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Let M,N be real-valued martingales such that N is differentially subordinate to M . The paper contains the
proofs of the following weak-type inequalities:

(i) If M ≥ 0 and 0 < p ≤ 1, then

‖N‖p,∞ ≤ 2‖M‖p

and the constant is the best possible.
(ii) If M ≥ 0 and p ≥ 2, then

‖N‖p,∞ ≤ p

2
(p − 1)−1/p‖M‖p

and the constant is the best possible.
(iii) If 1 ≤ p ≤ 2 and M and N are orthogonal, then

‖N‖p,∞ ≤ Kp‖M‖p,

where

K
p
p = 1

�(p + 1)
·
(

π

2

)p−1
· 1 + 1/32 + 1/52 + 1/72 + · · ·

1 − 1/3p+1 + 1/5p+1 − 1/7p+1 + · · · .

The constant is the best possible.
We also provide related estimates for harmonic functions on Euclidean domains.

Keywords: differential subordination; harmonic function; martingale

1. Introduction

The purpose of this paper is to study some sharp estimates for continuous-time martingales.
However, to introduce the main concepts and to present the motivations, we will start from the
discrete time setting. Let (�, F ,P) be a probability space, filtered by a non-decreasing family
(Fn) of sub-σ -algebras of F . Let f = (fn) and g = (gn) be two real-valued sequences adapted
to (Fn). Let df = (dfn) and dg = (dgn) be the difference sequences of f and g, defined by

fn =
n∑

k=0

dfk, gn =
n∑

k=0

dgk, n = 0,1,2, . . . .
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Following Burkholder (1989), we say that g is differentially subordinate to f if

|dgn| ≤ |dfn|, n = 0,1,2, . . . (1.1)

almost surely. For example, this takes place if g is a transform of f by a predictable real sequence
v = (vn), bounded in absolute value by 1; that is, we have dgn = vndfn, P(|vn| ≤ 1) = 1 and vn

is measurable with respect to F(n−1)∨0, n = 0,1,2, . . . .

Throughout the paper we assume that f and g are (Fn)-martingales. The problem of compar-
ing the sizes of f and g under the assumption of differential subordination has been studied in
depth in the literature. For p ∈ (0,∞), let

‖f ‖p = sup
n

‖fn‖p = sup
n

(E|fn|p)1/p

and

‖f ‖p,∞ = sup
n

‖fn‖p,∞ = sup
λ>0

λ
(
P(f ∗ ≥ λ)

)1/p

denote the strong and weak p-norms of a martingale. Here f ∗ = supn |fn|. For 1 < p < ∞, let
p∗ = max{p,p/(p − 1)}. Let us start with the result by Burkholder (1984).

Theorem 1.1. Assume g is differentially subordinate to f .
We have

‖g‖p,∞ ≤ 2

�(p + 1)
‖f ‖p, 1 ≤ p ≤ 2 (1.2)

and

‖g‖p ≤ (p∗ − 1)‖f ‖p, 1 < p < ∞. (1.3)

Both constants 2/�(p + 1) and p∗ − 1 are optimal.

One can check that neither of the estimates above holds for p < 1. The weak-type inequality
for the remaining set of parameters p was proved by Suh (2005).

Theorem 1.2. Assume f and g are real-valued and g is differentially subordinate to f . Then

‖g‖p,∞ ≤
(

pp−1

2

)1/p

‖f ‖p, 2 ≤ p < ∞. (1.4)

The inequality is sharp.

If one imposes the additional assumption on the sign of the dominating martingale f , the
optimal constants change for some values of p. Here is one of the main results of Burkholder
(1999).
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Theorem 1.3. Assume g is differentially subordinate to f and f is non-negative. Then

‖g‖p ≤ Cp‖f ‖p, 1 < p < ∞,

where the optimal constant Cp equals

Cp =
⎧⎨
⎩

(p − 1)−1, if 1 < p ≤ 2,[
p

(
p − 1

2

)]1/p

, if 2 < p < ∞.

Hence the optimal constant in the moment inequalities (1.3) decreases if and only if
2 < p < ∞. Furthermore, a closer inspection of the proof of (1.2) (see Burkholder (1984), exam-
ple (4.24), page 657), which shows that the best constant in the inequality (1.2) for non-negative
martingale f is still 2/�(p + 1). There is a natural question of what can be said if 0 < p < 1 or
p > 2. The answer is contained in the following theorem.

Theorem 1.4. Assume f is non-negative, g is real-valued and g is differentially subordinate
to f . Then

‖g‖p,∞ ≤ 2‖f ‖p, 0 < p < 1 (1.5)

and

‖g‖p,∞ ≤ p

2
(p − 1)−1/p‖f ‖p, 2 ≤ p < ∞. (1.6)

The inequalities are sharp. They are already sharp if g is assumed to be a transform of f .

Now let us turn to the continuous-time setting. Suppose (�, F ,P) is a complete probability
space, equipped with a filtration (Ft )t≥0, such that F0 contains all the events of probability 0.
Let M = (Mt) and N = (Nt ) be two real-valued semimartingales, which have right-continuous
paths with limits from the left. The continuous-time extension of the differential subordination,
which is due to Bañuelos and Wang (1995) (see also Wang (1995)), can be formulated as follows:
The semimartingale N is differentially subordinate to M if the process ([M,M]t − [N,N ]t ) is
non-negative and non-decreasing. Here ([M,M]t ) denotes the quadratic variation process of M ;
see Dellacherie and Meyer (1982). This notion is a generalization of (1.1). To see this, note that
if one treats discrete-time sequences f,g as continuous-time processes, then

[f,f ]t − [g,g]t =
	t
∑
k=0

(|dfk|2 − |dgk|2)

is non-negative and non-decreasing if and only if (1.1) is valid.
As an example, assume X is a real-valued martingale and K = (Ks) and H = (Hs) are pre-

dictable processes such that |H | ≤ |K| with probability 1. Let M , N be the Itô integrals of K , H

with respect to X; that is,

Mt = K0X0 +
∫ t

0
Ks dXs, Nt = H0X0 +

∫ t

0
Hs dXs.
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Then, as

[M,M]t − [N,N ]t = (|K0|2 − |H0|2)|X0|2 +
∫ t

0
|Ks |2 − |Hs |2 d[X,X]s ,

we have that N is differentially subordinate to M .
All the results above have their counterparts in this new setting. For Theorem 1.1, see the pa-

per by Wang (1995), where a lot of information on transferring inequalities from discrete- to the
continuous-time settings can be found. Burkholder’s method of proving martingale inequalities
involves a construction of a special function, satisfying certain convexity-type properties. Once
such a function is found, the continuous-time version follows from Itô’s lemma and the smooth-
ing or stopping time argument. For other examples and discussion, see the papers by Bañuelos
and Wang (1995) and Suh (2005).

Our approach follows the same pattern. To establish Theorem 1.4, we invent a special function
and prove the following stronger result.

Theorem 1.5. Assume M is a non-negative martingale and N is differentially subordinate to M .
Then

‖N‖p,∞ ≤ 2‖M‖p, 0 < p < 1, (1.7)

and

‖N‖p,∞ ≤ p

2
(p − 1)−1/p‖M‖p, 2 < p < ∞, (1.8)

and the inequalities are sharp.

We prove the case p < 1 in Section 2. Then we deal with the second part of the theorem. As
the proof is quite complicated, we divide it into a few steps. First, in Section 3, we show that the
constant p/(2(p − 1)1/p) can not be replaced by a smaller one. Section 4 contains the study of
a particular auxiliary differential equation, the solution of which will be needed in Section 5 in
order to construct the special function. We complete the proof of Theorem 1.5 in Section 6.

In the second part of the paper we drop the condition M ≥ 0 and deal with weak-type estimates
for differentially subordinated continuous-time martingales under the additional orthogonality
assumption. We say that M and N are strongly orthogonal if their covariance process [M,N ] is
constant with probability 1. In such a case, for convenience, we will skip the word “strongly”
and say that M and N are orthogonal.

Our result can be stated as follows:

Theorem 1.6. Assume M,N are real-valued orthogonal martingales with N differentially sub-
ordinate to X. Then, for 1 ≤ p ≤ 2,

‖N‖p,∞ ≤ Kp‖M‖p, (1.9)

where

K
p
p = 1

�(p + 1)
·
(

π

2

)p−1

· 1 + 1/32 + 1/52 + 1/72 + · · ·
1 − 1/3p+1 + 1/5p+1 − 1/7p+1 + · · · . (1.10)
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The inequality is sharp.

The theorem above for the particular case p = 1 was proved in Bañuelos and Wang (2000) us-
ing the ideas of Choi (1998). Their approach, again based on a construction of a special function,
is analytic. In Section 7, we propose a different proof that is more probabilistic in nature.

Finally, the last section of the paper is devoted to related results in harmonic analysis. As ex-
hibited in Burkholder (1991) and Burkholder (1999) (consult also Bañuelos and Wang (1995)
for the orthogonal case), the inequalities for differentially subordinated martingales are accom-
panied by their analogues for harmonic functions on Euclidean domains. Section 8 contains such
extensions: the harmonic versions of the inequalities (1.7)–(1.9).

2. Theorems 1.4 and 1.5: the case 0 < p < 1

We start with an auxiliary lemma. Recall that for any semimartingale X there exists a unique
continuous local martingale part Xc of X satisfying

[X,X]t = |X0|2 + [Xc,Xc]t +
∑

0<s≤t

|�Xs |2

for all t ≥ 0. Furthermore, [Xc,Xc] = [X,X]c, the pathwise continuous part of [X,X]. Here is
Lemma 1 from Wang (1995).

Lemma 2.1. The process Y is differentially subordinate to X if and only if Y c is differentially
subordinate to Xc, the inequality |�Yt | ≤ |�Xt | holds for all t > 0 and |Y0| ≤ |X0|.

Now let us introduce the special function W : R+ × R → R, constructed in Burkholder (1994)
to study the weak-type inequality for non-negative supermartingales. It is given by

W(x,y) =
{

2x − x2 + |y|2, if x + |y| ≤ 1,
1, if x + |y| ≥ 1.

The following functions φ : R+ × R → R, ψ : R+ × R → R will be needed later:

φ(x, y) = 2 − 2x, ψ(x, y) = 2y if x + |y| ≤ 1,

φ(x, y) = 0, ψ(x, y) = 0 if x + |y| > 1.

Note that φ and ψ coincide with the partial derivatives Wx , Wy except for the set {(x, y) :x +
|y| = 1}. It can be shown (see Burkholder (1994), page 1016) that if x ≥ 0, x + h ≥ 0, y,h ∈ R

and |h| ≤ |k|, then

W(x + h,y + k) ≤ W(x,y) + φ(x, y)h + ψ(x, y)k. (2.1)

Furthermore, we have

W(x,y) ≥ 1{x+|y|≥1} (2.2)
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and, if |y| ≤ x, then

W(x,y) ≤ (2x)p. (2.3)

Indeed, the inequality (2.2) is clear; to see (2.3), observe that it suffices to prove it for |y| = x

and then the inequality becomes 2x1{2x<1} + 1{2x≥1} ≤ (2x)p , which is immediate.

Proof of the inequality (1.7). We will prove a stronger statement: for any λ > 0,

λp
P
(
(M + |N |)∗ ≥ λ

) ≤ 2p‖M‖p
p.

Here, as in the discrete-time case, X∗ = supt |Xt |. Obviously, we may assume λ = 1. Introduce
the stopping time

τ = inf{t :Mt + |Nt | ≥ 1}.
By Itô’s formula,

W(Mτ∧t ,Nτ∧t ) = W(M0,N0) + I1 + I2 + I3, (2.4)

where

I1 = 1

2

∫ τ∧t

0
Wxx(Ms−,Ns−)d[Mc,Mc]s + 2Wxy(Ms−,Ns−)d[Mc,Nc]s

+ Wyy(Ms−,Ns−)d[Nc,Nc]s = −[Mc,Mc]τ∧t + [Nc,Nc]τ∧t ,

I2 =
∑

0<s≤τ∧t

[W(Ms,Ns) − W(Ms−,Ns−) − Wx(Ms−,Ns−)
Ms − Wy(Ms−,Ns−)
Ns],

I3 =
∫ τ∧t

0
Wx(Ms−,Ns−)dMs +

∫ τ∧t

0
Wy(Ms−,Ns−)dNs.

Note that I1 ≤ 0, which is a consequence of Lemma 2.1. Moreover, as

Wx(Ms−,Ns−) = φ(Wx(Ms−,Ns−)) and Wy(Ms−,Ns−) = ψ(Wx(Ms−,Ns−)),

we have I2 ≤ 0: Apply (2.1) to x = Ms−, y = Ns−, h = 
Ms , k = 
Ns and observe that |k| ≤ |h|
by Lemma 2.1. Finally, note that I3 is a local martingale. Therefore, there exists a sequence
(Tn)

∞
n=1 such that Tn ↑ ∞ and, if we replace t with Tn ∧ t (n = 1,2, . . .) in the expression defin-

ing I3, then this expression has zero expectation. Combining this with the previous observations
about I1 and I2, we see that (2.4) gives

EW(Mτ∧Tn∧t ,Nτ∧Tn∧t ) ≤ EW(M0,N0).

Now we let n → ∞. As 0 ≤ W ≤ 1, Lebesgue’s dominated convergence theorem gives

EW(Mτ∧t ,Nτ∧t ) ≤ EW(M0,N0). (2.5)
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Apply (2.2) and (2.3) to obtain

P(Mτ∧t + |Nτ∧t | ≥ 1) ≤ 2p
EM

p

0 = 2p‖M‖p
p.

To conclude the proof, fix ε > 0 and consider processes Mε = M(1+ε),Nε = N(1+ε). Clearly,
Nε is differentially subordinate to Mε , so, if η = inf{t :Mε

t + |Nε
t | ≥ 1}, we get, by the above

argumentation,

P
(
(M + |N |)∗ ≥ 1

) = P
(
(Mε + |Nε|)∗ ≥ (1 + ε)

) ≤ lim
t→∞P(Mε

η∧t + |Nε
η∧t | ≥ 1)

≤ 2p‖Mε‖p
p = 2p‖M‖p

p(1 + ε)p.

As ε was arbitrary, the proof is complete. �

Sharpness of (1.5). Consider the following example: assume the probability space is the interval
[0,1] with Lebesgue measure. Let f0 = g0 ≡ 1/2 and

df1 = −dg1 = − 1
2 [0,3/4] + 3

2 (3/4,1]
and dfn = dgn = 0 for n ≥ 2. Here and in the next section, we identify a set with its indicator
function. Then |g1| = 1 with probability 1 and hence

‖g‖p,∞ ≥ 1 = 2‖f0‖p = 2‖f ‖p,

as needed. �

3. Sharpness of (1.6) and (1.8)

The optimality of the constant will be proved by constructing an appropriate example. Let p > 2
be a fixed number. Let δ > 0, x ∈ (0,1/p) be numbers satisfying

x

(
1 + 2δ

p

)N

= 1

p
(3.1)

for the integer N = N(δ, x). It is clear that we may choose δ and x to be arbitrarily small.
Consider a two-dimensional Markov martingale (Xn,Yn) = (X

x,δ
n , Y

x,δ
n ), which is uniquely

determined by the following properties:

(i) X0 = x, Y0 = (p − 1)x.
(ii) We have dXn = (−1)n+1 dYn for n = 1,2, . . . .

(iii) If (Xn,Yn) lies on the line y = (p − 1)x and Xn < 1/p, then in the next step it moves
either to the line x = 0 or to the line y = (p − 1 + δ)x/(1 + δ), n = 0,1,2, . . . .

(iv) If (Xn,Yn) lies on the line y = (p − 1 + δ)x/(1 + δ) then in the next step it moves either
to the line y = (p − 1)x or to the line y = (p − 2)x/2, n = 0,1,2, . . . .

(v) If (Xn,Yn) = (1/p,1 − 1/p) (which happens only if n = 2N ), then (Xn+1, Yn+1) equals
either (0,1) or (2/p,1 − 2/p).
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Figure 1. Four trajectories of the process (X,Y ) corresponding to the parameters p = 3, x = 1
24 , δ = 3

2
and N = 3.

(vi) The states on the line x = 0 and y = (p − 2)x/2 are absorbing.
The examplary trajectories are presented on Figure 1.

To be more precise, let the sequence (pn), n = 0,1,2, . . . ,2N be given by

p2n =
(

p − pδ + 4δ

(p + 2δ)(1 + δ)

)n

, p2n+1 = p2n · 1

1 + δ
, n = 0,1,2, . . . ,N.

Let the probability space be the interval [0,1] with Lebesgue measure. Set

X0 = x[0,1], dX2n+1 = δX2n[0,p2n+1] − X2n(p2n+1,p2n],
(3.2)

dX2n+2 = −(1 − 2/p)δX2n[0,p2n+2] + X2n

(
1 + 4

p
δ − δ

)
(p2n+2,p2n+1]
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for n = 0,1,2, . . . ,N − 1, and

dX2N+1 = X2N [0,p2N/2] − X2N(p2N/2,p2N ]. (3.3)

Furthermore,

Y0 = (p − 1)x[0,1], dYn = (−1)n+1 dXn, n = 0,1,2, . . . ,2N + 1.

Note that Y2N+1 = 1 on [0,p2N/2] and 0 < Y2N+1 < 1 on (p2N/2,1], so we have P(Y ∗ ≥ 1) =
p2N/2. Furthermore, by (3.2) and (3.3), X2N+1 equals 0 on the union of the sets (p2n+1,p2n],
n = 0,1, . . . ,N and the interval (p2N/2,p2N ]. Moreover, X2N+1 is equal to

2

(
1 + 2δ

p

)n+1

x on (p2n+2,p2n+1], n = 0,1, . . . ,N − 1.

Finally, it equals 2/p on [0,p2N/2]. Hence we may write

EX
p

2N+1 = 2p(p − 2)δ

(p + 2δ)(1 + δ)

(
1 + 2δ

p

)p

xp

N−1∑
k=0

(
p − pδ + 4δ

(p + 2δ)(1 + δ)

(
1 + 2δ

p

)p)k

+
(

2

p

)p

· 1

2

(
p − pδ + 4δ

(p + 2δ)(1 + δ)

)N

= 2p(p − 2)δ

(p + 2δ)(1 + δ)

(
1 + 2δ

p

)p

xp

× ((p − pδ + 4δ)/((p + 2δ)(1 + δ))(1 + 2δ/p)p)N − 1

(p − pδ + 4δ)/((p + 2δ)(1 + δ))(1 + 2δ/p)p − 1

+
(

2

p

)p

· 1

2

(
p − pδ + 4δ

(p + 2δ)(1 + δ)

)N

.

Now keep x fixed and let δ to 0 (so that (3.1) holds, with N = N(δ, x) → ∞). Then

(
p − pδ + 4δ

(p + 2δ)(1 + δ)

)N

=
(

1 + 2δ

p
· p(1 − p − δ)

(p + 2δ)(1 + δ)

)N

→ (px)p−1

and
δ

(p − pδ + 4δ)/((p + 2δ)(1 + δ))(1 + 2δ/p)p − 1
→ p

2
,

so we have

EX
p

2N+1 → 2p(p − 2)

p
xp ((px)p−1(px)−p − 1)p

2
+

(
2

p

)p

· 1

2
(px)p−1

= (2x)p−1

p

(
p − 1 − p(p − 2)x

)



880 A. Osȩkowski

and

P(Y2N+1 ≥ 1)

EX
p

2N+1

→ 1/2(px)p−1

(2x)p−1/p(p − 1 − p(p − 2)x)
= pp

2p(p − 1) − 2pp(p − 2)x
. (3.4)

Observe that Y is a transform of X and |dXn| = |dYn| for n ≥ 1. However, Y is not differentially
subordinate to X as Y0 = (p − 1)X0 > X0. To overcome this difficulty, introduce the processes
Y ′

n = (Yn − (p − 2)x)/(1 − (p − 2)x), X′
n = Xn/(1 − (p − 2)x), n = 0,1, . . . ,2N + 1. Then Y ′

is a transform of X′ by the deterministic sequence (1,1,−1,1,−1,1,−1,1, . . .) and P(Y ′
2N+1 ≥

1) = P(Y2N+1 ≥ 1). In terms of these new processes, (3.4) reads

P(Y ′
2N+1 ≥ 1)

E(X′
2N+1)

p
→ pp(1 − x(p − 2))p

2p(p − 1) − 2pp(p − 2)x

and it is clear that the limit can be made arbitrarily close to pp/2p(p − 1) by choosing x suffi-
ciently small. This proves the sharpness of (1.6) and hence the sharpness of (1.8) as well.

4. A differential equation

Let p > 2 be fixed. The purpose of this section is to study a solution to a certain differential
equation. A very similar equation appears in Suh (2005) and our arguments are parallel to those
used there. We will show that there exists a function h : [1,∞) → [2/p,∞), which enjoys the
following properties:

the function h is increasing and continuous on [1,∞), (4.1)

h(t) > t − 1 for all t ≥ 1, (4.2)

h is differentiable on (1,∞) and
(4.3)

h′(t) =
(

2

p

)p+1

(h(t))2−p
(
h(t) − t + 1

)−2
,

h(1) = h′(1+) = 2/p. (4.4)

The problem above is equivalent to the existence of the function G : [2/p,∞) → [1,∞) satisfy-
ing the following properties:

the function G is increasing and continuous on [2/p,∞), (4.5)

G(t) < t + 1 for all t ≥ 2/p, (4.6)

G is differentiable on (2/p,∞) and
(4.7)

G′(t) =
(

p

2

)p+1

tp−2(t + 1 − G(t)
)2

.

G

(
2

p

)
= 1, G′

(
2

p
+

)
= p

2
. (4.8)
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To see the equivalence, note that if h satisfies (4.1)–(4.4), then G = h−1 satisfies (4.5)–(4.8) and
if G satisfies (4.5)–(4.8), then h = G−1 satisfies (4.1)–(4.4).

As (4.7) has the Riccati form, we can use the transformation

k(t) = exp

[∫ t

2/p

(
p

2

)p+1

yp−2(y + 1 − G(y)
)

dy

]

to obtain the following differential equation for k:

yk′′(y) + (2 − p)k′(y) −
(

p

2

)p+1

yp−1k(y) = 0. (4.9)

For a fixed α > −1, let Iα be the modified Bessel function of the first kind (see Abramowitz and
Stegun (1992)). That is,

Iα(z) =
∞∑

k=0

(z/2)2k+α

k!!�(α + k + 1)

and we have

z2I ′′
α (z) + zI ′

α(z) − (z2 + α2)Iα(z) = 0.

One can check that the functions

k1(t) = t (p−1)/2I−(p−1)/p(z0)

and

k2(t) = t (p−1)/2I(p−1)/p(z0),

where z0 = √
(p/2)p−1tp , are two linearly independent solutions on (0,∞) to equation (4.9).

As the functions Iα are infinitely differentiable on (0,∞), so are k1 and k2. Let a1, a2 be two
numbers such that k = a1k1 + a2k2 satisfies

k(2/p) = 1 and k′(2/p) = p2

4
. (4.10)

If one rewrites (4.9) in the form

yk′′(y) = (p − 2)k′(y) +
(

p

2

)p+1

yp−1k(y),

then it follows from (4.10) that k, k′ and k′′ are strictly positive on [2/p,∞). Now it is straight-
forward to check that the function

G(t) = t + 1 −
(

2

p

)p+1
k′(t)

k(t)tp−2
(4.11)

has all the properties (4.5)–(4.8).
We conclude this section with the following lemma:



882 A. Osȩkowski

Lemma 4.1. We have

h′(t) ≤ 1 for all t > 1. (4.12)

Proof. This is equivalent to G′(t) ≥ 1 for all t > 2/p. We have

G′′(t) =
(

p

2

)p+1[
(p − 2)tp−3(t + 1 − G(t)

)2 + 2tp−2(t + 1 − G(t)
)(

1 − G′(t)
)]

,

implying that if G′(t) ≤ 1, then G′′(t) > 0. Now suppose G′(t0) < 1 for some t0 > 2/p. Then,
as G′(2/p+) = p/2 > 1, there exists t1 ∈ (2/p, t0) such that G′(t1) = 1 and G′(t) < 1 for t ∈
(t1, t0). Now by mean value property, for some t2 ∈ (t1, t0),

G′′(t2) = G′(t0) − G′(t1)
t0 − t1

< 0,

a contradiction. �

5. The special function and its properties

Now we are ready to define the special function U . Due to the lack of symmetry with respect
to the y axis, this function is much more complicated than the one constructed in Suh (2005).
Consider the following subsets of R+ × R.

D0 = {(x, y) : |y| ≥ 1},

D1 =
{
(x, y) : (p − 1)x ≤ |y| < x + 1 − 2

p

}
,

D2 =
{
(x, y) :

p − 2

2
x ≤ |y| < min{1 − x, (p − 1)x}

}
,

D3 =
{
(x, y) :x + 1 − 2

p
≤ y < 1 − x

}
,

D4 =
{
(x, y) : max

{
1 − x,

(
x + 1 − 2

p

)}
≤ |y| < 1

}
,

D5 =
{
(x, y) :h(x + |y|) ≥ x >

−1 + h(x + |y|) + x + |y|
2

and x + |y| ≥ 1

}
,

D6 =
{
(x, y) :

1 − h(x + |y|) + x + |y|
2

≤ |y| < min

{(
x + 1 − 2

p

)
,1

}}
,

D7 = (R+ × R) \ (D0 ∪ D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 ∪ D6).

See Figure 2 for the case p = 3.



Sharp martingale inequalities 883

Figure 2. The regions D0–D7 for p = 3, intersected with R+ × R+.

Let

V (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − pp

2p(p − 1)
xp, on D0,

− pp

2p(p − 1)
xp, on (R+ × R) \ D0

and let us define U(x,y) by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − pp

2p(p − 1)
xp, on D0,

pp

2(p − 1)(p − 2)p−2
x(|y| − x)p−1, on D1,

1

p − 1
(x + |y|)p−1

[
(p − 1)|y| − p2 − 2p + 2

2
x

]
, on D2,

x

2(p − 1)(1 + x − |y|) [−(p − 2)2 + p2(|y| − x)], on D3,

1 − p2

2(p − 1)
(1 − |y|) − pp

2p(p − 1)
(x + |y| − 1)(x + 1 − |y|)p−1, on D4,

pp

2p(p − 1)

(
h(x + |y|))p−1[(p − 1)h(x + |y|) − px], on D5,

1 − 2(1 − |y|)
2 + x − |y| − G(x − |y| + 1)

− pp

2p(p − 1)
(x − |y| + 1)p−1[x − (p − 1)(1 − |y|)], on D6,

− pp

2p(p − 1)
xp, on D7.
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The properties of U are described in the sequence of the lemmas below.

Lemma 5.1. The function U is continuous on R+ × R \ {(0,±1)} and of class C1 except for the
set ∂D0 ∪ (∂D3 ∩ ∂D4 \ ( 2

p
,±p−2

p
)).

Proof. Clearly, U is of class C1 in the interior of each Dj , j = 0,1,2, . . . ,7, so we need to check
the properties on the boundaries. By symmetry, we may restrict ourselves to positive y’s. Using
(4.4), (4.8) and the definitions of the boundaries, the continuity of U can be verified readily. For
the second part of the lemma, we calculate the partial derivatives of U : we have

Ux(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− pp+1

2p(p − 1)
xp−1, on Do

0 ,

pp

2(p − 1)(p − 2)p−2
(y − x)p−2(y − px), on Do

1 ,

p

2(p − 1)
(x + y)p−2[(p − 2)y − (p2 − 2p + 2)x], on Do

2 ,

− p2

2(p − 1)
+ 2(1 − y)

(1 + x − y)2
, on Do

3 ,

− pp

2p(p − 1)
(x + 1 − y)p−2[px − (p − 2)(1 − y)], on Do

4 ,

2(h(x + y) − x)

(h(x + y) − (x + y) + 1)2
− pp+1

2p(p − 1)

(
h(x + y)

)p−1
, on Do

5 ,

2(1 − |y|)
(2 + x − |y| − G(x − |y| + 1))2

− pp+1

2p(p − 1)
(x − |y| + 1)p−1, on Do

6 ,

− pp+1

2p(p − 1)
xp−1, on Do

7 ,

while

Uy(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, on Do
0 ,

pp

2(p − 2)p−2
x(y − x)p−2, on Do

1 ,

p

2
(x + y)p−2[2y − (p − 2)x], on Do

2 ,

2x

(1 + x − y)2
, on Do

3 ,

p2

2(p − 1)
+ pp

2p(p − 1)
(x + 1 − y)p−2[(p − 2)x − p(1 − y)], on Do

4 ,

2(h(x + y) − x)

(h(x + y) − (x + y) + 1)2
, on Do

5 ,

2

(2 + x − y − G(x − y + 1))2
[1 + x − G(x − y + 1)], on Do

6 ,

0, on Do
7 .

All that is left is to check that the partial derivatives agree on the boundaries. �
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Lemma 5.2. For y ≥ 0, Uy is non-negative.

Proof. This is clear on Do
1 , Do

2 , Do
3 , Do

5 and Do
7 . On D4, we have

Uxy(x, y) = pp(p − 2)

2p
(x + 1 − y)p−3(x − y) ≤ 0

and, consequently,

Uy(x, y) ≥ Uy

(
y − 1 + 2

p
,y

)
= p2

2

(
y − 1 + 2

p

)
≥ 0.

On D6, we have G(1 + x − y) ≤ x + y (as it is equivalent to 1 + x − y ≤ h(x + y), one of the
inequalities defining D6). This can be further bounded from above by 1 + x, which yields the
claim. �

The most technical lemma is the following:

Lemma 5.3. Suppose (x, y) belongs to the interior of Dj for some 0 ≤ j ≤ 7. Then for any h, k

we have

Uxx(x, y)h2 + 2Uxy(x, y)hk + Uyy(x, y)k2 ≤ 0. (5.1)

Proof. We start with the observation that the inequality holds if (x, y) belongs to D◦
0 or D◦

7;
indeed, Uxy = Uyy = 0 and Uxx ≤ 0 there. For (x, y) lying in the interior of one of the remaining
sets, note that U has the following property: one of the functions t �→ U(x + t, y + t), t �→
U(x + t, y − t), is linear on some neighbourhood of 0. Hence

Uxx(x, y) + 2Uxy(x, y) + Uyy(x, y) = 0 (5.2)

or

Uxx(x, y) − 2Uxy(x, y) + Uyy(x, y) = 0. (5.3)

Now if (5.2) holds, we may write

Uxx(x, y)h2 + 2Uxy(x, y)hk + Uyy(x, y)k2

= Uxx(x, y) + Uyy(x, y)

2
(h − k)2 + Uxx(x, y) − Uyy(x, y)

2
(h2 − k2),

while if (5.3) is valid, we have

Uxx(x, y)h2 + 2Uxy(x, y)hk + Uyy(x, y)k2

= Uxx(x, y) + Uyy(x, y)

2
(h + k)2 + Uxx(x, y) − Uyy(x, y)

2
(h2 − k2).
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Therefore (5.1) will hold once we have established the inequality

Uxx ≤ −|Uyy |. (5.4)

As previously, with no loss of generality we may assume y > 0.
Straightforward computations show that

Uxx(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pp

2(p − 2)p−2
(y − x)p−3(px − 2y), on Do

1 ,

−p(x + y)p−3
(

p2 − 2p + 2

2
x + y

)
, on Do

2 ,

− 4

(1 + x − y)3
(1 − y), on Do

3 ,

−pp

2p
(x + 1 − y)p−3(px + (p − 4)(y − 1)

)
, on Do

4 ,

2

(h(x + y) − (x + y) + 1)2

×
[
−2 + h′(x + y) − 2(h(x + y) − x)(h′(x + y) − 1)

h(x + y) − (x + y) + 1

]
, on Do

5 ,

− 4(1 − y)(1 − G′(x − y + 1))

(2 + x − y − G(x − y + 1))3
− pp+1

2p
(x − y + 1)p−2, on Do

6

and

Uyy(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pp

2(p − 2)p−2
(y − x)p−3 · (p − 2)x, on Do

1 ,

−p(x + y)p−3
(

p2 − 4p + 2

2
x − (p − 1)y

)
, on Do

2 ,

4

(1 + x − y)3
x, on Do

3 ,

pp

2p
(x + 1 − y)p−3(−(p − 4)x + p(1 − y)

)
, on Do

4 ,

2

(h(x + y) − (x + y) + 1)2

×
[
−h′(x + y) − 2(h(x + y) − x)(h′(x + y) − 1)

h(x + y) − (x + y) + 1

]
, on Do

5 ,

− 4(1 − y)(1 − G′(x − y + 1))

(2 + x − y − G(x − y + 1))3
+ 2(2 − G′(x − y + 1))

(2 + x − y − G(x − y + 1))2
, on Do

6 .

Now let us check (5.4). On Do
1 it is equivalent to

px − 2y ≤ −(p − 2)x or y ≥ (p − 1)x,

which follows from the definition of D1. On Do
2 , the inequalities Uxx + Uyy ≤ 0, Uxx − Uyy ≤ 0

can be transformed to −p(x + y) ≤ 0 and (p − 2)(y − (p − 1)x) ≤ 0, respectively, which are
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valid. On Do
3 , the inequality is verified easily. On Do

4 , the estimates Uxx +Uyy ≤ 0, Uxx −Uyy ≤
0 are equivalent to

2(p − 2)(1 − x − y) ≤ 0 and − 4(1 − y + x) ≤ 0,

respectively, which hold true. On Do
5 , it is obvious that Uxx ≤ Uyy , while the inequality Uxx ≤

−Uyy reduces to

(h′(x + y) − 1)(−h(x + y) + x − y + 1)

h(x + y) − (x + y) + 1
≤ 0,

which is guaranteed by (4.12) and the definition of D5. Finally, assume (x, y) ∈ Do
6 . Then, by

(4.7),

pp+1

2p
(x − y + 1)p−2 = 2G′(x − y + 1)

(2 + x − y − G(x − y + 1))2

and it is easy to see that Uxx(x, y) ≤ Uyy(x, y). The inequality Uxx(x, y) ≤ −Uyy(x, y) is equiv-
alent to

4(1 − G′(x − y + 1))

(2 + x − y − G(x − y + 1))3

(
x + y − G(x − y + 1)

) ≤ 0.

To prove its validity, note that G′ ≥ 1, which is a consequence of (4.12), and x + y ≥ G(x − y +
1), which is equivalent to h(x + y) ≥ x − y + 1, one of the inequalities in the definition of D6.

The proof is complete. �

As in the proof of the case p < 1, we extend the partial derivatives of the special function to
the whole R+ × R. Let φ, ψ : R+ × R+ → R be given by

φ(x, y) =
{

Ux(x, y), if (x, y) /∈ ∂D3 ∩ ∂D4,
Ux(x+, y), if (x, y) ∈ ∂D3 ∩ ∂D4,

ψ(x, y) =
⎧⎨
⎩

Uy(x, y), if (x, y) /∈ ∂D0 ∪ (∂D3 ∩ ∂D4),
Uy(x+, y), if (x, y) ∈ ∂D3 ∩ ∂D4 \ {(0,0)},
Uy(x, y+), if (x, y) ∈ ∂D0

and extend them to the whole R × R by φ(x, y) = φ(x,−y), ψ(x, y) = −ψ(x,−y).
The further properties of U are described in the following lemma:

Lemma 5.4. (i) Let x ≥ 0, x + h ≥ 0 and y, k ∈ R. Then

U(x + h,y + k) ≤ U(x, y) + φ(x, y)h + ψ(x, y)k. (5.5)

(ii) Let x ∈ R+ and y ∈ (−1,1). Then the function Hx,y , defined on {t :x + t ≥ 0 and − 1 <

y + t < 1} and given by

Hx,y(t) = φ(x + t, y + t) − ψ(x + t, y + t),

is non-increasing.
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Proof. (i) Consider a continuous function L = Lx,y,h,k defined on {t :x + th ≥ 0} and given by

L(t) = u(x + th, y + tk).

The inequality (5.5) is equivalent to L(1) ≤ L(0)+L′(0) (with L′(0) replaced by a left- or right-
sided derivative if (x, y) belongs to ∂D0 or ∂D3 ∩ ∂D4) and will follow if we show that L is
concave. To this end, it suffices to prove that L′′(t) ≤ 0 for those t , where the second derivative
exists, and L′(t−) ≥ L′(t+) for remaining t , satisfying x + th > 0. The first inequality follows
from

L′′(t) = Uxx(x + th, y + tk)h2 + 2Uxy(x + th, y + tk)hk + Uyy(x + th, y + tk)k2 ≤ 0,

due to (5.1). To deal with the second, recall that L is of class C1 except for (x+ th, t + tk) belong-
ing to ∂D0 or ∂D3 ∩ ∂D4. Hence, by the transity property Lx,y,h,k(t + s) = Lx+th,y+tk,h,k(s),
all we need is L′(0−) ≥ L′(0+) for (x, y) belonging to one of these sets. As Lx,y,h,k is concave
if and only if Lx,y,−h,−k is concave, we may also assume h > 0. Now, if (x, y) ∈ ∂D0, then Ux

is continuous in (x, y) and

L′(0−) − L′(0+) = (
Uy(x, y−) − Uy(x, y+)

)|k| = Uy(x, y−)|k| ≥ 0

by Lemma 5.2. Suppose then that (x, y) ∈ ∂D3 ∩ ∂D4. We have

L′(0−) − L′(0+) =
(

− p2

2(p − 1)
+ 1

2x
+ pp

2(p − 1)
xp−1

)
(h + k) ≥ 0. (5.6)

The latter inequality is a consequence of h ≥ k and

− p2

2(p − 1)
+ 1

2x
+ pp

2(p − 1)
xp−1 = 1

2x(p − 1)

[
p(1 − px) − (

1 − (px)p
)] ≥ 0,

which follows from the mean value property.
(ii) If (x + t, y + t) lies in the interior of one of the sets Dk , k = 1,2, . . . ,7, then

H ′
x,y(t) = Uxx(x + t, y + t) − Uyy(x + t, y + t) ≤ 0.

Therefore we will be done if we show that Hx,y is continuous. By Lemma 5.1, we only need to
check continuity for t determined by (x + t, y + t) ∈ ∂D3 ∩ ∂D4, (x + t, y + t) �= (2/p,±(p −
2)/p). If y + t > 0, then one can check, using the formulae for Ux , Uy , that

lim
t ′→t

Hx,y(t
′) = lim

t ′→t
[Ux(x + t ′, y + t ′) − Uy(x + t ′, y + t ′)] = − p2

2(p − 1)
= Hx,y(t).

For y + t < 0 this follows from the fact that Hx,y(s) = Ux(x + s+, y + s) − Uy(x + s+, y + s)

for s lying in some neighbourhood of t (both the partial derivatives are defined by the formulae
for D4 and hence are continuous). �
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Lemma 5.5. (i) For any x ≥ 0, y ∈ R satisfying |y| ≤ x we have U(x, y) ≤ 0.
(ii) We have U ≥ V .

Proof. (i) Using (5.5), we may write

U(x, y) ≤ U(0,0) + φ(0,0)x + ψ(0,0)y = 0,

as claimed.
(ii) The inequality is clear on D0. For (x, y) /∈ D0, use Lemma 5.2 to obtain

U(x, y) ≥ U(x,0) = V (x,0) = V (x, y).

This finishes the proof. �

6. The proofs of the inequalities (1.6) and (1.8)

For the sake of convenience, the proof is divided into a few steps.
Step 1. We start with a smoothing argument and correct the function U in such a way that the

key properties are still valid (the inequalities (6.1), (6.2) and (6.3) below). Let ε > 0 be fixed and
m be a positive integer satisfying 1/m < ε. Let gm : R2 → R+ be a C∞ function with support
inside the ball Bm centered at 0 and radius 1/m. Furthermore, assume gm has integral 1 and
define Um : [1/m,∞) × R → R as the convolution of U with the function gm. Note that Um is
infinitely differentiable. Moreover, by Lemma 5.4 (i), Um is concave along the lines of a slope
not greater than 1 in absolute value, as convolving with a positive function does not affect this
property. Therefore, we have

Um
xx ± 2Um

xy + Um
yy ≤ 0 (6.1)

and, for x, x + h > 1/m, y, k ∈ R such that |h| ≥ |k|,
Um(x + h,y + k) ≤ Um(x, y) + Um

x (x, y)h + Um
y (x, y)k. (6.2)

Furthermore, by part (ii) of this lemma, for any x > 1/m, |y| < 1 − 1/m, the function Hm
x,y ,

defined on a (small) neighbourhood of 0 by

Hm(t) = Um
x (x + t, y + t) − Um

y (x + t, y + t),

is non-increasing. To see this, note that by integration by parts and continuity of U on (0,∞)×R,
we have

Hm
x,y(t) =

∫
Bm

Hx−u,y−v(t)gm(u, v)dudv

(here, H under the integral is defined as in Lemma 5.4 (ii)). Thus

(Hm
x,y)

′(0) = Um
xx(x, y) − Um

yy(x, y) ≤ 0 for x > 1/m, |y| < 1 − 1/m. (6.3)
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Step 2. Here we will introduce the key stopping time. With no loss of generality we
may assume ‖M‖p < ∞. For η < 1, let R = R(η, ε) denote the greatest number r such
that

U(x, y) ≥ η1{|y|≥1−ε} − pp

2p(p − 1)
xp for all x ≤ r, y ∈ R. (6.4)

Note that if η is fixed and ε ↓ 0, then R(η, ε) → ∞. This is a consequence of Lemma 5.5(ii).
Let M̃t = Mt + ε and introduce the stopping time

τ = inf{t : |Nt | ≥ 1 − ε or M̃ ≥ R}.

Step 3. We have

EUm(M̃τ∧t ,Nτ∧t ) ≤ EUm(M̃0,N0). (6.5)

This can be proved essentially in the same manner as (2.5): apply Itô’s formula, group the expres-
sions under the integrals in appropriate way and use inequalities (6.1), (6.2) and (6.3) together
with the differential subordination of N by M .

Step 4. This is the final part. Note that we have the estimate

1 ≥ Um(x, y) ≥ inf
(x′,y′)∈Bm

U(x − x′, y − y′) ≥ − pp

2p(p − 1)
(x + ε)p. (6.6)

The martingales (M̃τ∧t ), (Nτ∧t ) converge almost surely, so by Lebesgue’s dominated conver-
gence theorem, if we let t → ∞ in (6.5), we get

EUm(M̃τ ,Nτ ) ≤ EUm(M̃0,N0).

We have Um → U pointwise as m → ∞ and by (6.6) we may again use Lebesgue’s theorem to
obtain

EU(M̃0,N0) ≥ EU(M̃τ ,Nτ ) = EU(M̃τ ,Nτ )1{Mτ <R} + EU(M̃τ ,Nτ )1{Mτ ≥R}.

Now EU(M̃0,N0) ≤ 0 by Lemma 5.5(i). For the first expression appearing on the right, we use
the inequality (6.4). For the second one, we use the bound

U(x, y) ≥ − pp

2p(p − 1)
xp,

which is a trivial consequence of Lemma 5.5(ii). We arrive at

0 ≥ ηP(|Nτ | ≥ 1 − ε, M̃τ < R) − pp

2p(p − 1)
EM̃p

τ .
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Therefore,

ηP(N∗ ≥ 1) ≤ ηP(N∗ ≥ 1, M̃τ < R) + ηP(M̃τ ≥ R)

≤ ηP(Nτ ≥ 1 − ε, M̃τ < R) + ηP(M̃τ ≥ R)

≤ pp

2p(p − 1)
EM̃p

τ + η

Rp
EM̃p

τ ≤
(

pp

2p(p − 1)
+ η

Rp

)
‖M̃‖p

p

≤
(

pp

2p(p − 1)
+ η

Rp

)
(ε + ‖M‖p)p.

Here, in the third passage, we used Chebyshev’s inequality. Now let ε → 0 to obtain

ηP(N∗ ≥ 1) ≤ pp

2p(p − 1)
‖M‖p

p.

As η was arbitrary, the proof is complete.

7. The proof of Theorem 1.6

Let us begin with the following inequality. We omit the straightforward proof.

Lemma 7.1. Let 1 ≤ p ≤ 2 and x,h ∈ R. Then

|x + h|p + |x − h|p ≤ 2|x|p + 2|h|p. (7.1)

Now, let (B,P) = ((B1,B2), (Px,y)(x,y)∈R2) denote the family of two-dimensional Brownian
motions such that for any (x, y),

Px,y

(
B0 = (x, y)

) = 1.

Recall the constant Kp given by (1.10) and define V : R2 → R by V (x, y) = 1{|y|≥1} − K
p
p |x|p .

Throughout this section, τ will denote the stopping time

τ = inf{t ≥ 0 : |B2
t | ≥ 1}.

The special function is defined by

U(x, y) = Ex,y |B1
τ |p.

Note that we have U(x, y) = |x|p for |y| ≥ 1. It follows from the very definition that U is
harmonic on S and continuous on R

2. Moreover, it is obvious that for any x, y we have

U(x, y) = U(−x, y) = U(x,−y) = U(−x,−y). (7.2)
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We study the further properties of the function U in the lemmas below. First we will provide
an explicit formula for U . To do this, let H = {(α,β) :β > 0} denote the upper half-plane and
define W :H → R as the Poisson integral

W (α,β) = 2p

πp+1

∫ ∞

−∞
β| log |t ||p

(α − t)2 + β2
dt.

Clearly, W is harmonic on H . Furthermore, we have

lim
(α,β)→(t,0)

W (α,β) =
(

2

π

)p

| log |t ||p. (7.3)

Consider the conformal map φ on S = {(x, y) : |y| < 1}, defined by

φ(x, y) = φ(z) = ieπz/2.

It is easy to check that φ maps S onto H .

Lemma 7.2. (i) We have the identity

U(x, y) =
{ |x|, if |y| ≥ 1,

W (φ(x, y)), if |y| < 1.
(7.4)

(ii) We have U(0,0) = K
−p
p .

Proof. (i) Note that both sides of (7.4) are harmonic on S, continuous on R
2 (for the right-hand

side, use (7.3)) and equal on the set {(x, y) : |y| ≥ 1}. This proves the claim.
(ii) Using the first part of the lemma, we may write

U(0,0) = W (0,1) =
(

2

π

)p+1 ∫ ∞

0

| log t |p
t2 + 1

dt

=
(

2

π

)p+1 ∫ ∞

−∞
|s|pes

e2s + 1
ds

= 2

(
2

π

)p+1 ∫ ∞

0
spe−s

∞∑
k=0

(−e−2s)k ds

= 2

(
2

π

)p+1

�(p + 1)

∞∑
k=0

(−1)k

(2k + 1)p+1
= K

−p
p .

Here we have used the identity

∞∑
k=0

1

(2k + 1)2
= π2

8
. �
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Lemma 7.3. For fixed x ∈ R, the function U(x, ·) is concave on (−1,1).

Proof. Since U is harmonic on S, an equivalent formulation is that for any fixed y ∈ (−1,1) the
function U(·, y) is convex. However, the estimate

λU(x1, y) + (1 − λ)U(x2, y) ≥ U
(
λx1 + (1 − λ)x2, y

)
, λ ∈ (0,1),

follows directly from the definition of U and Jensen’s inequality. �

Lemma 7.4. (i) For any x > 0, y ∈ (0,1), Uxyy ≥ 0.
(ii) Uxy ≥ 0 on S.

Proof. (i) Since Ux is harmonic on S, the equivalent statement is Uxxx ≤ 0. Fix x, y as in the
statement and let ε ∈ (0, x). We have

2Ux(x, y) − Ux(x − ε, y) − Ux(x + ε, y) = E0,yf (B1
τ ),

where

f (h) = 2|x + h|p−2(x + h) − |x − ε + h|p−2(x − ε + h) − |x + ε + h|p−2(x + ε + h).

Note that f ≥ 0 for h ≥ −x and f (−x +h) = −f (−x −h) for any h. As τ is independent of B1,
we infer that the density of B1

τ under P0,y is decreasing on [0,∞). This implies E0,yf (B1
τ ) ≥ 0

and, since x > 0 and ε ∈ (0, x) were arbitrary, we conclude that Ux is concave.
(ii) We have Uy(x,0) = 0 due to (7.2). Thus Uxy(x,0) = 0 and the claim follows from the first

part of the lemma. �

Lemma 7.5. (i) We have U(x, y) ≥ U(0,0) for any x, y such that |y| ≤ |x|.
(ii) We have U(x, y) ≤ |x|p + K

−p
p 1{|y|<1} for any x, y ∈ R.

Proof. (i) For fixed x, the function U(x, ·) is even, concave on (−1,1) and constant on
(−∞,1] ∪ [1,∞). This implies that it suffices to show the inequality for x = y. However, it
is easy to check that the function F , given by F(x) = U(x, x), x ∈ R, is even, convex on [−1,1]
and increasing on [1,∞). This yields the claim.

(ii) It suffices to prove the inequality on S. The function

y �→ U(x, y) − |x|p − K
−p
p 1{|y|<1} = U(x, y) − |x|p − K

−p
p

is even (by (7.2)) and concave (due to Lemma 7.3), so attains its maximum at 0. Hence we must
show that

U(x,0) − |x|p − U(0,0) ≤ 0,

or

E0,0|x + B1
τ |p ≤ |x|p + E0,0|B1

τ |p,
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an inequality which follows from (7.1). �

Proof of (1.6). We may assume ‖M‖p < ∞. If N is differentially subordinate and orthogonal
to M , then N has continuous paths (see Lemma 2.1 in Bañuelos and Wang (2000)). We proceed
as in the proof of Theorem 1.5. Introduce the stopping time

σ = inf{t : |Nt | ≥ 1}.
Applying Itô’s formula and using Lemma 7.3 together with the differential subordination and the
orthogonality property, we get (see the proof of (2.5))

EU(Mσ∧t ,Nσ∧t ) ≥ EU(M0,N0).

This, combined with Lemma 7.2 (ii) and Lemma 7.5, leads to

E|Mσ∧t |p + K
−p
p P(|Nσ∧t | < 1) ≥ K

−p
p ,

or

P(|Nσ∧t | ≥ 1) ≤ K
p
p ‖M‖p

p.

Now the proof is completed using the scaled martingales Mε , Nε in exactly the same manner as
in the proof the inequality (1.7). �

Sharpness. Let M = (B1
τ∧t ), N = (B2

τ∧t ). Then N is differentially subordinate and orthogonal
to M . Moreover,

P(N∗ ≥ 1) − K
p
p ‖M‖p = 1 − K

p
p U(0,0) = 0,

which implies that the best constant in (1.6) is not smaller than Kp . �

8. Inequalities for harmonic functions

In this section we study related weak-type inequalities for harmonic functions on Euclidean do-
mains. Let n be a positive integer and let D be an open connected subset of R

n. Fix a point ξ ,
which belongs to D. For two real-valued harmonic functions u, v on D, we say that v is differ-
entially subordinate to u if the following two conditions are satisfied:

|v(ξ)| ≤ |u(ξ)| (8.1)

and

|∇v(x)| ≤ |∇u(x)| for any x ∈ D. (8.2)

This concept was introduced by Burkholder (1989); see this paper for more information and
references. We say that u, v are orthogonal if

∇v(x) · ∇u(x) = 0 for any x ∈ D, (8.3)
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where · denotes the scalar product in R
n.

Let D0 be a bounded domain satisfying ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D. Let μ
ξ
D0

denote the har-
monic measure on ∂D0, corresponding to ξ . Consider weak and strong p-norms given by

‖u‖p,∞ = sup sup
λ

[
λpμ

ξ
D0

({x ∈ ∂D0 : |u(x)| ≥ λ})]1/p
,

‖u‖p = sup

[∫
∂D0

|u(x)|p dμ
ξ
D0

(x)

]1/p

,

the first supremums being taken over all subdomains D0 as above.
Now we state the harmonic analogue of Theorems 1.4 and 1.5.

Theorem 8.1. Suppose v is differentially subordinate to u and u is non-negative.
(i) For 0 < p < 1 we have

‖v‖p,∞ ≤ 2‖u‖p

and the inequality is sharp.
(ii) For p ≥ 2 we have

‖v‖p,∞ ≤ p

2
(p − 1)−1/p‖u‖p.

We do not know if the constant in (ii) is the best possible (except for the case p = 2, where,
clearly, it is).

Proof. It suffices to show that for any bounded domain D0 as above we have

μ
ξ
D0

({x ∈ ∂D0 : |v(x)| ≥ 1}) ≤ pp

2p(p − 1)

∫
∂D0

u(x)p dμ
ξ
D0

(x). (8.4)

Let B = (Bt )t≥0 be a Brownian motion in R
n starting from ξ and introduce a stopping time

τ = τD0 = inf{t :Bt ∈ ∂D0}.
Let M , N be martingales defined by

Mt = u(Bτ∧t ) and Nt = v(Bτ∧t ), t ≥ 0. (8.5)

Note that M is non-negative and N is real-valued. The property (8.2) gives |N0| ≤ |M0| and,
combined with (8.1), implies that N is differentially subordinate to M : this follows from identi-
ties

[M,M]t = |M0|2 +
∫ τ∧t

0
|∇u(Bs)|2 ds,

[N,N ]t = |N0|2 +
∫ τ∧t

0
|∇v(Bs)|2 ds.
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Hence

μ
ξ
D0

({x ∈ ∂D0 : |v(x)| ≥ 1}) ≤ P(N∗ ≥ 1) ≤ p

2(p − 1)1/p
‖Mτ‖p = p

2(p − 1)1/p
‖u‖p.

Now we show the constant 2 is optimal in (i). Here we use the example of Burkholder (1994).
Let n = 1, D = (−1,3), ξ = 0, u(x) = 1 + x and v(x) = 1 − x. Then u, v are harmonic, u is
non-negative and v is differentially subordinate to u. We have ‖u‖p = u(ξ) = 1. Furthermore,
for 0 < λ < 2 we have |v(x)| < λ if and only if x ∈ (1 − λ,1 + λ), which implies

lim
λ↑2

sup
D0

λ
(
μ(|v| ≥ λ)

)1/p = lim
λ↑2

λ = 2‖u‖p.

Therefore we cannot replace 2 in (i) by a smaller number. �

The version of Theorem 1.6 for harmonic functions can be stated as follows:

Theorem 8.2. Suppose v is differentially subordinate to u and u,v are orthogonal. Then for
1 ≤ p ≤ 2 we have

‖v‖p,∞ ≤ Kp‖u‖p.

The inequality is sharp.

Proof. The inequality is proved by the same argumentation as above, using the martingales M

and N given by (8.5). Their orthogonality is guaranteed by

[M,N ]t = M0N0 +
∫ τ∧t

0
∇u(Bs) · ∇v(Bs)ds.

We omit the details.
To see that the inequality is sharp, let n = 2, ε > 0, D = R × (−1 − ε,1 + ε), ξ = (0,0),

u(x, y) = x, v(x, y) = y. Clearly, u, v are harmonic and orthogonal and v is differentially sub-
ordinate to u. For D0 = (−R,R) × (−1,1) and μ = μ

ξ
D0

, we have

lim
R→∞

[∫
∂D0

|u(x)|p dμ(x)

]1/p

= ‖B1
τ ‖p = 1

Kp

,

which gives

lim
ε↓0

‖u‖p = 1

Kp

.

To complete the proof, it suffices to note that

lim
R→∞μ(|v| ≥ 1) = 1 and hence ‖v‖p,∞ ≥ 1,

which implies that Kp is the best possible. �
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