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Testing temporal constancy of the spectral
structure of a time series
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Statistical inference for stochastic processes with time-varying spectral characteristics has received consid-
erable attention in recent decades. We develop a nonparametric test for stationarity against the alternative of
a smoothly time-varying spectral structure. The test is based on a comparison between the sample spectral
density calculated locally on a moving window of data and a global spectral density estimator based on the
whole stretch of observations. Asymptotic properties of the nonparametric estimators involved and of the
test statistic under the null hypothesis of stationarity are derived. Power properties under the alternative of
a time-varying spectral structure are discussed and the behavior of the test for fixed alternatives belonging
to the locally stationary processes class is investigated.
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1. Introduction

Second order stationarity is an important assumption in the statistical analysis of stochastic
processes, allowing for the development of an asymptotic theory capable of investigating proper-
ties of many classical statistical inference procedures. However, the assumption that the second
order characteristics of a process remain constant over time is often not justified in practice. Many
time series show a non-stationary behavior due to smooth changes of their second order structure
over time. Based on this observation, interest has been directed toward the analysis of stochas-
tic processes whose spectral characteristics change slowly over time. Priestley (1965) introduced
processes with evolutionary spectra and a time-varying spectral representation similar to that of a
stationary sequence; cf. also Granger (1964) and Priestley (1988) for an overview. During the last
decade, statistical inference for processes showing such a non-stationary behavior has attracted
considerable attention in the literature. In this context, asymptotic statistical inference has been
made possible by considering arrays of double-indexed processes having time-varying spectral
characteristics together with a time rescaling approach which allows for increasing information
on the local structure of the underlying non-stationary process as the sample size increases; see
Dahlhaus (1997) and literature on the related concept of locally stationary processes. Mallat et
al. (1998) considered adaptive covariance estimators of locally stationary processes, while Na-
son et al. (2000) considered processes where the time-varying spectral representation and the
associated Fourier basis have been replaced by a representation with respect to a wavelet basis.
The aforementioned developments in the statistical analysis of locally stationary processes make
it important to have powerful statistical tools that detect possible changes in the spectral structure
of a time series and evaluate the appropriateness of the preassigned stationary process class.
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This paper deals with nonparametric tests of stationarity against the alternative of a time-
varying spectral structure. The idea underlying our approach is to compare local sample spectral
density estimates based on a moving window of data with a global estimate using the whole
set of observations, and to evaluate the difference between the two quantities over the different
frequencies and time segments considered using an appropriate L2-type distance measure. To
be more specific, the proposed test is based on a smoothed version of the local sample spectral
density (local periodogram) rescaled by a global spectral density estimator obtained using the
whole stretch of data. For a given time point, the corresponding smoothed statistic squared and
integrated over all frequencies is a measure of deviation between the local spectral structure of the
observed time series and a global spectral structure associated with the hypothesized stationary
behavior. Calculating this local quadratic deviation measure for different instants of time and
building a time-averaged version lead to a global measure of stationarity which is used for testing
purposes.

To allow for a rigorous asymptotic investigation of the testing methodology proposed under
the null and under different non-stationary alternatives, the theoretical framework of locally sta-
tionary processes is adopted; cf. Dahlhaus (1997). The asymptotic behavior of the test statistic
under the null of stationarity is derived and its weak convergence to a Gaussian distribution is
established. Consistency of the test is proved and its asymptotic power behavior is investigated
for fixed alternatives belonging to the class of locally stationary processes. Although some of
the results obtained under the null of stationarity can be derived under different assumptions on
the underlying stochastic process, the aforementioned theoretical context of locally stationary
processes is preferred because it delivers a unified set-up for asymptotic investigations of the test
proposed both under the null and under fixed alternatives.

Procedures for testing the constancy of particular characteristics of a process over time have
been considered in the literature under various settings and approaches with their main focus
directed toward testing the constancy of specific parameters or characteristics in a more or less
restrictive parametric set-up. The more general nonparametric problem of testing the constancy
of the entire spectral structure of a process without imposing any parametric assumptions on the
underlying process class has attracted less interest in the literature and only a few studies of this
exist.

Priestley and Rao (1969) proposed testing the homogeneity of a set of evolutionary spec-
tra evaluated at different instants of time using logarithmic transformations and an analysis of
variance framework. For Gaussian processes and for the particular purpose of a change-point de-
tection, Picard (1985) developed a test based on the difference between (possible time-varying)
spectral distribution functions estimated on different parts of the series and evaluated using a
supremum-type statistic. Giraitis and Leipus (1992) generalized this approach to the case of lin-
ear processes. von Sachs and Neumann (2000) developed a test of stationarity based on empirical
wavelet coefficients estimated using localized versions of the periodogram. In a more restrictive
context, Sakiyama and Taniguchi (2003) considered testing stationarity versus local stationarity
in a parametric set-up. Fitting piecewise autoregressive processes has been also used to detect
change-points in the context of time series; Kitagawa and Akaike (1978) used this approach
together with AIC-based order selection, while Davis et al. (2005) suggested fitting piecewise
autoregressive models using a minimum description length procedure together with a generic
algorithm to solve the difficult optimization problem.
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Compared to the last two approaches mentioned, the method proposed in this paper is en-
tirely nonparametric in that it does not rely on distributional or parametric assumptions on the
underlying process class and it is not only focused on the detection of change-points but also
on smooth changes of the spectral structure. Unlike Picard’s (1985) proposal focused on change
point detection and which is based on the integrated periodogram and supremum-type statistics,
our method is based on smooth (kernel) estimates of the (possibly) time-varying spectral density
function of the underlying process and uses L2-type distance measures. Compared to the rather
heuristic derivations of Priestley and Rao (1969), our set-up allows for a thorough theoretical in-
vestigation of the asymptotic properties of the proposed test both under the null and under fixed
alternatives. In addition to the aforementioned power investigations, our testing approach differs
from that of von Sachs and Neumann (2000) in that it uses global measures of deviations from
stationarity, thereby avoiding a multiple testing procedure based on a selected set of estimated
wavelet coefficients with conservative critical values obtained via Bonferonni’s inequality.

The paper is organized as follows. Section 2 contains the main assumptions imposed on the
underlying stochastic process class and introduces the basic statistics used in the sequel. In Sec-
tion 3, the statistic proposed to test the null hypothesis is presented and its asymptotic behavior
under the null of stationarity is investigated. Section 4 deals with the power properties of the test
and investigates its behavior for fixed alternatives. Section 5 contains some practical guidelines
on how to choose the testing parameters and demonstrates the capability of our method to detect
departures from stationarity by means of a numerical example. Proofs of the main results are
deferred to Section 6.

2. Basic statistics

2.1. Preliminary considerations

To provide a theoretical set-up allowing for stochastic processes showing time-varying spectral
characteristics and to state rigorously the null and alternative hypothesis of interest, we adopt
the framework of locally stationary process (see Dahlhaus (1997) and Dahlhaus and Polonik
(2003)) which is flexible enough and covers several interesting cases. Since we restrict ourselves
to questions related to the temporal behavior of the spectral structure of a process, it seems natural
to consider the general class of time-varying linear processes as the appropriate underlying class
of processes.

Consider a triangular array {Xn, n ∈ N} of stochastic processes, where Xn ≡ {Xt,n, t =
1,2, . . . , n} satisfies

Assumption 1.

(i) Xt,n has the representation

Xt,n =
∞∑

j=−∞
at,n(j)εt−j , (2.1)

where the {εt } are i.i.d. with E(εt ) = 0, E(ε2
t ) = 1, E(ε8

t ) < ∞ and κ4 = η−3, where η = E(ε4
t );
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(ii) supt |at,n(j)| ≤ Kl−1(j), where K is a non-negative constant independent of n and the
positive sequence {l(j), j ∈ Z} satisfies

∑∞
j=−∞ |j |l−1(j) < ∞;

(iii) functions a(·, j) : (0,1] → R with

sup
u∈[0,1]

∣∣∣∣∂2a(u, j)

∂u2

∣∣∣∣ ≤ K

l(j)
(2.2)

exist such that

sup
1≤t≤n,n∈N

∣∣∣∣at,n(j) − a

(
t

n
, j

)∣∣∣∣ ≤ K

nl(j)
. (2.3)

Let At,n(λ) = ∑∞
j=−∞ at,n(j) exp{−iλt} and denote by f (u,λ) the time-varying spectral den-

sity f (u,λ) = (2π)−1|A(u,λ)|2, where A(u,λ) = ∑∞
j=−∞ a(u, j) exp{−ijλ}. Note that by the

smoothness properties of a(·, j), the triangular array {Xn, n ∈ N} uniquely determines the local
spectral density f (u,λ), and that (2.3) implies

sup
t,λ

∣∣∣∣ 1

2π
At,n(λ)At,n(λ) − f (t/n,λ)

∣∣∣∣ = O(n−1). (2.4)

Let FLS be the class of stochastic processes satisfying Assumption 1 and let FS , FS ⊂ FLS , be
the subclass of stationary processes, that is,

FS =
{

Xn :Xt,n =
∞∑

j=−∞
a(j)εt−j ∀t and n ∈ N and

∞∑
j=−∞

|j ||a(j)| < ∞
}

.

Given observations X1,n,X2,n, . . . ,Xn,n, the problem considered is that of testing the hypothesis
that the spectral structure of the underlying process is constant over time. To precisely define the
corresponding null and alternative hypotheses, consider for λ ∈ [−π,π] the time-averaged local
spectral density g(λ) defined by

g(λ) =
∫ 1

0
f (u,λ)du.

By the smoothness properties of f (·, λ), g(λ) is well defined and has all properties in com-
mon with the spectral density of a real-valued stationary process, that is, it is symmetric, non-
negative definite and satisfies

∫ π
−π g(λ)dλ < ∞. Furthermore, f (u, ·) = g(·) if and only if for

every λ ∈ [−π,π], f (u,λ) is an a.e. constant function of the time variable u ∈ [0,1]. We require
that g also satisfies the following assumption.

Assumption 2.

inf
λ∈[−π,π]g(λ) > 0. (2.5)
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Based on the previous considerations, the testing problem investigated is described by the
following pair of null and alternative hypotheses

H0 :f (u, ·) = g(·) a.e.

vs. (2.6)

H1 :λ
({u :f (u, ·) 	= g(·), u ∈ [0,1]}) > 0,

where λ(A) denotes the Lebesgue measure of the set A ∈ B([0,1]).
Let In(λ), λ ∈ [−π,π] be the periodogram calculated using the whole time series, that is,

In(λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

Xt,ne−iλt

∣∣∣∣∣
2

,

and let K be a kernel function K : R → R satisfying the following assumption.

Assumption 3. K is Lipschitz continuous, bounded and symmetric with support [−π,π] such
that (2π)−1

∫ π
−π K(x)dx = 1.

Consider the smoothed periodogram

ĝh(λ) = 1

n

∑
j∈Z

Kh(λ − ωj )In(ωj ), (2.7)

where ωj = 2πj/n, j = 0,±1,±2, . . . , Kh(·) = h−1K(·/h) is the scaled kernel and h > 0 the
bandwidth. It is well known that if the null hypothesis H0 is true, then

sup
λ∈[−π,π]

|̂gh(λ) − f (λ)| → 0, (2.8)

in probability, where f (λ) = (2π)−1σ 2|A(e−iλ)|2, A(e−iλ) = ∑∞
j=−∞ a(j) exp{−ijλ}, denotes

the time-invariant spectral density of the underlying stationary process. The above result can also
be extended to the case where the alternative H1 is true, that is, where Xn is locally stationary
with a time-varying spectral structure in the sense of Assumption 1. In particular, as Lemma 6.1
shows, we have, in this case,

sup
λ∈[−π,π]

∣∣∣∣̂gh(λ) −
∫ 1

0
f (u,λ)du

∣∣∣∣ → 0 (2.9)

in probability, that is, for locally stationary processes, ĝh(λ) is a uniformly consistent estimator
of the time-averaged local spectral density g(λ).
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2.2. Smoothed rescaled local periodogram

To construct out test statistic, let mn be a positive integer such that 0 < mn < n and consider
for λ ∈ [−π,π] and u ∈ (0,1) the local periodogram Imn(u,λ) calculated using a subset of mn

tapered observations around location u, that is,

Imn(u,λ) = 1

2πH2,mn(0)

∣∣∣∣∣
mn∑
t=1

ht,mnXt+[un]−Mn−1,ne−iλt

∣∣∣∣∣
2

,

where Mn = mn/2 and u ∈ (0,1) such that Mn + 1 ≤ [un] ≤ n − Mn + 1.
Furthermore, ht,n = h(t/n) is a taper function and

Hk,n(λ) =
n∑

s=1

h(s/n)ke−iλs

its Fourier transform. Write Hn(·) for H1,n(·).

Assumption 4. The taper function h : R → [0,1] is of bounded variation and vanishes outside
the interval [0,1].

Note that the use of taper reduces the bias of the local periodogram due to the well-known
leakage effect and it simultaneously reduces the bias due to the (possible) non-stationarity of the
series. For the asymptotic theory developed in this paper, the use of such a taper is necessary in
order to control the bias of the local periodogram, under both the null and the alternative. Note
that we do not use a data taper to calculate the global periodogram In(λ) based on the whole
stretch of observations mainly because we would then get

E(In(λk)) = H2,n(0)−1
n∑

t=1

h2(t/n)f (t/n,λk) + O(n−1 log(n)),

which implies that under the assumptions made, the smoothed global periodogram ĝh(λ) does
not converge under the alternative to the desired limit g(λ) = ∫ 1

0 f (u,λ)du.
Now, the basic statistic used in the sequel is the following kernel-smoothed version of the

rescaled local periodogram

Vn(u,λ) = 1

mn

∑
j∈Z

Kb(λ − λj )

(
Imn(u,λj )

ĝh(λj )
− 1

)
, (2.10)

where λj = 2πj/mn, j = 0,±1,±2, . . . . To understand the motivation leading to Vn(u,λ), con-
sider

Ṽn(u,λ) = 1

mn

∑
j∈Z

Kb(λ − λj )

(
Imn(u,λj )

g(λj )
− 1

)
, (2.11)
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which differs from Vn(u,λ) by the fact that the true function g(λ) is used. Under the assumptions
made, and if the null hypothesis is true, then Ṽn(u,λ) is a nonparametric (kernel) estimator of
the mean function E(Imn(u,λ)/f (λ) − 1) = O(m−2

n ) that converges to zero uniformly in u and
λ as mn → ∞. Thus, under the null hypothesis, we have, for all u ∈ (0,1) and λ ∈ [−π,π], that

Ṽn(u,λ) → 0

in probability. On the other hand, if the alternative is true, that is, if the spectral structure of the
underlying process varies over time, then it follows using Lemma 6.1, that

Ṽn(u,λ) →
(

f (u,λ)∫ 1
0 f (u,λ)du

− 1

)
in probability, where the limiting function on the right-hand side is different from the zero func-
tion because f (u, ·) = ∫ 1

0 f (u, ·)du if and only if f (u, ·) is an a.e. constant function of the time
parameter u ∈ [0,1]. Thus, under the null hypothesis of stationarity, we expect Ṽn(·, ·) to be close
to the zero function, while this will not be the case under the alternative.

Note that for a given u ∈ (0,1), the statistic (2.10) has the same asymptotic behavior as the
statistic Ṽn(·) in which the true function g appears. This is true because (2.10) is based on ob-
servations within a window of length mn while ĝh is calculated using the whole stretch of n

data points. In fact, Vn(u,λ) = Ṽn(u,λ) + OP (supλj
|̂gh(λj ) − g(λj )|). For statistics based on

time-averaged versions of (2.10), such as those considered in the sequel, we show that under ap-
propriate conditions on the behavior of the smoothing parameters involved, the effects of using
the nonparametric estimator ĝh are asymptotically negligible.

3. Testing the null hypothesis

3.1. The test statistic

To make the aforementioned behavior of the statistic Vn(u,λ) useful for testing the null hypoth-
esis of stationarity, let 0 < u1 < u2 < · · · < uN < 1 be a set of N = N(n) ∈ N distinct points in
the interval (0,1). Set u0 ≡ 0 and let dj,n = uj − uj−1, j = 1,2, . . . ,N be the distance between
two consecutive points. Taking equidistant points, that is, dj,n = dn = (N + 1)−1, a choice of
uj could be uj = tj /n, where tj = S(j − 1) + mn/2 for j = 1,2, . . . ,N . The positive integer
S = S(n) denotes the shift from segment to segment while n = S(N − 1) + mn. Using a squared
deviation criterion, a useful approach to test the null hypothesis is to average over the different
time points and over the different frequencies the squared statistic Vn(ts/n,λ). This leads to the
test statistic

Tn = 1

N

N∑
s=1

∫ π

−π
V 2

n

(
ts

n
, λ

)
dλ (3.1)

considered in the sequel. Note that due to averaging over N distinct time points, Tn is an overall
measure of deviation of the local spectral structure of the process from its hypothesized global
behavior under the null hypothesis.
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To investigate the asymptotic behavior of Tn under the null of stationarity, the following as-
sumptions are imposed.

Assumption 5. As n → ∞,

(i) h ∼ n−λ for some 3/20 < λ < 1/3;
(ii) b ∼ m−λ

n ;
(iii) Sn = [mn/c], where c is a fixed positive integer such that 1 ≤ c < mn;
(iv) mn ∼ nδ for some δ ∈ (δ1, δ2), where δ1 = max{1/(3−λ),λ/(1−λ)} and δ2 = min{(8λ−

1)/(1 − λ), (1 − 2λ)/(1 − λ)}.
Some comments concerning the above assumptions are in order. Part (i) and (ii) ensure con-

sistency of the corresponding global and local spectral estimators. For simplicity of derivations,
we allow both smoothing bandwidths h and b to converge to zero at the same rate, although
different rates are also possible. Part (iii) puts some conditions on the behavior of the shift Sn

between the different segments used to calculate the statistic V 2
n (us, λ). The condition mn ≥ Sn

seems reasonable since it makes no sense to omit data (mn < Sn). Although the requirement
for a fixed 1 ≤ c < mn is not restrictive in practice, it is necessary from a technical point of
view in order to control the degree of overlapping between the segments used. Part (iv) implies
that mn/n → 0 as n → ∞, from which it follows, because of mn = cSn and NSn = O(n), that
the number N of time points uj = tj /n at which Vn(uj , λ) is calculated increases to infinity as
n → ∞. This is important for a good power behavior of the test since, in this case, the (rescaled)
distance dn = Sn/n between the time points tj /n in the interval (0,1) over which the behavior
of Vn(tj /n,λ) is evaluated goes to zero as n → ∞; cf. Section 4. However, part (iv) introduces
some restrictions regarding the rates at which the time window mn and, consequently, the number
of time points N , increase to infinity as the sample size n increases. Essentially, these conditions
prevent both mn and N from increasing too fast with respect to n and seem necessary in order
to make the effects of estimating the time-integrated spectral density g on the distribution of the
test statistic Tn asymptotically negligible.

Theorem 3.1. Let H0 be true and Assumptions 1–5 be satisfied. As n → ∞,

mn

√
NbTn − μn ⇒ N (0, τ 2),

where

μn = MH

[√
N

b

∫ π

−π
K2(x)dx + √

Nb

(
1

4π

∫ 2π

−2π
(K ∗ K)(y)dy + 2πκ4

)]
,

τ 2 = 2

π2
M2

c,H

∫ 2π

−2π
(K ∗ K)2(y)dy,

M2
c,H = H−4

2

∑
|s|<c

(∫
[0,1−|s|/c]

h2(x)h2(x + |s|/c)dx

)2

,

MH = H4/H
2
2 , Hk = ∫ 1

0 hk(u)du and K ∗ K(·) denotes convolution of the kernel K .
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The fact that the centering sequence μn in the above theorem depends on the fourth order
cumulant κ4 of the error process is due to time-averaging the weak and O(m−1

n )-vanishing co-
variance of the local periodogram ordinates at different Fourier frequencies. To implement the
statistic Tn in practice, a consistent estimator of κ4 is needed. Such a nonparametric estimator is
given by

κ̂4 =
(

2πĝ2,h(0) − 4π
∫ π

−π
ĝ2

h(λ)dλ

)/(∫ π

−π
ĝh(λ)dλ

)2

, (3.2)

where ĝ2,h(·) is the estimated spectral density of the squared process X2
t,n; cf. Janas and Dahlhaus

(1994) and Grenander and Rosenblatt (1956). Based on Theorem 3.1, an asymptotically α-level
test, α ∈ (0,1), is obtained by rejecting the null hypothesis if mn

√
NbTn ≥ μ̂n + τzα , where zα

denotes the upper α-percentile of the standard Gaussian distribution and μ̂n is the estimator of
μn obtained by replacing κ4 by (3.2).

4. Power properties

We begin our power investigations with the following theorem which establishes consistency of
the proposed test.

Theorem 4.1. Suppose that the triangular array {Xn, n ∈ N} possesses a local spectral density
f (u,λ), f (·, ·) ∈ L2([0,1] × [−π,π]). Assume that the set {u :u ∈ [0,1], f (u,λ) 	= g(λ)} ⊂
[0,1] has positive Lebesgue measure and that the following conditions are satisfied:

ĝh(λ) →
n→∞g(λ) in probability, lim sup

n→∞

∫ π

−π
ĝh(λ)dλ ≤

∫ π

−π
g(λ)dλ

and ∫ π

−π

∣∣∣∣m−1
n

∑
j∈Z

Kb(λ − λj )Imn(u,λj ) − f (u,λ)

∣∣∣∣dλ = OP (rn)

uniformly in u, where rn is a zero sequence. Then, as n → ∞,

Tn → D2 =
∫ 1

0

∫ π

−π

(
f (u,λ)

g(λ)
− 1

)2

dλdu

in probability.

Notice that the above conditions are satisfied if, for instance, the process under the alter-
native is a locally stationary process in the sense of Assumption 1. Observe further that the
limit D2 is an L2-measure of deviation of the locally stationary process with time-varying
local spectral density f (u,λ) from the null, that is, from a stationary process with spec-
tral density g(λ) = ∫ 1

0 f (u,λ)du. Recall that g(λ) is a proper spectral density and note
that g(λ) can be interpreted as the time-invariant spectral density which best approximates
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the time-varying local spectral density f (u,λ) in the sense that for each frequency λ ∈
[−π,π], the function g(λ) = ∫ 1

0 f (u,λ)du satisfies g(λ) = argminc

∫ 1
0 (f (u,λ) − c)2 du. Pos-

itive values of D2 are tantamount to a deviation of the locally stationary process {Xn} from
its best approximating “stationary counterpart”, where the latter can be understood as a
zero-mean stationary process with autocovariance function γ (·) : Z → R given by γ (h) =∫ π
−π g(λ) exp{ihλ}dλ.

4.1. Locally stationary alternatives

Although Theorem 4.1 provides some useful insights into the consistency properties of the pro-
posed test, an asymptotic analysis of its behavior for fixed alternatives is very informative and
important since it leads to useful approximations of its power function and of the probability of
the type II error. In the following, we investigate the power behavior of the test for fixed alterna-
tives that belong to the class of locally stationary process. For this, the following assumption is
imposed.

Assumption 6. As n → ∞,

(i) h ∼ n−λ for some 1/4 < λ < 1/3;
(ii) b ∼ m−λ

n ;
(iii) Sn = [mn/c], where c is a fixed integer such that 1 ≤ c < mn;
(iv) mn ∼ nδ for some δ, 1/2 < δ < min{(8λ − 1)/(1 − λ), (1 − 2λ)/(1 − λ)}.

The lower bound in part (i) above implies that the bandwidth used to obtain the nonpara-
metric estimators of the time-integrated function g(λ) and of the rescaled local spectral density
f (u,λ)/g(λ) is relative small, that is, the bias of the corresponding estimators is of a smaller
order of magnitude than their variance. Relaxing this assumption to 3/20 < λ < 1/3 (cf. As-
sumption 5) will introduce an additional bias term to the centering sequence of the asymptotic
distribution given in Theorem 4.2 below.

Theorem 4.2. Suppose that Xn ∈ FLS \ FS , that Assumptions 1–4 and Assumption 6 are satisfied
and that E|ε1|k < ∞ for all k ∈ N. If n → ∞, then√

mnN(Tn − δ2
n − D2

n) ⇒ N (0, v2),

where

δ2
n = 1

2πmnb
MH

∫ π

−π
K2(x)dx

∫ 1

0

∫ π

−π

f 2(u,λ)

g2(λ)
dλdu,

D2
n = 1

N

N∑
s=1

∫ π

π

(
f (us, λ)

g(λ)
− 1

)2

dλ



1200 E. Paparoditis

and v2 = 8π(v1 + L2
c,H v2 − 2v3), with

v1 = 2
∫ π

−π
v2(λ)g2(λ)dλ +

∫ π

−π

∫ π

−π
v(λ1)v(λ2)g4(λ1,−λ1, λ2)dλ1 dλ2,

v2 = 2
∫ 1

0

∫ π

−π
w2(u,λ)f 2(u,λ)dλdu + κ4

∫ 1

0

[∫ π

−π
w(u,λ)f (u,λ)dλ

]2

du,

v3 = 2
∫ 1

0

∫ π

−π
v(λ)w(u,λ)f 2(u,λ)dλdu

+ κ4

∫ 1

0

∫ π

−π

∫ π

−π
v(λ1)w(u,λ2)f (u,λ1)f (u,λ2)dλ1 dλ2 du,

w(u,λ) = 1

g(λ)

(
f (u,λ)

g(λ)
− 1

)
, v(λ) =

∫ 1

0

f (u,λ)

g2(λ)

(
f (u,λ)

g(λ)
− 1

)
du,

MH = H 4/H 2
2 , L2

c,H = H−2
2

∑
|s|<c

∫
[0,1−|s|/c] h

2(x)h2(x +|s|/c)dx, g4(λ1, λ2, λ3) = ∫ 1
0 f4(u,

λ1, λ2, λ3)du and f4(u,λ1, λ2, λ3) = (2π)−3κ4A(u,λ1)A(u,λ2)A(u,λ3)A(u,
∑3

s=1 λs) the
fourth order local cumulant spectrum.

By the above theorem, asymptotic normality of the test statistic Tn still holds under fixed
alternatives, but with a different rate of convergence than under the null of stationarity. In fact,
while under the null hypothesis the variance of Tn is of order O(m−2

n N−1b−1), under fixed
alternatives, the variance of the test statistic is of order O(m−1

n N−1).
Theorem 4.2 is useful for calculating, by means of numerical integration, the asymptotic power

of the test for fixed alternatives belonging to the locally stationary process class considered. This
is important if, for instance, one is interested in quantifying the asymptotic probability of the
type II error associated with using a stationary model. In particular, if f (u,λ) is the true local
spectral density, then the probability of rejecting the null hypothesis is approximately equal to

P(H0 is rejected) ≈ 1 − 


(
1

v

(
τzα + μn√

mnb
− √

mnND2
n − √

mnNδ2
n

))

≈ 1 − 


(
1

v

(
τzα√
mnb

− √
mnND2

n − MH

2π

√
N√

mnb
D2

))
(4.1)

≈ 1 − 


(
−

√
mnN

v
D2

n − MH

2πv

√
N√

mnb
D2

)
,

where v = √
v2, with v2, δ2

n and D2
n as given in Theorem 4.2 and μn and τ as given in

Theorem 3.1. The second approximation above follows using μn/
√

mnb − √
mnNδ2

n = √
N/

(
√

mnb)MH (2π)−1D2 + O(N1/2m
−1/2
n ). Notice that the power of the test is dominated by the

term D2
n which is a discrete-time version of the quadratic deviation D2 given in Theorem 4.1 and

that
√

mnND2
n goes to infinity at a

√
n-rate as n → ∞.
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5. Applications

5.1. Some guidelines for choosing the testing parameters

While the results of the proposed testing procedure seem to be less sensitive with respect to the
particular choice of the taper function h(·) and the kernel K(·), the choice of the other tuning
parameters is more influential and more difficult to solve from a theoretical point of view. Based
on some rather heuristic considerations, in this section, we provide some guidelines on how to
choose these parameters in practice.

Concerning the smoothing bandwidths h and b, one approach is to choose these parameters
in a way which leads to “good estimates” of the unknown functions g(λ) and f (u,λ)/g(λ),
respectively. A procedure for selecting the smoothing bandwidth in the context of spectral density
estimation for stationary process is offered by the cross-validation criterion proposed by Beltrão
and Bloomfield (1987); see also Robinson (1991). Adapted to our context and under the null
hypothesis, such a rule implies that h can be chosen as the minimizer of the objective function

CV(h) = 1

Ln

Ln∑
j=1

{
log(ĝ−j (ωj )) + In(ωj )

ĝ−j (ωj )

}
,

where ĝ−j (ωj ) is the leave-out-j version of the estimator ĝh(ωj ) given by ĝ−j (ωj ) = n−1 ×∑
s∈Ln,j

Kh(ωj − ωs)In(ωs) and Ln,j = {s :−Ln ≤ s ≤ Ln and j − s 	= ±j modLn}. Although
the above approach modified appropriately can also be applied to select the bandwidth b used
within each segment, a computationally simpler rule can be obtained via the following con-
siderations. Suppose that the global bandwidth h behaves under the null of stationarity like
h = Cn−λ, where λ is known and the constant C depends on characteristics of the unknown
function g(λ) = f (u,λ). Suppose, further, that the bandwidth b has a similar behavior to h, but
adjusted for the smaller number of observations, that is, b = Cm−λ

n . Then, for h chosen, b can
be selected according to the rule b = h(n/mn)

λ.
Regarding the choice of the segment length mn and the number of time points N used, As-

sumption 5(iv) and Assumption 6(iv) impose some restrictions on the rates at which these pa-
rameters have to increase to infinity. Notice that the number of time points N is automatically
determined by the choice of the segment length mn and of the shift Sn, that is, of the constant c.
For instance, for λ = 1/4, δ is allowed to vary in the interval (1/2,2/3). Within the allowed range
of possible values for δ, we stress the fact that δ should be chosen on the one hand large enough
in order to have within each time segment a sufficient number of observations for nonparametric
estimation. On the other hand, δ should not chosen too large in order to have sufficient infor-
mation on the local structure of the series, that is, a sufficient number of N distinct time points.
Recall that c determines the degree of overlapping of the segments used and that this parameter
should be kept rather small, that is, 1 ≤ c ≤ 3.

5.2. A real-life data example

We demonstrate the capability of our method to detect changes of the spectral structure of a
time series by means of a real-life data example. The data analyzed consists of the first 3072
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observations of a set of tremor data recorded in the Cognitive Neuroscience Laboratory of the
University of Quebec at Montreal, the purpose of the study being to compare different regions of
tremor activity coming from a subject with Parkinson’s disease. It has been previously analyzed
by von Sachs and Neumann (2000). A plot of the first differences of the series is shown in
Figure 1(a) after a Gaussian noise of standard deviation 0.01 has been added in order to break
the discrete nature of the data.

We apply the test proposed using a local window of length mn = 256 observations and a
shift Sn = mn (c = 1), that is, we consider N = 12 time points. To smooth the global and
local periodogram, the Bartlett–Priestley kernel has been used with bandwidths h = 0.1 and
b = 0.18, where h has been chosen as the minimizer of CV(h). For this choice of parameters, we

Figure 1. (a) Plot of the first differences of the tremor series (n = 3071). (b) Estimated spectral densities
for different segments of the tremor series: the solid line refers to the estimated time-averaged spectral den-
sity ĝh(λ), the dashed line to the estimated spectral density for the time segment t ∈ {1760,1761, . . . ,2170}
and the dotted line for the time segment t ∈ {2350,2351, . . . ,2840}. (c) Plot of the statistic Qn(us) against
the rescaled time parameter us = ts/3071, ts = 129,130, . . . ,2942. (d) Estimated spectral density of the
first time segment consisting of the observations Xt for t ∈ {1,2, . . . ,1759}.
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get (mn

√
NbTn − μ̂n)/τ = 21.16, which, compared with the 5% critical value of the standard

Gaussian distribution, clearly leads to a rejection of the null hypothesis.
To better understand the reasons leading to the above rejection of stationarity, it is useful to

consider the statistic Qn(u) defined by

Qn(u) = mn

√
b

∫ π

−π
V 2

n (u,λ)dλ, u ∈ (0,1), (5.1)

which evaluates, at any time point u ∈ (0,1), the difference between the locally calculated sam-
ple spectral density Imn(u,λ) and its globally estimated counterpart ĝh(λ). Notice that the test
statistic Tn is just a time-averaged version of Qn(u) calculated for N different instants of time.
Validity of the null hypothesis corresponds to small values of Qn(u) while large values of the
same statistic pinpoint time regions where changes in the spectral structure of the series oc-
cur. Figure 1(c) shows a plot of Qn(t/n) against the rescaled time variable t/n. As this figure
clearly indicates, the main contributions to the test statistic Tn leading to the rejection of the
null hypothesis are coming essentially from two different time segments. Based on the behavior
of Qn(ts/n), these segments are easily identified as follows. The first segment starts approxi-
mately at t = 1760 and ends at t = 2170, while the second starts at approximately t = 2350
and ends at t = 2840. Figure 1(b) shows the estimated time-averaged spectral density ĝh(λ),
as well as the estimated spectral densities obtained using observations within each one of the
two identified time segments. Figure 1(d) shows the estimated spectral density obtained us-
ing observations of the first part of the series. As is clearly seen from these exhibits, an in-
crease in the variability of the series, together with a reallocation of the total power toward low-
frequency components, makes the behavior of the spectral densities in the two identified time
segments different from the overall behavior and from the behavior during the first part of the
series.

6. Auxiliary results and proofs

Lemma 6.1. Suppose Assumptions 1 and 3 hold. As n → ∞,

(i) E(ĝh(λ) − ∫ 1
0 f (u,λ)du)2 = O(n−1h−1) + O(h4), where the O(·) terms are uniformly

in λ ∈ [−π,π];
(ii) supλ∈[−π,π] |̂gh(λ) − ∫ 1

0 f (u,λ)du| → 0 in probability.

Proof. To prove (i), let

dn(λk) = 1√
2πn

n∑
t=1

Xt,n exp{−iλkt}

and �m(λ) = ∑m
s=1 exp{−iλs}. Note that |�m(λ)| ≤ πLm(λ), where the function Lm(ω) is the

periodic extension of Lm(ω) = n1{|ω|≤n−1}(ω)+|ω|−11{n−1<|ω|≤π}(ω); cf. Dahlhaus (1997). Us-
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ing summation by parts, we get

n∑
t=1

A(t/n,λk)e
−i(λ−λk)t = A(1, λk)O

(
Ln(λk − λ)

) + O
(

sup
u

|A′(u,λk)|Ln(λk − λ)
)

(6.1)
= O

(
Ln(λk − λ)

)
.

Furthermore, because∣∣∣∣∣
n∑

t=1

(
At,n(λ) − A(t/n,λk)

)
e−i(λ−λk)t

∣∣∣∣∣
≤

n∑
t=1

|At,n(λ) − A(t/n,λ)| +
∣∣∣∣∣

n∑
t=1

(
A(t/n,λ) − A(t/n,λk)

)
e−i(λ−λk)t

∣∣∣∣∣
≤ n sup

t,n
|At,n(λ) − A(t/n,λ)| + sup

u
|A′(u,λ)||λ − λk||�n(λk − λ)|

≤ K−1(1 + |λk − λ|Ln(λk − λ)
)
,

it follows that ∣∣∣∣∣
n∑

t=1

(
At,n(λ) − A(t/n,λk)

)
e−i(λ−λk)t

∣∣∣∣∣ = O(1). (6.2)

By (6.1), (6.2) and the fact that
∫ π
−π Ln(λ−λk)dλ = O(ln(n)) (cf. Dahlhaus (1997), Lemma A.4),

we get

E(In(λk)) = cum(dn(λk), dn(−λk))

= 1

2πn

∫ π

−π

n∑
t=1

n∑
s=1

At,n(λ)As,n(λ)e−i(λ+λk)(t−s) dλ

= 1

2πn

∫ π

−π

n∑
t=1

n∑
s=1

A(t/n,λk)A(s/n,λk)e
−i(λ+λk)(t−s) dλ + O(ln(n)n−1)

=
∫ 1

0
f (u,λk)du + O(ln(n)n−1).

Let ω = λj and λ = λk and consider

Cov(In(λ), In(ω)) = cum(dn(ω), dn(λ))cum(dn(−ω), dn(−λ))

+ cum(dn(ω)dn(−λ))cum(dn(−ω), dn(λ)) (6.3)

+ cum(dn(ω), dn(−ω), dn(λ), dn(−λ)).
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For ω 	= λ, we have, for the first term in (6.3),

cum(dn(ω), dn(λ)) = 1

2πn

n∑
s=1

n−s∑
k=−n+s

Cov(Xs,n,Xs+k,n)e
−iωke−i(λ+ω)s

= 1

2πn

n∑
s=1

n−s∑
k=−n+s

c(s/n, k)e−iωke−i(λ+ω)s + O(n−1)

= 1

2πn

(
n−1∑
k=0

n−k∑
s=1

c(s/n, k)e−iλke−i(λ+ω)s

+
−1∑

k=−n+1

n−|k|∑
s=1

c(s/n, k)e−iλke−i(λ+ω)s

)
+ O(n−1),

from which we conclude, using∣∣∣∣∣1

n

n−1∑
k=0

n−k∑
s=1

c(s/n, k)e−iλke−i(λ+ω)s

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

∣∣∣∣∣
n−k∑
s=1

e−i(λ+ω)s

∣∣∣∣∣|c(s/n, k)|

≤ C

n

n−1∑
k=0

|k|
∞∑

j=−∞

1

l(j)l(j + k)

≤ 2C√
n

( ∞∑
k=−∞

|k|1/2 1

l(k)

)( ∞∑
j=−∞

1

l(j)

)
= O(n−1/2),

that cum(dn(ω), dn(λ)) = O(n−1/2) uniformly in ω and λ. Notice that the above arguments re-
main valid if ω (resp. λ) is replaced by −ω (resp. −λ) or both. Furthermore,

|cum(dn(ω), dn(−ω), dn(λ), dn(−λ))|

≤ n−2C

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

∞∑
j=−∞

|at1,n(j)||at2,n(j + t2 − t1)|

× |as1,n(j + s1 − t1)||as2,n(j + s2 − t1)|

≤ n−1CK4

( ∞∑
j=−∞

l−1(j)

)4

= O(n−1).

Thus, Cov(In(λk), In(λj )) = O(n−1) for λj 	= λk , and for λj = λk , we get (along the same lines)
that Var(In(λj )) = O(1) uniformly in λj . Using these results, the properties of the kernel K (see
Assumption 2) and the smoothness properties of g (see Assumption 1), it follows by standard
arguments that E(ĝh(λ)) = g(λ) + O(h2) and Var(ĝh(λ)) = O(n−1h−1) uniformly in λ.
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To establish (ii), notice that∣∣∣∣̂gh(λ) −
∫ 1

0
f (u,λ)du

∣∣∣∣ ≤
∣∣∣∣∣1

n

Ln∑
j=−Ln

Kh(λ − ωj )

[
In(ωj ) − 1

n

n∑
t=1

f

(
t

n
,ωj

)]∣∣∣∣∣
+

∣∣∣∣∣1

n

Ln∑
j=−Ln

Kh(λ − ωj )
1

n

n∑
t=1

[
f

(
t

n
,ωj

)
− f

(
t

n
, λ

)]∣∣∣∣∣
+

∣∣∣∣∣1

n

n∑
t=1

f

(
t

n
, λ

)(
1

n

Ln∑
j=−Ln

Kh(λ − ωj ) − 1

)∣∣∣∣∣ + O(n−1).

The first term on the right-hand sight goes to zero because of part (i), Markov’s inequal-
ity and a standard discretization argument (cf. the proof of Theorem A1 of Franke and
Härdle (1992)). Using |f (u,λ1) − f (u,λ2)| ≤ C|λ1 − λ2|, the second term is bounded by
Cn−2 ∑Ln

j=−Ln

∑n
t=1 Kh(λ − ωj )πh = O(h). For the third term, we have, by Assumption 3,∣∣∣∣∣

(
1

n

Ln∑
j=−Ln

Kh(λ − ωj ) − 1

)
1

n

n∑
t=1

f

(
t

n
, λ

)∣∣∣∣∣ ≤ 2πC

n2h

n∑
t=1

f

(
t

n
, λ

)
= O(n−1h−1).

�

Lemma 6.2. Let Assumption 1 be true and E|ε1|k < ∞ for k ∈ N. Then

cum(dn(λ1), dn(λ2), . . . , dn(λk)) = (2π)k−1

nk/2

n∑
t=1

fk

(
t

n
, λ1, λ2, . . . , λk−1

)
e−it

∑k
s=1 λs

+ O(lnk−1(n)n−k/2),

where the error term is uniform in λ1, λ2, . . . , λk and for u ∈ [0,1],

fk(u,λ1, λ2, . . . , λk−1) = cumk(εt )

(2π)k−1
A(u,λ1)A(u,λ2) · · ·A(u,λk−1)A

(
u,

k−1∑
s=1

λs

)

is the kth order local cumulant spectrum of the process {X̃t (u), t ∈ Z}, where X̃t (u) =∑∞
j=−∞ a(u, j)εt−j and A(u,λ) = ∑∞

j=−∞ a(u, j) exp{−ijλ}.
Proof. We use

cum(dn(λ1), dn(λ2), . . . , dn(λk))

= cumk(εt )

2πk−1nk/2

n∑
t1,...,tk

∫ k−1∏
s=1

Ats,n(ωs)e
−i(λs−ωs)ts

× Atk,n

(
−

k−1∑
s=1

ωs

)
e−i(λk+∑k−1

s=1 ωs)tk dω1 · · · dωk−1
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and successively replace Ats,n(ωs) by A(ts/n,λs) for s = 1,2, . . . , k − 1 and Atk,n(−
∑k−1

s=1 ωs)

by A(ts/n,−∑k−1
s=1 λs). We then get that the expression on the right-hand side above equals

cumk(εt )

2πk−1nk/2

n∑
t1,...,tk

∫ k−1∏
s=1

A(ts/n,λs)e
−i(λs−ωs)ts

× A

(
tk/n,−

k−1∑
s=1

λs

)
e−i(λk+∑k−1

s=1 ωs)tk dω1 · · · dωk−1

= cumk(εt )

nk/2

n∑
t=1

k−1∏
s=1

A(t/n,λs)A

(
t/n,−

k−1∑
s=1

λs

)
e−it

∑k
s=1 λs ,

plus a remainder Rn which, using bounds similar to (6.1) and (6.2) and Lemma A.4 of Dahlhaus
(1997), is shown to be, after tedious but straightforward calculations, bounded by

Const.
cumk(εt )

2πk−1nk/2

∫ k−1∏
s=1

Ln(λs − ωs)dω1 dω2 · · · dωk−1 = O
(
lnk−1(n)/nk/2).

�

We next show that under the assumptions of Theorem 3.1, replacing ĝh(λ) by g(λ) = f (λ)

does not affect the asymptotic distribution of Tn. For this, write under the null hypothesis f̂h(λ)

for ĝh(λ) and let Ln(u,λ) = (Imn(u,λ)/f (λ) − 1) and Gn(λ) = (f̂h(λ)/f (λ) − 1). Further, let

T̃n = 1

N

N∑
s=1

∫ π

−π
Ṽ 2

n

(
ts

n
, λ

)
dλ, (6.4)

where Ṽn(u,λ) is defined in (2.11). We then have the following lemma.

Lemma 6.3. Suppose the assumptions of Theorem 3.1 hold. As n → ∞,

Tn − T̃n = oP (m−1
n N−1/2b−1/2).

Proof. Using a Taylor series argument and Lemma 6.1, we get

mn

√
bNTn

= mn

√
bNT̃n − 2

mn

√
b√

N

N∑
s=1

∫ π

−π

{
1

mn

∑
j

Kb(λ − λj )Ln(us, λj )

}

×
{

1

mn

∑
l

Kb(λ − λl)
(
Ln(us, λl) + 1

)
Gn(λl)

}
dλ

+ OP

(
mn

√
bN

nh

)
+ OP

(
mn

√
bNh4),
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where the first OP (·) term goes to zero for δ < (1 − 2λ)/(1 − λ) and the second for δ < (8λ −
1)/(1 − λ). Denoting by −2Rn the second term on the right-hand side of the above equation, we
verify that

Rn =
√

b

mn

√
N

N∑
s=1

∫ π

−π

∑
j

∑
l

Kb(λ − λj )Kb(λ − λl)Ln(us, λj )Gn(λl)dλ + OP

(√
N

nbh

)

= R̃n + OP

(√
N

nbh

)

with an obvious definition for R̃n and where OP (
√

N/nbh) → 0 for δ > λ/(1 − λ). Evaluating
the expectation E(Ln(u1, λ1)Gn(λ2)Ln(u2, λ3)Gn(λ4)), we can decompose E(R̃n)

2 into a sum
of several terms, two typical of which are

E1,n = b

m2
nN

∑
s1

∑
s2

∫ ∫ ∑
j1

∑
l1

∑
j2

∑
l2

Kb(λ1 − λj1)Kb(λ1 − λl1)Kb(λ2 − λj2)

× Kb(λ2 − λl2)dλ1 dλ2

× E[Ln(us1 , λj1)Ln(us2 , λj2)]E[Gn(λl1)Gn(λl2)]
and

E2,n = b

m2
nN

∑
s1

∑
s2

∫ ∫ ∑
j1

∑
l1

∑
j2

∑
l2

Kb(λ1 − λj1)Kb(λ1 − λl1)Kb(λ2 − λj2)

× Kb(λ2 − λl2)dλ1 dλ2

× E[Ln(us1 , λj1)Gn(λl1)]E[Ln(us2, λj2)Gn(λl2)].
Using E(Imn(u,λj )) = f (λj ) + O(m−2

n ), we get

E1,n = b

m2
nN

∑
s1

∑
s2

∫ ∫ ∑
j1

∑
l1

∑
j2

∑
l2

Kb(λ1 − λj1)Kb(λ1 − λl1)Kb(λ2 − λj2)

× Kb(λ2 − λl2)dλ1 dλ2

× Cov
(
Imn(us1 , λj1)/f (λj1), Imn(us2 , λj2)/f (λj2)

)
× E[Gn(λl1)Gn(λl2)] + O(Nb(nh)−1).

Now, standard calculations (cf. Theorem 4.3.2 of Brillinger (1981)) yield

Cov(Imn(us1 , λj ), Imn(us2, λl))

= 1

4π2H 2
2,mn

(0)
f (λj )f (λl) (6.5)
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×
[∫ ∫

Hmn(ω1 − λj )Hmn(−ω1 + λl)Hmn(ω2 + λj )Hmn(−ω2 − λl)

× eiS(s1−s2)(ω1+ω2) dω1 dω2

+
∫ ∫

Hmn(ω1 − λj )Hmn(−ω1 − λl)Hmn(ω2 + λj )Hmn(−ω2 + λl)

× eiS(s1−s2)(ω1+ω2) dω1 dω2

+
∫ ∫ ∫

f4(ω1,ω2,ω3)e
iS(s1−s2)(ω2+ω3)Hmn(ω1 + ω2 + ω3 + λj )

× Hmn(−ω1 − λj )Hmn(−ω2 + λl)Hmn(−ω3 − λl)dω1 dω2 dω3

]
+ O(log2(mn)m

−2
n )

=
3∑

r=1

Cr,n(us1 , us2, λj , λl) + O(log2(mn)m
−2
n ),

with an obvious definition for Cr,n(us1, us2, λj , λl), r = 1,2,3 and where f4(λ1, λ2, λ3) =
(2π)−3κ4A(e−iλ1)A(e−iλ2)A(e−iλ3)A(ei(λ1+λ2+λ3)), with A(z) = ∑

j a(j)zj , denotes the fourth
order cumulant spectrum, and Hmn(λ) = H1,mn(λ). Substituting (6.5) into E1,n, we get by
straightforward calculation that E1,n = O(mnb(nh)−1 + mnh

4b). To demonstrate this, consider,
for instance, the term of E1,n corresponding to C1,n(us1 , us2, λj1, λj2). Using

1

2π

∫ π

−π
Hmn(x − y1)Hmn(−x + y2)e

iS(s1−s2)x dx

(6.6)

=
mn∑

t1=1

mn∑
t2=1

t1−t2=S(s1−s2)

h

(
t1

mn

)
h

(
t2

mn

)
ei(y1t1−y2t2)

and E[Gn(λl1)Gn(λl2)] = O(n−1h−1 +h4), by Lemma 6.1, we get that this term can be bounded
by

O

(
m2

n

(
1

nh
+ h4

))
b

m2
nN

×
N∑

s1=1

N∑
s2=1

∫ ∫ ∑
j1

∑
j2

Kb(λ1 − λj1)Kb(λ2 − λj2)

× 1

H 2
2,mn

(0)

∣∣∣∣∣
mn∑

t1=1

mn∑
t2=1

t1−t2=S(s1−s2)

h

(
t1

mn

)
h

(
t2

mn

)
ei(λj1 t1−λj2 t2)

∣∣∣∣∣
2

dλ1 dλ2
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= O

(
m2

n

(
1

nh
+ h4

))
b

H 2
2,mn

(0)m2
n

×
∑
|r|<c

(
1 − |r|

N

)∫ ∑
j1,j2

Kb(λ1 − λj1)Kb(λ2 − λj2)

×
∣∣∣∣∣
mn+rS1(−c<r<0)∑
t=1+rS1(0≤r<c)

h

(
t

mn

)
h

(
t + rS

mn

)
ei(λj1−λj2 )t

∣∣∣∣∣
2

dλ1 dλ2.

Approximating the sum over the Fourier frequencies by an integral and using the Lipschitz con-
tinuity of the kernel K , we get that the above term is bounded by

O

(
m2

n

(
1

nh
+ h4

))
b

H 2
2,mn

(0)

×
∑
|r|<c

∫
Kb(λ1 − x)Kb(λ2 − x)dλ1 dλ2

×
∣∣∣∣∣
mn+rS1(−c<r<0)∑
t=1+rS1(0≤r<c)

h

(
t

mn

)
h

(
t + rS

mn

)
ei(x−y)t

∣∣∣∣∣
2

dx dy + RMn

= O

(
m2

n

(
1

nh
+ h4

))
O(bH−1

2,mn
(0))

∫
Kb(λ1 − x)Kb(λ2 − x)dx dλ1 dλ2 + RMn

= O

(
mnb

nh
+ mnh

4b

)
+ RMn,

where the remainder RMn satisfies

|RMn| ≤ O

(
m2

n

(
1

nh
+ h4

))
1

H 2
2,mn

(0)

×
∫

Kb(λ1 − x)|y − x|dλ1

×
∣∣∣∣∣
mn+rS1(−c<r<0)∑
t=1+rS1(0≤r<c)

h

(
t

mn

)
h

(
t + rS

mn

)
ei(x−y)t

∣∣∣∣∣
2

dx dy

≤ O

(
m2

n

(
1

nh
+ h4

))
1

H 2
2,mn

(0)

∫ ∫
|y − x|L2

mn
(x − y)dx dy

= O(n−1h−1 + h4).

The function Lm(ω) appearing above is the periodic extension of Lm(ω) = n1{|ω|≤n−1}(ω) +
|ω|−11{n−1<|ω|≤π}(ω) and the last equality follows using Lemma A.4 of Dahlhaus (1997). To
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bound E2,n, we use

E[Ln(us, λj )Gn(λl)] = f −1(λj )f
−1(λl)cum(Imn(us, λj ), f̂ (λl)) + O(h2m−2

n )

and cum(Imn(us, λj ), In(λr)) = O(m
−1/2
n n−1/2) for λj 	= λr , where the O(·) term is uniformly

in us , λj and λr . We then have
√

b

mnn
√

N

∑
s

∫ ∑
j

∑
l

∑
r

Kb(λ − λj )Kb(λ − λl)Kh(λl − λr)dλ
1

f (λj )f (λl)

× cum(Imn(us, λj ), In(λr))

= O(m
1/2
n b1/2N1/2n−1/2) = O(b1/2)

and, therefore, E2,n = O(b). �

Proof of Theorem 3.1. It suffices to show that mn

√
NbT̃n − μn converges to the desired

Gaussian distribution. Using (6.5) and E(Imn(us, λj )) = f (λj ) + O(m−2
n ), we get

mn

√
NbE(T̃n)

=
√

b

mn

√
N

N∑
s=1

∑
j1

∑
j2

∫ π

−π
Kb(λ − λj1)Kb(λ − λj2)dλ

1

f (λj1)f (λj2)

× Cov(Imn(us, λj1), Imn(us, λj2)) + O(N1/2m
−3/2
n )

=
√

bN

mnH
2
2,mn

(0)

∑
j1

∑
j2

∫ π

−π
Kb(λ − λj1)Kb(λ − λj2)dλ

× {|H2,mn(λj1 + λj2)|2 + |H2,mn(λj1 − λj2)|2 + H4,mn(0)(η − 3)}
+ O(N1/2m

−3/2
n )

= E1,n + E2,n + E3,n + O(N1/2m
−3/2
n )

with an obvious definition for the Ei,n’s. For E1,n, we have

E1,n = mn

√
bN

4π2H 2
2,mn

(0)

∫ ∫ ∫
Kb(v + 2x)Kb(v)|H2,mn(ω)|2 dω dv dx + O(N1/2b−1/2m−1

n ),

where O(N1/2b−1/2m−1
n ) → 0 for δ > 1/(3 − λ) and∣∣∣∣ mn

√
bN

4π2H 2
2,mn

(0)

∫
Kb(v + 2x)Kb(v)|H2,mn(ω)|2 dω dv dx − H4

√
bN

4πH 2
2

∫
(K ∗ K)(y)dy

∣∣∣∣ → 0.

Notice that the O(N1/2b−1/2m−1
n ) above appears because by the Lipschitz properties of K , the

fact that |Hk,mn(λ)| ≤ CLmn(λ), where the function Lmn(λ) has been introduced in the proof of
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Lemma 6.1, and by Lemma A.4 of Dahlhaus (1997), we get

mn

√
bN

4π2H 2
2,mn

(0)

∫
Kb(v)

(
Kb(v + 2x + ω) − Kb(v + 2x)

)|H2,mn(ω)|2 dω dv dx

= O(N1/2b−1/2m−1
n ).

To evaluate E2,n we first write

E2,n = mn

√
bN

4π2H 2
2,mn

(0)

{∫ ∫ ∫
Kb(v)

(
Kb(v + ω) − Kb(v)

)|H2,mn(ω)|2 dv dx dω

+ 2π
∫ ∫

K2
b (v)|H2,mn(ω)|2 dv dω

}
+ O(N1/2b−1/2m−1

n ).

As for E1,n, for the first term on the right-hand side, we get the bound

C
mn

√
N

2πH 2
2,mn

(0)
√

b

∫
Kb(v)dv

∫
|ω||H2,mn(ω)|2 dω = O(N1/2b−1/2m−1

n ),

while for the second term, we obtain∣∣∣∣ mn

√
N

2πH 2
2,mn

(0)b3/2

∫
K2(v/b)dv

∫
|H2,mn(ω)|2 dω − H4

√
N

H 2
2

√
b

∫
K2(x)dx

∣∣∣∣ → 0.

The proof that |mn

√
bNE(T̃n) − μn| → 0 concludes at this point because∣∣∣∣2πH4,mn(0)

√
bN

mnH
2
2,mn

(0)
(η − 3) − 2πH4

√
bN

H 2
2

(η − 3)

∣∣∣∣ → 0.

To obtain the variance of mn

√
bNT̃n, notice that

Var(T̃n) = 1

m4
nN

2

×
∑
s1,s2

∑
j1,j2

∑
l1,l2

∫ ∫
Kb(λ1 − λj1)Kb(λ1 − λj2)Kb(λ2 − λl1)Kb(λ2 − λl2)dλdλ2

× {E[Ln(us1, λj1)Ln(us2, λl1)]E[Ln(us1, λj2)Ln(us2, λl2)]
+ E[Ln(us1, λj1)Ln(us2, λl2)]E[Ln(us1 , λj2)Ln(us2 , λl1)] (6.7)

+ cum[Ln(us1, λj1),Ln(us1, λj2),Ln(us2, λl1),Ln(us2, λl2)]}
+ o(m−2

n N−1b−1)

= V1,n + V2,n + V3,n + o(m−2
n N−1b−1)
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with an obvious definition for Vi,n, i = 1,2,3. Using Ln(u,λj ) = f −1(λj )(Imn(u,λj ) −
E(Imn(u,λj ))) + O(m−2

n ), we get

V1,n = 1

N2

N∑
s1=1

N∑
s2=1

∫ ∫ [
1

m2
n

∑
j

∑
l

Kb(λ1 − λj )Kb(λ2 − λl)f
−1(λj )f

−1(λl)

× Cov(Imn(us1 , λj ), Imn(us2, λl))

]2

dλ1 dλ2 (6.8)

+ O(m−5
n b−1).

Substituting (6.5) into (6.8) and ignoring the O(log2(mn)m
−2
n ) term yields

V1,n = 1

N2m4
n

3∑
q=1

∑
s1,s2

∫ ∫ [∑
j

∑
l

Kb(λ1 − λj )Kb(λ2 − λl)Cq,n(us1, us2, λj , λl)

]2

dλ1 dλ2

+ 2

N2m4
n

∑
q1=1

3∑
q2=q1+1

∑
s1,s2

∫ ∫ [∑
j

∑
l

Kb(λ1 − λj )Kb(λ2 − λl)

× Cq1,n(us1, us2, λj , λl)

]
×

[∑
j

∑
l

Kb(λ1 − λj )Kb(λ2 − λl)

× Cq2,n(us1 , us2, λj , λl)

]
dλ1 dλ2

+ o(m−2
n N−1b−1)

=
6∑

l=1

V
(l)
1,n + o(m−2

n N−1b−1)

with an obvious definition for V
(l)
1,n, l = 1,2, . . . ,6. Using (6.6), we obtain

V
(1)
1,n = 1

NH 4
2,mn

(0)

×
∑
|r|<c

(1 − |r|/N)

×
∫ ∫ [

1

m2
n

∑
j

∑
l

Kb(λ1 − λj )Kb(λ2 − λl) (6.9)
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×
∑ mn+rS1(−c<r<0)∑

t1,t2=1+rS1(0≤r<c)

h

(
t1

mn

)
h

(
t1 − rS

mn

)

× h

(
t2

mn

)
h

(
t2 − rS

mn

)

× e−i(λj −λl)(t1−t2)

]2

dλ1 dλ2

which, multiplied with m2
nNb, converges, as n → ∞, to

m2
nNbV

(1)
1,n → 1

4π2H 4
2

∑
|s|<c

(∫
[0,1−|s|/c]

h2(x)h2(x + |s|/c)dx

)2 ∫
[−2π,2π]

(K ∗ K)2(y)dy.

A repetition of the above arguments yields that m2
nNbV

(2)
1,n converge to the same limit. For the

term V
(3)
1,n , notice first that using |Hmn(ω1 + ω2 + ω3 + λj ) − Hmn(ω1 + λj )| ≤ C|ω2 + ω3| and

Lemma A.4 of Dahlhaus (1997), we get that

1

H 2
2,mn

(0)m2
n

∫ ∫ ∫ ∑
j

∑
l

Kb(λ1 − λj )Kb(λ1 − λl)|Hmn(ω1 + λj )|2

× |Hmn(ω2 + λl)||Hmn(−ω2 − λl)|dω1 dω2 dω3 = O(H−1
2,mn

(0)).

This, together with straightforward calculations, yields m2
nNbV

(3)
1,n = O(b). For the cross-product

terms, we have

m2
nNbV

(4)
1,n

= 2m2
nb

H 4
2,mn

(0)

×
∑
|r|<c

(1 − |r|/N)

∫ ∫ [
1

m2
n

∑
j1

∑
l1

Kb(λ1 − λj1)Kb(λ2 − λl1)

×
∣∣∣∣∣
mn+rS1(−c<r<0)∑
t=1+rS1(0≤r<c)

h

(
t

mn

)
h

(
t − rS

mn

)

× e−i(λj1−λl1 )t1

∣∣∣∣∣
2]2

dλ1 dλ2

→ 1

2π2H 4
2

∑
|s|<c

(∫
[0,1−|s|/c]

h2(x)h2(x + |s|/c)dx

)2 ∫
[−2π,2π]

(K ∗ K)2(y)dy.
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Similar arguments show that m2
nNbV

(5)
1,n = O(b) and m2

nNbV
(6)
1,n = O(b).

Combining the previous results for V
(l)
1,n, l = 1,2, . . . ,6, we get that

m2
nNbV1,n → 1

π2H 4
2

∑
|s|<c

(∫
[0,1−|s|/c]

h2(x)h2(x + |s|/c)dx

)2

(6.10)

×
∫

[−2π,2π]
(K ∗ K)2(y)dy

as n → ∞. Since the structure of the term V2,n given in decomposition (6.7) is identical to that
of V1,n, m2

nNbV2,n converges to the same limit as (6.10). The proof that Var(mn

√
NbT̃n)) → τ 2

is then completed because m2
nNbV3,n → 0 as n → ∞; see Paparoditis (2006) for details.

To show convergence of mn

√
Nb(Tn − ETn) to the desired Gaussian distribution, notice

first that as in Theorem 10.3.1 of Brockwell and Davis (1991), we have Imn(u,λj )/f (λj ) =
Iε(u,λj )/σ

2 + Rmn(u,λj ), where supj E(Rmn(u,λj ))
2 = O(m−1

n ), Rmn(u,λj ) = a(e−iλ) ×
Jε(u,λ)Ymn(u,λ)+a(eiλ)Jε(u,−λ)Ymn(u,−λ)+|Ymn(u,λ)|2, Jε(u,λ) = (2πH2,mn(0))−1/2 ×∑mn

t=1 ht,mnεt+[un]−Mn−1e−iλt ,

Ymn(u,λ) = 1√
2πH2,mn(0)

∞∑
j=−∞

a(j)e−iλjUmn,j (u,λ)

and

Umn,j (u,λ) =
mn∑
t=1

ht,mn

(
εt+[un]−Mn−1−j eiλ(t−j) − εt+[un]−Mn−1e−iλt

)
(6.11)

=: U(1)
mn,j (u,λ) + U

(2)
mn,j (u,λ).

Let

Ln,ε(u,λ) = m−1
n

∑
j

Kb(λ − λj )
(
Iε(u,λj ) − 1

)
and

Wn(u,λ) = m−1
n

∑
j

Kb(λ − λj )Rmn(u,λj ).

We then have mn

√
Nb(Tn − ETn) = N−1/2 ∑N

s=1 Zs,n + R1,n + 2R2,n, where

Zs,n = mn

√
b

∫ (
L2

n,ε(us, λ) − EL2
n,ε(us, λ)

)
dλ,

R1,n = mn

√
b√

N

N∑
s=1

∫ (
W 2

n (us, λ) − EW 2
n (us, λ)

)
dλ
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and

R2,n = mn

√
b√

N

N∑
s=1

∫ (
Wn(us, λ)Ln,ε(us, λ) − E(Wn(us, λ)Ln,ε(us, λ))

)
dλ.

Observe that {Zs,n, s = 1,2, . . .} forms a zero-mean, strictly stationary c-dependent sequence
since for |s1 −s2| > c, the random variables Zs1,n and Zs2,n are based on the two non-overlapping
sets of i.i.d. random variables {εt+[us1n]−Mn−1, t = 1,2, . . . ,mn} and {εl+[us2 n]−Mn−1, l =
1,2, . . . ,mn} respectively. Furthermore, for Var(T̃n), we get, for |s1 − s2| ≤ c,

Cov(Zs1,n,Zs2,n) → 2

π2H 4
2

(∫ 1− |s1−s2|
c

0
h2(x)h2

(
x + |s1 − s2|

c

)
dx

)2

×
∫ 2π

−2π
(K ∗ K)(y)dy.

Convergence of N−1/2 ∑N
s=1 Zs,n to the desired Gaussian distribution then follows by a CLT for

c-dependent sequences; see Theorem 6.4.2 of Brockwell and Davis (1991).
The proof of the theorem is completed because straightforward but cumbersome calculations

show that R1,n → 0 and R2,n → 0 in probability; see Paparoditis (2006). �

Proof of Theorem 4.1. Let V (u,λ) = Imn(u,λ)/g(λ) − 1, G(u,λ) = (f (u,λ)/g(λ) − 1) and
write Tn as

Tn = 1

N

N∑
s=1

∫ (
V 2

n (us, λ) − V 2(us, λ)
)

dλ + 1

N

N∑
s=1

∫ (
V 2(us, λ) − G2(us, λ)

)
dλ

+ 1

N

N∑
s=1

∫
G2(us, λ)dλ.

The assertion of the theorem follows because N−1 ∑N
s=1

∫
(V 2

n (us, λ) − V 2(us, λ))dλ ≤
OP (1)

∫ π
−π |̂gh(λ) − g(λ)|dλ,

∫ π
−π |̂gh(λ) − g(λ)|dλ → 0 in probability (van der Vaart (1998),

Proposition 2.29) and N−1 ∑N
s=1

∫
(V 2(us, λ) − G2(us, λ))dλ ≤ OP (rn). �

Proof of Theorem 4.2. Using the notation Ln(u,λ) = (Imn(u,λ)/f (u,λ) − 1) and Gn(u,λ) =
(f (u,λ)/ĝh(λ) − 1) and substituting Imn(u,λj )/ĝh(λj ) − 1 = Ln(u,λj )f (u,λj )/ĝh(λj ) +
Gn(u,λj ), we get

Tn = 1

m2
nN

N∑
s=1

∫ {∑
j

Kb(λ − λj )Ln(us, λj )

}2

dλ

+ 1

m2
nN

N∑
s=1

∫ {∑
j

Kb(λ − λj )Ln(us, λj )Gn(us, λj )

}2

dλ
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+ 1

m2
nN

N∑
s=1

∫ {∑
j

Kb(λ − λj )Gn(us, λj )

}2

dλ

+ 2

m2
nN

N∑
s=1

∑
j1

∑
j2

∫
Kb(λ − λj1)Kb(λ − λj2)dλ

× {Ln(us, λj1)Ln(us, λj2)Gn(us, λj2) + Ln(us, λj1)Gn(us, λj2)

+ Gn(us, λj1)Ln(us, λj1)Gn(us, λj2)}

=
6∑

i=1

Ti,n

with an obvious definition for the Ti,n’s. To establish the theorem, we show that, in probability,

√
mnNT1,n − MH

√
N√

mnb

∫ π

−π
K2(x)dx → 0, (6.12)

√
mnNT2,n − MH

√
N√

mnb

∫ π

−π
K2(x)dx

1

2π

∫ 1

0

∫ π

−π

(
f (u,λ)

g(λ)
− 1

)2

dλdu → 0, (6.13)√
mnNT4,n → 0, (6.14)

where MH = H4/H
2
2 , and that√

mnN(T3,n + T5,n + T6,n − D2
n) ⇒ N (0, v2). (6.15)

To see (6.12), note that
√

mnNE(T1,n) = MH N1/2m
−1/2
n b−1

∫ π
−π K2(u)du + O(N1/2m

−1/2
n ).

Furthermore, if Assumption 1 is satisfied, then Imn(u,λ) = Ĩmn(u,λ) + O(m2
nn

−2), where

Ĩmn(u,λ) = (2πH2,mn(0))−1

∣∣∣∣∣
mn∑
t=1

ht,mnXt+[un]−Mn−1,n exp{−iλt}
∣∣∣∣∣
2

is the tapered local periodogram of the series X1(u),X2(u), . . . , Xn(u), where Xt(u) =∑
j a(u, j)εt−j . By Assumption 6 and simple algebra, we get

√
mnNT1,n = √

mnNT̃1,n +
oP (1), where T̃1,n is obtained by replacing Imn(u,λ) by Ĩmn(u,λ) in T1,n. Now, Var(T̃1,n) =
O(m−2

n N−1b−1), which implies that Var(
√

mnNT̃1,n) = O(m−1
n b−1) → 0 as n → ∞.

To establish (6.13), we use f/ĝh − 1 = (f/g − 1) − (g/ĝh − 1)f/g and write
√

mnNT2,n =√
mnNT

(1)
2,n + R2,n, where

√
mnNT

(1)
2,n =

√
mn

N

N∑
s=1

∫ {
1

mn

∑
j

Kb(λ − λj )Ln(us, λj )G(us, λj )

}2

dλ
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with G(u,λ) = (f (u,λ)/g(λ) − 1) and the remainder R2,n converges to zero in probabil-
ity by Lemma 6.1 and Assumption 6 since it is of order O(m

1/2
n N1/2h4 + N1/2(nbh)−1/2 +

m
1/2
n N1/2b2h2). Now, arguing exactly as in the proof of assertion (6.12), it follows that

√
mnNT

(1)
2,n − MH

√
N√

mnb

∫ π

−π
K2(x)dx

1

2π

∫ 1

0

∫ π

−π

(
f (u,λ)

g(λ)
− 1

)2

dλdu → 0

and Var(
√

mnNT
(1)
2,n ) = O(m−1

n b−1) → 0 as n → ∞.
To show that (6.14) is true, we use the same decomposition for f/ĝ − 1 as in (6.13) and verify

that
√

mnNT4,n = √
mnNT

(1)
4,n + R4,n, where

√
mnNT

(1)
4,n = 2√

m3
nN

N∑
s=1

∑
j1

∑
j2

∫
Kb(λ − λj1)Kb(λ − λj2)

× Ln(us, λj1)Ln(us, λj2)G(us, λj2)dλ,

and, for R2,n, the remainder R4,n satisfies, by Lemma 6.1 and Assumption 6, R4,n =
O(m

1/2
n N1/2h4 + N1/2(nbh)−1/2 + m

1/2
n N1/2b2h2) → 0 as n → ∞. Now, as for

√
mnNT

(1)
2,n ,

the variance of
√

mnNT
(1)
4,n is of order O(m−1

n b−1), while

E
(√

mnNT
(1)
4,n

) =
√

N

π
√

mnb

∫
K2(x)dx

1

N

N∑
s=1

∫
G(us,λ)dλ + O(N1/2m

−1/2
n )

= O(m
−1/2
n N−1/2) + O(N1/2m

−1/2
n ) → 0,

by Assumption 6, where the last equality follows because
∫ 1

0 G(u,λ)du = 0.
It remains to establish assertion (6.15). For this, consider the sequence of bivariate random

variables (T3,n − D2
n, T5,n + T6,n)

′. Straightforward calculations yield√
mnN(T3,n − D2

n, T5,n + T6,n)
′ = √

mnN(J1,n, J2,n)
′ + oP (1) (6.16)

(see Paparoditis (2006)), where

J1,n = −2
∫

v(λ)
(
In(λ) − g(λ)

)
dλ, (6.17)

J2,n = 2

N

N∑
s=1

∫
w(us, λ)

(
Imn(us, λ) − f (us, λ)

)
dλ, (6.18)

v(λ) = ∫ 1
0 f (u,λ)[f (u,λ)/g(λ) − 1]/g2(λ)du and w(u,λ) = [f (u,λ)/g(λ) − 1]/g(λ).

Using Lemma 6.2, we get mnNVar(J1,n) → V1 as n → ∞, where

V1 = 16π
∫

v2(λ)g2(λ)dλ + 8π
∫ ∫

v(λ1)v(λ2)g4(λ1,−λ1, λ2)dλ1 dλ2
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and g4(λ1,−λ1, λ2) = ∫ 1
0 f4(u,λ1,−λ1, λ2)du. Furthermore,

mnNVar(J2,n)

= 4mn

N

∫ ∫ N∑
s1=1

N∑
s2=1

w(us1,ω)w(us2, λ)

× {cum(dn(us1 ,ω), dn(us2λ))cum(dn(us1 ,−ω), dn(us2 ,−λ))

+ cum(dn(us1,ω)dn(us2 ,−λ))cum(dn(us1 ,−ω), dn(us2, λ))

+ cum(dn(us1,ω), dn(us1 ,−ω), dn(us2 , λ), dn(us2 ,−λ))}dω dλ

= W1,n + W2,n + W3,n

and an obvious definition for Wi,n, i = 1,2,3. Analyzing each term separately, we get

W1,n → W1 = 8π
H 2

2

∑
|s|<c

∫
[0,1− |s|

c
]
h2(x)h2(x + |s|/c)dx

∫ 1

0

∫
w̃2(u,λ)dλdu,

where w̃(u,λ) = w(u,λ)f (u,λ). W2,n has the same limit as W1,n, while

W3,n → W3 = 8πκ4

H 2
2

∑
|s|<c

∫
[0,1− |s|

c
]
h2(x)h2(x + |s|/c)dx

∫ 1

0

(∫ π

−π
w(u,λ)dλ

)2

du.

Finally, since

4mn

N∑
s=1

∫ ∫
v(λ1)w(us, λ2)cum(dn(λ1), dmn(us, λ2))cum(dn(−λ1), dmn(us,−λ2))dλ1 dλ2

= 4mn

nH2,mn(0)

N∑
s=1

∫ ∫
v(λ1)w(us, λ2)

×
[usn]+Mn+1∑

t,l=[usn]−Mn+2

ht−[usn]+Mn−1,mnhl−[usn]+Mn−1,mn

× A

(
t

n
, λ1

)
A

(
t

n
, λ2

)
A

(
l

n
,−λ1

)
A

(
l

n
,−λ2

)
× e−i(λ1+λ2)(t−l) dλdλ2

+ O
(
log(mn)/mn

)
→ C

(1)
1,2 = 8π

∫ 1

0

∫
v(λ)w(u,λ)f 2(u,λ)dλdu
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and

4mn

N∑
s=1

∫ ∫
v(λ1)w(us, λ2)cum

(
dn(λ1), dn(−λ1), dmn(us, λ2), dmn(us,−λ2)

)
dλ1 dλ2

= 4mn

nH2,mn(0)

N∑
s=1

∫ ∫
v(λ1)w(us, λ2)

×
[usn]+Mn+1∑

t=[usn]−Mn+2

h2
t−[usn]+Mn−1,mn

∣∣∣∣A(
t

n
, λ1

)∣∣∣∣2∣∣∣∣A(
t

n
, λ2

)∣∣∣∣2

+ O
(
log(mn)/mn

)
→ C

(2)
1,2 = 8π

∫ 1

0

∫ ∫
v(λ1)w(u,λ2)f (u,λ1)f (u,λ1)dλ1 dλ2 du,

we get mnNCov(J1,n, J2,n) → C1,2 = −2C
(1)
1,2 − C

(2)
1,2. Using Lemma 6.2 and arguing as in the

proof of Theorem 5.10.1 of Brillinger (1981), we get that
√

mnNJ1,n ⇒ N (0,V1) as n → ∞.
Furthermore, by Theorem A.2 of Dahlhaus (1997), we get

√
mnNJ2,n ⇒ N (0,W), where

W = 2W1 + W3. An application of the Cramér–Wold device leads to
√

mnN(J1,n, J2,n)
′ ⇒

N ((0,0)′,V ), where V = (vr,s)r,s=1,2 with v1,1 = V1, v2,2 = W and v1,2 = C1,2. Approxima-
tion (6.16) then yields assertion (6.15) with v2 = v1,1 + v2,2 + 2v1,2. �
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