by a second application of Markov’s inequality, so that condition (ii) of Theorem 1 ensures that∑
n≥1 an−1[H(Cc

n−1) − H(Cc
n)] < +∞. If we now take an ∼ n2, it is easy to see that H(Cc

n) =
o(n−(2+r)) for some r > 0. For example,∑

n≥1

(n − 1)2[H(Cc
n−1) − H(Cc

n)] =
∑
n≥1

(2n − 1)H(Cc
n).

This, in turn, ensures the convergence of
∑

n≥1 H(Cc
n−1)

α for any α such that (2+r)−1 < α < 1,
which includes the case α = 1/2. Condition (30) is then verified.
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In order to complete the proof, it remains to show that the metric entropy of Ban,δ with respect
to the distance d is uniformly bounded in n. It is actually sufficient to reason in terms of the
distance over P induced by

dj (q1,q2) =
∫

X
|q1j (x) − q2j (x)|M(dx)

for an arbitrary j ∈ C since maxj dj (q1,q2) ≤ d(q1,q2) ≤ J maxj dj (q1,q2). Let G be a set
in Q and, for δ > 0, denote by J (δ,G) the metric entropy of G with respect to dj , that is, the
logarithm of the minimum of all k such that there exists q1, . . . ,qk ∈ Q with the property that
∀q ∈ Q, there exists an i such that dj (q,qi ) < δ. The result is then stated as follows: for Gan,δ =
{q(x;G): G ∈ Ban,δ}, there exists an Mδ < +∞ depending only on δ such that, for any n,

J (δ,Gan,δ) < Mδ. (31)

The proof of (31) consists of a sequence of three steps.
Step (1). Define Ca = {β: |β| ≤ a} and Fa = {q(x;G): G(Ca) = 1}. Then

J (2δ,Fa) ≤
(

2aK

δ
+ 1

)d(
1 + log

1 + δ

δ

)
, (32)

where K is a constant that depends on the total volume of the space X . It is easy to show
that, for any j ∈ C, the kernel kj (x,β) is a Lipschitz function in β with Lipschitz constant
Kx = maxi≤J {|xj − xi |}. Hence,∫

X
|kj (x,β1) − kj (x,β2)|M(dx) ≤ K|β1 − β2|,

where K = supx∈X Kx < +∞. Given δ, let N be the smallest integer greater than 4aK/δ and
cover Ca with a set of balls Ei of radius 2a/N so that, for any β1,β2 ∈ Ei , |β1 − β2| < 4a/N .
This leads to

∫
X |kj (x,β1)− kj (x,β2)|M(dx) ≤ δ. The number of balls necessary to cover Ca is

then smaller than Nd . Using arguments similar to those used in Ghosal, Ghosh and Ramamoorthi
(1999), Lemma 1, it can be shown that J (2δ,Fa) ≤ Nd(1 + log[(1 + δ)/δ]), from which (32)
follows.

Step (2). Define Fa,δ = {q(x;G): G(Ca) ≥ 1 − δ}. Then

J (δ,Fa,δ) ≤ Kδa
d (33)

for a constant Kδ depending on δ. To see this, take q(x;G) ∈ Fa,δ and denote by G∗ the prob-
ability measure in P defined by G∗(A) = G(A ∩ Ca)/G(Ca) so that q(x;G∗) belongs to Fa .
It is easy to verify that dj (q(·;G∗),q(·;G)) < 2δ. It follows that J (3δ,Fa,δ) ≤ J (δ,Fa), from
which (33) follows.

Step (3). We follow here a technique used by Lijoi, Prünster and Walker (2005), Section 3.2.
For the sequence (an)n≥1 introduced before, define

F U
an,δ = {q(x;G): G(Cn) ≥ 1 − δ} and F L

an,δ = {q(x;G): G(Cn) < 1 − δ}.
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By construction, Gan,δ ⊂ F U
an,δ and Gan,δ ⊂ F L

an−1,δ
. Moreover, F L

an−1,δ
↓ ∅ as n increases to

+∞, thus, for any η > 0, there exists an integer n0 such that, for any n ≥ n0, J (η,F L
an,δ) ≤

J (η,F U
an0 ,δ). By (33), it follows that

J (η,Gan,δ) ≤ Kδa
d
n0

(34)

for any n ≥ n0, but, since Gan,δ ⊂ F U
an,δ and F U

an,δ ↑ Q, (34) is also true for any n < n0. Result

(31) is then verified by setting Mδ = Kδa
d
n0

. �
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