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Marginal likelihood for parallel series
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Department of Statistics, University of Chicago, Chicago, IL 60637, USA.
E-mail: pmcc@galton.uchicago.edu

Suppose that k series, all having the same autocorrelation function, are observed in parallel at n points in
time or space. From a single series of moderate length, the autocorrelation parameter β can be estimated
with limited accuracy, so we aim to increase the information by formulating a suitable model for the joint
distribution of all series. Three Gaussian models of increasing complexity are considered, two of which
assume that the series are independent. This paper studies the rate at which the information for β accu-
mulates as k increases, possibly even beyond n. The profile log likelihood for the model with k(k + 1)/2
covariance parameters behaves anomalously in two respects. On the one hand, it is a log likelihood, so the
derivatives satisfy the Bartlett identities. On the other hand, the Fisher information for β increases to a max-
imum at k = n/2, decreasing to zero for k ≥ n. In any parametric statistical model, one expects the Fisher
information to increase with additional data; decreasing Fisher information is an anomaly demanding an
explanation.

Keywords: ancillary statistic; Bartlett identity; combination of information; decreasing Fisher information;
group orbit; marginal likelihood; profile likelihood; random orthogonal matrix

1. Introduction

Let x1, . . . , xn be points in space or time. At each point xi , the k-variate response Y(xi) =
(Yi1, . . . , Yik) is measured. The values are recorded in matrix form Y = {Yir} with one column
for each of the k series and one row for each of the n points. Each series is a stationary au-
toregressive process with autocorrelation parameter β , and we aim to estimate this parameter as
accurately as possible by pooling information from all k series.

Three Gaussian models are considered, all having moments of the form

E(Yir ) = 0, cov(Yir , Yjs) = �ij�rs (1)

with autocorrelation function �. The zero-mean assumption is inconsequential and is made for
simplicity of notation. It can be replaced by a standard multivariate regression model (Section 3).
The three model variants differ only in the assumptions made about the matrix �, which governs
the variances and covariances of the k series. These are as follows:

Model I: � = σ 2Ik, Model II: � = diag{σ 2
1 , . . . , σ 2

k }, Model III: � ∈ PDk,

where PDk is the space of k × k symmetric positive definite matrices. For each model, we study
the profile log likelihood for β , show that it satisfies the Bartlett identities and study the rate of
change of the Fisher information with k and n.

Model III aims to accommodate correlations among the series in a simple and natural way,
but for k ≥ 2n − 1, the number of parameters exceeds the number of observations. This simple
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counting argument suggests that we might encounter Neyman–Scott phenomena such as bias,
inconsistency or inefficiency in the estimation of β (Neyman and Scott (1948)). The failure of
profile likelihoods to satisfy the Bartlett identities is the chief explanation for Neyman–Scott
phenomena, and the asymptotic bias can often be eliminated by a simple adjustment (Bartlett
(1953, 1955), Patterson and Thompson (1971), Cox and Reid (1987), McCullagh and Tibshirani
(1990)). The fact that the profile likelihood for β in models I–III satisfies the Bartlett identities
suggests that Neyman–Scott phenomena should not arise. This intuition is correct for models
I and II. However, the marginal likelihood for β in model III illustrates a new anomaly for k >

n/2, namely, that the Fisher information can be increased by deleting one or more series.
Although it is sometimes natural, the separability assumption in (1) is very strong, even for ver-

sion III. Stein (1999, 2005) is rightly critical of the use of separable covariances for either purely
spatial or spatio-temporal processes. However, the product form of the covariance function is
extremely convenient and widely used, and there do exist applications in which this assumption
is reasonable. It occasionally happens in agricultural field trials that two observations are made
on each plot, for example, yield of grain and yield of straw. Although the two yields are certainly
correlated, there is good reason to expect that both processes have very similar spatial autocorre-
lation functions (McCullagh and Clifford (2006)). Mitchell et al. (2006) give further references
to applications and develop a likelihood-ratio test for separability based on independent repli-
cates of the matrix Y . The motivating example for this work arises in a non-spatial context, the
estimation of a phylogenetic tree for n species from aligned sequences at multiple homologous
loci. Under the model of neutral evolution, the phylogenetic relationship among species is the
same at each locus, which implies (1). For further details, see Section 4.

2. Profile likelihood

The log likelihood for all three models is

l(�,�;Y) = −1

2
log det(� ⊗ �) − 1

2
tr(Y ′�−1Y�−1)

= −k

2
log |�| − n

2
log |�| − 1

2
tr(Y ′�−1Y�−1),

using the formula for the determinant of a Kronecker product (Harville (1997), page 350). For
fixed �, the log likelihood for model III is maximized at �̂� = Y ′�−1Y/n. The log likelihood
for model II is maximized at diag(�̂�) and the log likelihood for model I at tr(�̂�)Ik/k.

The profile log likelihood for � is

lp(�;Y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−k

2
log |�| − nk

2
log tr(Y ′�−1Y) (Model I),

−k

2
log |�| − n

2
log |diag(Y ′�−1Y)| (Model II),

−k

2
log |�| − n

2
log |Y ′�−1Y | (Model III).

(2)
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The assumption k ≤ n is necessary in model III to ensure that the matrix Y ′�−1Y is positive
definite with probability one.

The profile log likelihood for model II is a sum over the k series, the contribution of series r

being

−1

2
log |�| − n

2
log(Y ′

r�
−1Yr).

This is, in fact, the marginal log likelihood based on the standardized statistic Yr/‖Yr‖, where
Yr is the r th column of Y (Bellhouse (1978), Tunnicliffe-Wilson (1989), Cruddas, Reid and Cox
(1989)).

For a one-parameter model with derivative matrix D = d�/dβ , the derivative of the profile
log likelihood is

2
∂lp

∂β
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−k tr(WD) + nk tr(Y ′AY)/ tr(Y ′WY) (Model I),

−k tr(WD) + n

k∑
r=1

(Y ′
rAYr)/(Y

′
rWYr) (Model II),

−k tr(WD) + n tr((Y ′WY)−1Y ′AY) (Model III),

where W = �−1 and A = WDW . The quadratic form tr(Y ′WY) in model I is distributed as
σ 2χ2

nk , independently of the ratio tr(Y ′AY)/ tr(Y ′WY) (Boos and Hughes-Oliver (1998)). The
expected value of the ratio is the ratio of expected values, which is

E

(
tr(Y ′AY)

tr(Y ′WY)

)
= k tr(A�)

nk
= tr(WD)

n
.

It follows that the log likelihood derivative for model I has zero expectation. The same argument
applied to each series leads to the same conclusion for model II.

The argument for model III is superficially more complicated. For fixed �, the natural
quadratic form Y ′WY is a complete sufficient statistic for �, with expectation n�. The statis-
tic tr((Y ′WY)−1Y ′AY) is invariant under the group GL(Rk) of linear transformations Y �→ Yg

acting by right composition. Hence, the distribution does not depend on �. By Basu’s theorem
(Basu (1955)), every ancillary statistic such as tr((Y ′WY)−1Y ′AY) is independent of Y ′WY .
Consequently, if we transform to Z = W 1/2Y and condition on the event Y ′WY = Z′Z = Ik ,
the columns of Z are orthonormal, the first k columns of a random orthogonal matrix, uniformly
distributed with respect to Haar measure on the orthogonal group (Heiberger (1978), Stewart
(1980), Diaconis and Shahshahani (1994)). Hence,

E[tr((Y ′WY)−1Y ′AY)] = tr[E((Y ′WY)−1Y ′AY)]
= tr[E(Z′�1/2A�1/2Z)]
= k tr(�A)/n

= k tr(WD)/n,
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since ZZ′ is a random projection with rank k ≤ n and expectation kIn/n. For all three models, the
first derivative has zero expectation, so the elimination of � by maximization has not introduced
a bias.

Similar, but more intricate, calculations for random orthogonal matrices described in Appen-
dix A reveal that

var

(
∂lp

∂β

)
= −E

(
∂2lp

∂β2

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V
k2

2(nk + 2)
(I),

V
k

2(n + 2)
(II),

V
k(n − k)

2(n − 1)(n + 2)
(III),

where V = n tr(WDWD) − tr2(WD). For model III, this formula holds only for k ≤ n. Thus,
the second Bartlett identity is satisfied, and it follows from Appendix B that the Bartlett identities
of all orders are satisfied.

For small k, the Fisher information increases roughly in proportion to the number of series,
all series contributing equally. If, in fact, the series are independent and identically distributed,
the efficiency of model II to model I is (nk + 2)/(nk + 2k), which is fairly high, even for a
large number of short series. For example, if n = 10, the relative efficiency decreases from 1.0 to
10/12 as k → ∞. For fixed k, the relative efficiency increases with n, presumably because the
number of nuisance parameters in model II is fixed. It appears from these calculations that the
additional flexibility of model II over model I comes at a fairly small cost, so II is likely to be
preferred over I in most circumstances.

The most striking anomaly for large k is that the Fisher information for β in model III is
monotone decreasing for k > n/2 and is reduced to zero for k ≥ n. For a conventional one-
parameter model with distributions fk(y1, . . . , yk;β), the Fisher information satisfies

FIk = FIk−1 + var

(
∂ logfk(yk|y1, . . . , yk−1;β)

∂β

)
≥ FIk−1,

so the Fisher information is necessarily non-decreasing in k. It is immaterial whether the com-
ponents are scalars or vectors. This factorization argument also holds for marginal distributions
based on residuals, that is, the REML likelihood for variance components or spatial autocorrela-
tions. It also covers the marginal likelihood for models I and II, and conditional likelihoods of the
type used to eliminate nuisance parameters in binary regression models. However, explicit Fisher
information calculations for β in model III show that this seemingly impregnable argument may
fail. The difficulty lies in the fact that the marginal distributions fk of the maximal invariant in
model III cannot be factored: fk−1 is not the marginal distribution of fk under deletion of the
last component (see Section 5).

Bearing in mind the stated goal of increasing precision by pooling information from all series,
the third formulation is a complete success for small k. But it is a spectacular failure for large k

because any information about β that is present in the first few series remains available even when
further series are observed. The marginal likelihood with k ≥ n is constant and thus devoid of
information, but the marginal likelihood based on any single series or pair of series is informative
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and the Fisher information is positive. A skeptical reader may consider the case k = n, where the
matrix Y is invertible with probability one. Direct examination of (2) for model III shows that
the term det(Y ′WY) factors and that the log likelihood does not depend on the parameter. These
conclusions are independent of the nature of the model for �.

If k < n, the log likelihood function for model III may be used for inference about β , either for
computing a point estimate and standard error, for generating confidence intervals or for comput-
ing posterior intervals. However, if k > n/2, greater precision can be achieved by discarding a
random subset of the series and applying the same model to the remainder. This counterintuitive
behavior is easily verified by simulation.

3. Regression effects

The standard model with zero-mean Gaussian variables is easily extended to include linear mod-
els having non-zero mean. The simplest model of this form is the standard Gaussian multivariate
regression model,

E(Y ) = Xθ, cov(Y ) = � ⊗ �, (3)

where the model matrix X is of order n × p with rank p ≤ n and θ is a parameter matrix of
order p × k. This model with k = 2 occurs in field trials where the response is bivariate, for
example, weight of grain and weight of straw on each plot (McCullagh and Clifford (2006)).
The log likelihood based on residuals or X-contrasts (Patterson and Thompson (1971), Harville
(1977)) is

ľ(�,�;Y) = k

2
log Det(WQ) − n

2
log |�| − 1

2
tr(Y ′WQY�−1),

where Q = In − X(X′WX)−1X′W has rank n − p and Det(·) is the product of the non-zero
eigenvalues. The profile log likelihood for � in model III is

ľp(�;Y) = k

2
log Det(WQ) − max(k, n − p)

2
log Det(Y ′WQY).

All of the remarks made in the preceding section about the Fisher information hold for the profile
residual likelihood with n replaced by n − p and W by WQ.

4. Application to phylogenetics

The motivating example for this work comes from genetics, where sequence data are observed
for n species at k homologous loci. In Kim and Pritchard (2007), n = 5 and the loci are highly
conserved non-coding sequences numbering several thousand. In reality, the value at each locus
is a sequence from the genetic alphabet, but we assume here for simplicity that this can be coded
in such a way that Yir is a real number. For locus r , the covariance of Yir with Yjr is σrr�ij , where
σrr is the site-specific mutation rate and �ij is the length of the ancestral tree that is shared by
the two species. Under neutral evolution, the genetic distance between species is constant, the
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same at each locus. Furthermore, the responses at different loci may be correlated due to their
proximity on the genomes of one or more species. The natural Gaussian model is (3) with X = 1,
the constant vector.

Our aim is to estimate the ancestral tree using one of the three variants of (3). The profile log
likelihood function for model I is

ľ(�;Y) = k

2
log Det(WQ) − (n − 1)k

2
log tr(Y ′WQY)

= k

2
log Det(WQ) − (n − 1)k

2
log tr(WQS)

= k

2
log Det(WQ) + (n − 1)k

4
log tr(WQD),

where S = YY ′ is the observed inner product matrix and Dij = Sii + Sjj − 2Sij is the observed
squared distance between species. This expression is the log likelihood function on phylogenetic
trees based on the marginal distribution of the squared distance matrix D (McCullagh (2008)).

If we wish to take account of locus-specific mutation rates, version II of the standard model is
more appropriate. The profile log likelihood function for this model is

ľ(�;Y) = k

2
log Det(WQ) − n

2

k∑
r=1

log(Y ′
rWQYr)

= k

2
log Det(WQ) + n

4

k∑
r=1

log tr(WQDr),

which requires locus-specific squared distance matrices Dr(i, j) = (Yir − Yjr)
2.

Although formulation III appeared to be appropriate and natural for this application, the model
with general � is a total failure because k is much larger than n and the profile log likelihood is
uninformative.

Tractable models intermediate between II and III can be used to take account of correlations
and to pool information more efficiently. The technique is illustrated here by the set of Markov
matrices, that is, � is a Green’s matrix of the form aibj for i ≤ j and �−1 is a symmetric
Jacobi, or tri-diagonal, matrix (Karlin (1968), Section 3.3). Let Y0 = 0 and let Qr be the orthog-
onal projection in Rn with kernel span(X,Yr−1) and rank n − p − 1 for r > 1. Conditional on
Y1, . . . , Yr−1, the residual log likelihood for � based on QrYr/‖QrYr‖ is

1

2
log Det(WQr) − rank(Qr)

2
log(Y ′

rWQrYr).

The full log likelihood is the sum of k similar terms, and the derivatives have the same form
as those for model II. Since Qr is a random projection, the matrix Vr = n tr((WQrD)2) −
tr2(WQrD) governing the conditional Fisher information is also random. No closed-form ex-
pression is available for the expected value, but symmetry considerations indicate that the total
Fisher information is of order

∑
rank(Qr), directly proportional to the number of series. The
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marginal likelihood for the series in reverse order is different, but the Fisher information is the
same. Neither marginal likelihood coincides exactly with the profile likelihood.

5. Marginal likelihood and group orbits

In order to eliminate θ from the likelihood in the model Y ∼ N(Xθ,�), part of the data is
ignored. The residual likelihood function is based on the statistic LY ∼ N(0,L�L′), where L is
any linear transformation with kernel X = span(X). To eliminate scalar constants, we also ignore
scalar multiples and base the likelihood function on the reduced statistic Y/‖Y‖ or LY/‖LY‖.
For k = 1, this technique gives a marginal log likelihood of

ľ(�;Y) = 1

2
log Det(WQ) − n − p

2
log(Y ′WQY),

where W = �−1 and Q = I −X(X′WX)−1X′W has rank n−p. Note that ľ(α�;Y) = Ľ(�;Y),
so the marginal likelihood is constant on scalar multiples of �. Equivalent versions of this mar-
ginal likelihood function have been given by Bellhouse (1978, 1990), Cruddas, Reid and Cox
(1989) and Tunnicliffe-Wilson (1989).

The marginal log likelihood is based on the maximal invariant under the action of a certain
group on the observation space Y ∈ Rn. The standard residual likelihood associated with the
group of translations Y �→ Y + x with x ∈ X leads to the REML log likelihood

1

2
log Det(WQ) − 1

2
Y ′WQY.

The maximal invariant can be described in one of two ways, either in terms of X-contrasts or in
terms of the group orbit which is the coset y +X . When the group is extended to include scalar
multiplication, the maximal invariant is reduced and the marginal log likelihood is the function
ľ(�;Y) shown above.

In the multivariate case Y ∼ N(Xθ,� ⊗ �), the regression parameter is eliminated, as above,
by considering an arbitrary linear transformation L:Rn → Rn with kernel X and applying it to
each of the columns of Y . The kernel is thus X⊕k , the group orbits are cosets and the multivariate
residual log likelihood is

k
2 log Det(WQ) − n

2
log |�| − 1

2 tr(Y ′WQY�−1).

If we now extend the group by linear transformations Y �→ Yg with g ∈ GL(Rk), the dependence
on � vanishes and the marginal log likelihood is

k

2
log Det(WQ) − max(k, n − p)

2
log Det(Y ′WQY)

(Appendix B). Since this is a log likelihood function, the Bartlett identities are automatically
satisfied, as was observed in Section 2.
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The preceding remarks help to explain the anomalous behavior of the log likelihood under
model III. For X = 0 and k = 1, each one-dimensional subspace excluding the origin is a group
orbit in Rn, so there are as many orbits as there are points on the projective sphere in Rn.
For general k, the observation space is Rnk , but a typical group orbit has dimension k2, so the
maximal invariant has dimension k(n − k), which is the factor governing the rate of increase
of the Fisher information. For k ≥ n, there is one group orbit that has probability one, so the
invariant statistic is degenerate and uninformative.

The preceding discussion suggests the following question. The action of the group GL(Rk) is
such that that the maximal invariant has a distribution independent of �. Can the same effect be
achieved at less cost by a sub-group? The answer, which is a qualified “yes”, is now illustrated
by the sub-group UTk of upper triangular transformations. Taking the series in the order given,
the maximal invariant is constructed as follows. For each series Yr , compute the residual after
linear regression on both X and Y1, . . . , Yr−1, ignoring scalar multiples. The contribution to the
log likelihood function from the series Yr is

1

2
log Det(WQr) − rank(Qr)

2
log(Y ′

rWQrYr),

where Qr is the orthogonal projection in Rn with inner product matrix W = �−1 and null space
span(X,Y1, . . . , Yr−1). The contribution to the Fisher information is non-negative, but zero for
r ≥ n − p. The total log likelihood based on the maximal invariant under the upper triangular
sub-group is thus

k∑
r=1

1

2
log Det(WQr) − n − p − r + 1

2
log(Y ′

rWQrYr).

The group determines the order in which the series are taken, each order has a different maximal
invariant and the log likelihood clearly depends on the order. No closed-form expressions are
available for the Fisher information, but, by contrast with the behavior for GL(Rk), the Fisher
information does not decrease with k.

Appendix A: Haar moments

Let H be a random orthogonal matrix uniformly distributed with respect to Haar measure on the
orthogonal group of order n. The value in row r and column j is denoted by H

j
r , so the (r, j)

component of H 2 is Hi
r H

j
i using the summation convention for repeated indices. By contrast,

the (r, s) component of HH ′ is H
j
r H

j
s = δrs , where δrs is the Kronecker symbol for the identity

matrix.
Since −H has the same distribution as H , the moments and cumulants of odd order are zero.

For n ≥ 2, the non-zero moments and cumulants up to order four are

cov(H i
r ,H

j
r ) = E(H i

r H
j
s ) = δrsδ

ij /n,
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E(H i
r H

j
s Hk

t H l
u) = (n + 1)δrsδtuδ

ij δkl[3] − δrsδtuδ
ikδjl[6]

n(n − 1)(n + 2)
,

cum4(H
i
r ,H

j
s ,Hk

t ,H l
u) = 2δrsδtuδ

ij δkl[3] − nδrsδtuδ
ikδjl[6]

n2(n − 1)(n + 2)
.

Subscripts on the left-hand sides are in one-to-one alphabetic correspondence with superscripts.
For a moment or cumulant of order k, the right-hand side is a sum over bi-partitions of {1, . . . , k},
that is, ordered pairs of partitions of subscripts and superscripts, all partitions having blocks of
size two only. For example, the diagonal bi-partition (13|24,13|24) appears in alphabetic form
as δrt δsuδ

ikδjl , while (12|34,13|24) appears as δrsδtuδ
ikδjl . The coefficient depends only on

the least upper bound of the two partitions. Since there are three partitions of four elements into
two blocks of size two, there are nine bi-partitions of {1, . . . ,4}, the three diagonal elements
having one coefficient in the fourth moment and the six off-diagonal elements having a different
coefficient. Likewise, there are 15 partitions of six elements into blocks of size two, so the sixth
moment is a sum over 152 = 225 bi-partitions. The 15 diagonal pairs have a least upper bound
with three blocks, a further 90 pairs have a least upper bound with two blocks and the remaining
120 pairs have a least upper bound with one block. Thus, there are three distinct coefficients in
the sum over bi-partitions of {1, . . . ,6}.

It follows that

E(tr(H 2)) = E(H i
r H

r
i ) = δirδ

ir/n = 1,

E(tr2(H)) = E(Xr
rX

s
s ) = δrsδ

rs/n = 1,

E(tr(H 4)) = E(Hu
r Hr

s Hs
t H t

u)

= δrsδtu

(
(n + 1)δruδst [3] − δrt δsu[6])/(n(n − 1)(n + 2)

)
= (

(n + 1)(n2 + 2n) − 2n(n + 2)
)
/
(
n(n − 1)(n + 2)

) = 1,

E(tr2(H 2)) = E(Hs
r Hr

s Hu
t H t

u)

= δrsδtu

(
(n + 1)δrsδtu[3] − δrt δsu[6])/(n(n − 1)(n + 2)

)
= (

3n2(n + 1) − 6n
)
/
(
n(n − 1)(n + 2)

) = 3,

in agreement with more general formulae for moments of traces given by Diaconis and Shahsha-
hani (1994). Finally, for the variance or covariance of log likelihood derivatives under model III,
let Z consist of the first k columns of H , so that indices r, s, . . . run from 1 to k ≤ n. Then

E tr(Z′AZ) = E(Zi
rZ

j
r Aij ) = δrrδijAij /n = k tr(A)/n,

E(tr(Z′AZ) tr(Z′BZ)) = E(Zi
rZ

j
r AijZ

k
s Z

l
sBkl)

= AijBklE(Zi
rZ

j
r Zk

s Z
l
s)

= k(nk + k − 2) tr(A) tr(B) + 2k(n − k) tr(AB)

n(n − 1)(n + 2)
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and

cov(tr(Z′AZ), tr(Z′BZ)) = 2k(n − k)(tr(AB) − tr(A) tr(B)/n)

n(n − 1)(n + 2)
.

Appendix B: Distribution of the maximal invariant

Let Y be a random matrix of order n× k with density f (y)dy with respect to Lebesgue measure
at y ∈ Rnk . In order to calculate the distribution of the maximal invariant under the action of
GL(Rk) by right multiplication, we first observe that the action on the first k components is
weakly transitive. For n = k, there are many group orbits, but for continuous distributions, there is
a single orbit that has probability one. Under standard conditions, the matrix g̃ = Y (k) consisting
of the first k rows of Y has full rank, so the group element g̃−1 sends Y to a standard configuration
or representative orbit element Z = Y g̃−1 in which the leading k rows are equal to Ik .

The Jacobian of the transformation Y �→ (g̃,Z) is equal to |g̃|n−k , so the marginal density
of Z is ∫

Rk2
f (zg)|g|n−k dg.

Simplification of this expression for the Gaussian distribution with covariance (1) gives the mar-
ginal likelihood function in the form

|�|−k/2

|z′�−1z|n/2
∝ |�|−k/2

|y′�−1y|n/2
.

In other words, the profile log likelihood (2) coincides with the marginal log likelihood based on
the maximal invariant.
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