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Asymptotics for diffusion first-passage laws
PAUL MCGILL

Département de Mathématiques, Université Claude Bernard, Lyon I, 69622 Villeurbanne, France.

By using Berg’s Abelian theorem, Csáki extracted a sharp asymptotic estimate for a diffusion first-passage
law from its Laplace transform. We extend the method and give a simple formulation for Itô diffusions.
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1. Introduction

We describe a method that extracts sharp estimates for P[Tx < t] from μ̂(z, x) := E[e−zTx ],
where Tx is the first time a real diffusion, starting from zero, hits x > 0. Many such Laplace
transforms are known explicitly – via solutions of Sturm–Liouville equations [11]. However,
tight bounds on the probability law are more elusive. For example, Remark 6.6 in [15] points
out that a convergent series for a Bessel process hitting law density fails to provide the exact
asymptotic behavior of P[Tx < t] as τ := t/x2 ↓ 0, likewise, the estimate [8], (1.18), derived
from de Bruijn’s Tauberian theorem ([2], page 254).

Csáki [4] observed the utility of Berg’s Abelian theorem ([1], pages 112–113). This describes
an expansion of ρ → ∫

e−u2
G(ρ + iu

√
ρ)du as ρ ↑ ∞, provided G is holomorphic on a right

half-plane and satisfies certain growth restrictions there. Since Csáki’s diffusion has Brownian
scaling, his G depends on z only, but for wider application, we employ a rule of thumb. We write

G(z) = G(z,x) = κze2zμ̂(κz2 + γ0, x)

κz2 + γ0
, (κ, γ0) ∈ R

+ × R, (1.1)

with γ0 the leading eigenvalue determined as in (3.2) below and κ chosen to ensure logG(ρ) =
o(ρ) for ρ ↑ ∞. Our extension then applies transparently to a wide class of Itô diffusions and
leads naturally to the computation of asymptotic expansions. We therefore state results for the
latter, while granting that few, if any, applications will involve more than the leading term.

The following statement indicates what we have in mind. For Berg’s conditions, see the hy-
potheses of Lemma 2.1 below. Throughout, 0 < ρ0 ≤ ρ1 ≤ ρ2 will denote constants independent
of x.

Theorem 1.1. Assume, for min(ρ, κρ2) ≥ ρ0, that G satisfies the conditions of Berg’s Abelian
theorem uniformly in x. Then, with error constant independent of x,

P[Tx < t] = eγ0t−1/κt

√
κtπ

[
n−1∑
m=0

G(2m)(1/κt, x)

22mm! (−κt)−m + O
(
G(1/κt, x)(κt)n(β−1)

)]
(1.2)

as min(1/κt,1/κt2) ↑ ∞.
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We prove this Tauberian theorem in Section 2. A major drawback for applications remains the
difficulty of verifying its conditions, even in simple cases. Of course analyticity of G follows
by the spectral representation ([11], Section 4.11) of z → μ̂(z, x), but we lack a similar soft
argument for checking (Aα) and (Bβ,n) in Lemma 2.1.

To this end, we formulate a more explicit, if less general, variant; prompted by the well-
known fact ([7], Chapter IV) that one can solve a large class of Sturm–Liouville equations using
asymptotic power series. In Section 3, we explain why the hitting law of an Itô process with
sufficiently smooth coefficients has an asymptotic expansion of the form

μ̂(z, x) = e−√
2(z−γ0)x

∑
n≥0

qn(x)[2(z − γ0)]−n/2 (1.3)

as 
z = ρ ↑ ∞ sufficiently fast – usually inf(ρ,ρx−K) ↑ ∞ for some K ≥ 1. Taking κ = 2/x2,
formula (1.1) then becomes

G(z,x) = 4z

4z2 + 2γ0x2

∑
n≥0

(x/2)nqn(x)z−n := 1

z

∑
n≥0

un(x)z−n, (1.4)

where, for the last part we also require ρx−1 ↑ ∞.
Now recall (e.g., [7], Section 1.6) that asymptotic power series can be multiplied and com-

posed. They can also be divided whenever the denominator contains a non-zero constant and
differentiated if the function is holomorphic on a suitable sector – as we have here. Applied to
(1.4), this shows that (A0) and (B2,n) of Lemma 2.1 hold automatically. Calculating the coeffi-
cients in (1.2), we deduce

Corollary 1.1. Assume (1.3) holds as min(ρ,ρx−1) ↑ ∞ and define τ = t/x2. Then,

P[Tx < t] = eγ0t−(2τ)−1

√
2τ

π

[
n−1∑
m=0

amτm + G(2/τ, x)O(τn−1)

]
(1.5)

as τ(1 + x) ↓ 0, where

an =
n∑

m=0

(−1)n−m 2m−n(2n − m)!
m!(n − m)! xm

[m/2]∑
k=0

qm−2k(x)(−2γ0)
k.

Remark 1.1. (1) The error in (1.2) agrees with [1], Section 49.3, and by (Bβ,n) of Lemma 2.1,
it has the order of the next term. Note that [4], (2.7), contains a misprint (irrelevant for his
argument).

(2) The requirement τ(1 + x) ↓ 0 comes from our convergence condition for (1.4). Compare
Example 4.2.

(3) A recursive formula, listed at (3.5), gives an efficient method for computing coefficients
in the reciprocal power series of (1.3).
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(4) The above approach works more generally. If (1.4) holds for z−ν−1/2G(z) with ν > − 1
2 ,

then we can show G satisfies (A1) and (B2,n) with η = 1. See [10], page 435, for an example.
(5) We assume throughout that, in the terminology of [11], zero is either a regular point for X

or else an entrance boundary for X on [0,∞).
(6) From (1.2), we have the probabilistic interpretation limt↓0 t logP[Tx < t] = −1/κ .

Equivalence with our definition limz→∞ z−1 logE[e−z2Tx ] = −2/
√

κ follows from de Bruijn’s
Tauberian theorem ([2], page 254).

This article is organized as follows. Section 2 reworks the proof of Berg’s theorem to deter-
mine the error constant required for the proof of our main result. In Section 3, we follow [7],
Chapter IV, and discuss methods for computing (1.3). The final section looks at (1.2) for selected
examples related to Brownian motion with constant drift and the Ornstein–Uhlenbeck process.

2. Proof of Theorem 1.1

The idea is to apply Berg’s Abelian theorem by controlling the x-dependence in (1.1). We there-
fore rework his proof, but keep track of certain error constants. The following lemma (cf. [1],
Section 49.3) uses

I2n :=
∫ ∞

−∞
u2ne−u2 du√

π
= (2n)!

4nn! .

Lemma 2.1. Let G be holomorphic on 
z = ρ > ρ0 > 0 and positive on [ρ0,∞[, and suppose
there exist α ≥ 0, β > 1 and η > 1

2 such that for all ρ > ρ0,

(Aα) |G(ρ + iu)| ≤ CA,αG(ρ)eα|u|/√ρ uniformly in |u| ≥ ρη,

(Bβ,n)
∣∣G(2m)(ρ + iu)

∣∣ ≤ CB,β,mρ−mβG(ρ) uniformly in |u| ≤ ρη,1 ≤ m ≤ n.

Then, for ρ > ρ1 = ρ1(Aα,Bβ,n) ≥ ρ0,

∣∣∣∣∣ 1√
πρ

∫ ∞

−∞
G(ρ + iu)e−u2/ρ du −

n−1∑
m=0

G(2m)(ρ)

22mm! (−ρ)m

∣∣∣∣∣ ≤ 2CB,β,n

4nn! G(ρ)ρ−n(β−1). (2.1)

Proof. By (Aα), the error in restricting the integral to (−ρη,ρη) is o(e−(1/2)ρ2η−1
)G(ρ). Using

a Taylor expansion, there exists |χu| ≤ 1 such that

1√
πρ

∫ ρη

−ρη

G(ρ + iu)e−u2/ρ du =
2n−1∑
m=0

G(m)(ρ)

m!
1√
πρ

∫ ρη

−ρη

(iu)me−u2/ρ du

(2.2)

+ 1√
πρ

∫ ρη

−ρη

G(2n)(ρ + iχuu)

(2n)! (iu)2ne−u2/ρ du.
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We estimate each term, starting with the series, whose (even) terms are bounded by

G(2m)(ρ)

(2m)! (−1)m
∫ ρη

−ρη

u2me−u2/ρ du√
πρ

= G(2m)(ρ)

4mm! (−ρ)m − 2
G(2m)(ρ)

(2m)! (−1)m
∫ ∞

ρη

u2me−u2/ρ du√
πρ

,

where (Bβ,n) shows the final term is o(e−(1/2)ρ2η−1
)G(ρ). Similarly, we bound the remainder in

(2.2) by CB,β,n times

2
ρ−βnG(ρ)

(2n)!√πρ

∫ ∞

0
u2ne−u2/ρ du = ρ−n(β−1)G(ρ)

I2n

(2n)! = ρ−n(β−1) G(ρ)

4nn! .

It remains to note that for ρ > ρ1 sufficiently large, this estimate dominates the sum of the other
error terms. �

Berg’s result follows by change of variable in (2.1). Taking first z = ρ + iu, and then w = z2,
we find

eρ

i
√

πρ

∫ ρ+i∞

ρ−i∞
G(z)e−2z+z2/ρ dz = eρ

2i
√

πρ

∫
�ρ

G(
√

w)e−2
√

w+w/ρ

√
w

dw,

where is �ρ is the parabola v2 = 4ρ2(ρ2 − u) in the w = z2 = u + iv plane (see Figure 1).
The integrand is holomorphic on the exterior of �ρ and, by using a simple estimate, we can

deform �ρ into Lc = {c+ is : s ∈ R} without prejudice to the error constant in (2.1). The argument
uses condition (Bβ,1) and �G = 0 on [ρ0,∞[ to deduce G(ρ) ≤ G(ρ0)eερ for ρ ≥ ρ2; see [13]
for details. Our version of [1], Section 49.5, then reads as follows.

Figure 1. w plane.



Asymptotics for diffusion first-passage laws 271

Berg’s Abelian theorem. For G as in the lemma, ∃ρ2 ≥ ρ1 such that for any n ≥ 1,

∣∣∣∣∣ 1

2πi

∫ c+i∞

c−i∞
G(

√
w)e−2

√
w+w/ρ

√
w

dw − e−ρ

√
ρ

π

n−1∑
m=0

G(2m)(ρ)

22mm! (−ρ)m

∣∣∣∣∣
(2.3)

≤ 2
CB,β,n

4nn! e−ρρ−n(β−1)√ρG(ρ) ∀ρ > ρ2,

provided c > ρ2
2 .

Remark 2.1. If G is bounded on [ρ1,∞), then we can take ρ2 = ρ1.

We prove Theorem 1.1 by applying (2.3) to the function (1.1). There are three items. First,
by hypotheses, the expansion (2.1) holds when min(ρ,ρ2κ) ≥ ρ1. Second, as explained above,
(2.3) follows since (Bβ,1) applies uniformly in x. Third, choosing c > 0 such that κc + γ0 > ρ2

2 ,
we transform

1

2πi

∫ c+i∞

c−i∞
κμ̂(κw + γ0, x)

κw + γ0
ew/ρ dw

by substituting ρ = 1/κt and z = κw + γ0. Laplace transform inversion then yields

e−γ0t

2πi

∫ κc+γ0+i∞

κc+γ0−i∞
μ̂(z, x)

z
ezt dz = e−γ0tP[Tx < t]

since we already know the integral converges, while the convergence condition appears as de-
sired.

3. Expansion of the Laplace transform

We consider the computation of (1.3) for an Itô diffusion with generator

G = 1

2
a2(x)

d2

dx2
+ b(x)

d

dx
, (3.1)

having coefficients b ∈ C1 and 0 < a ∈ C2. To determine μ̂(z, x) = E[e−zTx ], it suffices to solve
for f (z, x) := 1/μ̂(z, x) as the unique increasing solution of Gf = zf subject to f (z,0) = 1.
We therefore seek conditions for f to possess an asymptotic expansion in powers of z−1/2 as
ρ := 
z ↑ ∞. Computing the reciprocal power series will then give us (1.3).

As in [7], Chapter IV, we first reduce Gf = zf to a convenient canonical form. Noting that
g = f e

∫
(b/a2) solves g′′ = [(b/a2)′ + (b/a2)2 + 2za−2]g, rescaling by y = ∫ x

a−1 shows that
h(y) := a−1/2g satisfies

h′′ = (r + 2z)h, r = a2[(b/a2)′ + (b/a2)2] − (a1/2)′′a3/2.
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Erdélyi [7] expands h in powers of z−1/2. However, we need the increasing solution. So, intro-
ducing 2γ0 = − infx>0 r(x), we rearrange as

h′′ = (χ2 + r̄)h, r̄ = r + 2γ0 ≥ 0, χ2 = 2(z − γ0) (3.2)

and look to expand h in powers of 1/χ for χ ↑ ∞. For this, [7] proposes the following methods.

3.1. Volterra’s integral equation

For r̄ continuous, any continuous solution of Volterra’s integral equation

h(x) = h(χ,x) = c1eχx + c2e−χx + 1

χ

∫ x

0
sinhχ(x − t)r̄(t)h(t)dt

solves (3.2). The obvious candidate h = ∑
n≥0 hn is defined by

h0 = c1eχx + c2e−χx; hn+1(x) = 1

χ

∫ x

0
sinhχ(x − t)r̄(t)hn(t)dt.

Introducing wn(x) = wn(χ,x) = e−χxhn(χ, x) with w0 ≡ 1, we have

wn+1(x) = 1

2χ

∫ x

0

[
1 − e−2χ(x−t)

]
r̄(t)wn(t)dt (3.3)

and h(x) = eχx
∑

n≥0 wn(x) is the increasing solution of (3.2) normalized by h(0) = 1. By in-
duction

|wn(χ,x)| ≤ Mn(x)xn

χnn! , M(x) := sup
0<t<x

|r̄(t)|, (3.4)

which gives a simple test for convergence of

1

μ̂(z, x)
= f (z, x) = e− ∫ x

0 b(u)du+√
2(z−γ0)x

∑
n≥0

wn

([2(z − γ0)]1/2, x
)
.

Beware, however, the practical difficulty of computing
∑

n≥0 wn(χ,x) and its subsequent re-
arrangement into

∑
n≥0 kn(x)χ−n. The next method does better on both counts.

3.2. A direct recursion

This method requires r̄ to be sufficiently differentiable. The idea is to substitute the required
expansion h(x) = ∑∞

n=0 kn(x)χ−neχq(x) into (3.2) and to then compare coefficients thus:

χ2 : (q ′)2k0 = k0;
χ : 2k′

0q
′ + k0q

′′ + k1(q
′)2 = k1;

χ−n :k′′
n + 2k′

n+1q
′ + kn+1q

′′ + kn+2(q
′)2 = r̄kn + kn+2, n ≥ 0.
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Since these equations do not determine k0 and k1, we will use

k0 ≡ 1, k1(x) = 1
2

∫ x

0
r̄(t)dt

from (3.3). Taking q(x) = x to get the increasing solution, the above becomes 2k′
n+1 = r̄kn − k′

n,
which we write as

2kn+1(x) =
∫ x

0
r̄(t)kn(t)dt − k′

n(x), n ≥ 1. (3.5)

Compared with (3.3), the recursion (3.5) offers a more efficient route to computing

1

μ̂(z, x)
= f (z, x) = e− ∫ x

0 b(u)du+√
2(z−γ0)x

∞∑
n=0

kn(x)χ−n/2.

Assuming r̄ to be sufficiently differentiable, and for x restricted to a bounded interval, Erdélyi
[7] proved the validity of this expansion as χ ↑ ∞. However, our examples may involve more
general conditions.

Remark 3.1. The above presupposes that r̄ is integrable at zero. Otherwise, although z →
μ̂(z, x) may still have an expansion, this will not always look like (1.3). For example, [10],
page 435, considers the Bessel process of dimension 2ν + 2 where r(x) = (ν2 − 1

4 )x−2 and,
using [3], page 387,

μ̂(z, x) = E[e−zTx ] = 2−ν(x
√

2z)ν

�(ν + 1)Iν(x
√

2z)
.

Then [16], page 203, shows that z(−1/4)(2ν+1)μ̂(z, x) has an expansion of the form (1.3), so we
can apply Remark 1.1(4).

4. Examples

All processes start at zero, B is Brownian motion and ρ = 
z ↑ ∞. We use X• (resp. X◦) for the
maximum (resp. minimum) of our diffusion X. In particular, (X•

t > x) = (Tx < t). Recall that
τ := t/x2 throughout.

We noted in the Introduction that a series expansion for a Bessel process hitting time fails to
give the asymptotic estimate stated in Conjecture 6.7 of [15]. Gruet and Shi [10] established the
latter using Csáki’s observation [4], but did not dispel the notion, implicit in [15] and also in [5],
that expansions like the well-known [9], Section 8.254,

P[B•
t > x] = 2P[Bt > x] = e−1/2τ

√
2

τπ

[
1 +

n∑
m=1

(2m)!
2mm! (−τ)m + O(τn+1)

]
, (4.1)

as τ = t/x2 ↓ 0, are somehow exceptional.
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We claim the contrary: Berg’s theorem gives hitting law asymptotics for many of the diffusions
one meets in practice. We illustrate with three examples. In the first, which looks at the range of
Brownian motion with drift, we start from Williams’ formula [17] for μ̂ and determine the co-
efficients for (1.5) by hand. The next example considers the Ornstein–Uhlenbeck process where,
despite knowing μ̂ in terms of parabolic cylinder functions, we found the methods of Section 3
provide a better way of obtaining (1.5).

Our final example examines the hitting law for a Bessel process with drift [14]. Here, the meth-
ods of Section 3 fail due to the singularity of r at zero. Nevertheless, G has an expansion, albeit
one containing powers of z−1 log z, which we can use to verify (A1) and (B2,n) of Lemma 2.1.

Example 4.1. Define X = Y − Y ◦, where Yt = Bt + λt for λ > 0. Then, (X, �) is the unique
positive solution of the reflecting SDE

Xt = Bt + λt + �t ,

∫ t

0
Xs d�s = 0,

so � is the local time of X at zero. Using the local martingale f (Xt )e−λt defined by f ′′ + 2λf ′ =
2zf and f ′(0) = 0, Williams [17] showed

z

∫ ∞

0
e−zt

P[X•
t > x]dt = μ̂(z, x) = χeλx

χ coshχx + λ sinhχx
, χ2 = 2z + λ2.

We use his formula to compute the full asymptotic expansion of P[X•
t > x] as τx := τ(1+x) ↓ 0,

thereby improving a result in [5] (the authors found the leading term as x ↑ ∞ with t = 1). We
start by noting γ0 = − 1

2λ2, so for κ = 2/x2 we find

G(z,x) = e2z

2 cosh 2z
× 2z

2z + λx tanh 2z
× 8zeλx

4z2 − x2λ2
.

To calculate (1.4), we first replace G with a simpler function having the same expansion. In fact,
1/(1−e−4z) = ∑

n≥0 e−4nz can be ignored since its derivatives are all O(e−4ρ). Also, the second
factor in G satisfies

2z

2z + λx tanh 2z
− 2z

2z + λx
= 2zλx

(2z + λx)
× e−4z

2z + λx + (2z − λx)e−4z
,

where all derivatives of the last term decrease exponentially fast. Thus, G has the same asymp-
totic power series as

H(z) := 8zeλx

4z2 − x2λ2
× 2z

2z + λx
= 2eλx

z

[
1 − λ2x2

4z2

]−1[
1 + λx

2z

]−1

,

whose expansion converges as min(ρ,ρx−1) ↑ ∞. Applying Corollary 1.1,

P[X•
t > x] = e−(λt−x)2/2t

√
8τ

π

[
n−1∑
m=0

am(−τ)m + O(τn)

]
, τx := τ(1 + x) ↓ 0,
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where, for vn = #{k ≥ 0 : 2k ≤ n},

an :=
n∑

m=0

bn,m(λx)m, bn,m := vm

(2n − m)!
2n−mm!(n − m)! .

Looking at the first few terms,

P[X•
t > x]

= e−(λt−x)2/2t
√

8τ/π[1 − (1 + λx)τ + (2λ2x2 + 3λx + 3)τ 2

− (2λ3x3 + 12λ2x2 + 15λx + 15)τ 3

+ (3λ4x4 + 20λ3x3 + 90λ2x2 + 105λx + 105)τ 4

− (3λ5x5 + 45λ4x4 + 210λ3x3 + 840λ2x2 + 945λx + 945)τ 5

+ O(τ 6
x )],

we guess, and can easily prove, that b2n,2n = v2n = n + 1 = b2n+1,2n+1.

Remark 4.1. If λ = 0, then by Lévy’s theorem, X• := (B − B◦)• law= |B|• := B∗ and, comparing
our expansion with (4.1), we find P[B∗

t > x] and 2P[B•
t > x] have the same asymptotic power

series for τ ↓ 0. A simpler way to see this uses the strong Markov property.

Example 4.2. For the Ornstein–Uhlenbeck process solving Xt = Bt −λ
∫ t

0 Xs ds, we have a ≡ 1
and b = −λx in (3.1). Thus, γ0 = 1

2λ > 0 and r̄(x) = λ2x2. Estimate (3.4) now gives

|wn(χ,x)| ≤ C
x3n

n!|χ |n , χ−1x3 = O(1) ⇒
∑
n≥0

|wn(χ,x)| < ∞,

showing that
∑

n≥0 wn(2z/x, x) converges provided inf(ρ,ρx−4) ↑ ∞. Since
∑N−1

m=0 wm(χ,x)

differs from
∑N−1

m=0 kn(x)χ−m by a finite number of higher order terms, this proves convergence
of the latter and hence of its reciprocal series (1.3). Computing the coefficients in (1.5) from
(3.5), we see

P[X•
t > x]

= e(1/2)λt−(2τ)−1

√
2

π

[
1 −

(
1 + λ2x4

6

)
τ +

(
3 − λx2

2
+ 3

4
λ2x4 + λ4x8

622!
)

τ 2

−
(

15 − 3λx2 + 17

4
λ2x4 − λ3x6

12
+ λ4x8

10
+ λ6x12

633!
)

τ 3 + · · ·
]
,

valid for τ(1 + x4) ↓ 0. To verify that τnλ2nx4n has coefficient −(6nn!)−1, one can argue by
induction. We have no general expression for the other non-constant coefficients.
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Example 4.3. The Bessel process of dimension 2ν + 2 and drift λ solves

Xt = Bt + 2ν + 1

2

∫ t

0

ds

Xs

+ λdt

for ν > − 1
2 (Kendall’s pole-seeking Brownian motion [12] corresponds to ν = 0 and λ < 0).

Here the methods of Section 3 fail because, in the notation of (3.1), r = b′ + b2 is not integrable
at zero. Nevertheless, from [14], page 363, and using the relation [6], 6.9(1), we find

μ̂(z, x) = E[e−zTx ] = ex(λ+χ)

1F1((ν + 1/2)(1 − (λ/2χ)),2ν + 1;2χx)
, χ2 = 2z + λ2.

Choosing γ0 = − 1
2λ2 and κ = 2/x2 in (1.1) yields

G(z) = 4z

4z2 − λ2x2

e4z+λx

1F1(α(4z),2ν + 1;4z)
, α(z) := (

ν + 1
2

)(
1 − (λx/4z)

)
,

so we need the expansion of z → 1F1(α(z),2ν + 1; z) as z → ∞. We follow the derivation of
[6], 6.13(2), starting from the functional relation [6], 6.7(7),

1F1(α(z),β; z) = �(β)

�(β − α)
eiπα�(α,β; z) + �(β)

�(α)
ez+iπ(α−β)�(β − α,β;−z)

for Tricomi’s function

�(α,β; z) = 1

�(α)

∫ ∞

0
e−zt tα−1(1 + t)β−α−1 dt.

By expanding (1 + t)β−α−1 in a Taylor series and estimating the contribution of the remainder,
Watson’s lemma ([7], page 34) gives the behavior of � as z → ∞. The method also works for
z → −∞ since we can analytically continue in z and t to ensure the integral remains absolutely
convergent. Thus (cf. [6], 6.13.1(2)), 1F1(α(z),β; z) has expansion

z−1−2ν+α(−z)ez �(2ν + 1)

�(α(z))

[
N−1∑
k=0

(α(−z) − 1)k(2ν − α(−z))k

(−z)kk! + O(|z|−N)

]

with (a)n = a(a + 1) . . . (a + n − 1). Writing α(z) = ν + 1
2 + (λ′x/z), we find

G(z)(4z)λ
′x/4z(4z)−ν−(1/2)

= 1

z

4z2eλx

4z2 − λ2x2

�(ν + (1/2) + (λ′x/4z))

�(2ν + 1)

×
[

N−1∑
k=0

(ν − (1/2) + (λ′x/4z))k(ν + (1/2) − (λ′x/4z))k

k!(−4z)k
+ O(|z|−N)

]−1

,
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so the left-hand side has an expansion of the form (1.4). As pointed out in Remark 1.1(4), it
follows that G(z)(4z)λ

′x/4z satisfies (A1) and (B2,n) for η = 1. Expanding (4z)λ
′x/4z in powers

of z−1 log z, we deduce the same for G. Applying Theorem 1.1 and doing some elementary
simplification, we end up with

P[X•
t > x] = 2e−(λt−x)2/2τ

(2τ)ν�(ν + 1)

(
1 + O(τ)

)
, τ (1 + x) ↓ 0;

see [10], Theorem 1.1 for the case λ = 0.
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