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A common belief in high-dimensional data analysis is that data are concentrated on a low-dimensional
manifold. This motivates simultaneous dimension reduction and regression on manifolds. We provide an
algorithm for learning gradients on manifolds for dimension reduction for high-dimensional data with few
observations. We obtain generalization error bounds for the gradient estimates and show that the conver-
gence rate depends on the intrinsic dimension of the manifold and not on the dimension of the ambient
space. We illustrate the efficacy of this approach empirically on simulated and real data and compare the
method to other dimension reduction procedures.
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1. Introduction

The inference problems associated with high-dimensional data offer fundamental challenges —
the scientifically central questions of model and variable selection — that lie at the heart of mod-
ern statistics and machine learning. A promising paradigm in addressing these challenges is the
observation or belief that high-dimensional data arising from physical or biological systems can
be effectively modeled or analyzed as being concentrated on a low-dimensional manifold. In this
paper we consider the problem of dimension reduction — finding linear combinations of salient
variables and estimating how they covary — based upon the manifold paradigm. We are partic-
ularly interested in the high-dimensional data setting, where the number of variables is much
greater than the number of observations, sometimes called the “large p, small n” paradigm [22].

The idea of reducing high-dimensional data to a few relevant dimensions has been exten-
sively explored in statistics, computer science and various natural and social sciences. In ma-
chine learning the ideas in isometric feature mapping (ISOMAP) [20], local linear embedding
(LLE) [18], Hessian eigenmaps [8] and Laplacian eigenmaps [2] are all formulated from the
manifold paradigm. However, these approaches do not use response variates in the models or
algorithms and hence may be suboptimal with respect to predicting response. In statistics the
ideas developed in sliced inverse regression (SIR) [13], (conditional) minimum average variance
estimation (MAVE) [23] and sliced average variance estimation (SAVE) [6] consider dimension
reduction for regression problems. The response variates are taken into account and the focus

1350-7265 © 2010 ISI/BS


http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/09-BEJ206
mailto:sayan@stat.duke.edu
mailto:wuqiang@math.msu.edu
mailto:mazhou@cityu.edu.hk

182 S. Mukherjee, Q. Wu and D.-X. Zhou

is on predictive linear subspaces called either effective dimension reduction (e.d.r.) space [23]
or central mean subspace [5]. These approaches do not extend to the manifold paradigm. In
[15,16] the method of learning gradients was introduced for variable selection and regression in
high-dimensional analysis for regression and binary regression setting. This method, in machine
learning terminology, is in spirit a supervised version of Hessian eigenmaps and, in statistics
terminology, can be regarded as a nonparametric extension of MAVE. This approach can be
extended to the general manifold setting. The main purpose of this paper is to explore this idea.

The inference problem in regression is estimating the functional dependence between a re-
sponse variable Y and a vector of explanatory variables X

Y=Ff(X)+e

from a set of observations D = {(x;, y;)}/_; where X € X C R” has dimension p and Y € R is
a real valued response for regression and Y € {1} for binary regression. Typically the data are
drawn i.i.d. from a joint distribution, (x;, y;) ~ p(X, Y). We may in addition want to know which
variables of X are most relevant in making this prediction. This can be achieved via a variety of
methods [4,12,21]. Unfortunately, these methods and most others do not provide estimates of
covariance for salient explanatory variables and cannot provide the e.d.r. space or central mean
subspace. Approaches such as SIR [13] and MAVE [23] address this shortcoming.

SIR and its generalized versions have been successful in a variety of dimension reduction
applications and provide almost perfect estimates of the e.d.r. spaces once the design conditions
are fulfilled. However, the design conditions are limited and the method fails when the model
assumptions are violated. For example, quadratic functions or between group variances near zero
violate the model assumptions. In addition, since SIR finds only one direction, its applicability
to binary regression is limited.

MAVE and the outer product of gradient (OPG) method [23] are based on estimates of the gra-
dient outer product matrix either implicitly or explicitly. They estimate the central mean subspace
under weak design conditions and can capture all predictive directions. However, they cannot be
directly used for “large p, small n” setting due to overfitting. The learning gradient method in
[15,16] estimates the gradient of the target function by nonparametric kernel models. It can also
be used to compute the gradient outer product matrix and realize the estimation of the central
mean subspace by the same manner as OPG (see Section 4 below). Moreover, this method can
be directly used for the “large p, small n” setting because the regularization technique prevents
overfitting and guarantees stability.

All the above methods have been shown to be successful by simulations and applications.
However we would like a theoretical and conceptual explanation of why this approach to di-
mension reduction is successful with very few samples and many dimensions. Conceptually this
reduces to the following analysis: For a target function on a nonlinear manifold, the gradient
outer product matrix defined in the Euclidean can still be used to estimate predictive directions
even when the gradient is not well defined on the ambient space. Theoretically, we notice that the
consistency results for MAVE and OPG [23] and learning gradients [15,16] provide asymptotic
rates of order O(n~!/P). Clearly this is not satisfactory and does not support practical applicabil-
ity when p is large, especially for the setting where p >> n. Intuitively one should expect that the
rate would be a function not of the dimension of the ambient space but of the intrinsic dimension
of the manifold.
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In this paper we extend the learning gradient algorithms from the Euclidean setting to the man-
ifold setting to address these questions. Our two main contributions address the conceptual and
theoretical issues above. From a conceptual perspective we will design algorithms for learning
the gradient along the manifold. The algorithm in the Euclidean setting can be applied without
any modifications to the manifold setting. However, the interpretation of the estimator is very
different and the solutions contain information on the gradient of the target function along the
manifold. This interpretation provides a conceptual basis for using the usual p-dimensional gra-
dient outer product matrix for dimension reduction. From a theoretical perspective, we show that
the asymptotic rate of convergence of the gradient estimates is of order O(n~!/¢) with d being
the intrinsic dimension of the manifold. This suggests why in practice these methods perform
quite well, since d may be much smaller than n though p > n.

The paper will be arranged as follows. In Section 2 we develop the learning gradient algo-
rithms on manifolds. The asymptotic convergence is discussed in Section 3, where we show that
the rate of convergence of the gradient estimate is of order O(n~'/¢). In Section 4 we explain
why dimension reduction via gradient estimates has a solid conceptual basis in the manifold set-
ting and discuss relations and comparisons to existing work. Simulated and real data are used
in Section 5 to verify our claims empirically and closing remarks and comments are given in
Section 6.

2. Learning gradients
In this section we first review the gradient estimation method on Euclidean spaces proposed

in [15,16]. Then after a short discussion of Taylor series expansion on manifolds we formulate
learning gradients under the manifold setting.

2.1. Learning gradients in Euclidean space

In the standard regression problem the target is the regression function defined by the condi-
tional mean of Y| X, thatis, f, = Ey[Y|X]. The objective of learning gradients is to estimate the

gradient
ofr A\
V= ey ,
Jr <ax1 axP
where x = (x', ..., xP) € RP. The learning gradient algorithm developed in [16] is motivated by

fitting first-order differences.
Recall f; is the minimizer of the variance or mean square error functional,

fr(x) =E(Y|X = x) = argmin Var( f) where Var(f) = IE(Y — f(X))z.

When only a set of samples D are available the functional is usually approximated empirically

n

1
Var(f) & -3 (i = f ).

i=1
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Using the first-order Taylor series expansion approximating a smooth function f by
fO)fW)+Vfx) - (x —u) forx ~ u,

the variance of f may be approximated as

1 n
Var(f) & — 3 wijlyi = £ 0) = V) (s = x) P 2.1)

i,j=1

where w;; is a weight function that ensures the locality of x; ~ x; and thus w;; — 0 as [|x; —
xj|l — oo. The weight function w;; is typically characterized by a bandwidth parameter, for
example, a Gaussian with the bandwidth as the standard deviation w;; = e~ lxi—x;17/@2s%)
Learning gradient algorithms were specifically designed for very high-dimensional data but
with limited number of observations. For regression the algorithm was introduced in [16] by
nonparametric reproducing kernel Hilbert space (RKHS) models. The estimate of the gradient is

given by minimizing (2.1) with regularization in an RKHS

T i=arg min [Zwi,( V=i = fx)- (x,—xl))2+x||f||%<}, (22)
ek

i,j=1

where Hx = Hg (X) is a reproducing kernel Hilbert space (RKHS) on X associated with a
Mercer kernel K (for the definition and properties of RKHS, see [1]) and HI;( is the space of p
functions f = (fi, ..., f») where f; € Hi, | fI% =7, Il fill% and & > 0.

With the weight function chosen to be the Gaussian with standard variance 52, a finite sample
probabilistic bound for the distance between fD and V f, is provided in [16], Wh1ch implies the
convergence of the gradient estimate to the true gradient, fD — V f,, at a slow rate, O(n~/P).

For binary classification problems where Y = {41}, the learning gradient algorithm was intro-
duced in [15]. The idea is to use the fact that the function

Prob(y =1|x) ]:lo [ p(y=1[x) ]

Jelx) = 1(""’[Prob@ E—TF Po=—1I)

is given by
Je=argminE¢ (Y f (X))

with ¢ (¢) = log(1 + e™"). Notice that the Bayes optimal classification function is given by
sgn( f¢), the sign of f.. In the binary classification setting we learn the gradient of f.. Applying
the first-order Taylor expansion of f we have for the given data D

n

1
E¢(YfOO)~ — 3 wi (i (£ () + V() - (xi = x))).

ij=1
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Modeling f and V f by a real valued function g and a vector valued function f , respectively,
leads to the empirical risk

o 1 <& -
Ep.0(& ) =—5 3 wid(vi(eCp) + F (i) - (xi = x7))).

i,j=1
Minimizing this empirical risk with a regularization term gives the following algorithm

(860 fp.p) =arg  min_ (Ep.p(g. ) +rilglk + 2l FlI%), (2.3)
(g. HeHZH!

where 11, A2 are the regularization parameters. A finite sample probabilistic bound for the dis-
tance from gy p to f. and fy p to V f; is provided in [15], which leads to a very slow rate of
order, O(n—1/7).

2.2. Gradients and Taylor expansions on Riemannian manifolds

In order to extend learning gradients to the manifold setting, it is necessary to formulate gradients
and first-order Taylor expansions on manifolds. To do this we need to introduce some concepts
and notation from Riemannian geometry. We introduce only what is needed so that we can stress
concepts over technical details. For a complete and rigorous formulation, see [7].

The two key concepts are vector fields and the exponential map. Let M be a d-dimensional
smooth (i.e., C°°) Riemannian manifold and da(a, b) be the Riemannian distance on M be-
tween two points a, b € M. The tangent space at a point g € M is a d-dimensional linear space
and will be denoted by T, M. There exists an inner product on this tangent space (-, -), that
defines the Riemannian structure on M.

A vector field on a manifold is an assignment to every point ¢ on the manifold tangent vector
in T, M. The gradient of a smooth function f on M, V f, is a vector field satisfying

(VM f(g),v)g =v(f) forallv e T,M,q e M.

It can be represented using an orthonormal basis {e?, A efl} of T, M as the vector

Vmflg) =l f.....elf).
If the manifold is the Euclidean space (M = R¢), then one may take e? = aiqi and the above
definition reduces to the standard definition of gradients.

The exponential map at a point g, denoted by exp,, is a map from the tangent space 7, M to
the manifold M. It is defined by the the locally length-minimizing curve, the so-called geodesic.
The image of v € T, M is the end of a geodesic starting at ¢ with velocity v and time 1. In general
the exponential map is only locally defined in that it maps a small neighborhood of the origin in

T, M to a neighborhood of ¢ on the manifold. Its inverse, equ_l, maps the point exp, (v) to the
vector (v!, ..., v%) € R? where v = Z?:l vie;’. This provides a local chart for the neighborhood

of g and {ef’} are called the g-normal coordinates of this neighborhood.
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Under the g-normal coordinates the gradient vector field V f takes the form Va, f(q) =
V(f oexp,)(0). Note that f o exp, is a smooth function on T, M = R?. The following first-
order Taylor series expansion holds:

(f oexpy)(v) = (f oexp,)(0) + V(f oexp,)(0) - v for v =~ 0.
This gives us the following Taylor expansion of f around a point g € M:

flexp, ()~ f(g) +(Vmf(q),v)g  forveTyM,v=0. (2.4)

The above expansion does not depend on the choice of the coordinate system at ¢g.

2.3. Learning gradients on Riemannian manifolds

In the manifold setting, the explanatory variables are assumed to concentrate on an unknown
d-dimensional Riemannian manifold M and there exists an isometric embedding ¢ : M — R”
with every point on M described by a vector in R”. When a set of points are drawn from the
marginal distribution p,, concentrated on M what we know are not the points {g;}7_; € M
themselves but their images under ¢ : x; = ¢(q;).

To formulate the learning gradient algorithm for the regression setting, we apply the first-order
Taylor expansion (2.4). The empirical approximation of the variance by the data {(g;, y;)} is

1 n
Var(f)~ — 3 wijlyj = yi = (Vaaf @), vi)g 7 (2.5)
i,j=I

where v;; € T;, M is the tangent vector such that g; = exp,, (v;;). One may immediately notice
the difficulty that v;; is not computable without knowing the manifold. A natural idea to over-
come this difficulty is to represent all quantities in R”. This is also compatible with the fact that
we are given images of the points x; = ¢(g;) € RP rather than the d-dimensional representation
on the manifold.

Suppose x = ¢(g) and & = @(exp, (v)) for ¢ € M and v € T; M. Since ¢ is an isometric
embedding, i.e., dg, : T, M — T R? =RP” is an isometry for every g € M, the following holds:

(VS (@), v)g =deg(Varf(q)) - deg (v),
where
dog (v) ~ @(exp,(v) —¢(g) =§ —x  forv~0.
Applying these relations to the observations D = {(x;, y;)}i_, yields
(Vaf(@i), vijhg; = deg, (Vaa f(qi) - (xj — xi). (2.6)

Notice further that dp o Vo4 f is a p-dimensional vector valued function on ¢ (M) C R? defined
by (dg o VA ) (@(g)) = dey (Varf(q)) for g € M. Applying (2.6) to (2.5) and denoting dg o
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Vo f by f yields
- 1 & -
Var(f) ~Ep(f) = — 7 wijlyj = yi = fx) - (e = x) P

i,j=1

Minimizing this quantity leads to the following learning gradient algorithm on manifolds:

Definition 2.1. Let M be a Riemannian manifold and ¢ : M — RP be an isometric embedding
that is unknown. Denote X = (M) and Hx = Hg (X). For the sample D = {(q;, yi)}}_, €
(M xR, x; = ¢(q;i) € R?, the learning gradient algorithm on M is

-

f 1= arg min (€p(f)+ 41 /1%

feHy

where the weights w;;j, the RKHS, ’Hi, the RKHS norm ||f||1< and the parameter ). > 0 are the
same as in (2.2).

Similarly we can deduce the learning gradient algorithm for binary classification on manifolds.

Definition 2.2. Let M be a Riemannian manifold and ¢ : M — R? be isometry embedding.
Denote X = ¢(M) and Hg = Hk (X). For the sample D = {(q;, y)}}_; € M x V)", x; =
¢(qi) € RP, the weighted empirical risk for g: X — R and f: X — RP? is defined as

Eo.n(g. /)= wijp(vi(eGj)+ fx) - (xi —x))))

i,j=1
and the algorithm for learning gradient on the manifold is

(89.0: fo.0) =arg  min (Ep.p(g. /) +hiliglk + 22l Flik), 27
(g.freHg"

where L1, Ay are the regularization parameters.

Surprisingly these algorithms have forms that are identical to the learning gradient algorithms
in Euclidean space. However, the geometric interpretation is different. Note that f in Defini-
tion 2.1 (or 2.2) models dp(V o f;) (or dp(V a4 fe)), not the gradient itself.

3. Convergence rates as a function of the intrinsic dimension

Given the interpretations of the gradient estimates developed in the previous section, it is natural
to seek conditions and rates for the convergence of fD to dp(Vaq fr). Since I = (dg)*(dy),
where [ is the identity operator, the convergence to the gradient on the manifold is given by
(d)*(fp) = Varfr- The aim of this section is to show that this convergence is true under mild
conditions and provide rates.
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Throughout this paper we use the following exponential weight function with scale parame-
2

ter s-,
w;j = eI —xjl7/@s%)
The following K -functional will enter our estimates

K@)y = inf (Ide)*f =Vl +1lF1%).
feHy M

The following theorem provides upper bounds for the gradient estimate as a function of the
K -functional.

Theorem 3.1. Let M be a compact Riemannian manifold with metric dpq and let du be the uni-
form measure on M. Assume the marginal distribution p ,, satisfies the regularity conditions:

(i) The density v(x) = ddeu(x) exists and for some c1 >0and 0 <6 <1
v(x) —v@)| < adf(x,u)  Yx,ueM. (3.1)
(i1) The measure along the boundary is small. There exists ¢y > 0 such that
P (Ix € Midpg(x, 0M) <t}) < cat vt > 0. (3.2)

Suppose f, € C2(M). There exists 0 < g9 < 1, which depends on M only, and a constant C >0
such that, if s < g and A = s?T2120  then with probability 1 — § (8 € (0, 1)) the following bound
holds:

Ide)* fo =V frl?, <C 10%2 Lo (e D) ke
¢ Jp MJr L/Z)M =S| o8 ) ni? g nA2s20 = v g '
The rate of convergence of the gradient estimate is an immediate corollary.

Corollary 3.1. Under the assumptions of Theorem 3.1, if X (t) = O(t?) for some % <p <1,
then there exist sequences A = A(n) and s = s(n) such that

1) fo = Vaufilll, =0 asn—oo.
M

If s = n~ 12444450 gnd ) = 412429 the rate of convergence is

1(de)* fp — Vm fr||§% = O(n0@B-D/Qd+4+50))
M

This result states that the convergence rate of learning gradient algorithms depends on the in-
trinsic dimension d of the manifold, not the dimension p of the ambient space. Under the belief
that high-dimensional data have low intrinsic dimension d < p, this explains why the learn-
ing gradient algorithms are still efficient for high-dimensional data analysis even when there are
limited observations.
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If M is a compact domain in R? where d = p, dp = (dg)* = I and V , is the usual gradient
operator, our result reduces to the Euclidean setting that is proven in [16].

The upper bound in Theorem 3.1 is not as tight as possible and may not lead to convergence
even when the gradient estimate converges. This is illustrated by the following case. We expect
that if Hg is dense in C (M) then K (t) — 0 as t — 0 and the gradient estimate should converge
in probability to the true gradient. However, Corollary 3.1 states that the convergence holds only
when K (r) decays faster than O(z!/?). This is a result of the proof technique we use. More
sophisticated but less general proof techniques can give us better estimates and close the above
gap; see Remark B.1 in Appendix B for details.

In case of a uniform distribution measure on the manifold, dp,, = du, we have the following
improved upper bound that closes the gap.

Theorem 3.2. Let M be compact, dp,, =du and f, € C 2(M). There exists 0 < gy < 1, which
depends on M only, and a constant C,, > 0 such that, if s < g9 and A = 5913 then with proba-
bility 1 — 6 (6 € (0, 1)) the following bound holds:

2 2\?/ 1 1
* 2
|mw>fD—VNunuiscMQ%5) &az+s+<5§;+1)xaw)
An immediate corollary of this theorem is that the rate of convergence of the gradient estimate
does not suffer from the same gap as Corollary 3.1.

Corollary 3.2. Under the assumptions of Theorem 3.2, if X(t) — 0 ast — 0, then

1@9) o = Vausilly; =0 asn— oo
M

if A =593 and s = s(n) is chosen such that

K (252
s—>0 and ﬁeO as n — 0.

If in addition X (t) = O(tP) for some 0 < B < 1, then with the choice s = n=Y/ @4+ gnd ) =
s913 we obtain

Ide)* fp — VMf’”iﬁ = O(n P

Note that dp,, = du implies v =1 and hence (3.1) holds with 6 = 1. In this case the rate in
Corollary 3.1 is O(n~?#=D/Qd+9) Since 2!% > %, the rate in Corollary 3.2 is better.

The proofs of the above theorems will be given in Appendix B.

For learning gradients on manifolds for binary classification problems the convergence
(dp)* J?¢ D —> Va fe with rate O(n~1/4) can be obtained similarly. We omit the details.

We close this section with some remarks. Note the operator (dg)* is the projection onto the
tangent space. The convergence results assert that the projection of fp asymptotically approx-

imates the gradient on the manifold. It may be more natural to consider convergence of fp to
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the gradient on the manifold (after mapping into the ambient space), that is, fD — do(V g fr)-
Unfortunately this is not generally true.

Convergence of learning algorithms that are adaptive to the manifold setting has been consid-
ered in the literature [3,24]. In particular, in [3] local polynomial regression is shown to attain
minimax optimal rates in estimating the regression function. Whether it is plausible to extend this
to the gradient learning setting is not known. There are a few essential differences between our
result and that of Bickel and Li [3]. Unlike our result, their result is pointwise in that convergence
and error bounds depend on the point x € X and it is not obvious how to obtain L, convergence
from pointwise convergence. In addition, Bickel and Li [3] assume a strong condition on the
partial derivatives of the regression function in the ambient space. This may be problematic since
these partial derivatives may not be well defined in the ambient space. Since we have different
assumptions and a different sense of convergence, the minimax optimality of our results cannot
be obtained directly using their arguments. Moreover, in our setting the optimal learning rates
will also depend on the choice of the kernel. This is a very interesting open problem.

4. Dimension reduction via gradient estimates

The gradient estimates can be used to compute the gradient outer product matrix and provide an
estimate of the linear predictive directions or the e.d.r. space.

4.1. Estimate gradient outer product matrix and e.d.r. space

Let us start from a semi-parametric model:
y=f@+e=FBx) +e,

where B = (by,...,b;) € RP xk contains the k e.d.r. directions. When the input space is a domain
of R? and f; is smooth, the gradient outer product matrix G with

G = <3fr ofy >

axi’ axi

is well defined. It is easy to see that B is given by eigenvectors of G with non-zero eigenvalues.
Using the gradient estimates fp that approximate V f,, we can compute an empirical version
of the gradient outer product matrix G by

N R .
G=—3 fotofoeo"

(=1

Then the estimates of e.d.r. space can be given by a spectral decomposition of G.

When the input space is a manifold, since the manifold is not known, we cannot really compute
V ai fr through f p- We can only work directly on f p- So we propose to implement the dimension
reduction by the same procedure as in the Euclidean setting, that is, we first compute G using



Learning gradients on manifolds 191

fD and then estimate the e.d.r. space by the eigenvectors of G with top eigenvalues. The only
problem is the feasibility of this procedure. The following theorem suggests that the irrelevant
dimensions can be filtered out by a spectral decomposition of G.

Theorem 4.1. Let Ay > Ay > --- > A, be the eigenvalues and uy, £ =1, ..., p be the corre-
sponding eigenvectors ofé. Then for any £ > k we have BTuy — Oy and u{éuz — 0 in proba-
bility.

4.2. An alternative for classification

The idea of dimension reduction by spectral decomposition of the gradient outer production
matrix is to estimate the e.d.r. space by finding the directions associated with the directional
partial derivative of the largest L2 norm. Intuitively we think the L? norm may have drawbacks
for binary classification problems because a large value of the gradient often is located around
the decision boundary, which usually has low density. Thus, an important predictive dimension
may correspond to a directional partial derivative with a small L2 norm and hence be filtered out.
This motivates us to use L* norm or H g norm instead and provide an alternative method.
By using the Hx norm we consider the gradient covariance matrix (EGCM) 3 defined by

IFRES (fD,i, fD,j)K for1<i,j<p. 4.1

The eigenvectors for the top eigenvalues will be called empirical sensitive linear features (ESF).
Estimating the e.d.r. by ESFs is an alternative method for the dimension reduction by gradient
estimates and will be referred to as gradient-based linear feature construction (GLFC).

Though using the L°° norm or Hx norm for classification seems to be more intuitive than
using the L? norm, empirically we obtain almost identical results using either method.

4.3. Computational considerations

At a first glance one may think it is problematic to compute the spectral decomposition of G or
> when p is huge. However, due to the special structure of our gradient estimates, they can in
fact be realized efficiently in both time, O(n%p +n?), and memory, O(pn). In the following we
comment on the computational issues for the EGCM.

In both the regression [16] and the classification [15] settings the gradient estimates satisfy the
following representer theorem:

fox) =Y cinK(x, xi).

i=1

A result of this representer property is that the EGCM has the following positive-semidefinite
quadratic form

A

T
Y =cpKcp,
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where cp = (c1,p, ..., cn,p) € RP*" and K is the n x n kernel matrix with K;; = K (x;, x;).
Since K is positive definite, there exists a lower-diagonal matrix L so that LLT = K. Then

&~ =T
Y =cpcp,

where ¢p = c¢pL is p x n matrix. An immediate result of this formula is that the EGCM is a
rank n matrix and has at most n non-zero eigenvalues and therefore at most the top n empirical
features will be selected as relevant ones. Efficient solvers for the first # eigenvectors of ) using
QR decomposition for ¢p [10] are standard and require O(n? p) time and O(pn) memory. This
observation conforms to the intuition that with n samples, it is impossible to select more than n
independent features or predict a function that depends on more than #n independent variables.

4.4. Relations to OPG method

MAVE and the OPG method proposed in [23] share similar ideas by using the gradient outer
product matrix implicitly or explicitly. Of them, OPG is more related to learning gradients. We
discuss differences between the methods.

At each point x; the OPG method estimates the function value a; ~ f;(x;) and gradient vector
bj RV fr(x)) by

n

: T 2

(aj,bj>=argaeﬂr{g};ng2wi,[yi—a—b (xi —x)I. (4.2)
1=

Then the gradient outer product matrix is approximated by
1 n
- T
G==2 bjbj.
Jj=l1

Notice that if we set the kernel as K (x,u) = éx,, and A = O the learning gradient algorithm
reduces to (4.2). In this sense the learning gradient extends OPG from estimating the gradient
vector only at the sampling points to estimating the gradients by a vector valued function. Hence
the estimates extend to out-of-sample points. This offers the potential to apply the method more
generally; for example, numerical derivatives in a low-dimensional space or function adaptive
diffusion maps (see [17] for details).

The solution to the minimization problem in (4.2) is not unique when p > n. This can result in
overfitting and instability of the estimate of the gradient outer product matrix. In this sense OPG
cannot be directly used for the “large p, small n” problem. The regularization term in the learning
gradient algorithms helps to reduce overfitting and allows for feasible estimates in the “large p,
small n” setting. However, we should remark that this is a theoretical and conceptual argument.
In practice OPG can be used together with preprocessing the data using principal components
analysis (PCA) and results in performance comparable to learning gradients.
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5. Results on simulated and real data

In this section we illustrate the utility and properties of our method. We will focus on the “large p,
small n” setting and binary classification problems.

2
In the following simulations we always set the weight function as exp(—@) with s as
the median of pairwise distance of the sampling points. The Mercer kernel K is K (x,u) =

2
exp(—”x;—é‘”) with o equal to 0.2 times the median of pairwise distance of the sample points.
They may not be optimal but work well when p >> n in our experience.

5.1. A linear classification simulation

Data are drawn from two classes in an n = 100 dimensional space. Samples from class —1 were
drawn from

xj:l:lO NN(lS,U), xj:11:20 NN(—S,U), xj:21:100 '\’N(0,0—)
Samples from class +1 were drawn from
xj=41250 ’\’N(—lS,U), xj=51260 ’\’N(3, U), xj=1240,611100 ’\’N(O, J)

Note that ¢ measures the noise level and difficulty of extracting the correct dimensions. We drew
20 observations for each class from the above distribution as training data and another 40 samples
are independently drawn as test data. By changing the noise level o from 0.2 to 3, we found our
method stably finds the correct predictive directions when o < 2. From a prediction point of
view the result is still acceptable when o > 2 though the estimates of the predictive dimension
contain somewhat larger errors. In Figures 1 and 2 we show the results for o = 0.5 and 0 = 2.5,
respectively.

5.2. A nonlinear classification simulation

Data are drawn from two classes in a p-dimensional space. Only the first d-dimensions are rele-
vant in the classification problem. For samples from class +1 the first d-dimensions correspond
to points drawn uniformly from the surface of a d-dimensional hypersphere with radius r, for
class —1 the first 10 dimensions correspond to points drawn uniformly from the surface of a
d-dimensional hypersphere with radius 2.5r. The remaining p-d-dimensions are noise

x/ ~N@©,0) forj=d+1,...,p.

Note that the data can be separated by a hypersphere in the first d-dimensions. Therefore pro-
jecting the data onto the first d-ESFs for this problem should reflect the underlying geometry.

In this simulation we set p = 200, d =2, r = 3 and o varying from 0.1 to 1. The first two
ESFs are shown to capture the correct underlying structure when o < 0.7. In Figure 3 we give
the result with o = 0.2. We also studied the influence of p and found when p < 50 the noise
level can be as large as 1.0.
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Figure 1. Linear classification simulation with o = 0.5.

5.3. Digit classification

A standard data set used in the machine learning community to benchmark classification al-
gorithms is the MNIST data set (Y. LeCun, http://yann.lecun.com/exdb/mnist/). The data set
contains 60000 images of handwritten digits {0, 1,2,...,9}, where each image consists of
p = 28 x 28 =784 grayscale pixel intensities. This data set is commonly believed to have strong
nonlinear manifold structure. In this section we report results on one of the most difficult pairwise
comparisons: discriminating a handwritten *“3” from an “8”.

In the simulation we randomly choose 30 images from each class and the remaining are used
as the test set. We compare the following dimension reduction methods GLFC, SIR and OPG.
In Table 1 we report the classification error rates by the k-NN classifier with k = 5 using the
respective method for dimension reduction. The SIR results reported are for a regularized version
of SIR (RSIR) since SIR is not stable for very high-dimensional data. As mentioned before OPG
cannot be directly applied so we first run PCA. We compare the results for using all PCs (PC-
OPG) and 30 PCs (PC30-OPG), respectively. The last column is the error rate by k-NN without
dimension reduction.
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Figure 2. Linear classification simulation with o =2.5.
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One problem domain where high dimensions are ubiquitous is the analysis and classification of
gene expression data. We consider two classification problems based on gene expression data.
One is the study using expression data to discriminate acute myeloid leukemia (AML) from acute
lymphoblastic leukemia (ALL) [11] and another is the classification of prostate cancer [19]. In
the leukemia data set there are 48 samples of AML and 25 samples of ALL. The number of genes
is p =7129. The data set was split into a training set of 38 samples and a test set of 35 samples
as specified in [11]. In the prostate cancer data, the dimension is p = 12600. The training data
contains 102 samples, 52 tumor samples and 50 non-tumor samples. The independent test data
contains 34 samples from a different experiment. We applied GLFC, SIR and OPG to these two
data sets and compared the accuracy using a linear support vector machine classifier. The leave-

Table 1. Classification error rate for 3 vs. 8

GLFC

PC-OPG PC30-OPG

SIR RSIR

kNN (k =5)

0.0853 0.1110 0.0912

0.1877  0.0956

0.1024
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Figure 3. Nonlinear classification simulation with o = 0.2. In (d) the first ESF is in blue and the second in
red.

one-out (LOO) error over the training data and the test error are reported in Tables 2 and 3 for the
leukemia data and prostate cancer data, respectively. For leukemia classification the two classes
are well separated and all methods perform quite similarly. For prostate cancer classification, the
accuracy in [19] is about 90%. All methods achieve similar accuracy on the training data. GLFC
and OPG methods have better prediction power on test data. From our experiments (both for
gene expression data and digits data) we see that the PC-OPG method performs quite similarly
to GLFC when the number of top PCs is correctly set. But it seems quite sensitive to this choice.

Table 2. Classification error for leukemia data

GLFC PC-OPG SIR SVM

LOOerror 1 1 1 1
Test error 0 0 1 1
Dimension d =2 d=4 d=1 d=17129
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Table 3. Classification error for prostate cancer data

GLFC PC-OPG PC50-OPG SIR SVM

LOOerror 9 15 10
Test error 2 9
Dimension d=25 d=2 d=1

6. Discussion

In this paper we first extended the gradient estimation and feature selection framework outlined in
[15,16] from the ambient space setting to the manifold setting. Convergence is shown to depend
on the intrinsic dimension of the manifold but not the dimension of the ambient Euclidean space.
This helps to explain the feasibility “large p, small n” problems. We outlined properties of this
method and illustrated its utility for real and simulated data. Matlab code for learning gradients
can be obtained at http://www.stat.duke.edu/~sayan/soft.html.

We close by stating open problems and discussion points:

1. Large p, not so small n: The computational approaches used in this paper require that n
is small. The theory we provide does not place any constraint on n. The extension of the
computational methods to larger n involves the ability to expand the gradient estimates in
terms of an efficient bases expansion. For the approach proposed in this paper the number
bases are at most 72, which is efficient for small 7.

2. Fully Bayesian model: The Tikhonov regularization framework coupled with the use of an
RKHS allows us to implement a fully Bayesian version of the procedure in the context of
Bayesian radial basis (RB) models [14]. The Bayesian RB framework can be extended to
develop a proper probability model for the gradient learning problem. The optimization
procedures in Definitions 2.1 and 2.2 would be replaced by Markov chain Monte Carlo
methods and the full posterior rather than the maximum a posteriori estimate would be
computed. A very useful result of this is that in addition to the point estimates for the
gradient we would also be able to compute confidence intervals.

Appendix A: Geometric background

In this section, we introduce some properties on manifolds that we will need in our proofs. Let
M be a Riemannian manifold and ¢ : M — RP” be an isometric embedding, that is, for every
g e M, dp, : TyM — Ty yR? =RP? is isometric:

depg (v) - dg (v1) = (v, v1)g Vv, v € TyM.

This directly leads to the following conclusion.
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Lemma A.1. For every q € M, the following hold:

(i) (dpy)* o (dgy) = I, M, the identity operator on Ty M;
(i) (dgy) o (dey)* is the projection operator of Tyy)RP to its subspace dg,(T;M) C
ToRY:
(i) [[dggll = I(deg)* |l = 1.

Lemma A.2. Let M be compact. There exists &y > 0 uniform in g € M such that exp, is well
defined on B, (€o) and is a diffeomorphism onto its image. Moreover, given an orthonormal basis

{e;]};.izl of TyM, under the q-normal coordinates defined by exp;l, if |v| < g the following

hold:

@) % <J/det(G)(v) < % where G is the volume element.
(i) 51vI* < llp(exp, () — (@) < [v]*.
(i) ¢(exp, (v)) — ¢(g) = dgy (V) + O(Jv]?).

Proof. This follows directly from the compactness of M and Proposition 2.2 in [9]. See [24] for
a self-contained proof of a very similar result. |

Lemma A.3. Let M be compact and &g be given as in Lemma A.2. If f € C>(M), then there
exists a constant C > 0 such that for all g € M and v € TyM, |v| < &,

| f(exp, (v) — f(q) = (Vs f(q). )| < Clv].
Proof. Since f € C*(M), fo exp, (v) is C? on B, (o). By the discussion in Section 2.2,
| f(exp, (v)) — f(q) — (Vi f(q), )]

= (f 0exp,)(v) — (f 0 exp,)(0) — V(f 0 exp,)(0) - v|

<Cylv?

with Cy = SUPye B, (e0) |V2(f o equ)(v)|. Since Vz(f o equ)(v) is continuous in ¢ and M is
compact, C =sup, ¢ Cq exists and our conclusion follows. (]

We remark that if M C R? is a submanifold with intrinsic metric, Iry is an isometric embed-
ding. If in addition M is a closed domain in R?, then exp, (v) =x + v forx e M.

Appendix B: Proofs of convergence results

In the manifold setting we usually do not know the manifold or the embedding. It will be conve-
nient to regard M as a submanifold of R” and d, as the intrinsic metric on the manifold. This
implies that ¢ = Igy and we can identify M as X = ¢(M). Note that the marginal distribution
P on M induces a distribution p,, on X = ¢(M). The above notation implies p,, = o, . We
denote D, = d(Jrr),x and D is the operator on vector fields such that Dh(x) = D, (h(x)) for
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heTM. Correspondmgly, D is the dual of D, and HD* maps a p-dimensional vector valued
function f to a vector field D* f (x) = Di( f (x)). We will adopt this notation to simplify our
expression and give the proofs of the results in Section 3.

Recall the following definition given in [16].

Definition B.1. Denote Z=X xY =M x Y. Fors >0 and f: M — RP | define the expected
error

£(f) = /Z /Z eI EI/CN (y _ 4 Fx) - (€ —x))  dp(x, y) dp &, ).
If we denote o = [, [, efHX*SHZ/(zsz)(y — fr(x)?dp(x, y)dp(&, 1), then
E(f) =202 + fM fM e IER/CN (£.(x) — £(8) + F () - (€ — 1)) dpy, (X)dp o, ().

Define

fi.=arg min {E£(F) + I FI1%).
fery

K

It can be regarded as the infinite sample limit of f p.2. The following decomposition holds
1D* fo = Vanfrlly <l fo = fillk +1D* . = Ve frll2
M M

This bounds || D* fD -V fell L by two terms. The first one is called sample error and the
M

second is the approximation error.
For the sample error, we have the following estimate.

Proposition B.1. Assume |y| < M almost surely. There are two constants C1, Cy > 0 such that
for any § > 0, with confidence 1 — §,

Il fp— fallk <

Cilog(2/8)  (C2 10g(2/5)

N ( N )Ilf/x k-

This estimate has in fact been given in [16]. To see this, we notice two facts. First, our al-
gorithm in Definition 2.1 is different from that in [16] only by a scalar. Second, the proof in
[16] does not depend on the geometric structure of the input space. So a scalar argument leads
to the above bound for the sample error directly. Of course, one may obtain better estimates by
incorporating the specific geometric property of the manifold.

Next we turn to estimate the approximation error. In the following, we always assume M
compact and set &g to be the same as in Lemma A.2. Without loss of generality, we also assume
g0 <1.
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Proposition B.2. Assume (3.1) and (3.2). If f, € C2(M), there is a constant C3 > 0 such that
forall . >0 and s < ¢,

d+2+6
1D* fi — Vi frl?s  <Csls”+ ST +i s>+ K L+s2 .
Lo — A 50 sd+2

If dp,, = du, the estimate can be improved.

Proposition B.3. Let f, € C*2(M). If dp v = du, then there exists a constant C3 ;> 0 such
that for all .. > 0 and s < &,

d+3
1D* fr =V fill?s < Cspls + i+1 s>+ K L+s2
MIrllps =53 A sd+2 '

The proof of these bounds for the approximation error will be given in two steps. In the first
step we bound the L?-difference by the expected error and in the second step the functional X
is used to control the expected error.

Lemma B.1. Assume Condition 3.2 and f, € C2(M). There exists a constant c3 > 0 so that for
all s < ey and f € HY,

- - 1 -
1D* f = Vamfllf, = c3(<1 +1 £ + 55 (€GP — 202)). (B.1)
P A N

If, in addition, dp ,, = du, then the estimate can be improved to

o S 1 S
1D f — meni%M < cg,ﬂ(a IS 1K) + 75 (€)= 202)) (B.2)
for some c3 ,, > 0.

Proof. Denote X; = {x € M :d(x,dM) > s and v(x) > (1 + ¢2)s?}. For x € M, let Bys =
{& e M :dp(&,x) <s}. We prove the conclusion in three steps.
Step 1. Define the local error function

ly—£12 2 z 2
ery (x) = /B e ITEIVCD (. (x) = fE) + f0) - (E —x)) du(®).
We claim that there exists a constant ¢’ > 0 such that for each x € Xj,
S - 1
1D f(x) = Vmfrl < c’((l HIFI0%? + s ers(X)>. (B.3)

Since s < &9, exp, is a homeomorphism from B, (s) onto B, ;. For every & € By ; there exists
v € B, (s) so that £ = exp, (v). Write every v € Ty M in normal coordinates. Then er,(x) equals

/ e ImeR I/ (£ () — f,(expy (1) + F(X) - (exp, (v) — x))*V/det(G) (v) dv.
By (s)
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Denote

nW) = f(x) = fr(exp, ) + f(x) - (expy (v) — x) — (D* f(x) = Vg fr (1), v),

nW) = (D*f(x) = Varfr(x), ).
By the assumption f, € C?(M) and Lemma A.3,

| () = fr(exp, () + (Vg fr (1), 0)] < &1 [v]?
for some ¢, > 0. By Lemma A.2(iii), there exists & > 0 depending on M only so that
| £(0) - (expe(v) = x) = F(x) - Dx()| < &2l F@) v < &l Fllx v,
Notice that £ (x) - D, (v) = (DF(f(x)), v) = (D* f(x), v). So we have
1 ()| < @ + &l fllx)lvl.

Using the facts %|v|2 <l|x— expx(v)||2 < |v|? and % < J/det(G)(v) < %, we obtain

f eI I/ 1) (1) 2, /det(G) (v) dv
BL(s)

=<

~ ~ b d _ 2 2
@ +cz||f||1<)2/ e P/ @ 1yt du

[v]<s

S A N2x d+4
< (@1 + ol fllk) ezs™,

N W N W

~ 2
where ¢3 =f| eIV /4 |* do.

Denote

v|<l1

Qs (X) :/ ( )e_”X—eXPX(U)Hz/(Zsz)|t2(v)|2 /det(G)(v) dv.
B, (s

By the Schwarz inequality

/ eI exR(WIF/Cs%) [t () ||22(v)|y/det(G) (v) dv
By (s)
2 2 172
5( / e~ r=exp Wl “25)|n<v)|2\/det<6)<v)dv> V05 (x)
By (s)

K
<@ +alflk) 553sd+4\/ Os(x).



202 S. Mukherjee, Q. Wu and D.-X. Zhou

Then we get

ery (x) > / e ImeR I/ (14 (1) 2 = 218y () |[2(v)] — 2181 (v)[2) y/det(G) (v) dv
By (s)

- 3 3 -
> 05(x) — (G + &l fllx)y/ Eéssf”‘v 05 (1) = 5@ + &l fllx)*Eas?t,

This implies
0, (x) <3(E1 + &l k)25 + 2ers (x).

By the facts [|x — ul?> < [v[?, /det(G)(v) > § and S5, e—|v|2/<2sz>v,-vj =0,ifi # j, we
obtain
1 d 292
0s(x) = 5 Y (D* () = Ve (0)),(D* F () = Vpufr () / e MYy dv

23 T Be(s)

= &2\ D* F(x) = Vo fr (02,

where ¢4 = ﬁ i<l e"”‘2/2|v|2 dv. Therefore, our claim (B.3) holds with

1 Y e
d=—(3@C + )03 + 2).
C4
Step 2. By (B.3) we have

: |D* F(x) = Vau fr () dp, (x)

: (B.4)
< a(a 1AK% + /X en@dy, (x)>.

By the assumption dp,,(§) = v(§)du and (3.2), we have v(§) > s if xe Xy and & € By s.
Therefore,

/B e (10 = £(6) + F () - (& —0) doy, (6) = 57 er ().
Integrating both sides over x on X, and using the fact 5, ; C M when x € X, we obtain

1 S
| endn = 5 (€ - 202),

X

Plugging into (B.4) gives

o o 1 -
fx S |D* f () = Vaufr ()1 dpy, (x) < c/<(1 11027 + g (€O = 203)). (B.5)
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If dp,, = du, we immediately obtain

f erg(x)dp,, (x) < 5(J?) - 20s2

X
and hence

o S 1 o
/X 5 1D* F(x¥) = Y fr ()P dp () < c’<(1 + 1710 + 5 (€ - 203)). (B.6)

Step 3. Condition (3.1) implies v is continuous. Since M is compact, sup, ¢y V(x) = Cs exists.
So

P M\ Xy) < ca5 + (1 + c2)s” u(M).

Together with the fact |D* £(x) — Vg £ ()] <kl Fllk + IV A4 fr oo, We have
/M\X 1D* F(x) = Vau fr ()*dp, (x) < G6(1+ [ fllx)%s° (B.7)

with ¢ = (k + |Vt frlloo) (€2 + E5(1 + c2) i (M)).

Combining (B.5) and (B.7) leads to conclusion (B.1).

Ifdp,, =du, v(x) =1 forall x € M, (3.1) holds with & =1 and ¢5 = 1. So (B.7) holds with
6 = 1. This together with (B.6) proves (B.2).

This finishes the proof. O

Define the functional

A, 2) = _inf (E() =202 + Al fII%).-
feHy

Applying Lemma B.1 to f; we immediately obtain the following corollary.

Corollary B.1. Under Assumption (B.1), we have

gD* 2[ < 2 o S9 T 1 A )\,
|| f)L — VM fr ” %M c3 s’ + T + ST (S, ) .
Ifdp./\/l = d/L, then

2s

= 1
* 2
D~ fo. — V./\/lfr”L%M <cipu (2s + (7 + W)A(s, A)).

Proof. It suffices to notice that both A|| ﬁ ||%< and &£( ﬁ) — 2c7S2 are bounded by A(s, A). O

Next we estimate .A(s, A). We will need the following lemma.
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Lemma B.2. Let f, € C2(M). There exists c4 > 0 such that for f e HE,

E(f) =207 < e+ sTHFIR + 1D = Vaadi gy .
M

Proof. Since M is a submanifold with intrinsic distance, there exists 3o > 0 such that ||§ — x| <
8o implies daq(x, &) < go. Denote A = {& € M: || — x| <do}. Then A C B, ¢,. So

E(f) 20}

= /M/B e*\|x7§\|2/(2‘92>(f,(x) — @)+ fx)- (& _x))zd,OM(é)dpM(x)

X,80)

+ fM fM\A e IERIC (£ (x0) = £.(8) + F() - (€ — 1)) dp, (€)dpy, (x)
=J1+ Js.

It is easy to notice that
Y] 2 -
I < &e /DA 411 £11%)

for some cg > 0.

Note that for every x € M, exp;l (By,ep) C By (g). Write £ in x-normal coordinates. Then on
B, ¢, there holds 3|v[?> < ||lx — £|| and /det(G)(v) < 3. Let #1(v), f2(v) and s be the same as
in the proof of Lemma B.1. We have

N e ISR/ (1 ()2 + 13 (1)) del(G) () dv dp (1)
M Jexpi! (Bi.ey)
~ 2 2
< 2¢s / f e OO (16 ) + [2(0)7)Vdet(G) (v) dudp y, (x)
M Jv=eg
< &o((1+ 1 F s ™ + 521 D" F =V fel17, )
M

for some ¢g > 0.
Combining the estimates for J; and J;, we finish the proof. (|

Lemma B.2 implies the following corollary which bounds A(s, A) by the functional X .

Corollary B.2. If f, € C*(M), then

A
A(s, A) <cs (sd+4 + sd+2x<m + 52>>

with ¢s = max(cy, 1).
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Proof. By Lemma B.2, for every f € Hf(, there holds

EP) =202 + M fI% < es(s7T* + 5772 D* f — Vmblzy G +5H1F1%).
M

The conclusion follows by taking infimum over f € HZ. (]
One easily sees that Propositions B.2 and B.3 follow from combining Corollaries B.1 and B.2.

Remark B.1. We remark that the approximation error estimate in Proposition B.2 converges to 0
as s — 0 if K (t) = O(t#) with g > % The result may be improved by using functional analy-
sis techniques; see, for e)iample, [16]. However, it seems those techniques require the explicit
functional expression of fj, which is available only in the regression case. The proof method we
provide here is not as_)powerful for the regression case but it is more general and can be applied

even in cases where f; only exists implicitly, such as the classification setting.
Now we prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. First note that K () is increasing with ¢. Since s < 1 and A =
s < 1, we have K (Fi7 +57) = K (s% +5%) < K (25%). Then by Corollary B.2,

MU < Als, 2) < os(s7 + 5725 252)).

Plugging into the sample error estimate in Proposition B.1 gives

> - C'log(2/$8
1o — Fillk < %(1 NI,

with €' = C1 + (C2 + 57)+/C5. By Proposition B.2

1= Vaafillgy  <3Cs(s" +570 K 25™)).
M

Combining these two estimates, we draw the conclusion with the constant C, = max{(C ! )2,
3C3}. [l

Note that if M is a compact domain in R?, then d = p, D = D* = I, and V4 is the usual
gradient operator. In this case K (t) = O(t) if Vf, € H’,’(. The rate in Corollary 3.1 becomes
O(n~9/@p+4+59)) which is of the same order as that derived in [16]. This implies that our result
reduces to the Euclidean setting when the manifold is a compact domain in the Euclidean space.

Proof of Theorem 3.2. By s < I and 1 = 5?13 we obtain J{(ﬁ +52) = K(s +52) < K(2s).
Then by Corollary B.2,

Ml < Al 1) < es(s7H + 5725 2)).
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Plugging into the sample error estimate in Proposition B.1 gives

- o C’log(2/8
Ifp— fillk < %(1 + V71K (29))

with €' = C1 + (C2 + 55)/c5. By Proposition B.3,
- 2 2
Il /o =V fr IIL% <3C3u(s + K(259)).
M

The conclusion follows by combining the above two estimates. ]
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