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We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs-type
fragmentation tree with Aldous’ beta-splitting model, which has an extended parameter range β > −2 with
respect to the beta(β + 1, β + 1) probability distributions on which it is based. In the multifurcating case,
we show that Gibbs fragmentation trees are associated with the two-parameter Poisson–Dirichlet models
for exchangeable random partitions of N, with an extended parameter range 0 ≤ α ≤ 1, θ ≥ −2α and α < 0,
θ = −mα, m ∈ N.
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1. Introduction

We are interested in various models for random trees associated with processes of recursive
partitioning of a finite or infinite set, known as fragmentation processes [2,4,9]. We start by
introducing a convenient formalism for the kind of combinatorial trees arising naturally in this
context [16,18]. Let #B be the number of elements in the finite non-empty set B . Following
standard terminology, a partition of B is a collection

πB = {B1, . . . ,Bk}
of non-empty disjoint subsets of B whose union is B . To introduce a new terminology convenient
for our purpose, we make the following recursive definition. A fragmentation of B (sometimes
called a hierarchy or a total partition) is a collection tB of non-empty subsets of B such that

(i) B ∈ tB ;
(ii) if #B ≥ 2 then, there is a partition πB of B into k parts, B1, . . . ,Bk , called the children of

B , for some k ≥ 2, with

tB = {B} ∪ tB1 ∪ · · · ∪ tBk
, (1)

where tBi
is a fragmentation of Bi for each 1 ≤ i ≤ k.

Necessarily, Bi ∈ tB , each child Bi of B with #Bi ≥ 2 has further children, and so on, until the
set B is broken down into singletons. We use the same notation tB both

• for such a collection of subsets of B , and
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Figure 1. Two fragmentations of [9] graphically represented as trees labeled by subsets of [9].

• for the tree whose vertices are these subsets of B and whose edges are defined by the par-
ent/child relation determined by the fragmentation.

To emphasize the tree structure, we may call tB a fragmentation tree. Thus, B is the root of tB
and each singleton subset of B is a leaf of tB (see Figure 1 – here [9] = {1, . . . ,9}; we also put
[n] = {1, . . . , n}). We denote by TB the collection of all fragmentations of B . A fragmentation
tB ∈ TB is called binary if every A ∈ tB has either 0 or 2 children. We denote by BB ⊆ TB the
collection of binary fragmentations of B .

For each non-empty subset A of B , the restriction to A of tB , denoted tA,B , is the fragmenta-
tion tree whose root is A, whose leaves are the singleton subsets of A and whose tree structure is
defined by restriction of tB . That is, tA,B is the fragmentation {C ∩A : C ∩A �= ∅,C ∈ tB} ∈ TA,
corresponding to a reduced subtree, as discussed by Aldous [1].

Given a rooted combinatorial tree with no single-child vertices and whose leaves are labeled by
a finite set B , there is a corresponding fragmentation tB , where each vertex of the combinatorial
tree is associated with the set of leaves in the subtree above that vertex. So the fragmentations
defined here provide a convenient way to label the vertices of a combinatorial tree and to encode
the tree structure in the labeling.

A random fragmentation model is an assignment, for each finite subset B of N, of a probability
distribution on TB for a random fragmentation TB of B . We assume throughout this paper that
the model is exchangeable, meaning that the distribution of TB is invariant under the obvious
action of permutations of B on fragmentations of B . The distribution of �B , the partition of B

generated by the branching of TB at its root, is then of the form

P(�B = {B1, . . . ,Bk}) = p(#B1, . . . ,#Bk) (2)

for all partitions {B1, . . . ,Bk} with k ≥ 2 blocks and some symmetric function p of compositions
of positive integers, called a splitting probability rule. The model is called

• consistent if for every A ⊂ B , the restricted tree TA,B is distributed like TA;
• Markovian if, given �B = {B1, . . . ,Bk}, the k restricted trees TB1,B, . . . , TBk,B are inde-

pendent and distributed as TB1, . . . , TBk
;

• binary if TB is a binary tree with probability one, for every B .

Aldous [2] initiated the study of consistent Markovian binary trees as models for neutral evo-
lutionary trees. He observed parallels between these models and Kingman’s theory of exchange-
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able random partitions of N, and posed the problem of characterizing these models analogously
to known characterizations of the Ewens sampling formula for random partitions. In [9], we
showed how consistent Markovian trees arise naturally in Bertoin’s theory of homogeneous frag-
mentation processes [4] and deduced from Bertoin’s theory a general integral representation for
the splitting rule of a Markovian fragmentation model.

To briefly review these developments in the binary case, the distribution of a Markovian binary
fragmentation TB is determined by a splitting rule p, which is a symmetric function p of pairs
of positive integers (i, j), according to the following formula for the probability of a given tree
t ∈ BB :

P(TB = t) =
∏

A∈t:#A≥2

p(#A1,#A2), (3)

where A1 and A2 denote the two children of A in the tree TB .
The following proposition collects some known results.

Proposition 1. (i) Every non-negative symmetric function p subject to normalization conditions

n−1∑
k=1

(
n − 1
k − 1

)
p(k,n − k) = 1 for all n ≥ 2

defines a Markovian binary fragmentation model.
(ii) A splitting rule p gives rise to a consistent Markovian binary fragmentation if and only if

p(i, j) = p(i + 1, j) + p(i, j + 1) + p(i + j,1)p(i, j) for all i, j ≥ 1. (4)

(iii) Every consistent splitting rule admits an integral representation

p(i, j) = 1

Z(i + j)

(∫
(0,1)

xi(1 − x)j ν(dx) + c1{i=1 or j=1}
)

for all i, j ≥ 1, (5)

with characteristics c ≥ 0 and ν a symmetric measure on (0,1) with
∫
(0,1)

x(1 − x)ν(dx) < ∞,
and Z(n) a sequence of normalization constants.

Proof. (i) is elementary. For (ii), Ford [6], Proposition 41, gave a characterizaton of consistency
for models of unlabeled trees which is easily shown to be equivalent to the condition stated here.
The interpretation (and sketch of proof) of this condition is that for B = C ∪ {k} (with k /∈ C),
the vertex C of TC splits into a particular partition of sizes i and j if and only if TB splits into
that partition with k added to one or the other block, or if TB first splits into C and {k} and then
C splits further into that partition of sizes i and j . (iii) is directly read from [9]. �

Aldous [2] studied in some detail the beta-splitting model which arises as the particular case
of (5) with characteristics c = 0 and

ν(dx) = xβ(1 − x)βdx for β ∈ (−2,∞) and ν(dx) = δ1/2(dx) for β = ∞. (6)
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Aldous posed the problem of characterizing this model among all consistent binary Markov
models. The main focus of this paper is the following result.

Theorem 2. Aldous’ beta-splitting models for β ∈ (−2,∞] are the only consistent Markovian
binary fragmentations with splitting rule of the form

p(i, j) = w(i)w(j)

Z(i + j)
for all i, j ≥ 1, (7)

for some sequence of weights w(j) ≥ 0, j ≥ 1, and normalization constants Z(n), n ≥ 2.

As a corollary, we extract a statement purely about measures on (0,1).

Corollary 3. Every symmetric measure ν on (0,1) with
∫
(0,1)

x(1 − x)ν(dx) < ∞, whose mo-
ments factorize into the form∫

(0,1)

xi(1 − x)j ν(dx) = w(i)w(j) for all i, j ≥ 1

for some w(i) ≥ 0, i ≥ 1, is a multiple of one of Aldous’ beta-splitting measures (6).

In particular, this characterizes the symmetric beta distributions among probability measures
on (0,1).

Berestycki and Pitman [3] encountered a different one-dimensional class of Gibbs splitting
rules in the study of fragmentation processes related to the affine coalescent. These are not con-
sistent, but the Gibbs fragmentations are naturally embedded in continuous time.

The rest of this paper is organized as follows. Section 2 offers an alternative characteriza-
tion of what we call binary Gibbs models, meaning models with splitting rule of the form (7),
without assuming consistency. Theorem 2 is then proved in Section 3. In Section 4, we discuss
growth procedures and embedding in continuous time for the consistent case. Section 5 gives a
generalization of the Gibbs results to multifurcating trees.

2. Characterization of binary Gibbs fragmentations

The Gibbs model (7) is overparameterized: if we multiply w(k), k ≥ 1, by abk (and then Z(m),
m ≥ 2, by a2bm), the model remains unchanged. Note, further, that neither w(1) = 0 nor w(2) =
0 is possible since then (7) does not define a probability function for n = i + j = 3. Hence,
we may assume w(1) = 1 and w(2) = 1. It is now easy to see that for any two different such
sequences, the models are different. Note that the following result does not assume a consistent
model.

Proposition 4. The following two conditions on a collection of random binary fragmentations
TB indexed by finite subsets B of N are equivalent:
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(i) TB is for each B an exchangeable Markovian binary fragmentation with splitting rule of
the Gibbs form (7) for some sequence of weights w(j) > 0, j ≥ 1, and normalization constants
Z(n), n ≥ 2;

(ii) for each B , the probability distribution of TB is of the form

P(TB = t) = 1

w(#B)

∏
A∈t

ψ(#A) for all t ∈ BB , (8)

for some sequence of weights ψ(j) > 0, j ≥ 1, and normalisation constants w(n), n ≥ 1.

More precisely, if (i) holds with w(1) = 1, then (ii) holds for the same sequence w with

ψ(1) = 1 and ψ(k) = w(k)/Z(k), k ≥ 2. (9)

Conversely, if (ii) holds for some sequence ψ with ψ(1) = 1, then (i) holds for the sequence
w(n), n ≥ 1, determined by (8); in particular, w(1) = 1.

Proof. Given a Gibbs model with w(1) = 1, we can combine (3) and (7) to get, for all t ∈ BB ,

P(TB = t) =
∏

A∈t:#A≥2

w(#A1)w(#A2)

Z(#A)
= 1

w(#B)

∏
A∈t:#A≥2

w(#A)

Z(#A)
.

If we make the substitution (9), we can read off w(n) as the correct normalization constant and
(8) follows, with ψ(1) = 1.

On the other hand, (8) determines the sequence w(n), n ≥ 1, as

w(n) =
∑

t∈B[n]

∏
A∈t

ψ(#A).

Note, in particular, that w(1) = ψ(1). We can express the normalization constants in the Gibbs
model (7) by the formula

Z(m) =
m−1∑
k=1

(
m − 1
k − 1

)
w(k)w(m − k) (10)

=
m−1∑
k=1

(
m − 1
k − 1

)( ∑
t1∈B[k]

∏
A∈t1

ψ(#A)

)( ∑
t2∈B[m−k]

∏
A∈t2

ψ(#A)

)

=
∑

t∈B[m]

∏
A∈t:A�=[m]

ψ(#A) = w(m)/ψ(m),

as in (9). By application of the previous implication from (i) to (ii), formula (8) gives the distrib-
ution of the Gibbs model derived from this weight sequence w(n) and the conclusion follows. �
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Note that the normalization constant Z(m) in the Gibbs splitting rule (7) model and given in
(10) is a partial Bell polynomial in w(1),w(2), . . . (see [15] for more applications of Bell poly-
nomials), whereas the normalization constant w(n) in the Gibbs tree formula (8) is a polynomial
in ψ(1),ψ(2), . . . of a much a more complicated form. The normalization constant in (8) is

w(n) =
∑

t∈B[n]

∏
A∈t

ψ(#A).

In an attempt to study this polynomial in ψ(1),ψ(2), . . . , we introduce the signature σt : [n] → N

of a tree t ∈ B[n] by

σt(j) = #{A ∈ t : #A = j}, j = 1, . . . , n.

Note that P(Tn = t) depends on t only via σt, that is, σt is a sufficient statistic for the Gibbs
probabilities (8). Denote the set of signatures by Sign = {σt : t ∈ B[n]}. The inductive definition
of B[n] yields

Sign = {
σ (1) + σ (2) + 1n :σ (1) ∈ Sign1

, σ (2) ∈ Sign2
, n1 + n2 = n

}
,

where 1n(j) = 1 if j = n, 1n(j) = 0 otherwise. The coefficients Qσ in w(n), when expanded as a
polynomial in ψ(1),ψ(2), . . . , are numbers of fragmentations with the same signature σ ∈ Sign:

w(n) =
∑

σ∈Sign

Qσ ψσ , where ψσ =
n∏

j=1

ψ(j)σ(j).

Let us associate with each fragmentation t ∈ B[n] its tree shape (combinatorial tree without
labels) t◦ and denote by B

◦
n the collection of shapes of binary trees with n leaves. Clearly, two

fragmentations with the same tree shape have the same signature, so we can define σ(t◦) in the
obvious way. For n ≤ 8 (and many larger trees), direct enumeration shows that the tree shape
t◦ ∈ B

◦
n is uniquely determined by its signature σ , and Qσ is just the number q(t◦) of different

labelings. For n ≥ 9, this is false: there are two tree shapes with signature (9,3,1,2,1,0,0,0,1);
see Figure 2. If we denote by I ◦

σ ⊆ B
◦
n the set of tree shapes with signature σ , then Qσ =∑

t◦∈I ◦
σ
q(t◦). The remaining combinatorial problem is therefore to study I ◦

σ and q(t◦). We have
not been able to solve this problem. The preprint version [12] of the present paper includes an
Appendix with a partial study: see also Corollary 2.4.3 of [17].

Figure 2. Two tree shapes with the same signature (here marked by subtree sizes).
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3. Consistent binary Gibbs rules

The statement of Theorem 2 specifies Aldous’ [2] beta-splitting models by their integral repre-
sentation (5). Observe that the moment formula for beta distributions easily gives

p(i, j) = 1

Z(i + j)

∫ 1

0
xi+β(1 − x)j+β dx

(11)

= �(i + β + 1)�(j + β + 1)

R(i + j)
for all i, j ≥ 1,

for normalization constants R(n) = Z(n)�(n + 2β + 2), n ≥ 2. This is for β ∈ (−2,∞). For
β = ∞, we simply get p(i, j) = 1/R(i + j) for all i, j ≥ 1, where R(n) = Z(n)2n, n ≥ 2.

Proof of Theorem 2. We start from a general Gibbs model (7) with w(1) = 1 and follow [7],
Section 2 closely, where a similar characterization is derived in a partition rather than a tree
context. Let the Gibbs model be consistent. This immediately implies that w(j) > 0 for all j ≥ 1.
The consistency criterion (4) in terms of Wj = w(j + 1)/w(j) now gives

Wi + Wj = Z(i + j + 1) − w(i + j)

Z(i + j)
for all i, j ≥ 1. (12)

The right-hand side is a function of i + j , so Wj+1 − Wj is constant and hence Wj = a + bj for
some b ≥ 0 and a > −b. Now, either b = 0 (excluded for the time being) or

w(j) = W1 · · ·Wj−1 =
j−1∏
q=1

(a + bq)

= bj−1
j−1∏
q=1

(
a

b
+ q

)
= bj−1 �(a/b + j)

�(a/b + 1)
.

and, hence, reparameterizing by β = a/b − 1 ∈ (−2,∞) and pushing bi+j−2 into the normaliza-
tion constant di+j = bi+j−2/Z(i + j), we have

p(i, j) = w(i)w(j)

Z(i + j)
= di+j

�(i + 1 + β)

�(2 + β)

�(j + 1 + β)

�(2 + β)
.

The case b = 0 is the limiting case β = ∞, when, clearly, w(j) ≡ 1 (now pushing ai+j−2 into
the normalization constant).

These are precisely Aldous’ beta-splitting models, as in (11). �

While we identified the boundary case β = ∞ as being of Gibbs type, the boundary case
β = −2 is not of Gibbs type, although it can still be made precise as a Markovian fragmentation
model with characteristics c > 0 and ν = 0 (pure erosion): p(i, j) = 0 unless i = 1 or j = 1, so
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the Markovian fragmentations Tn are combs, where all n − 1 branching vertices are lined up in a
single spine.

In the proof of the theorem, we obtained as parameterization for the Gibbs models (7),

w(j) = �(j + 1 + β)

�(2 + β)
, j ≥ 1, (13)

for some β ∈ (−2,∞), or w(j) ≡ 1 for β = ∞. Note that the simple convention w(2) = 1
from Section 2 is not useful here. We can now still deduce the parameterization (8) by Proposi-
tion 4, in principle. However, since ψ(k) = w(k)/Z(k) involves partial Bell polynomials Z(k)

in w(1),w(2), . . . , this is less explicit in terms of β than the parameterization (7).

ψ(2) = 2 + β, ψ(3) = 3 + β

3
, ψ(4) = (3 + β)(4 + β)

18 + 7β
, . . . .

Special cases that have been studied in various biology and computer science contexts (see Al-
dous [2] for a review) include the following: β = −3/2,−1,0,∞. In these cases, we can explic-
itly calculate the Gibbs parameters in (7) and (8) and the normalisation constants.

If β = −3/2, we can take ψ(n) ≡ 1 and TB is uniformly distributed: if #B = n, then P(TB =
t) = 2n−1(n− 1)!/(2n− 2)!, t ∈ BB . The asymptotics of uniform trees lead to Aldous’ Brownian
CRT [1]; see also [15], Section 6.3. Table 1 uses a different parameterization via the convenient
relations (9) and (13).

The case β = −1 is the limiting conditional distribution in the Ewens family as the Ewens
parameter λ → 0, conditional on the occurrence of a split. The β = 0 case is known as the Yule
model and β = ∞ as the symmetric binary trie (see Aldous [2]). Continuum tree limits of the
beta-splitting model for β ∈ (−2,−1) are described in [9]. The normalization that leads to a
compact limit tree is here T[n]/n−β−1, where T[n] is represented as a metric tree with unit edge
lengths and the scaling T[n]/n−β−1 refers to scaling of edge lengths. Aldous [2] studies weaker
asymptotic properties for average distance from a leaf to the root, also for β ≥ −1, where growth
is logarithmic.

Table 1. Closed form expressions of the parameters for β =
−3/2,−1,0,∞

β −3/2 −1 0 ∞

w(n)
(2n − 2)!

22n−2(n − 1)! (n − 1)! n! 1

Z(n)
(2n − 2)!

22n−3(n − 1)! (n − 1)!
n−1∑
j=1

1

j

1

2
(n − 1)n! 2n−1 − 1

ψ(n)
1

2
1

/ n−1∑
j=1

1

j

2

n − 1

1

2n−1 − 1
.
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4. Growth rules and embedding in continuous time

In [9], we study the consistently growing sequence Tn, n ≥ 1, where Tn := T[n] = T[n],[n+1] is
the restriction of Tn+1 to [n] for all n ≥ 1, in a general context of consistent Markovian multi-
furcating fragmentation models. The integral representation (5) stems from an association with
Bertoin’s theory of homogeneous fragmentation processes in continuous time [4]. Let us here
look at the binary case in general and Gibbs fragmentations in particular.

Consider the distribution of Tn+1, given Tn. The tree Tn+1 has a vertex A ∪ {n + 1} with
children {n + 1} and A ∈ Tn. We say that n + 1 has been attached below A. In passing from Tn

to Tn+1, leaf n + 1 can be attached below any vertex A of Tn (including [n] and all leaf nodes).
Note that to construct Tn+1 from Tn, n + 1 is also added as an element to all vertices on the path
from [n] to A. Vertex A ∈ Tn is special in that both A and A ∪ {n + 1} are in Tn+1.

Fix a vertex A of t ∈ B[n] and consider the conditional probability, given Tn = t, of n+1 being
attached below A. This is the ratio of two probabilities of the form (3) in which many common
factors cancel so that only the probabilities along the path from [n] to A remain. This yields the
following result.

Proposition 5. Let t ∈ B[n] and A ∈ t. Denote by

[n] = A1 ⊃ · · · ⊃ Ah = A

the path from [n] to A. We refer to h ≥ 1 as the height of A in t. The probability that n + 1
attaches below A is then(

h−1∏
j=1

p(#Aj+1 + 1,#(Aj \ Aj+1))

p(#Aj+1,#(Aj \ Aj+1))

)
p(#Ah,1).

For the uniform model (Gibbs fragmentation with β = −3/2), this product is telescoping, or
we calculate directly from (8)(

h−1∏
j=1

p(#Aj+1 + 1,#(Aj \ Aj+1))

p(#Aj+1,#(Aj \ Aj+1))

)
p(#Ah,1) = 1

2n − 1
,

giving a simple sequential construction (see, e.g., [15], Exercise 7.4.11).
It was shown in [9] that consistent Markovian fragmentation models can be assigned consistent

independent exponential edge lengths, where the edge below vertex A is given parameter λ#A,
for a family (λm)m≥1 of rates, where λ1 = 0, λ2 is arbitrary and λm, m ≥ 3, is determined by λ2
and the splitting rule p, in that consistency requires

λn+1
(
1 − p(n,1)

) = λn for all n ≥ 2. (14)

The interpretation is that the partition of [n + 1] in Tn+1 (arriving at rate λn+1) splits [n] only
with probability 1 − p(n,1) and this thinning must reduce the rate for the partition of [n] in Tn

to λn. This rate λn also applies in Tn+1 after a first split {[n], {n + 1}}.
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Using consistency, equation (14) also implies

λnp(i, j) = λn+1
(
p(i, j + 1) + p(i + 1, j)

)
for all i, j ≥ 1 with i + j = n.

For the Gibbs fragmentation models, we obtain, using (14), (7), (12) and (13),

λn = λ2

n−1∏
j=2

1

1 − p(j,1)
= λ2

n−1∏
j=2

Z(j + 1)

Z(j + 1) − w(j)
= λ2Z(n)

n−1∏
j=2

1

W1 + Wj−1

= λ2Z(n)

n−1∏
j=2

w(j − 1)

w(2)w(j − 1) + w(j)
= λ2Z(n)

�(4 + 2β)

�(n + 2 + 2β)
,

where we require β < ∞ for the last step. Table 2 contains the rate sequences for β =
−3/2,−1,0,∞ in the case λ2 = 1.

Not only is (λn)n≥3 determined by p, but a converse of this also holds.

Proposition 6. Let (λn)n≥2 be a consistent rate sequence associated with a consistent Markov-
ian binary fragmentation model with splitting rule p, meaning that (14) holds. Then, p is
uniquely determined by (λn)n≥2.

Proof. It is evident from (14) that p(n,1) is determined for all n ≥ 2, and p(1,1) = 1. Now, (4)
for i = 1 determines p(i + 1, j) for all j ≥ 2, and an induction in i completes the proof. �

A more subtle question is to ask what sequences (λn)n≥2 arise as consistent rate sequences.
The above argument can be made more explicit to yield

p(k,n − k) = 1

λn

k∑
j=0

(−1)k−j+1
(

k

j

)
λn−j , 1 ≤ k ≤ n/2,

which means that (λn)n≥2 must have a discrete complete monotonicity, in that kth differences
of (λn)n≥2 must be of alternating signs, k ≥ 1. This condition is not sufficient, however, as
simple examples for n = 3 show (λn = (n − 1)α is completely monotone for α ∈ (0,1), but
exchangeability implies that 1/3 = p(1,2) = (λ3 − λ2)/λ3 and so λ3 = 3/2, whereas (3 − 1)α ∈
(1,2) – even in the multifurcating case, cf. Section 5, we always have λ3 ≤ 3/2).

Table 2. Explicit rate sequences for β = −3/2,−1,0,∞

β −3/2 −1 0 ∞

λn
n − 1

22n−3

(
2n − 2
n − 1

) n−1∑
j=1

1

j

3n − 3

n + 1
2
(
1 − 2−(n−1)

)
.
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Proposition 7. A sequence (λn)n≥2 arises as rate sequence of a consistent Markovian binary
fragmentation model if and only if

λn = nc +
∫

(0,1)

(
1 − xn − (1 − x)n

)
ν(dx)

for some c ≥ 0 and ν a symmetric measure on (0,1) with
∫
(0,1)

x(1 − x)ν(dx) < ∞. The char-
acteristics of the splitting rules associated with (λn)n≥2 are (c, ν).

Proof. This is a consequence of the integral representation (5) and [9], Proposition 3. Specifi-
cally, the association with Bertoin’s theory of homogeneous fragmentations yields that each of
1, . . . , n suffer erosion (being turned into a singleton) at rate c; the measure ν(dx) gives the rate
of fragmentations into two parts, to which 1, . . . , n are allocated independently with probabilities
(x,1 − x), hence splitting [n] with probability 1 − xn − (1 − x)n. �

The complete monotonicity is related to the study of the block containing 1, a tagged fragment;
see [4,10]. Since λn is the rate at which one or more of {2, . . . , n} leave the block containing 1,
the rate is composed of three components – a rate c for the erosion of 1, a rate (n − 1)c for
the erosion of 2, . . . , n and a rate (dz) of fragmentations into two parts, to which 2, . . . , n

are allocated independently with probabilities (e−z,1 − e−z), with 1 in the former part, hence
splitting [n] with probability 1 − e−(n−1)z. Therefore

λn = c + (n − 1)c +
∫

(0,∞)

(
1 − e−(n−1)z

)
(dz) = cn +

∫
(0,1)

1 − ξn−1

1 − ξ
μ(dξ) = �(n − 1)

for a Bernstein function �, a finite measure μ on (0,1) or a Lévy measure  on (0,∞) with∫
(0,∞)

(1 ∧ x)(dx) < ∞; (see [8,4,10]), that is, λn can be extended to a completely monotone

function of a real parameter.

5. Multifurcating Gibbs fragmentations and Poisson–Dirichlet
models

As a generalization of the binary framework of the previous sections, we consider in this section
consistent Markovian fragmentation models with splitting rule p as in (2) of the Gibbs form

p(n1, . . . , nk) = a(k)

c(n)

k∏
i=1

w(ni) (15)

for some w(j) ≥ 0, j ≥ 1, a(k) ≥ 0, k ≥ 2, and normalization constants c(n) > 0, n ≥ 2. Note
that we must have w(1) > 0 and a(2) > 0 to get positive probabilities for n = 2. To remove
overparameterization, we will assume w(1) = 1 and a(2) = 1. Also, if we multiply w(j) by bj−1

and a(k) by bk (and c(n) by bn), the model remains unchanged. We will use this observation to
get a nice parameterization in the consistent case (Theorem 8 below).
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In [9], we showed that consistency of the model is equivalent to the set of equations

p(n1, . . . , nk) = p(n1 + 1, n2, . . . , nk) + · · · + p(n1, . . . , nk + 1) + p(n1, . . . , nk,1)
(16)

+ p(n1 + · · · + nk,1)p(n1, . . . , nk)

for all n1, . . . , nk ≥ 1, k ≥ 2. We also established an integral representation extending (5) to the
multifurcating case. The special case relevant for us is in terms of a measure ν on S ↓ = {s =
(si)i≥1 : s1 ≥ s2 ≥ · · · ≥ 0, s1 + s2 + · · · = 1} satisfying

∫
S ↓(1 − s1)ν(ds) < ∞:

p(n1, . . . , nk) = 1

Z(n1 + · · · + nk)

∫
S ↓

∑
i1,...,ik distinct

k∏
j=1

s
nj

ij
ν(ds). (17)

The general case has a further parameter c ≥ 0, as in (5), and also allows ν to charge (si)i≥1 with
s1 +s2 +· · · < 1; see [9]. We will only meet the extreme case p(1, . . . ,1) = 1, which corresponds
to ν = δ(0,0,...).

We set

a(k + 1)

a(k)
= Ak,

c(n + 1)

c(n)
= Cn,

w(n + 1)

w(n)
= Wn

and, in analogy to Proposition 5, we find that, given Tn = t ∈ T[n], for each vertex B ∈ t, the
probability that n + 1 attaches below B is(

h−1∏
j=1

Wnj+1

Cnj

)
a(2)w(nh)w(1)

c(nh + 1)
,

where [n] ⊃ S1 ⊃ · · · ⊃ Sh = B is the path from [n] to B , nj = #Sj and kj denotes the number
of children of Sj , j = 1, . . . , h.

However, n + 1 can also attach as a singleton block to an existing partition {B1, . . . ,Bk} of
B ∈ Tn. In this case, we say that n + 1 attaches to the vertex B . For each non-leaf vertex B ∈ t,
the probability that n + 1 attaches to the vertex B is(

h−1∏
j=1

Wnj+1

Cnj

)
Akh

w(1)

Cnh

.

In this framework, we have the following generalization of Theorem 2 to the multifurcating case.

Theorem 8. If p is of the Gibbs form (15) and consistent, then p is associated with the two-
parameter Ewens–Pitman family given by

w(n) = �(n − α)

�(1 − α)
, n ≥ 1, and a(k) = αk−2 �(k + θ/α)

�(2 + θ/α)
, k ≥ 2

(or limiting quantities α ↓ 0), c(n), n ≥ 1, being normalization constants, for a parameter range
extended as follows:
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• either 0 ≤ α < 1 and θ > −2α (multifurcating cases with arbitrarily high block numbers),
• or α < 0 and θ = −mα for some integer m ≥ 3 (multifurcating with at most m blocks),
• or α < 1 and θ = −2α (binary case),
• or α = −∞ and θ = m for some integer m ≥ 2, that is, a(2) = 1, a(k) = (m − 2) · · · (m −

k + 1), k ≥ 3, and w(j) ≡ 1 (recursive coupon collector, where a split of [n] is obtained
by letting each element of [n] pick one of m coupons at random, just conditioned so that at
least two different coupons are picked),

• or α = 1, that is, w(1) = 1, w(j) = 0, j ≥ 2 (deterministic split into singleton blocks).

In terms of the integral representation (17), the measure ν on S ↓ is, respectively, size-ordered
Poisson–Dirichlet(α, θ), Dirichlet(−α, . . . ,−α), Beta(−α,−α), δ(1/m,...,1/m) and δ(0,0,...).

Proof. For the Gibbs fragmentation model with w(1) = a(2) = 1 and w(j) > 0 for all j ≥ 2
with notation as introduced, consistency (16) is easily seen to be equivalent to

Cn = Wn1 + · · · + Wnk
+ Ak + w(n)

c(n)
for all n1 + · · · + nk = n, (18)

where k ≤ m if m = inf{i ≥ 1 :a(i + 1) = 0} < ∞.
As in the proof of Theorem 2, we deduce from this (the special case k = 2) that either Wj =

a > 0 (excluded for the time being as b = 0) or

Wj = a + bj ⇒ w(j) = W1 . . .Wj−1 = bj−1 �(j − α)

�(1 − α)
for all j ≥ 1,

for some b > 0, a > −b and α := −a/b < 1. As noted above, we can reparameterize so that we
get b = 1 without loss of generality. In particular, Wj = j − α, j ≥ 1, and so (18) reduces to

Cn = n − kα + Ak + w(n)

c(n)
for all 2 ≤ k ≤ m ∧ n.

Similarly, we deduce that θ := Ak − kα does not depend on k and so a(k) = θk−2 if α = 0, and
otherwise,

Ak = θ + kα ⇒ a(k) = A2 . . .Ak−1 = αk−2 �(k + θ/α)

�(2 + θ/α)
for all 2 ≤ k ≤ m + 1.

Note that this algebraic derivation leads to probabilities in (15) only in the following cases.

• If 0 ≤ α < 1, then a(3) = A2 = θ + 2α > 0 if and only if θ > −2α, and then also Ak =
θ + kα > 0 and a(k) > 0 for all k ≥ 3.

• If α < 0, then a(3) = A2 = θ + 2α > 0 if and only if θ > −2α also, but then Ak = θ + kα is
strictly decreasing in k and Ak < 0 eventually, which impedes m = ∞. If we have m < ∞,
we achieve a(m+1) = 0 if and only if θ = −mα. The iteration only takes us to a(m+1) = 0
and we specify a(k) = 0 for k > m also. We cannot specify a(k), k > m + 1, differently,
since every consistent Gibbs fragmentation with a(k) > 0 for k > m + 1 has the property
that T[k] = {[k], {1}, . . . , {k}} has only one branch point [k] of multiplicity k with positive
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probability, but then the restricted tree T[m+1],[k] = {[m+1], {1}, . . . , {m+1}} with positive
probability, which contradicts a(m + 1) = 0.

• If a(3) = 0, that is, m = 2, the argument of the preceding bullet point shows that we are in
the binary case a(k) = 0 for all k ≥ 3 and we can conclude by Theorem 2.

• The case b = 0 is the limiting case α = −∞ with w(j) ≡ 1. We take up the argument to
see that Ak = θ − k and so m < ∞ and θ = m, where we then get a(2) = 1 and a(k) =
(m − 2) · · · (m − k + 1), 3 ≤ k ≤ m + 1.

Finally, if w(m) = 0 for some m ≥ 2, then consistency imposes w(j) = 0 for all j ≥ m, and it
follows from the integral representation (17) that in fact w(j) = 0 for all j ≥ 2. The identification
of ν on the standard parameter range can be read from [15], Section 3.2. For the extension
−α ≥ θ ≥ −2α, we refer to [10]. �

Kerov [11] showed that the only exchangeable partitions of N of Gibbs type are of the two-
parameter family PD(α, θ) with usual range for parameters θ > −α, etc.; see also [7,14]. Theo-
rem 8 is a generalization to splitting rules that allows an extended parameter range for the same
reason as in the binary case: the trivial partition of one single block is excluded from p and
when associating consistent exponential edge lengths with parameters λm, m ≥ 1, the first split
of [m + 1] happens at a higher and higher rate and we may have λm → ∞. In fact,

κ
({

π ∈ PN :π |[n] = {B1, . . . ,Bk}
}) = λnp(#B1, . . . ,#Bk)

uniquely defines a σ -finite measure on PN \ {N}, the set of non-trivial partitions of N, associated
with a homogeneous fragmentation process. This is closely related to (17) via Kingman’s paint-
box representation κ = ∫

S ↓ κsν(ds). The extended range was first observed by Miermont [13] in
the special case θ = −1 (related to the stable trees of Duquesne and Le Gall [5]).

We refer to [10] for a study of spinal partitions of Markovian fragmentation models. There are
notions of fine and coarse spinal partitions. First, remove from Tn the spine of 1, that is, the path
from [n] to {1}. The resulting collection is a disjoint union of fragmentations of sets Bj , say, that
form a partition of {2, . . . , n}, which is called the fine spinal partition. Second, merge blocks (in
the multifurcating case) that were children of the same spinal vertex; the resulting partition is
called the coarse spinal partition. It is shown that for the splitting rules from the two-parameter
family with parameters α and θ (the Gibbs fragmentations), the fine partition is obtained from the
coarse partition by applying independently for each block of the coarse partition an exchangeable
partition from the two-parameter family of random partitions, with parameters α and α + θ .
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