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Based on Stein’s method, we derive upper bounds for Poisson process approximation in the L1-Wasserstein

metric d
(p)
2 , which is based on a slightly adapted Lp-Wasserstein metric between point measures. For the

case p = 1, this construction yields the metric d2 introduced in [Barbour and Brown Stochastic Process.
Appl. 43 (1992) 9–31], for which Poisson process approximation is well studied in the literature. We demon-

strate the usefulness of the extension to general p by showing that d
(p)
2 -bounds control differences between

expectations of certain pth order average statistics of point processes. To illustrate the bounds obtained for
Poisson process approximation, we consider the structure of 2-runs and the hard core model as concrete
examples.

Keywords: Barbour-Brown metric; distributional approximation; Lp-Wasserstein metric; Poisson point
process; Stein’s method

1. Introduction

Stein’s method is a very powerful and flexible tool for deriving upper bounds for distances be-
tween probability distributions. Since its first publication in Stein (1972), where it was limited to
normal approximation, the method has been extensively studied and adapted to a wide range of
different distributions; see Barbour and Chen (2005) for a comprehensive overview. In Barbour
and Brown (1992) (see also Barbour, Holst and Janson (1992) for discrete state spaces and the
earlier results in Arratia, Goldstein and Gordon (1989) and Barbour (1988)) Poisson process ap-
proximation by Stein’s method was developed both in the total variation metric and in a particular
Wasserstein metric, denoted by d2, that has proved to be more suitable for the problem of point
process approximation. In Brown and Xia (2001) (after an earlier more complicated version in
Brown, Weinberg and Xia (2000)) a partial improvement of the d2-approximation was offered
that was able to remove in many cases a rather annoying logarithmic factor from the upper bound.
For a fine overview of Stein’s method for Poisson process approximation see Xia (2005).

In the present paper we use Stein’s method to give upper bounds for Poisson process approx-
imation in a generalized d2-metric, which we denote by d

(p)

2 , where p ∈ [1,∞] and d
(1)
2 = d2.

This generalization enables us to draw wider conclusions from the resulting estimates. In par-
ticular, we have that any upper bound obtained for a d

(p)

2 -distance controls also the difference
between the expectations of statistics that are based on the pth order average of certain distance
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features within the point processes, whereas often the same is true only for the standard (first-
order) average in the case of d2-bounds. The price to be paid for this improvement is that the
upper bounds we obtain are in general somewhat worse. However, for p < ∞ they are still better
than the corresponding total variation estimate, and they do not contain the infamous logarithmic
factor that usually appears in the estimates for p = 1.

The paper is organized as follows. In Section 2 we give the definition of d
(p)

2 and discuss
some of the elementary properties (Section 2.1). We furthermore present examples of the pth
order average statistics mentioned above (Section 2.2). Section 3 contains our main result. After
stating the general upper bound for Poisson process approximation in Section 3.1, we compute
two examples in concrete situations (Section 3.2), before proving the bound in Section 3.3.

2. The Wasserstein metrics d
(p)
2

2.1. Notation and definitions

We always consider a compact metric space (X , d0) with d0 ≤ 1 as the state space of our point
processes and equip it with its Borel σ -algebra B. Denote the space of all finite point measures
on X by N and equip it as usual with the vague topology and the σ -algebra N generated by
this topology, which is the smallest σ -algebra that renders the point counts of measurable sets
measurable (see Kallenberg (1986), Section 1.1, Lemma 4.1, and Section 15.7). Recall that a
point process is just a random element of N.

We first define metrics d
(p)

1 on N that are based on an Lp-Wasserstein construction. Denote

the set of permutations of {1,2, . . . , n} by �n. For any ξ = ∑|ξ |
i=1 δxi

and η = ∑|η|
i=1 δyi

∈ N, let

d
(p)

1 (ξ, η) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
π∈�n

(
1

n

n∑
i=1

d0
(
xi, yπ(i)

)p

)1/p

, if |ξ | = |η| = n ≥ 1,

1, if |ξ | �= |η|,
0, if |ξ | = |η| = 0

for 1 ≤ p < ∞, and let

d
(∞)
1 (ξ, η) :=

⎧⎨
⎩

min
π∈�n

max
1≤i≤n

d0
(
xi, yπ(i)

)
, if |ξ | = |η| = n ≥ 1,

1, if |ξ | �= |η|,
0, if |ξ | = |η| = 0.

It is straightforward (in fact immediate, except for the triangle inequality, which can be proved
by Minkowski’s inequality) that d

(p)

1 , 1 ≤ p ≤ ∞, are metrics and bounded by 1. By applying
Lyapunov’s inequality, we obtain that

d
(p)

1 ≤ d
(q)

1 for 1 ≤ p ≤ q ≤ ∞, (2.1)
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and with the help of this result it can be seen that d
(p)

1 metrizes the vague topology for any p.

Furthermore it can be shown that (N, d
(p)

1 ) is complete and separable (the latter follows directly
from Result 15.7.7 in Kallenberg (1986)).

Next we define the metric d
(p)

2 on the space P(N) of probability measures on N, which is the

usual L1-Wasserstein metric with respect to d
(p)

1 . Let F (p)

2 := {f :N → [0,1]; |f (ξ) − f (η)| ≤
d

(p)

1 (ξ, η) for all ξ, η ∈ N}. Set then for any P,Q ∈ P(N)

d
(p)

2 (P,Q) := sup
f ∈F (p)

2

∣∣∣∣
∫

N

f dP −
∫

N

f dQ

∣∣∣∣.
Since this is exactly the Wasserstein construction (the fact that we restrict the functions in F (p)

2

to be [0,1]-valued has no influence on the supremum because the underlying d
(p)

1 -metric is

bounded by 1), it is clear that d
(p)

2 , 1 ≤ p ≤ ∞, are metrics, obviously bounded by 1, and that
general results about Wasserstein metrics apply. One such result is the well-known Kantorovich–
Rubinstein theorem, which in our situation states that

d
(p)

2 (P,Q) = min
�∼P
H∼Q

Ed
(p)

1 (�,H)

for any P,Q ∈ P(N), where we use notation of the form Z ∼ R to indicate that a random
element Z has distribution R. Furthermore it is clear by inequality (2.1) that

d
(p)

2 ≤ d
(q)

2 for 1 ≤ p ≤ q ≤ ∞, (2.2)

and it follows, by the facts that d
(p)

1 metrizes the vague topology and that d
(p)

2 is also the bounded

Wasserstein metric, that d
(p)

2 metrizes convergence in distribution of point processes (see Dudley
(1989), Theorem 11.3.3).

To the author’s knowledge, d
(p)

2 has not been considered before as a metric on P(N), except
for p = 1 (as mentioned in the Introduction) and for p = ∞ (in Xia (1994) and Schuhmacher
(2005a)).

2.2. Applications of distance estimates

By the definition of d
(p)

2 , an upper bound of d
(p)

2 (L(�),L(H)) controls also the difference

|Ef (�) − Ef (H)| for any function f ∈ F (p)

2 . It is thus of considerable interest in order to
apply the upper bounds obtained in Theorem 3.A, to have a certain supply of “meaningful”
d

(p)

1 -Lipschitz continuous statistics of point patterns (where we do not worry too much about the
Lipschitz constant as it will only appear as an additional factor in the upper bound). One way in
which such statistics can then be used is to test if a given point pattern is a realization from among
a certain class of point process distributions that are all known to lie within some d

(p)

2 -distance
ε of a Poisson process distribution (e.g., according to our example in Section 3.2.2, the class of
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hard core processes with fixed intensity λ and hard core radius r below some level � > 0). The
fact that the test statistic lies in F (p)

2 enables us to control the size of the test in such a way that
it lies only slightly below some required level α if ε is small. A detailed application of this idea
in the case p = 1 was presented in Schuhmacher (2005b), Section 3.2.

The examples of d
(p)

1 -Lipschitz continuous statistics f given below are all pth order aver-
ages of certain distance features within the point measure. In each case we tacitly set f to zero
where the stated definition does not apply (e.g. for n < l in Proposition 2.A). The proofs of the
propositions are given in the Appendix.

Our first example concerns pth order U -statistics with Lipschitz continuous kernels. Note that
at least for p = 1 there is a plethora of results available about U -statistics that are based on a
fixed number of i.i.d. points (which in the point process framework corresponds to a Poisson
process conditioned on its total number of points). See Lee (1990) for more information. For
p = 1, a class of functions similar to those in Proposition 2.A was proposed in Barbour, Holst
and Janson (1992), Section 10.2.

Proposition 2.A. Take l ∈ N and let K : Z+ × X l → [0,1] be a function that is symmetric in the
last l arguments and satisfies

|K(m;u1, u2, . . . , ul) − K(m;v1, v2, . . . , vl)| ≤ 1

l

l∑
i=1

d0(ui, vi) (2.3)

for all m ∈ Z+ and all u1, u2, . . . , ul, v1, v2, . . . , vl ∈ X . Define f :N → [0,1] by

f (ξ) := K(p)(ξ) :=
(

1(
n
l

) ∑
1≤i1<i2<···<il≤n

K(n;xi1, xi2, . . . , xil )
p

)1/p

(2.4)

for ξ = ∑n
i=1 δxi

∈ N with n ≥ l, and 1 ≤ p < ∞. Then f ∈ F (p)

2 .

Instead of (2.4), we may also consider the centered pth order average, which for the case
p = 2 gives us the standard deviation of (K(n;xi1, xi2, . . . , xil ))1≤i1<i2<···<il≤n.

Proposition 2.B. Let K be as in Proposition 2.A and K := K(1). Define f :N → [0,1] by

f (ξ) :=
(

1(
n
l

) ∑
1≤i1<i2<···<il≤n

|K(n;xi1, xi2, . . . , xil ) − K(ξ)|p
)1/p

(2.5)

for ξ = ∑n
i=1 δxi

∈ N with n ≥ l, and 1 ≤ p < ∞. Then f is d
(p)

1 -Lipschitz continuous with
constant 2.

One basic choice for the function K in the above results is half the interpoint distance, that is,
K(m;u1, u2) = K0(u1, u2) := 1

2d0(u1, u2) for all m ∈ N and u1, u2 ∈ X . By the triangle inequal-
ity for d0 it is immediately seen that inequality (2.3) holds. This choice allows several extensions
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to functions K that are based on more than two points. One is half the average interpoint distance
in groups of size l ≥ 2, that is,

K1(u1, . . . , ul) := 1

2

1(
l
2

) ∑
1≤i<j≤l

d0(ui, uj ).

Note that this function is only of interest for p > 1, since for p = 1 and any l ≥ 2 we just
obtain the same values f (ξ) as under K0 for any ξ that has at least l points. Let X ⊂ R

D ,
where for the sake of simplicity we assume that diam(X ) := max{|x − y|;x, y ∈ X } ≤ 1, and set
d0(x, y) := |x − y|. Then two more extensions are given as 2/l times the radius of the minimal
bounding ball and l/(2(l − 1)) times the average distance to the geometrical centroid (center of
gravity) in groups of size l; that is, for l ≥ 2 and u1, . . . , ul ∈ X ,

K2(u1, . . . , ul) := 2

l
min{r ≥ 0; ∃x ∈ R

D such that u1, . . . , ul ∈ B(x, r)},

where B(x, r) denotes the closed Euclidean ball with center at x and radius r , and

K3(u1, . . . , ul) := l

2(l − 1)

1

l

l∑
i=1

d0

(
ui,

1

l

l∑
i=1

ui

)
.

For all of these functions Kt , t ∈ {1,2,3}, inequality (2.3) is straightforward to check by showing
that

|Kt(u,u2, . . . , ul) − Kt(v,u2, . . . , ul)| ≤ 1

l
d0(u, v)

for all u,v,u2, . . . , ul ∈ X and using the symmetry of Kt . More examples, some of which also
have corresponding extensions to groups of size l, can be found in Schuhmacher (2005a).

Another d
(p)

1 -Lipschitz continuous function is the pth order average of the nearest neighbor
distances in a finite point measure on R

D , where D ∈ N. This statistic gives important informa-
tion about the amount of clustering in a point pattern.

Proposition 2.C. Let X ⊂ R
D and d0(x, y) := |x − y| ∧ 1 for all x, y ∈ X . Define the function

f :N → [0,1] by

f (ξ) :=
(

1

n

n∑
i=1

min
j∈{1,...,n}

j �=i

d0(xi, xj )
p

)1/p

for ξ = ∑n
i=1 δxi

∈ N with n ≥ 2, and 1 ≤ p < ∞. Then f is d
(p)

1 -Lipschitz continuous with
constant τD +1 for p = 1 and 2(2τD +1)1/p for general p, where τD denotes the kissing number
in D dimensions (i.e., the maximal number of unit balls that can touch a unit ball in (RD, | · |)
without producing any overlaps of the interiors; see Conway and Sloane (1999), Section 1.2, for
details).
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3. Distance bounds

In this subsection the main theorem is stated. We give an upper bound for p ∈ [1,∞] of the
d

(p)

2 -distance between the distribution of a general point process � and a Poisson process with
the same expectation measure. The result is a generalization of Theorem 5.19 in Xia (2005)
(the case p = 1), which in turn is ultimately based on Theorems 3.6 and 3.7 in Barbour and
Brown (1992) (but incorporates among other things certain improvements made in Brown and
Xia (1995a) and Chen and Xia (2004)).

3.1. Statement of the main theorem

We always consider a point process � on X that has finite expectation measure λ. Let �x be the
Palm process of � given a point in x (i.e. any point process that is distributed according to the
Palm distribution of � given a point in x); see Kallenberg (1986), Chapter 10, for formal details
or Xia (2005), Section 2.3.1, for a concise overview. Write λ := |λ| for the total mass of λ, and
denote by Po(λ) the Poisson process distribution with expectation measure λ, and by Po(λ) the
Poisson distribution with expectation λ.

Call a family {Nx}x∈X of measurable subsets Nx ⊂ X a neighborhood structure if x ∈ Nx

and the mapping [N × X → N, (ξ, x) �→ ξ |Nc
x
] is (N ⊗ B)-N -measurable. This is the case

if N(X ) := {(x, y) ∈ X 2;y ∈ Nx} is B2-measurable (see Chen and Xia (2004), after For-
mula (2.4)). Note that Nx does not have to be a neighborhood of x in the topological sense.

If μ is a finite measure on X , then we say that the density conditions are satisfied for � (with
respect to the reference measure μ) if � is a simple point process, and the Janossy densities
jn : X n → R+ with respect to μn exist for n ≥ 0 and are hereditary (i.e., jn(x1, . . . , xn) = 0
implies jn+1(x1, . . . , xn, xn+1) = 0 for all x1, . . . , xn, xn+1 ∈ X ). In this case, it can be seen
that a density φ : X → R+ of the expectation measure λ with respect to μ exists. Write fur-
thermore g(x; ξ) for the conditional density of having a point of � in x given that �|Nc

x
= ξ .

See Xia (2005), Section 2.3.2, for details on Janossy densities and the definition of g, and see
Schuhmacher (2008), Section 2.4 and Remark A.C, for the reason why hereditarity (or a simi-
lar property) is needed, as well as for an alternative approach using densities with respect to a
Poisson process distribution rather than Janossy densities.

Define the metric d ′
1 on N by d ′

1(ξ, η) := (m − n) + minπ∈�m

∑n
i=1 d0(xi, yπ(i)) for ξ =∑n

i=1 δxi
and η = ∑m

i=1 δyi
if n ≤ m, and d ′

1(ξ, η) := d ′
1(η, ξ) otherwise. Let κ0 := 4e/(1 + 4e −√

1 + 8e) ≈ 1.53, κ1 := 2 − κ0,

γ
(p)

1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

e
+ 2(κ0eκ0)−1/2 ≤ 1.61, if p = 1,√

2

e
+ 2

(
2 − p

pκ
1−1/p

0 − κ1(p − 1)

)(2−p)/(2(p−1))

, if 1 < p ≤ 2,

p

p − 1
+ 1√

2e

p

p − 1

(
p − 2√

2e(pκ
1−1/p

0 − κ1(p − 1))

)(p−2)/p

, if 2 < p < ∞,
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Figure 1. Graphs for γ
(p)
1 and γ

(p)
2 . The limits for p → ∞ are 1 + 1

4e(κ0−1)
and 3

2 , respectively.

and

γ
(p)

2 := (1 + 21/p + (2/3)1/p)p2

(p − 1)(2p − 1)
for 1 < p < ∞.

To get an impression of the behavior of γ
(p)

1 and γ
(p)

2 as functions of p, see Figure 1.

Theorem 3.A. For any point process � on X with expectation measure λ and any neighborhood
structure (Nx)x∈X , we have

d
(p)

2 (L(�),Po(λ))

≤ c
(p)

2 (λ)

(∫
X

λ(Nx)λ(dx) + E

∫
X

(
�(Nx) − 1

)
�(dx)

)
+ min(ε1, ε2),

where

ε1 = c
(p)

1 (λ)E

∫
X

|g(x;�|Nc
x
) − φ(x)|μ(dx),

which is valid if the density conditions are satisfied for � with respect to μ, and

ε2 = c
(p)

2 (λ)E

∫
X

d ′
1(�|Nc

x
,�x |Nc

x
)λ(dx).

The factors c
(p)

1 (λ) and c
(p)

2 (λ) are given by

c
(p)

1 (λ) =
{

min
(
1, γ

(p)

1 λ−1/max(2,p)
)
, if 1 ≤ p < ∞,

1, if p = ∞,
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and

c
(p)

2 (λ) =
⎧⎨
⎩

min
(
1, 11

6 [1 + 2 log+(6λ/11)]λ−1
)
, if p = 1,

min
(
1, γ

(p)

2 λ−1/p
)
, if 1 < p < ∞,

1, if p = ∞.

Remark 3.B. Note that γ
(p)

2 → ∞ for p → 1, which is consistent with the fact that c
(1)
2 (λ) is

not of the form “constant times λ−1” but contains an extra factor of order log(λ). The presence
of this factor in the upper bound of the d

(1)
2 -distance has caused much discussion over the years,

especially since no such factor is present in the corresponding upper bound of the total variation
distance between the distributions of the total numbers of points (see Barbour and Brown (1992),
Theorem 3.10).

It was shown in Brown and Xia (1995b) that with the current proof technique this factor cannot
be omitted in a general setting (more precisely, that the estimate in Proposition 3.H(ii) is of the
correct order if p = 1). In Brown et al. (2000) and Brown and Xia (2001) non-uniform bounds
of the term �2h in Proposition 3.H(ii) were given, with the help of which the authors were able
to dispose of the logarithmic factor in many important special cases. However, there is currently
no general result available that can do without the logarithm. Very recently, Röllin (2008) gave
an example of a point process �, for which the (exact) order of d

(1)
2 (L(�),Po(λ)) for λ → ∞

contains an extra factor log(λ) as compared to the order of dT V (L(|�|),Po(λ)). This example
makes the logarithmic term in c

(1)
2 (λ) appear rather natural.

3.2. Examples

In order to illustrate how the bounds given in Theorem 3.A can be used in concrete situations,
we present two quick examples.

3.2.1. Process of 2-runs

This application has been considered for p = 1 in Section 6.2 of Xia (2005). The corresponding
arguments remain largely the same.

Let X = [0,1], d0 ≤ 1 an arbitrary metric on X , and choose 0 < z1 < z2 < · · · < zn = 1. Con-
sider i.i.d. indicator random variables I1, I2, . . . , In with expectation p. In order to avoid edge
effects, we interpret the indices 1,2, . . . , n as the elements of the quotient ring Zn := Z/nZ (so
that n + 1 = 1 and 1 − 1 = n). Define indicators Ji := IiIi+1 for i ∈ Zn. Then � := ∑

i∈Zn
Jiδzi

is a point process on X with expectation measure λ = ∑
i∈Zn

p2δzi
, which describes the starting

points of 2-runs in the process
∑

i∈Zn
Iiδzi

.
Applying Theorem 3.A is straightforward. Setting Nzi

:= {zi}, we can immediately see that

∫
X

λ(Nx)λ(dx) = np4 and E

∫
X

(
�(Nx) − 1

)
�(dx) = 0.
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We give an upper bound for the term ε2. As a concrete Palm process we may choose

�zi
= δzi

+ Ii−1δzi−1 + Ii+2δzi+1 +
∑

j∈Zn\{i−1,i,i+1}
Jj δzj

.

For bounding d ′
1(�|Nc

zi
,�zi

|Nc
zi
), pair each point of �|Nc

zi
with the corresponding point of �zi

|Nc
zi

at the same position, which gives a perfect match except at zi−1 and zi+1, where it can happen
that �zi

|Nc
zi

has a point, but �|Nc
zi

has none. Thus

d ′
1(�|Nc

zi
,�zi

|Nc
zi
) ≤ Ii−1 − Ji−1 + Ii+1 − Ji+1 = Ii−1(1 − Ii) + Ii+1(1 − Ii+2),

which implies that

ε2 ≤ c
(p)

2 (λ)2np3(1 − p).

Collecting the various estimates, we obtain the following result.

Proposition 3.C. With the above assumptions we have

d
(p)

2 (L(�),Po(λ)) ≤
⎧⎨
⎩

11
6 [1 + 2 log+(6np2/11)] · p(2 − p), if p = 1,

γ
(p)

2 (np2)1−1/p · p(2 − p), if 1 < p < ∞,
np2 · p(2 − p), if p = ∞.

Remark 3.D. In Theorem 6.3 of Xia (2005) it is shown that the logarithmic factor for p = 1 can
be disposed of at the cost of a higher constant and a considerably more complicated proof.

Remark 3.E. The maybe more obvious choice of Nzi
:= {zi−1, zi , zi+1} for the proof of Propo-

sition 3.C, which implies that ε1 = ε2 = 0 in Theorem 3.A, would in fact yield a somewhat worse
bound, where the factor p(2 − p) is replaced by p(2 + 3p).

3.2.2. Hard core process

This application has been considered for p = 1 in Barbour and Brown (1992) (see after The-
orems 2.4 and 3.6), with an important correction in Brown and Greig (1994). The arguments
below are largely the same as in the latter article.

Let X = [0,1]D and d0 ≤ 1 an arbitrary metric on X . In order to avoid edge effects, we shall
assume that the torus convention holds, which will become important below when we measure
Euclidean distances |x − y|. Let μ be Lebesgue measure on X , and consider a stationary hard
core process � with expectation measure λ = λμ for λ > 0 and with hard core radius r > 0 (note
that r cannot be above a certain threshold r0(λ) > 0 that is determined by λ). Such a process may
be specified by its Janossy densities with respect to μ, given by

jn(x1, . . . , xn) = cβnI[|xi − xj | > r for all 1 ≤ i < j ≤ n],
where c and β are chosen in such a way that

∑∞
n=0

∫
X n(n!)−1jn(x)μn(dx) = 1 (correct nor-

malization for jn to be Janossy densities) and
∑∞

n=0

∫
X n(n!)−1jn+1(x,y)μn(dy) = λ for every

x ∈ X (correct density of expectation measure, φ(x) ≡ λ).
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We can easily see that the density conditions are satisfied for �, and we can thus apply The-
orem 3.A and make use of the term ε1. Setting Nx := {x}, it is immediately clear that the first
two summands in the upper bound are zero. A short computation (see Brown and Greig (1994),
Section 3) shows that g(x; ξ) = βI[ξ(B(x, r)) = 0], where B(x, r) is the closed Euclidean ball
with center at x and radius r , and that P[�(B(x, r)) = 0] = P[�|Nc

x
(B(x, r)) = 0] = λ/β . By

these two equations it can be easily seen that

E

∫
X

|g(x;�|Nc
x
) − φ(x)|μ(dx) ≤ 2λE(�(B(x, r))) = 2λ2αDrD,

where αD denotes the volume of B(0,1). Thus Theorem 3.A yields the following result.

Proposition 3.F. With the above assumptions we have

d
(p)

2 (L(�),Po(λ)) ≤
{

2γ
(p)

1 αDrDλ2−1/max(2,p), if 1 ≤ p < ∞,
2αDrDλ2, if p = ∞.

Remark 3.G. Following the arguments in Section 4 of Brown and Greig (1994), it can be seen
that the constant 2 in Proposition 3.F can be improved to 1.5 by choosing Nx := B(x, r/2), at
the cost of an additional condition and a considerably more complicated proof.

3.3. Proof of Theorem 3.A

Stein’s method for Poisson process approximation as originally developed in Barbour and Brown
(1992) provides us with a general procedure for finding upper bounds for a distance term of the
form d(L(�),Po(λ)) = supf ∈F |Ef (�) − Po(λ)(f )| for some class F of measurable functions
f :N → R.

The rough idea of this procedure is as follows. First, set up the so-called Stein equation as

f (ξ) − Po(λ)(f ) = Ah(ξ) for ξ ∈ N, (3.1)

where A is given by

Ah̃(ξ) =
∫

X
[h̃(ξ + δx) − h̃(ξ)]λ(dx) +

∫
X

[h̃(ξ − δx) − h̃(ξ)]ξ(dx)

for suitable functions h̃ :N → R and for ξ ∈ N. Thus A is the generator of the spatial
immigration-death process with immigration measure λ and unit per capita death rate, for which
Po(λ) plays the special role of being its stationary distribution (see Xia (2005), Section 3.2 for
more information). Let Zξ be such an immigration-death process with starting configuration
Zξ (0) = ξ ∈ N. It can be shown that, if f is bounded, the function h = hf :N → R,

h(ξ) = hf (ξ) := −
∫ ∞

0
[Ef (Zξ (t)) − Po(λ)(f )]dt (3.2)
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is well-defined and solves equation (3.1). Rather than bounding |Ef (�) − Po(λ)(f )| directly,
it is then the key idea of Stein’s method to bound the equivalent term |EAh(�)|, which in fact
turns out to be a considerably easier task in many situations.

In Theorem 5.3 of Xia (2005), which is a (very slight) specialization of Theorem 2.3 in Chen
and Xia (2004), this strategy is employed to give a very versatile but still somewhat raw upper
bound, which incorporates the essence of several of the earlier results mentioned in the introduc-
tion. Note that we have interchanged f and h in our presentation, which results in notation that
is more commonly used in the literature (see, e.g., Barbour, Holst and Janson (1992), Barbour
and Brown (1992), or Brown and Xia (1995a)). A direct consequence of Theorem 5.3 is that, for
any bounded measurable function f :N → R+ and h = hf defined as in (3.2), we have

|Ef (�) − Po(λ)(f )|
(3.3)

≤ ‖�2h‖∞
(∫

X
λ(Nx)λ(dx) + E

∫
X

(
�(Nx) − 1

)
�(dx)

)
+ min(ε1(h), ε2(h)),

where

ε1(h) = ‖�h‖∞E

∫
X

|g(x;�|Nc
x
) − φ(x)|μ(dx),

which is valid if the density conditions are satisfied for � with respect to μ, and

ε2(h) = E

∫
X

|[h(�|Nc
x
+ δx) − h(�|Nc

x
)] − [h(�x |Nc

x
+ δx) − h(�x |Nc

x
)]|λ(dx).

Here, the supremum norms of the first and second differences of h are defined as

‖�h‖∞ := sup
ξ∈N,x∈X

|h(ξ + δx) − h(ξ)|

and

‖�2h‖∞ := sup
ξ∈N;x,y∈X

|h(ξ + δx + δy) − h(ξ + δx) − h(ξ + δy) + h(ξ)|.

Note that the above result does not make use of any particular metric d , since it does not restrict
the choice of functions f to a specific class F . The refinement of the result by giving upper
bounds on the various increments of h = hf according to special properties of f is the crucial
step in adapting Stein’s method to any one particular metric and is typically quite complicated.
This step for the metrics d

(p)

2 is made in Proposition 3.H below. Inequality (3.3) together with
this proposition directly yields the statement of Theorem 3.A.

Proposition 3.H. Let p ∈ [1,∞]. If f ∈ F (p)

2 , then

(i) ‖�h‖∞ ≤ c
(p)

1 (λ);

(ii) ‖�2h‖∞ ≤ c
(p)

2 (λ);

(iii) |(h(ξ + δx) − h(ξ)) − (h(η + δx) − h(η))| ≤ c
(p)

2 (λ)d ′
1(ξ, η) for ξ, η ∈ N and x ∈ X .
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Proof. The proof builds on the ideas of the proofs of the corresponding results for the case p = 1;
see Propositions 5.16 to 5.18 in Xia (2005). In particular, it makes use of the representation of the

spatial immigration-death process Zξ as Zξ (t)
D= Dξ (t)+ Z0(t), where Dξ is a spatial pure death

process with unit per capita death rate and starting configuration ξ , Z0 is a spatial immigration-
death process with the same parameters as Zξ , but starting with 0-measure, and Dξ and Z0 are
independent (see Xia (2005), Proposition 3.5). Write Z|ξ |(t) := |Zξ (t)|, Z0(t) := |Z0(t)|, and
note that Z0(t) ∼ Po(λt ), where λt = λ(1 − e−t ).

Statement (i). Suppose that 1 < p < ∞. Inequality (5.19) in Xia (2005) yields that

|h(ξ + δx) − h(ξ)| ≤
∫ ∞

0
e−t

{
1 ∧ [∣∣E(

f
(
Zξ (t) + δx

) − f
(
Zξ (t) + δU

))∣∣
(3.4)

+ ∣∣E(
f

(
Zξ (t) + δU

) − f (Zξ (t))
)∣∣]}dt

for a random element U ∼ λ/λ of X that is independent of everything else, where

∣∣E(
f

(
Zξ (t) + δx

) − f
(
Zξ (t) + δU

))∣∣ ≤ E

((
1

|Zξ (t)| + 1

)1/p)

≤
(

E

(
1

Z|ξ |(t) + 1

))1/p

(3.5)

≤
(

E

(
1

Z0(t) + 1

))1/p

=
(

1 − e−λt

λt

)1/p

(see inequality (3.11) for details on the first estimate), and

∣∣E(
f

(
Zξ (t) + δU

) − f (Zξ (t))
)∣∣ ≤ 1√

2eλt

by inequality (5.23) in Xia (2005) (note that “=” in the last line should be “≤”). Hence,

|h(ξ + δx) − h(ξ)|

≤
∫ ∞

0
e−t

{
1 ∧

[(
1 − e−λt

λt

)1/p

+ 1√
2eλt

]}
dt

=
∫ 1

0

{
1 ∧

[(
1 − e−λs

λs

)1/p

+ 1√
2eλs

]}
ds (3.6)

≤ κ0

λ
+

∫ 1

κ0/λ

[(
1

λs

)1/p

+ 1√
2eλs

]
ds

= κ0

λ
+ p

p − 1

(
1

λ

)1/p(
1 −

(
κ0

λ

)1−1/p)
+

√
2

e

1√
λ

(
1 −

√
κ0

λ

)



562 D. Schuhmacher

for λ ≥ κ0, where κ0 was defined such that it satisfies κ−1
0 + (2eκ0)

−1/2 = 1. Write κ(p) :=
p

p−1κ
1−1/p

0 − κ1, which can be easily seen to be strictly decreasing in p with limit 2(κ0 − 1) > 0

for p → ∞. For 1 < p ≤ 2, we factor out λ−1/2, and maximize the left-over term

√
2

e
+ p

p − 1

(
1

λ

)1/p−1/2

− κ(p)

(
1

λ

)1/2

(3.7)

in λ. For 1 < p < 2, taking the first and second derivatives shows that a global maximum is
attained at√

2

e
+ p

p − 1

(
2 − p

(p − 1)κ(p)

)(2−p)/(2(p−1))

− κ(p)

(
2 − p

(p − 1)κ(p)

)p/(2(p−1))

= γ
(p)

1 .

For p = 2, the term (3.7) is obviously strictly increasing in λ, so that letting λ → ∞ yields that
γ

(p)

1 maximizes this term also in the case p = 2. Thus, by inequality (3.6), ‖�h‖∞ ≤ γ
(p)

1 λ−1/2

for 1 < p ≤ 2.
For p > 2, we factor out λ−1/p in inequality (3.6), and maximize the left-over term

p

p − 1
+

√
2

e

(
1

λ

)1/2−1/p

− κ(p)

(
1

λ

)1−1/p

in λ. Taking the first and second derivatives shows that a global maximum is attained at

p

p − 1
+

√
2

e

(
1

2e

(
p − 2

(p − 1)κ(p)

)2)1/2−1/p

− κ(p)

(
1

2e

(
p − 2

(p − 1)κ(p)

)2)1−1/p

= γ
(p)

1 .

Thus, by inequality (3.6), ‖�h‖∞ ≤ γ
(p)

1 λ−1/p for p > 2.

In total we have shown, for 1 < p < ∞, that ‖�h‖∞ ≤ γ
(p)

1 λ−1/max(2,p) if λ ≥ κ0. By equa-
tion (3.4) we have ‖�h‖∞ ≤ ∫ ∞

0 e−t dt = 1 for any λ. Statement (i) is then obtained because

γ
(p)

1 ≥ κ
1/max(2,p)

0 > λ1/max(2,p) if λ < κ0, which follows for p > 2 simply by p
p−1 ≥ κ

1/p

0 and
for 1 < p ≤ 2 by using the alternative expression via x from (3.8), the inequality (1 + y)r <

exp(ry) for r, y > 0, and that (x + 2)κ
1/(x+2)

0 − κ1 − x is maximal at x = 0.
What remains to be shown are the cases p = 1 and p = ∞. Since ‖�h‖∞ ≤ 1 holds always,

the statement for p = ∞ is clear. For p = 1, we make use of the fact that f ∈ F (1)
2 implies

f ∈ F (p)

2 and thus |h(ξ + δx) − h(ξ)| ≤ c
(p)

1 (λ) holds for every p > 1. Letting p → 1 yields the

required upper bound, where γ
(p)

1 → γ
(1)
1 follows by substituting x := 2−p

p−1 , so that

(
2 − p

(p − 1)κ(p)

)−(2−p)/(p−1)

=
(

1 + (x + 2)κ
1/(x+2)

0 − κ1 − x

x

)x

(3.8)
−→ exp

(
2 − κ1 + log(κ0)

) = κ0eκ0 as x → ∞.
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Statement (ii). Suppose that 1 < p < ∞. As in the first part of the proof of Proposition 5.17
in Xia (2005), we obtain that

h(ξ + δx + δy) − h(ξ + δx) − h(ξ + δy) + h(ξ)

= −
∫ ∞

0
e−2t

E
[
f

(
Zξ (t) + δx + δy

) − f
(
Zξ (t) + δx

)
(3.9)

− f
(
Zξ (t) + δy

) + f (Zξ (t))
]

dt,

where there are numbers bk(t) ∈ [0,1] for k ≥ −1 such that

E
[
f

(
Zξ (t) + δx + δy

) − f
(
Zξ (t) + δx

) − f
(
Zξ (t) + δy

) + f (Zξ (t))
]

≤ E

((
1

Z|ξ |(t) + 2

)1/p)
+ E

((
I[Z|ξ |(t) ≥ 1]

Z|ξ |(t)

)1/p)
(3.10)

+
∞∑

k=−1

bk(t)
(
P[Z0(t) = k − 1] − 2P[Z0(t) = k] + P[Z0(t) = k + 1]).

The only difference between (3.10) and the corresponding inequality on page 155 of Xia (2005)
are the exponents 1/p. They stem from a straightforward adaptation of inequalities (5.24)
and (5.26) in Xia (2005) (note that “=” in the last line of (5.26) should be “≤”), which is obtained
by employing the estimate

|f (η+δx)−f (η+δy)| ≤ d
(p)

1 (η+δx, η+δy) ≤
(

1

|η| + 1

)1/p

d0(x, y) ≤
(

1

|η| + 1

)1/p

(3.11)

for η ∈ N. Continuing from equation (3.10), we have

∞∑
k=−1

bk(t)
(
P[Z0(t) = k − 1] − 2P[Z0(t) = k] + P[Z0(t) = k + 1]) ≤ 1

λt

(3.12)

as shown on page 155 in Xia (2005), and

E

((
1

Z|ξ |(t) + 2

)1/p)
+ E

((
I[Z|ξ |(t) ≥ 1]

Z|ξ |(t)

)1/p)

≤
(

21/p +
(

2

3

)1/p)
E

((
1

Z|ξ |(t) + 1

)1/p)
(3.13)

≤ 21/p + (2/3)1/p

λ
1/p
t

,

where the first inequality is obtained because the sequence (( k+1
k+2 )1/p + ( k+1

k
)1/p)k∈N is seen to

be decreasing, and the second inequality follows from (3.5).
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In total, we combine (3.9), (3.10), (3.12), and (3.13), replacing f by (1 − f ) ∈ F (p)

2 in (3.10)
if necessary, to obtain

|h(ξ + δx + δy) − h(ξ + δx) − h(ξ + δy) + h(ξ)|

≤
∫ ∞

0
e−2t

{
2 ∧

[
21/p + (2/3)1/p

λ
1/p
t

+ 1

λt

]}
dt

=
∫ 1

0
(1 − s)

{
2 ∧

[
(21/p + (2/3)1/p)

(
1

λs

)1/p

+ 1

λs

]}
ds

(3.14)

≤ 2
κ2(p)

λ
−

(
κ2(p)

λ

)2

+
∫ 1

κ2(p)/λ

(1 − s)β(p)

(
1

λs

)1/p

ds

= 2
κ2(p)

λ
−

(
κ2(p)

λ

)2

+ β(p)

(
1

λ

)1/p[
p2

(p − 1)(2p − 1)
− p

p − 1

(
κ2(p)

λ

)1−1/p

+ p

2p − 1

(
κ2(p)

λ

)2−1/p]

for λ ≥ κ2(p), where κ2(p) := (β(p)/2)p and β(p) := (1 + 21/p + (2/3)1/p). We factor out
λ−1/p , and find a bound for the left-over term

β(p)p2

(p − 1)(2p − 1)
−

(
β(p)

2

)p 2

p − 1

(
1

λ

)1−1/p

+
(

β(p)

2

)2p 1

2p − 1

(
1

λ

)2−1/p

on λ ∈ [(β(p)/2)p,∞). From the first derivative we can see that this term is strictly in-
creasing on the whole interval, so that the desired bound is obtained by letting λ go to in-
finity. Hence ‖�2h‖∞ ≤ γ

(p)

2 λ−1/p if λ ≥ (β(p)/2)p and, by the first inequality in (3.14),

‖�2h‖∞ ≤ ∫ ∞
0 2e−2t dt = 1 for any λ. Noting that γ

(p)

2 λ−1/p > 1 for λ < (β(p)/2)p , we obtain
Statement (ii) for 1 < p < ∞.

The case p = 1 was proved as Proposition 5.17 in Xia (2005). Since ‖�2h‖∞ ≤ 1 holds
always, the case p = ∞ is obvious.

Statement (iii). Suppose that 1 < p < ∞. We step by step adapt the proof of Proposi-
tion 5.18 in Xia (2005). Write ξ = ∑n

i=1 δxi
and η = ∑m

i=1 δyi
, assuming without loss of gen-

erality that n ≤ m and that the points of ξ and η are numbered according to a d ′
1-pairing, that

is, such that (m − n) + ∑n
i=1 d0(xi, yi) = d ′

1(ξ, η). Let ηj := ∑n+j

i=1 δyi
for 0 ≤ j ≤ m − n.

Then

∣∣(h(ξ + δx) − h(ξ)
) − (

h(η + δx) − h(η)
)∣∣

≤ ∣∣(h(ξ + δx) − h(ξ)
) − (

h(η0 + δx) − h(η0)
)∣∣ (3.15)

+ ∣∣(h(η0 + δx) − h(η0)
) − (

h(η + δx) − h(η)
)∣∣,



Stein’s method and Poisson process approximation 565

where the second summand can be estimated as∣∣(h(η0 + δx) − h(η0)
) − (

h(η + δx) − h(η)
)∣∣

≤
m−n∑
j=1

∣∣(h(ηj + δx) − h(ηj )
) − (

h(ηj−1 + δx) − h(ηj−1)
)∣∣ (3.16)

≤ ‖�2h‖∞(m − n).

The first summand in (3.15) is zero if n = 0. For n ≥ 1, write ξj = ∑j−1
i=1 δxi

+ ∑n
i=j δyi

for
1 ≤ j ≤ n + 1, so that∣∣(h(ξ + δx) − h(ξ)

) − (
h(η0 + δx) − h(η0)

)∣∣
≤

n∑
j=1

∣∣(h(ξj+1 + δx) − h(ξj+1)
) − (

h(ξj + δx) − h(ξj )
)∣∣

≤
n∑

j=1

(
d0(xj , yj )

∫ ∞

0
2e−2t

E

((
1

Zn−1(t) + 1

)1/p)
dt

)
(3.17)

≤
(∫ ∞

0
e−2t

{
2 ∧ 21/p + (2/3)1/p

λ
1/p
t

}
dt

) n∑
j=1

d0(xj , yj )

≤ c
(p)

2 (λ)

n∑
j=1

d0(xj , yj ),

where the second estimate is obtained from the first inequality in the proof of Lemma 5.15 in
Xia (2005) (adjusted by using (3.11) in the last line), the third estimate holds by inequality (3.5),
and the last estimate follows from the proof of Statement (ii) (which shows that the second line
of inequality (3.14) is bounded by c

(p)

2 (λ)). The combining of (3.15), (3.16), and (3.17) yields
Statement (iii) for 1 < p < ∞.

The case p = 1 was proved as Propositon 5.18 in Xia (2005). The case p = ∞ follows
by the same proof as above, but bounding the term in the second line of inequality (3.17) by∑n

j=1(d0(xj , yj )
∫ ∞

0 2e−2t dt) = ∑n
j=1 d0(xj , yj ), which is done by using |f (η + δx) − f (η +

δy)| ≤ d0(x, y) instead of (3.11) in the proof of Proposition 5.15 in Xia (2005). �

Appendix: Proofs of the Lipschitz continuities in Section 2.2

Proof of Proposition 2.A. It is obvious that |f (ξ) − f (η)| ≤ d
(p)

1 (ξ, η) is satisfied for ξ, η ∈ N

with |ξ | �= |η| (since im(f ) ⊂ [0,1]) or with |ξ | = |η| < l (since in this case f (ξ) = f (η) = 0).
Suppose then that ξ = ∑n

i=1 δxi
and η = ∑n

i=1 δyi
, where n ≥ l and where the points of ξ and η
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are numbered according to a d
(p)

1 -pairing, that is, such that ( 1
n

∑n
i=1 d0(xi, yi)

p)1/p = d
(p)

1 (ξ, η).
Note that inequality (2.3) together with Lyapunov’s inequality implies that

|K(m,u1, . . . , ul) − K(m,v1, . . . , vl)|p ≤
(

1

l

l∑
i=1

d0(ui, vi)

)p

≤ 1

l

l∑
i=1

d0(ui, vi)
p.

Using the inverse triangle inequality for �p-norms in the first line, we then obtain that

|f (ξ) − f (η)|p ≤ 1(
n
l

) ∑
1≤i1<···<il≤n

|K(n;xi1, . . . , xil ) − K(n;yi1, . . . , yil )|p

≤ 1

l

1(
n
l

) ∑
1≤i1<···<il≤n

l∑
r=1

d0(xir , yir )
p

(A.1)

= 1

l

1(
n
l

)(
n − 1

l − 1

) n∑
i=1

d0(xi, yi)
p

= (
d

(p)

1 (ξ, η)
)p

. �

Proof of Proposition 2.B. We show |f (ξ) − f (η)| ≤ 2d
(p)

1 (ξ, η) in the non-obvious case. Let
ξ = ∑n

i=1 δxi
and η = ∑n

i=1 δyi
, where again n ≥ l and the points of ξ and η are numbered

according to a d
(p)

1 -pairing. Using the inverse triangle inequality for �p-norms for the first and
the usual triangle inequality for the second relation, we obtain that

|f (ξ) − f (η)|

≤
(

1(
n
l

) ∑
1≤i1<···<il≤n

∣∣(K(n;xi1, . . . , xil ) − K(n;yi1, . . . , yil )
) − (

K(ξ) − K(η)
)∣∣p)1/p

≤
(

1(
n
l

) ∑
1≤i1<···<il≤n

|K(n;xi1, . . . , xil ) − K(n;yi1, . . . , yil )|p
)1/p

+ |K(ξ) − K(η)|

≤ 2d
(p)

1 (ξ, η)

by inequality (A.1) (once for general p and once for p = 1) and inequality (2.1). �

Proof of Proposition 2.C. Obviously, |f (ξ) − f (η)| ≤ d
(p)

1 (ξ, η) if |ξ | �= |η| or |ξ | = |η| < 2.
Suppose then that ξ = ∑n

i=1 δxi
and η = ∑n

i=1 δyi
, where n ≥ 2 and the points of ξ and η are

numbered according to a d
(p)

1 -pairing. Let J (i) be the index of a nearest neighbor (with respect
to | · | and hence d0) of xi within the points of ξ and K(i) the index of a nearest neighbor of yi

within the points of η. For i fixed, we have

d0
(
xi, xJ (i)

) ≤ d0
(
xi, xK(i)

) ≤ d0(xi, yi) + d0
(
yi, yK(i)

) + d0
(
yK(i), xK(i)

)
,
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and

d0
(
yi, yK(i)

) ≤ d0
(
yi, yJ (i)

) ≤ d0(yi, xi) + d0
(
xi, xJ (i)

) + d0
(
xJ(i), yJ (i)

)
,

so that altogether ∣∣d0
(
xi, xJ (i)

) − d0
(
yi, yK(i)

)∣∣ ≤ d0(xi, yi) + d0
(
xL(i), yL(i)

)
,

where L(i) := K(i) if d0(xi, xJ (i)) ≥ d0(yi, yK(i)) and L(i) := J (i) otherwise. By the inverse
triangle inequality for �p-norms, we obtain now

|f (ξ) − f (η)|p ≤ 1

n

n∑
i=1

∣∣d0
(
xi, xJ (i)

) − d0
(
yi, yK(i)

)∣∣p

≤ 1

n

n∑
i=1

(
d0(xi, yi) + d0

(
xL(i), yL(i)

))p

≤ 2p

(
1

n

n∑
i=1

d0(xi, yi)
p + 1

n

n∑
i=1

d0
(
xL(i), yL(i)

)p

)

≤ 2p(2τD + 1)
(
d

(p)

1 (ξ, η)
)p

,

using for the last inequality that any point of a point pattern in (RD, | · |) can be nearest neighbor
to at most τD other points (see Zeger and Gersho (1994), Theorem 1). The factor 2p is obviously
unnecessary if p = 1. In Schuhmacher (2005a) a Lipschitz constant of τD + 1 was obtained for
p = 1 by a more complicated proof. �
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