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In this paper, we investigate the theoretical and empirical properties of L2 boosting with kernel regression
estimates as weak learners. We show that each step of L2 boosting reduces the bias of the estimate by two
orders of magnitude, while it does not deteriorate the order of the variance. We illustrate the theoretical
findings by some simulated examples. Also, we demonstrate that L2 boosting is superior to the use of
higher-order kernels, which is a well-known method of reducing the bias of the kernel estimate.
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1. Introduction

In the last decade, several important approaches for classification and pattern recognition have
been proposed with feasible computational algorithms in the machine learning community.
Boosting is one of the most promising techniques that has recently received a great deal of
attention from the statistical community. It was first proposed by Schapire (1990) as a means
of improving the performance of a given method, called a weak learner. Subsequent investiga-
tions of the methods have been made in both communities. These include, among others, Freund
(1995); Freund and Schapire (1996, 1997); Schapire, Freund, Bartlett and Lee (1998); Breiman
(1998, 1999); Schapire and Singer (1999); Friedman, Hastie and Tibshirani (2000); Friedman
(2001).

Understanding boosting algorithms as functional gradient descent techniques gives theoretical
justifications of the methods; see Mason, Baxter, Bartlett and Frean (2000) and Friedman (2001).
It connects various boosting algorithms to statistical optimization problems with corresponding
loss functions. For example, AdaBoost (Freund and Schapire (1996)) can be interpreted as giv-
ing an approximate solution, starting from an initial learner, to the problem of minimizing the
exponential risk for classification. Also, LogitBoost corresponds to an approximate optimization
of the log-likelihood of binary random variables, see Friedman et al. (2000).

In this paper, we study boosting as a successful bias reduction method in nonparametric re-
gression. Since the regression function m(·) = E(Y |X = ·) is the minimizer of the L2 risk
E[Y − m(X)]2, it is natural to take the squared error loss as an objective function. Applica-
tion of the functional gradient descent approach to the L2 risk is trivial since minimization of the
L2 risk itself is a linear problem and thus there is no need to linearize it. In fact, the population
version of L2 boost is nothing else than adding m − m0 to an initial function m0 so that a single
update yields an exact solution. However, the empirical L2 boost is non-trivial. It amounts to
repeated least-squares fitting of residuals.

L2 boost in the context of regression has been studied by Friedman (2001) and Bühlmann and
Yu (2003). In the latter work, the authors provided some expressions for the average squared
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bias and the average variance of the L2 boost estimate obtained from a linear smoother in terms
of the eigenvalues of the corresponding smoother matrix. They also showed that, if the learner
is a smoothing spline, it is possible for L2 boosting to achieve the optimal rate of convergence
for all higher-order smoothness of the regression function. In doing so, they took the iteration
number, rather than the penalty constant, as the regularization parameter. The optimal rate is
attained if one takes the iteration number r = O(n2p/(2ν+1)) as the sample size n goes to infinity,
where p is the order of the smoothing spline learner and ν is the smoothness of the regression
function.

In this paper, we investigate the theoretical and empirical properties of L2 boosting when
the learner is the Nadaraya–Watson kernel smoother. We derive the bias and variance prop-
erties of the estimate in terms of the bandwidth (smoothing parameter), which is more
conventional in nonparametric function estimation. We show that the optimal rate of con-
vergence is also achieved by the Nadaraya–Watson L2 boosting for all smoothness of the
regression function if the iteration number r is high enough, depending on the smooth-
ness ν, and the bandwidth is properly chosen as O(n−1/(2ν+1)). In particular, we prove
that each step of L2 boosting reduces the bias of the estimate by two orders of the band-
width, and also that additional boosting steps do not deteriorate the order of the variance.
We illustrate these theoretical findings by some simulated examples in a numerical study.
Also, we compare the finite sample properties of L2 boosting with those of higher-order
kernel smoothing, the latter being a well-known method of reducing the bias of the es-
timate. Our results suggest that L2 boosting is superior to the use of higher-order ker-
nels.

2. Main results

The L2 boosting algorithm is derived from application of the functional gradient descent tech-
nique to the L2 loss. The task of the latter is to find the function m that minimizes a func-
tional ψ(m). With an initial function m0, one searches the best direction δ such that ψ(m0 + εδ)

is minimized. Let ψ̇(δ) be the Gâteaux differential of ψ with increment δ, that is,

ψ̇(δ) = lim
ε→0

ψ(· + εδ) − ψ(·)
ε

.

To first order in ε, minimizing ψ(m0 + εδ) with respect to δ is equivalent to minimizing
ψ̇(δ)(m0). Let δ1 denote the minimizer. The update of the initial m0 is given by m1 = m0 + ε1δ1,
where ε1 minimizes ψ(m0 + εδ1). Then, the process is iterated.

Let m(x) = E(Y |X = x) be the regression function. If one applies the functional gradient
descent technique to the L2 loss, ψ(m) = 1

2E[Y − m(X)]2, then one gets

ψ̇(δ)(m0) = −E
[
δ(X)

(
Y − m0(X)

)]
.

Since minimizing −E[δ(X)(Y − m0(X))] subject to Eδ(X)2 = c for some constant c > 0 is
equivalent to minimizing E[Y − m0(X) − δ(X)]2, it follows that the updated function m1 is
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given by m1 = m0 + δ1, where

δ1 = argmin
δ

E[Y − m0(X) − δ(X)]2 = E[Y − m0(X)|X = ·].

Thus, with the L2 loss, the update m1 equals the true function m:

m1(x) = m0(x) + E[Y − m0(X)|X = x] = m(x).

The L2 boosting algorithm given below is an empirical version of the updating procedure above.

Algorithm (L2 Boosting).

Step 1 (Initialization): Given a sample S = {(Xi, Yi), i = 1, . . . , n}, fit an initial estimate
m̂0(x) ≡ m̂(x; S) to the data.

Step 2 (Iteration): Repeat for r = 1, . . . ,R.

(i) Compute the residuals ei = Yi − m̂r−1(Xi), i = 1, . . . , n.
(ii) Fit an estimate m̂(x; Se) to the data Se = {(Xi, ei), i = 1, . . . , n}.

(iii) Update m̂r (x) = m̂r−1(x) + m̂(x; Se).

Thus, L2 boosting is simply repeated least-squares fitting of residuals. With r = 1 (one-step
boosting), it has been already proposed by Tukey (1977), usually referred to as “twicing”. Twic-
ing is related to using higher-order kernels. It was observed by Stützle and Mittal (1979) that,
in the case of the fixed equispaced design points xi = i/n, twicing a kernel smoother is as-
ymptotically equivalent to directly using a higher-order kernel. To be more specific, let K be a
kernel function, h > 0 be the bandwidth and Kh(u) = K(u/h)/h. Define K∗ = 2K − (K ∗ K),
where ∗ denotes the convolution operator. Note that K∗ is a higher-order kernel. If m̂0(x) =
n−1 ∑n

i=1 Kh(x − xi)Yi , then m̂1(x) � n−1 ∑n
i=1 K∗

h(x − xi)Yi , where � is due to the inte-
gral approximation error n−1 ∑n

j=1 Kh(x − xj )Kh(xj − xi) � ∫
Kh(x − z)Kh(z − xi)dz =

(K ∗ K)h(x − xi).
In this paper, we consider random covariates Xi . We derive the theoretical properties of L2

boosting when the learner is the Nadaraya–Watson kernel smoother, that is,

m̂(x; S) =
∑n

i=1 Kh(Xi − x)Yi∑n
i=1 Kh(Xi − x)

.

The Nadaraya–Watson smoothing is the simplest and numerically most stable technique of local
kernel regression. We note that statistical properties of L2 boosting for r ≥ 1 with Nadaraya–
Watson smoothing have not been investigated before.

Throughout the paper, we assume K is a symmetric probability density function which is
Lipschitz continuous and is supported on [−1,1]. The bounded support condition for K can be
relaxed to include kernels, such as Gaussian, that decrease to zero at tails with an exponential
rate. Below, we discuss the asymptotic properties of m̂r for r ≥ 1. For this, we assume that h → 0
and nh/ logn → ∞ as n → ∞.
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We denote a pre-estimate of m by m̃. Thus, at the r th iteration m̃ = m̂r−1. Let m̂ be its update
defined by

m̂(x) = m̃(x) +
n∑

i=1

wi(x)[Yi − m̃(Xi)], (1)

where wi(x) = [∑n
j=1 Kh(Xj − x)]−1Kh(Xi − x). At the r th iteration m̂ = m̂r . Note that, for

the initial estimate m̂0(x) = ∑n
j=1 wj(x)Yj , we get

m̂0(x) − m(x) =
n∑

j=1

wj(x)ej +
n∑

j=1

wj(x)[m(Xj ) − m(x)],

where ej = Yj − m(Xj ).
Let w̃j be the weight functions for m̃ that depend solely on X1, . . . ,Xn and satisfy

n∑
j=1

w̃j (x) = 1 for all x, m̃(x) =
n∑

j=1

w̃j (x)Yj .

Define the updated weight functions by

ŵj (x) = wj(x) + w̃j (x) −
n∑

i=1

wi(x)w̃j (Xi).

Note that ŵj also depends solely on X1, . . . ,Xn. One can verify

n∑
j=1

ŵj (x) = 1 for all x, m̂(x) =
n∑

j=1

ŵj (x)Yj ,

so that

m̂(x) − m(x) =
n∑

j=1

ŵj (x)ej +
n∑

j=1

ŵj (x)[m(Xj ) − m(x)]. (2)

From (2), we note that Var(m̂(x)|X1, . . . ,Xn) = ∑n
j=1 ŵj (x)2σ 2(Xj ), where σ 2(x) =

Var(Y |X = x). The following theorem provides the magnitude of the conditional variance. Let f

denote the marginal density f of the covariate Xi . We assume that f is supported on I = [0,1].

Theorem 1. Assume that f is continuous on I and infx∈I f (x) > 0. If supx∈I
∑n

j=1 w̃j (x)2 =
Op(n−1h−1) uniformly for x ∈ I , then supx∈I

∑n
j=1 ŵj (x)2 = Op(n−1h−1) uniformly for

x ∈ I .

In the proof of Theorem 1 given below, we prove that
∑n

j=1 w2
j (x) = Op(n−1h−1) uniformly

for x ∈ I . Thus, the weight functions wj for the initial estimate m̂0 satisfy the condition of
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Theorem 1. This means that L2 boosting does not deteriorate the order of the variance of the
estimate as the iteration goes on.

Proof of Theorem 1. It follows that

n∑
j=1

ŵ2
j (x) ≤ 3

n∑
j=1

w2
j (x) + 3

n∑
j=1

w̃2
j (x) + 3

n∑
j=1

[
n∑

i=1

wi(x)w̃j (Xi)

]2

≤ 3
n∑

j=1

w2
j (x) + 3

n∑
j=1

w̃2
j (x) + 3

n∑
j=1

n∑
i=1

wi(x)w̃j (Xi)
2

≤ 3
n∑

j=1

w2
j (x) + 3

[
sup
x∈I

n∑
j=1

w̃j (x)2

][
1 +

n∑
i=1

wi(x)

]

= 3
n∑

j=1

w2
j (x) + 6

[
sup
x∈I

n∑
j=1

w̃j (x)2

]
.

To complete the proof, it remains to show that
∑n

j=1 w2
j (x) = Op(n−1h−1) uniformly for x ∈ I .

Let Ih = [h,1 − h]. Then,

n−1
n∑

i=1

Kh(Xi − x) =
{

f (x) + op(1), uniformly for x ∈ Ih,
f (x)C1(x) + op(1), uniformly for x ∈ I/Ih,

n−1h

n∑
i=1

[Kh(Xi − x)]2 =
{

f (x)C2 + op(1), uniformly for x ∈ Ih,
f (x)C3(x) + op(1), uniformly for x ∈ I/Ih,

where 1/2 ≤ C1(x) ≤ 1, C2 = ∫ 1
−1 K2 and

∫ 1
0 K2 ≤ C3(x) ≤ ∫ 1

−1 K2. From this, we conclude

n∑
j=1

w2
j (x) = 1

nh

n−1h
∑n

j=1[Kh(Xi − x)]2

[n−1
∑n

i=1 Kh(Xi − x)]2
= Op(n−1h−1)

uniformly for x ∈ I . �

Next, we discuss the conditional bias of the update m̂. The conditional biases of m̃ and m̂

equal
∑n

j=1 w̃j (x)[m(Xj ) − m(x)] and
∑n

j=1 ŵj (x)[m(Xj ) − m(x)], respectively. In the case
where the pre-estimate m̃ is the initial estimate m̂0, we have w̃j = wj and

n∑
j=1

wj(x)[m(Xj ) − m(x)] = EKh(X1 − x)[m(X1) − m(x)]
EKh(X1 − x)

+ Op

(√
h logn

n

)
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uniformly for x ∈ Iε for arbitrarily small ε > 0, sufficient smoothness of m and f permitting.
The Op(

√
n−1h logn) in the above expansion comes from the mean zero stochastic terms in the

numerator and denominator of the left-hand side.

Theorem 2. Assume that f is continuously differentiable on I− = (0,1) and infx∈I f (x) > 0.
Let r ≥ 1 be an integer. Suppose that

n∑
j=1

w̃j (x)[m(Xj ) − m(x)] = h2rαn(x) + Op

(√
h logn

n

)
(3)

uniformly for x ∈ Iε for arbitrarily small ε > 0, where αn is a sequence of functions that are
twice differentiable on I− and satisfies

lim
δ→0

lim sup
n→∞

sup
|u−v|≤δ

∣∣α(k)
n (u) − α(k)

n (v)
∣∣ = 0 (4)

for k = 0,1,2. Then,

n∑
j=1

ŵj (x)[m(Xj ) − m(x)] = h2(r+1)βn(x) + Op

(√
h logn

n

)

uniformly for x ∈ Iε for arbitrarily small ε > 0, where βn(x) is a deterministic sequence such
that

βn(x) = −1

2

[
α′′

n(x)f (x) + 2α′
n(x)f ′(x)

f (x)

]∫
u2K(u)du + o(1).

Theorem 2 tells that each step of L2 boosting improves the asymptotic bias of the estimate by
two orders of magnitude if m and f are sufficiently smooth. When m̃ = m̂0,

αn(x) = h−2 EKh(X1 − x)[m(X1) − m(x)]
EKh(X1 − x)

(5)

= 1

2

[
m′′(x)f (x) + 2m′(x)f ′(x)

f (x)

]∫
u2K(u)du + o(1),

which can be shown to satisfy (4), sufficient smoothness of m and f permitting. In general, if m

and f are sufficiently smooth, the corresponding sequence of the functions αn at each step of the
iteration satisfies (4).

For the functions class

F (ν,C) = {
m :

∣∣m(�ν�)(x) − m(�ν�)(x′)
∣∣ ≤ C|x − x′|ν−�ν� for all x, x′ ∈ I

}
,

where �ν� is the largest integer that is less than ν, it is known that the minimax optimal rate of
convergence for estimating m equals n−ν/(2ν+1). Let m̂r denote the estimate updated at the r th
iteration. The following theorem implies that the L2 boosted Nadaraya–Watson estimate is mini-
max optimal if the iteration number r is high enough and the bandwidth is chosen appropriately.
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Theorem 3. Assume that m ∈ F (ν,C1), f ∈ F (ν − 1,C2) for ν ≥ 2 and infx∈I f (x) > 0. Let
r ≥ �ν/2� be an integer. Then,

E[m̂r (x)|X1, . . . ,Xn] − m(x) = Op

(
hν +

√
h logn

n

)
(6)

uniformly for x ∈ Iε for arbitrarily small ε > 0.

Theorems 1 and 3 imply that

E
[(

m̂r (x) − m(x)
)2|X1, . . . ,Xn

] = Op(n−1h−1 + h2ν)

for r ≥ �ν/2�. Thus, if one takes h = O(n−1/(2ν+1)) and r ≥ �ν/2�, then m̂r achieves the mini-
max optimal rate of convergence. We note that Bühlmann and Yu (2003) obtained similar results
for smoothing spline learners. They took the iteration number as the regularization parameter and
held the penalty constant fixed. In the case of the cubic smoothing spline learner, for example,
they showed that if r = O(n4/(2ν+1)), then the r th updated estimate achieves the optimal rate;
see their Theorem 3.

Proof of Theorem 2. Fix ε > 0. Then, for sufficiently large n, all Xi with supx∈Iε
wi(x) > 0 lie

in Iε/2. Thus, the expansion (3) holds if we replace x by a random Xi with supx∈Iε
wi(x) > 0.

This implies that, uniformly for x ∈ Iε ,

n∑
i=1

wi(x)

[
n∑

j=1

w̃j (Xi)
(
m(Xj ) − m(Xi)

)] = h2r
n∑

i=1

wi(x)αn(Xi) + Op(ρn), (7)

where ρn = √
n−1h logn. From (3) and (7), we have

n∑
j=1

ŵj (x)[m(Xj ) − m(x)] =
n∑

j=1

w̃j (x)
(
m(Xj ) − m(x)

)

−
n∑

i=1

wi(x)

[
n∑

j=1

w̃j (Xi)
(
m(Xj ) − m(Xi)

)]
(8)

= h2r
n∑

i=1

wi(x)[αn(x) − αn(Xi)] + Op(ρn)

uniformly for x ∈ Iε . Define γn(u, x) = [αn(x) − αn(u)]f (u). Then,

1

n

n∑
i=1

Kh(Xi − x)[αn(x) − αn(Xi)] =
∫

Kh(u − x)γn(u, x)du + Op(ρn)

= 1

2
h2γ ′′

n (x, x)

∫
u2K(u)du + rn(x) + Op(ρn)
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uniformly for x ∈ Iε , where

rn(x) = h2
∫ 1

−1

∫ 1

0
u2K(u)[γ ′′

n (x − huv,x) − γ ′′
n (x, x)](1 − v)dv du

and γ ′′
n (u, x) = ∂2γn(u, x)/∂u2. Note that γ ′′

n (x, x) = −[α′′
n(x)f (x) + 2α′

n(x)f ′(x)] and that,
for any δ > 0,

lim sup
n→∞

sup
x∈Iε

h−2|rn(x)| ≤ lim sup
n→∞

sup
x∈Iε

sup
|u|≤δ

|γ ′′
n (x − u,x) − γ ′′

n (x, x)|
∫

u2K(u)du.

Thus, from (4) we obtain rn(x) = o(h2) uniformly for x ∈ Iε . Since n−1 ∑n
i=1 Kh(Xi − x) =

f (x) + op(1) uniformly for x ∈ Iε , we complete the proof of Theorem 2. �

Proof of Theorem 3. Let p = �ν/2�. When p = 0 (ν = 2), we know

E[m̂0(x)|X1, . . . ,Xn] − m(x) = h2αn(x) + Op(ρn),

where αn is given at (5). When p ≥ 1 (ν > 2), one can verify by repeated applications of Theo-
rem 2 that

E[m̂p−1(x)|X1, . . . ,Xn] − m(x) = h2pαn(x) + Op(ρn)

uniformly for x ∈ Iε for arbitrarily small ε > 0, where αn is a sequence of functions. If ν =
2p + ξ for some integer p ≥ 1 and 0 < ξ ≤ 1, then αn satisfies

lim sup
n→∞

sup
|u−v|≤δ

|αn(u) − αn(v)| ≤ C1δ
ξ

for some C1 > 0. Since

E[m̂p(x)|X1, . . . ,Xn] − m(x) = h2p

n∑
i=1

wi(x)[αn(x) − αn(Xi)] + Op(ρn) (9)

uniformly for x ∈ Iε as in (8), we obtain (6).
Next, if ν = 2p + 1 + ξ for some integer p ≥ 1 and 0 < ξ ≤ 1, then

lim sup
n→∞

sup
|u−v|≤δ

|α′
n(u) − α′

n(v)| ≤ C2δ
ξ

for some C2 > 0. Note that∣∣∣∣∣n−1
n∑

i=1

Kh(Xi − x)[αn(x) + α′
n(x)(Xi − x) − αn(Xi)]

∣∣∣∣∣
≤ C2h

ξn−1
n∑

i=1

|Xi − x|Kh(Xi − x) (10)

= Op(h1+ξ )
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uniformly for x ∈ Iε . From (9) and (10), we obtain (6) in the case ν = 2p + 1 + ξ , too. This
completes the proof of Theorem 3. �

Two important issues that need particular attention are the choice of the bandwidth h and that
of the iteration number r , which may have substantial influence on the performance of the es-
timator for a finite sample size. These are related to each other in the sense that both h and r

are regularization parameters and interplay each other. An optimal choice for one of them de-
pends on the choice of the other. In their smoothing spline approach, Bühlmann and Yu (2003)
fixed the penalty constant, whose role is the same as that of the bandwidth h in our setting,
and find the optimal rate of increase for r (as the sample size grows), as given in the above
paragraph. Our theory is for the other way around. It suggests that taking sufficiently large r

so that r ≥ �ν/2�, but fixed without tending to infinity as the sample size grows, gives an op-
timal performance in terms of rate of convergence if the bandwidth h is chosen in an optimal
way.

In practical implementation of the boosting algorithm where the sample size is fixed, letting
r → ∞ alone leads to overfitting and thus jeopardizes the boosting method. One may think it
is possible to avoid overfitting by increasing the bandwidth. However, increasing the bandwidth
to reduce the variance of the estimator would also increase the bias, which may result in an
increase of the mean squared error if r is too high. Thus, one should use a data-dependent stop-
ping rule for the iteration, as well as a data-driven bandwidth selector. For this one may employ
a cross-validatory criterion, or the test bed method, as discussed in Györfi, Kohler, Krzyzak
and Walk (2002) and Bickel, Ritov and Zakai (2006). To describe the latter method for se-
lection of both h and r , write m̂r (·;h) rather than m̂r to stress its dependence on h, and let
{(Xn+1, Yn+1), . . . , (Xn+B,Yn+B)} be a test bed sample that is independent of the training sam-
ple {(X1, Y1), . . . , (Xn,Yn)}. Define, for each r ≥ 1,

ĥr = argmin

{
B∑

j=1

[Yn+j − m̂r (Xn+j ;h)]2 :h > 0

}
.

Then one can take r̂ for a stopping rule defined by

r̂ = argmin

{
B∑

j=1

[Yn+j − m̂r (Xn+j ; ĥr )]2 : r ≥ 1

}

and the data-driven bandwidth ĥr̂ . It would be of interest to see whether the regression esti-
mator with these data-driven choices r̂ and ĥr̂ achieves the minimax optimal rate without ν,
the smoothness of the underlying function, being specified. We leave this as an open prob-
lem.

A method based on a cross-validatory criterion can be described similarly. As an alterna-
tive to these methods that are based on estimation of the prediction error, one may estimate the
mean squared error of the estimator m̂r (·;h) and then choose h and r that minimize the esti-
mated mean squared error. There have been many proposals for estimating the mean squared
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errors of kernel-based estimators of the regression function in connection with bandwidth selec-
tion; see, for example, Ruppert, Sheather and Wand (1995) and Section 4.3 of Fan and Gijbels
(1996).

3. Numerical properties

In this section, we present the finite sample properties of the L2 boosting estimates. To see how
L2 boosting compares favorably to the use of higher-order kernels as a method of bias reduction,
we consider

m̄r (x) =
∑n

i=1 K
[r]
h (Xi − x)Yi∑n

i=1 K
[r]
h (Xi − x)

,

where K [r] is a 2(r + 1)th-order kernel defined by, with K [0] = K ,

K [r](x) = 2K [r−1](x) − K [r−1] ∗ K [r−1].

Sufficient smoothness of m and f permitting, m̄r is known to have a bias of order h2(r+1), which
is of the same magnitude as the bias of the r-step boosted estimate m̂r .

The simulation was done under the following two models:

(1) m(x) = sin(2πx), 0 ≤ x ≤ 1;
(2) m(x) = 2

5 {3 sin(4πx) + 2 sin(3πx)}, 0 ≤ x ≤ 1.

We took U(0,1) for the distribution of Xi , and N(0,0.52) for the errors. For each model,
two hundred pseudo-samples of size n = 100 and 400 were generated. We used the Gaussian
kernel K . We evaluated the mean integrated squared errors (MISE) of the estimates based on
these samples. For this, we took 101 equally spaced grid points on [0,1] and used the trapezoidal
rule for the numerical integration.

Figures 1–3 show how the bias, variance and MISE of the estimates change as the boost-
ing iteration number or the order of the kernel increases when n = 400. The result for r = 0
corresponds to the Nadaraya–Watson estimate. The curves in Figures 1 and 2 depict the in-
tegrated squared biases (ISB) and the integrated variance (IV), respectively, as functions of
the bandwidth, and those in Figure 3 represent MISE. Table 1 gives the minimal MISE along
with the optimal bandwidths that attain the minimal values for both sample sizes n = 100 and
400.

For the L2 boosted estimates, we see from the figures that the ISB reduces as the boosting
iteration number r increases in the whole range of the bandwidth. In particular, it decreases
rapidly at the beginning of the boosting iteration and the degree of reduction decreases as r in-
creases. On the other hand, the IV increases at a relatively slower rate as r increases. Since the
decrement of the ISB (as r increases) is greater than the increment of the IV for moderate-to-
large bandwidths (h ≥ e−3.0 ≈ 0.05 for model (1) and h ≥ e−3.7 ≈ 0.025 for model (2)), and
the former is smaller than the latter for small bandwidths, the value of MISE gets smaller as r

increases in the range of moderate-to-large bandwidths, while it becomes larger in the range of
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(a)

(b)

Figure 1. (a) Integrated squared bias for r = 0,1, . . . ,6 based on 200 pseudo-samples of size n = 400 from
the model (1). (b) Integrated squared bias for r = 0,1, . . . ,6 based on 200 pseudo-samples of size n = 400
from the model (2). The left panel is for the L2 boosting estimate and the right panel is for the higher-order
kernel estimate.

small bandwidths. The results in Table 1 show that the minimal value of MISE always decreases
and the optimal bandwidth gets larger as r increases. These results confirm our theoretical find-
ings that L2 boosting improves the order of the bias while not deteriorating the order of the
variance.

For the higher-order kernel estimates, the behavior of the ISB and the IV as the order of
kernel r changes is similar to that of L2 boosting except for small bandwidths. For small
bandwidths, not only the IV but also the ISB increases as r increases. This is contrary to
the theory. In particular, the values of the ISB and IV explode when r is large. Although
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(a)

(b)

Figure 2. (a) Integrated variance for r = 0,1, . . . ,6 based on 200 pseudo-samples of size n = 400 from the
model (1). (b) Integrated variance for r = 0,1, . . . ,6 based on 200 pseudo-samples of size n = 400 from the
model (2). The left panel is for the L2 boosting estimate and the right panel is for the higher-order kernel
estimate.

not presented in this paper, we observed that the bad behavior is more severe when n = 100
and it starts at a relatively larger bandwidth than in the case of n = 400. Furthermore, Ta-
ble 1 reveals that the minimal value of MISE starts to increase at some point as the order
of the kernel r increases. This erratic behavior of the higher-order kernel estimate is due
to the fact that its denominator often takes near-zero or even negative values, which occurs
more often for larger r , and it makes the estimate very unstable. This suggests that, contrary
to L2 boosting, the theoretical advantages of higher-order kernels do not take effect in prac-
tice.
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(a)

(b)

Figure 3. (a) Mean integrated squared error for r = 0,1, . . . ,6 based on 200 pseudo-samples of size
n = 400 from the model (1). (b) Mean integrated squared error for r = 0,1, . . . ,6 based on 200
pseudo-samples of size n = 400 from the model (2). The left panel is for the L2 boosting estimate and
the right panel is for the higher-order kernel estimate.
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Table 1. Minimal MISE and the corresponding optimal bandwidth h

Model (1) Model (2)

L2-boosting Higher-order L2-boosting Higher-order
kernel kernel

r h MISE h MISE r h MISE h MISE

n = 100
0 0.050 0.0215 0.050 0.0215 0 0.030 0.0431 0.030 0.0431
1 0.080 0.0188 0.080 0.0208 1 0.045 0.0355 0.045 0.0436
2 0.100 0.0176 0.100 0.0213 2 0.060 0.0324 0.070 0.0493
3 0.120 0.0168 0.120 0.0223 3 0.065 0.0305 0.085 0.0544
4 0.130 0.0162 0.140 0.0231 4 0.075 0.0293 0.100 0.0588
5 0.140 0.0157 0.160 0.0238 5 0.080 0.0284 0.110 0.0624
6 0.150 0.0153 0.180 0.0242 6 0.085 0.0277 0.125 0.0649

n = 400
0 0.040 0.0070 0.040 0.0070 0 0.020 0.0124 0.020 0.0124
1 0.060 0.0059 0.060 0.0066 1 0.035 0.0099 0.035 0.0118
2 0.080 0.0054 0.070 0.0068 2 0.045 0.0091 0.045 0.0125
3 0.090 0.0051 0.090 0.0072 3 0.055 0.0086 0.050 0.0134
4 0.100 0.0049 0.100 0.0075 4 0.060 0.0082 0.055 0.0143
5 0.110 0.0047 0.110 0.0077 5 0.065 0.0080 0.060 0.0150
6 0.120 0.0046 0.120 0.0079 6 0.070 0.0077 0.065 0.0157
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