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Kshirsagar–Tan independence property of
beta matrices and related characterizations
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A new independence property of univariate beta distributions, related to the results of Kshirsagar and Tan for
beta matrices, is presented. Conversely, a characterization of univariate beta laws through this independence
property is proved. A related characterization of a family of 2 × 2 random matrices including beta matrices
is also obtained. The main technical challenge was a problem involving the solution of a related functional
equation.
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1. Introduction

Characterizations of probability distributions by transformations preserving independence have
been investigated by many authors. Celebrated theorems of Bernstein or Darmois and Skitovitch
(for the normal law), of Lukacs (for the gamma law) and of Fisz (for the exponential law) are of
this form. For beta laws, characterizations of this nature are typically related to neutrality prop-
erties of the Dirichlet distribution; see Fabius (1973), James and Mossiman (1980), Geiger and
Heckerman (1997) and Bobecka and Wesołowski (2007). Matrix variate analogues of such char-
acterizations are often much more demanding; see, for instance, characterizations of Wishart
matrices due to Olkin and Rubin (1964), Casalis and Letac (1996), Geiger and Heckerman
(2002), Bobecka and Wesołowski (2002) or characterizations of Wishart and matrix variate gen-
eralized inverse Gaussian matrices obtained in Letac and Wesołowski (2000) or Massam and
Wesołowski (2006).

Our general goal is to develop characterizations related to independence properties of matrix
variate beta distributions. A characterization of this type, related to matrix versions of neutrality
properties, has recently been given by Hassairi and Regaig (2006). They extended to matrix ran-
dom variables the result for univariate beta laws obtained in Seshadri and Wesołowski (2003).
Here, we consider independence properties of beta matrices discovered by Kshirsagar (1961,
1972) and Tan (1969), which are essentially different than neutrality. This is carefully explained
in Section 2. The study of the easiest possible case of 2×2 matrices led us to a new independence
property for three univariate independent beta variables (for a recent review of the univariate beta
distribution, one can consult Gupta and Nadarajah (2004)). The transformation preserving inde-
pendence, we propose, seems to have no direct connection to neutrality (see the beginning of
Section 3 and Section 5). The main results of this paper, given in Section 3, are characteriza-
tions: (1) of univariate beta laws through this new independence property; (2) of a family of
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2 × 2 matrix variate distributions satisfying Kshirsagar–Tan independence properties. Somewhat
unexpectedly, this latter family happens to be wider than the class of 2 × 2 matrix beta distribu-
tions. The proofs are based on a solution of a related functional equation. This equation is solved,
under technical smoothness conditions, in Section 4. Concluding, in Section 5, we discuss sim-
ilar characterizations for Wishart-type distributions and relations of our results to neutrality and
to a representation of the Dirichlet distribution, as well as to uniqueness of solutions of some
stochastic equations.

2. Independencies for beta matrices and beta distributions

Let Vn denote the Euclidean space of n × n symmetric matrices (with real entries) with the inner
product defined as a trace of the product. The Lebesgue measure on Vn is fixed by assigning
the unit mass to the unit cube in this space. Let V+

n ⊂ Vn denote the cone of positive definite
symmetric real n × n matrices. Additionally, denote by Mn,m the space of n × m real matrices.
Let en be the n × n identity matrix. Also, let Dn = {x ∈ V+

n : en − x ∈ V+
n }, an analogue of the

interval (0,1) in V+
n .

The matrix variate beta distribution βn(p, q) on Dn is defined by the density (with respect to
the Lebesgue measure on Vn) of the form

f (u) = (detu)p−(n+1)/2(det(e − u))q−(n+1)/2

Bn(p,q)
IDn

(u),

where p,q > n−1
2 and Bn(p,q) is the n-dimensional Euler beta function defined in terms of

n-dimensional Euler gamma functions as

Bn(p,q) = �n(p)�n(q)

�n(p + q)
.

Recall that (see, e.g., Muirhead (1982), page 62)

�n(p) = πn(n−1)/4
n∏

i=1

�

(
p − i − 1

2

)
.

Let X be a beta n × n random matrix βn(p, q). Let T = [tij ] be an upper triangular random
matrix defined by T T ′ = X. Kshirsagar (1961, 1972) (see also Muirhead (1982), Chapter 3.3 or
Gupta and Nagar (2000), Chapter 5) proved that t2

ii , i = 1, . . . , n, are independent beta variables,
t2
ii ∼ BI (p− i−1

2 , q), i = 1, . . . , n. In the course of the proof, he considered the block partitioning
of T with the dimensions of the blocks 1 × 1, 1 × (n − 1), (n − 1) × 1 and (n − 1) × (n − 1), as

T =
[

t11 t′
0 T22

]

and showed that

t11, T22 and v = 1√
1 − t2

11

(en−1 − T ′
22T22)

−1/2t
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are independent. Moreover, it easily follows from his proof that T ′
22T22 has the matrix beta distri-

bution βn−1(p − 1
2 , q) and v has the density fv(x) ∝ (1−x′x)q−(n+1)/2ISn−2(x), where Sn−2 is a

unit ball in R
n−1. This result was extended in Tan (1969), who considered the block partitioning

of the matrix X ∼ βn(p, q) with the dimensions of the blocks r × r , r × s, s × r , s × s,

X =
[

X11 X12
X21 X22

]
,

and proved that

X11, X2·1 = X22 − X21X
−1
11 X12, V = (es − X2·1)−1/2X21

(
X−1

11 (er − X11)
−1)1/2

are independent random matrices. Moreover, it appears that X11 is a beta matrix βr(p, q), X2·1
is a beta matrix βs(p − r

2 , q) and V has the density

fV (x) ∝ [det(er − x′x)]q−(n+1)/2IHr,s
(x), where Hr,s = {x ∈ Ms,r : er − x′x ∈ V+

r }.
Our aim is to study a converse problem, that is, we want to know if the independence con-

ditions mentioned above characterize the matrix variate beta distribution. Since, in the general
case, the problem seems to be very hard, here we study only the case of 2 × 2 matrices. Let

X =
[

X11 X12
X12 X22

]

be a beta matrix β2(p, q). It then follows from the results of Kshirsagar (1961) and Tan (1969)
that

X11,X2·1 = X22 − X2
12

X11
,V1 = X12√

(1 − X11)(X11 − X11X22 + X2
12)

are independent, (2.1)

X22,X1·2 = X11 − X2
12

X22
,V2 = X12√

(1 − X22)(X22 − X11X22 + X2
12)

are independent (2.2)

and both the triplets have the same distribution: X11 and X22 have the beta distribution BI (p,q),
X2·1 and X1·2 have the beta distribution BI (p − 1

2 , q), V 2
1 and V 2

2 have the beta distribution
BI (

1
2 , q − 1

2 ). It appears that the independence conditions (2.1) and (2.2) characterize a family
of distributions which is wider than that of the beta matrix distributions.

First, instead of (2.1) and (2.2), we consider slightly weaker conditions, in the sense that the
third element of both the triplets is squared. This allows us to rephrase the independence prop-
erty completely in terms of univariate beta variables. As a matter of fact, an even more general
property holds. This will be explained now.

Let

H = {
(x1, x2, x3) ∈ (0,∞)3 : min{x1x2, (1 − x1)(1 − x2)} > x3

}
.
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Denote by B(p,q, r) the probability distribution on H with the density

f (x1, x2, x3) ∝ (x1x2 − x3)
p−1[(1 − x1)(1 − x2) − x3]q−1xr−1

3 IH (x1, x2, x3),

where p,q, r are positive numbers.
On H , define two mappings

ψi(x1, x2, x3) =
(

xi,
x1x2 − x3

xi

,
x3

(1 − xi)(xi − x1x2 + x3)

)
, i = 1,2. (2.3)

Note that ψi , i = 1,2, are bijections of H onto (0,1)3. Moreover, it can be checked that � =
ψ2 ◦ ψ−1

1 : (0,1)3 → (0,1)3 is an involution (i.e., � = �−1) and for any (y1, y2, y3) ∈ (0,1)3,

�(y1, y2, y3)

=
(

y2 + (1 − y1)(1 − y2)y3, (2.4)

y1y2

y2 + (1 − y1)(1 − y2)y3
,

y1y3

[1 − (1 − y1)y3][y2 + y3(1 − y2)]
)

.

Let (X1,X2,X3) be a random vector having the distribution B(p,q, r). A standard calcula-
tion using the Jacobian shows that ψi(X1,X2,X3) is a random vector with independent beta
components

ψi(X1,X2,X3) ∼ BI (p + r, q + r) ⊗ BI (p,q + r) ⊗ BI (r, q), i = 1,2.

This observation can be rewritten as an independence property of a transformation of invari-
ance beta variables.

Theorem 1. If (Y1, Y2, Y3) ∼ BI (p + r, q + r) ⊗ BI (p,q + r) ⊗ BI (r, q), then(
Y2 + (1 − Y1)(1 − Y2)Y3,

Y1Y2

Y2 + (1 − Y1)(1 − Y2)Y3
,

Y1Y3

[1 − (1 − Y1)Y3][Y2 + Y3(1 − Y2)]
)

d= (Y1, Y2, Y3).

3. Characterizations

First, we study a characterization of beta laws which is a converse of Theorem 1. As already
mentioned in the Introduction, to the best of our knowledge, all characterizations of beta variables
existing in the literature which are based on transformations preserving independence can be
related to neutrality properties of the Dirichlet distribution. The characterization of beta variables
we give below is based on the independence of the components of the random vector defined in
Theorem 1. It seems to have no connection to analogous results based on neutralities. This issue
will be explained more carefully in Section 5.
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Theorem 2. Let Y = (Y1, Y2, Y3) be a (0,1)3-valued random vector with independent compo-
nents having strictly positive, continuously differentiable density on (0,1)3. Let ψ1 and ψ2 be
the transformations defined in (2.3) and � = ψ2 ◦ ψ−1

1 . Let

Z = (Z1,Z2,Z3) = �(Y1, Y2, Y3)

also have independent components.
There then exist positive numbers p,q, r such that

Y d= Z ∼BI (p + r, q + r) ⊗ BI (p,q + r) ⊗ BI (r, q).

Proof. Note that Y = ψ1(X) and Z =ψ2(X), where X is a random vector assuming values in H .
The Jacobians of ψi , i = 1,2, are, respectively,

|Ji | = 1

(1 − xi)(xi − x1x2 + x3)
, i = 1,2.

Thus, the density f of X can be expressed as

f (x) = 1

(1 − x1)(x1 − x1x2 + x3)

× fY1(x1)fY2

(
x1x2 − x3

x1

)
fY3

(
x3

(1 − x1)(x1 − x1x2 + x3)

)
(3.1)

= 1

(1 − x2)(x2 − x1x2 + x3)

× fZ1(x2)fZ2

(
x1x2 − x3

x2

)
fZ3

(
x3

(1 − x2)(x2 − x1x2 + x3)

)
.

We multiply (3.1) by x3 and define

g1(x) = ln(fY1(x)), g2(x) = ln(fY2(x)), g3(x) = ln(xfY3(x)),
(3.2)

g4(x) = ln(fZ1(x)), g5(x) = ln(fZ2(x)), g6(x) = ln(xfZ3(x)).

We then obtain

g1(y1) + g2(y2) + g3(y3) = g4(z1) + g5(z2) + g6(z3), (3.3)

where ψ1(x) = y and ψ2(x) = z. Note that y ∈ (0,1)3 and that

z1 = y2 + (1 − y1)(1 − y2)y3, z2 = y1y2

y2 + (1 − y1)(1 − y2)y3
,

z3 = y1y3

(1 − (1 − y1)y3)(y2 + y3 − y2y3)
.
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Note that equation (3.3) is the one we solve in Proposition 1 (Section 4). Hence, we conclude
that there exist constants p,q, r such that

fY1(x) = fZ1(x) = B1x
p+r−1(1 − x)q+r−1,

fY2(x) = fZ2(x) = B2x
p−1(1 − x)q+r−1,

fY3(x) = fZ3(x) = B3x
r−1(1 − x)q−1,

where the Bi ’s are some normalizing constants. The integrability condition implies that p,q, r

are positive. �

An alternative formulation of the above theorem is as follows.

Theorem 3. Let X = (X1,X2,X3) be an H -valued random vector having strictly positive, con-
tinuously differentiable density. If ψ1(X) and ψ2(X) have independent components, then there
exist positive numbers p,q, r such that X ∼B(p,q, r).

If, instead, we use original independencies which hold for the beta 2×2 matrices, that is, (2.1)
and (2.2), the functional equation of Proposition 1 (Section 4) leads to a family of distributions
on D2 which is wider than that of beta matrix distributions.

Theorem 4. Let X be a D2-valued random matrix having a density which is continuously differ-
entiable and strictly positive on D2. Assume that (2.1) and (2.2) hold. There then exist constants
a, b, c > 0 such that the density of X is of the form

fX

(
x =

[
x11 x12
x12 x22

])
= (detx)a−1(det(e − x))b−1|x12|2c−1ID2(x)

B(a, b)B(a + b, c)B(a + c, b + c)
. (3.4)

Proof. Using (2.1) and (2.2) similarly as in the proof above, we get for the density fX the
following two representations:

1√
(1 − x11)(x11 − x11x22 + x2

12)

×f1(x11)f2

(
x11x22 − x2

12

x11

)
f3

(
x12√

(1 − x11)(x11 − x11x22 + x2
12)

)

= 1√
(1 − x22)(x22 − x11x22 + x2

12)

× f4(x22)f5

(
x11x22 − x2

12

x22

)
f6

(
x12√

(1 − x22)(x22 − x11x22 + x2
12)

)
,
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where fi , i = 1,2, . . . ,6, are respectively densities of X11,X2·1,V1,X22,X1·2,V2. We now pro-
ceed similarly as in the proof of Theorem 2, separately in two cases: x12 > 0 and x12 < 0.

For x12 > 0, denote
√

u = x12. The above equation then takes on the form

f1(x11)f2

(
x11x22 − u

x11

)
f̃3

(
u

(1 − x11)(x11 − x11x22 + u)

)

= f4(x22)f5

(
x11x22 − u

x22

)
f̃6

(
u

(1 − x22)(x22 − x11x22 + u)

)
,

where f̃i (x) = √
xfi(

√
x), i = 3,6. Thus, from Proposition 1, it follows that there exist positive

(due to integrability) constants a, b, c such that for x ∈ (0,1),

f1(x) = f4(x) = B1x
a+c−1(1 − x)b+c−1,

f2(x) = f5(x) = B2x
a−1(1 − x)b+c−1,

f3(x) = f6(x) = B3x
2c−1(1 − x2)b−1.

For x12 < 0, denote
√

u = −x12. The above equation then takes on the form

f1(x11)f2

(
x11x22 − u

x11

)
f̂3

(
u

(1 − x11)(x11 − x11x22 + u)

)

= f4(x22)f5

(
x11x22 − u

x22

)
f̂6

(
u

(1 − x22)(x22 − x11x22 + u)

)
,

where f̂i (x) = √
xfi(−√

x), i = 3,6. From Proposition 1, it follows that for x ∈ (−1,0),

f3(x) = f6(x) = B3(−x)2c−1(1 − x2)b−1.

Thus, f3(x) = f6(x) = B3|x|2c−1(1 − x2)b−1I(−1,1)(x).
Finally, the result follows from the representation of fX in terms of f1, f2, f3. �

Remark 1. Note that the family of matrix variate distributions defined by (3.4) includes the beta
matrix distribution: (3.4) for c = 1

2 is the density of the beta matrix distribution β2(a + 1
2 , b+ 1

2 ).

4. Functional equation

In this section, we solve the functional equation which was essential for proving the characteri-
zations derived in Section 3.

Proposition 1. Let gi, i = 1,2,3, be continuously differentiable functions on (0,1) satisfying

g1(y1) + g2(y2) + g3(y3)

= g4
(
y2 + (1 − y1)(1 − y2)y3

) + g5

(
y1y2

y2 + (1 − y1)(1 − y2)y3

)
(4.1)
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+ g6

(
y1y3

(1 − (1 − y1)y3)(y2 + (1 − y2)y3)

)

for any y1, y2, y3 ∈ (0,1).
There then exist constants α,β, γ,Ai, i = 1, . . . ,6, such that A1 + A2 + A3 = A4 + A5 + A6

and

gi(x) = (α + γ ) lnx + (β + γ ) ln(1 − x) + Ai, i = 1,4, (4.2)

gi(x) = α lnx + (β + γ ) ln(1 − x) + Ai, i = 2,5,

gi(x) = γ lnx + β ln(1 − x) + Ai, i = 3,6.

Proof. Let s = s(y1, y3) = 1 − (1 − y1)y3, t = t (y2, y3) = y2 + (1 − y2)y3. Taking derivatives
of (4.1), once with respect to y1, once with respect to y2 and once with respect to y3, yields the
following three equations:

g′
1(y1) = −(1 − y2)y3g

′
4

(
1 − (1 − y2)s

)
(4.3)

+ y2t

[1 − (1 − y2)s]2
g′

5

(
y1y2

1 − (1 − y2)s

)
+ y3(1 − y3)

s2t
g′

6

(
y1y3

st

)
,

g′
2(y2) = sg′

4

(
1 − (1 − y2)s

)
(4.4)

+ y1(1 − s)

[1 − (1 − y2)s]2
g′

5

(
y1y2

1 − (1 − y2)s

)
− y1(1 − y3)y3

st2
g′

6

(
y1y3

st

)
,

g′
3(y3) = (1 − y1)(1 − y2)g

′
4

(
1 − (1 − y2)s

)
(4.5)

− y1(1 − y1)y2(1 − y2)

[1 − (1 − y2)s]2
g′

5

(
y1y2

1 − (1 − y2)s

)

+ y1[y2 + (1 − y2)y3(1 − s)]
s2t2

g′
6

(
y1y3

st

)
.

Denote

Gj(x) = xg′
j (x), x ∈ (0,1), j = 1,2,3,4,5,6.

Then, upon multiplying (4.3), (4.4) and (4.5), respectively, by y1, y2 and y3, we get

G1(y1) = − y1(1 − y2)y3

1 − (1 − y2)s
G4

(
1 − (1 − y2)s

)
(4.6)

+ t

1 − (1 − y2)s
G5

(
y1y2

1 − (1 − y2)s

)
+ 1 − y3

s
G6

(
y1y3

st

)
,

G2(y2) = y2s

1 − (1 − y2)s
G4

(
1 − (1 − y2)s

)
(4.7)

+ (1 − y1)y3

1 − (1 − y2)s
G5

(
y1y2

1 − (1 − y2)s

)
− y2(1 − y3)

t
G6

(
y1y3

st

)
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and

G3(y3) = (1 − y2)(1 − s)

1 − (1 − y2)s
G4

(
1 − (1 − y2)s

)
(4.8)

− (1 − y2)(1 − s)

1 − (1 − y2)s
G5

(
y1y2

1 − (1 − y2)s

)
+ y2 + (1 − y2)y3(1 − s)

st
G6

(
y1y3

st

)
.

Letting y3 → 0 in (4.6), we conclude that the limit

lim
y3→0

G6

(
y1y3

st

)

exists. We denote it by G6(0). (4.6) then yields

G1(y1) = G5(y1) + G6(0). (4.9)

Similarly, (4.6) for y3 → 0 gives

G2(y2) = G4(y2) − G6(0). (4.10)

Multiplying (4.7) by 1 − y2 and adding the resulting equation to (4.8), we get

(1−y2)G2(y2)+G3(y3) = (1−y2)G4
(
1− (1−y2)s

)+ 1 − (1 − y2)s

1 − (1 − y1)y3
G6

(
y1y3

st

)
. (4.11)

Letting y1 → 1 in (4.11), we obtain

(1 − y2)G2(y2) + G3(y3) = (1 − y2)G4(y2) + y2G6

(
y3

t

)
.

Thus, by (4.10), we have

−(1 − y2)G6(0) + G3(y3) = y2G6

(
y3

t

)
,

and letting y2 → 1, we get

G3(y3) = G6(y3). (4.12)

From (4.11), we have

G6

(
y1y3

st

)
= 1 − (1 − y1)y3

1 − (1 − y2)s
(4.13)

× [
(1 − y2)G2(y2) + G3(y3) − (1 − y2)G4

(
1 − (1 − y2)s

)]
.

We now plug (4.13) into (4.6) and (4.7). Multiplying the resulting equations by (1 −y1)y3 and
−t , respectively, and then adding them, we get

(1 − y1)y3G1(y1) − G2(y2) − (1 − y3)G3(y3) = −sG4
(
1 − (1 − y2)s

)
. (4.14)
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Letting y2 → 0, we obtain

(1 − y1)y3G1(y1) − G2(0) − (1 − y3)G3(y3) = −sG4
(
(1 − y1)y3

)
. (4.15)

Note that the limit limy→0 G2(y) exists. We denote it by G2(0). Thus, (4.10) implies that the limit
limy→0 G4(y) also exists. We denote it by G4(0). (4.10) then implies G4(0) = G2(0) + G6(0).
Subtracting (4.15) from (4.14) and again using (4.10), we get

G4(0) − G4(y2) − sG4
(
(1 − y1)y3

) = −sG4
(
1 − (1 − y2)s

)
.

Let x = (1 − y1)y3 ∈ (0,1). Then, for any x, y = y2 ∈ (0,1) from the above equation, we obtain

G4(0) − G4(y) − (1 − x)G4(x) = −(1 − x)G4(y + x − yx). (4.16)

Changing x into y and y into x, we get

G4(0) − G4(x) − (1 − y)G4(y) = −(1 − y)G4(y + x − yx). (4.17)

Multiplying (4.16) by 1 − y and (4.17) by 1 − x and then subtracting the resulting equations, we
get

−yG4(0) − (1 − y2)G4(y) − (1 − y)(1 − x)G4(x)

= −xG4(0) − (1 − x)G4(x) − (1 − x)(1 − y)G4(y).

Hence, for any x, y ∈ (0,1),

− 1

y
G4(0) + 1 − y

y
G4(y) = − 1

x
G4(0) + 1 − x

x
G4(x)

and by separation of variables, we get

− 1

x
G4(0) + 1 − x

x
G4(x) = C,

where C is a constant. Thus, for any x ∈ (0,1),

G4(x) = −C + [C + G4(0)] 1

1 − x
(4.18)

and we get

g4(x) = G4(0) lnx − (
C + G4(0)

)
ln(1 − x) + A4.

From (4.18) and (4.10), it follows that

G2(x) = −(
C + G6(0)

) + [C + G4(0)] 1

1 − x
(4.19)
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and we obtain

g2(x) = (
G4(0) − G6(0)

)
lnx − (

C + G4(0)
)

ln(1 − x) + A2.

Plugging (4.18) and (4.19) into (4.15), we get

(1 − y1)y3G1(y1) + G6(0) − (1 − y3)G3(y3) = −(1 − y1)y3C.

Hence, for any y1, y3 ∈ (0,1),

(1 − y1)G1(y1) + (1 − y1)C = −G6(0)

y3
+ 1 − y3

y3
G3(y3)

and again using separation of variables, we have

(1 − y)G1(y) + (1 − y)C = D

and

−G6(0)

y
+ 1 − y

y
G3(y) = D,

where D is a constant. Thus,

G1(y) = −C + D

1 − y
(4.20)

and

G3(y) = −D + [D + G6(0)] 1

1 − y
. (4.21)

Hence,

g1(x) = (−C + D) lnx − D ln(1 − x) + A1

and

g3(x) = G6(0) lnx − (
D + G6(0)

)
ln(1 − x) + A3.

Using (4.9), we obtain

G5(y) = −(
C + G6(0)

) + D

1 − y
(4.22)

and using (4.12), we get

G6(y) = −D + [D + G6(0)] 1

1 − y
. (4.23)

Hence,

g5(x) = (−C + D − G6(0)
)

lnx − D ln(1 − x) + A5
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and

g6(x) = G6(0) lnx − (
D + G6(0)

)
ln(1 − x) + A6.

Inserting the formulas obtained for gi, i = 1, . . . ,6, into (4.1), we get that it must be

G4(0) = D − C.

Thus, we get (4.2) where

α = D − C − G6(0), β = −D − G6(0), γ = G6(0). �

5. Concluding remarks

The transformation � preserving a product beta distribution considered in this paper is defined
in the three-variate situation. Describing its higher-dimensional version is an open problem.

On the other hand, it is natural to seek a multidimensional analogue of Theorem 4 by referring
to matrix variate versions of independencies, as described in Section 2, for all or several block
partitionings of the original matrix.

Recall that characterizations of Wishart matrices using independencies of (X11,X12) and X2·1
for all or several block partitionings of the n × n random matrix X with n > 2 were proven in
Geiger and Heckermann (2002) and in Massam and Wesołowski (2006). It is interesting to note
that for 2 × 2 matrices, similarly as in Theorem 4 here, these independencies characterized wider
families of random matrix distributions; see Geiger and Heckerman (1998) or Letac and Massam
(2001).

Also, note that if X is Wishart with a diagonal matrix parameter, then for any block partitioning
of X, the following independence properties hold: X11, X21X

−1
11 X12 and X2·1 are independent

and X22, X12X
−1
22 X21 and X1·2 are independent (see, e.g., Example 3.14 in Muirhead (1982)).

Recently, a characterization using these independence properties for 2 × 2 matrices was proven
in Seshadri and Wesołowski (2007). Analogously to our Theorem 4, it was shown there that the
two independence conditions characterize a family of random matrices which is wider than that
of Wishart matrices with diagonal matrix parameter. Again, the problem in higher dimensions
remains open.

It is natural to compare the transformation � considered here to neutrality properties of the
Dirichlet distribution (being consequences of the gamma variables representation), which define
transformations preserving independence of beta variables. In particular, the one defined through
the concept of complete neutrality (see Connor and Mosimann (1969), James and Mosimann
(1980)) is worth analyzing. In the three-variate case which we are interested in here, the respec-
tive characterization has the following form. Let Y = (Y1, Y2, Y3) be a (0,1)3-valued random
vector with independent components. Let

Z =
(

Y1

1 − (1 − Y1)[Y2 + (1 − Y2)Y3] ,
(1 − Y1)Y2

1 − (1 − Y1)(1 − Y2)Y3
, (1 − Y1)(1 − Y2)Y3

)
(5.1)
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also have independent components. There then exist positive numbers p,q, r, s such that

Y ∼ BI (p,q + r + s) ⊗ BI (q, r + s) ⊗ BI (r, s)

and

Z ∼ BI (p, s) ⊗ BI (q,p + s) ⊗ BI (r,p + q + s).

Let us emphasize that the transformation defined by (5.1) and � (see (2.4)) used in Theorems 1
and 2 are essentially different, though they may seem similar at first glance.

We conclude this section with two diverse and somewhat unexpected consequences of Theo-
rem 1, one related to a representation of the bivariate Dirichlet distribution and the other related
to stochastic equations and perpetuities.

Remark 1. Consider a random vector (W1,W2) such that(
W1,

W2

1 − W1

)
∼ BI (p,q + r) ⊗ BI (r, q).

Equivalently, (W1,W2) has the Dirichlet distribution D(p, r, q). By Theorem 1, looking at the
last two coordinates of the random vector �(Y1, Y2, Y3), we obtain the following representation:

(W1,W2)
d= U(V1,V2)

with

U = Y1

Y2 + (1 − Y1)(1 − Y2)Y3
, V1 = Y2 and V2 = (1 − Y1)Y3

1 − (1 − Y1)Y3
.

It can easily be seen that (V1 +V2)U ∼ BI (p + r, q), V1 ∼ BI (p,q + r) and V2 ∼ BII(r,p +q +
r) are independent, where BII(r,p + q + r) denotes the second type of beta distribution defined
by the density

g(x) = xr−1

B(r,p + q + r)(1 + x)p+q+2r
I(0,∞)(x).

Also, note that (V1+V2
1+V2

,UV1,
UV2

1−UV1
) = �(Y1, Y2, Y3). Consequently, by Theorem 1, we con-

clude that V1+V2
1+V2

∼ BI (p + r, q + r) and U(V1,V2) ∼ D(p, r, q) are independent.

Remark 2. The results of Theorem 1 or 2 can be reviewed in the setting of stochastic equations.
Namely, by comparing the respective coordinates of Y and �(Y), we observe that

I. The stochastic equation (for unknown R)

R
d= AR + B, (5.2)

where (A,B)
d= (−(1 − Y2)Y3, Y2 + (1 − Y2)Y3) and R are independent, has a solution R

d= Y1;
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II. The stochastic equation (for unknown S)

S
d= CS + D, (5.3)

where (C,D)
d= (

(1−Y1)Y3
Y1

,
1−(1−Y1)Y3

Y1
) and S are independent, has a solution S

d= 1
Y2

;
III. The stochastic equation (for unknown T )

T
d= aT + b + c

T
, (5.4)

where (a, b, c)
d= (Y2

Y1
, 1−2Y2+Y1Y2

Y1
,− (1−Y1)(1−Y2)

Y1
) and T are independent, has a solution T

d= 1
Y3

.
It follows from the theory of perpetuities (see, e.g., Vervaat (1979) and Goldie and Grübel

(1996)) that for equations (5.2) and (5.3), these solutions are unique. However, it is not known

if T
d= 1

Y3
is the unique solution of (5.4). Possibly, the reference most relevant to this unique-

ness problem is the paper by Chamayou and Letac (1991), where many examples of stationary
distributions for compositions of random functions are considered.
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