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Let Xn = ∑∞
i=1 aiεn−i , where the εi are i.i.d. with mean 0 and at least finite second moment, and the

ai are assumed to satisfy |ai | = O(i−β) with β > 1/2. When 1/2 < β < 1, Xn is usually called a
long-range dependent or long-memory process. For a certain class of Borel functions K(x1, . . . , xd+1),
d ≥ 0, from Rd+1 to R, which includes indicator functions and polynomials, the stationary sequence
K(Xn,Xn+1, . . . ,Xn+d ) is considered. By developing a finite orthogonal expansion of K(Xn, . . . ,Xn+d ),
the Berry–Esseen type bounds for the normalized sum QN/

√
N,QN = ∑N

n=1(K(Xn, . . . ,Xn+d ) −
EK(Xn, . . . ,Xn+d)) are obtained when QN/

√
N obeys the central limit theorem with positive limiting

variance.

Keywords: Berry–Esseen bounds; linear processes; long memory; long-range dependence;
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1. Introduction

Consider a linear process Xn, n = 1,2, . . . , defined by Xn = ∑∞
i=1 aiεn−i , where the εi are i.i.d.

having mean 0 and at least finite second moment and the ai are assumed to satisfy |ai | = O(i−β)

with β > 1/2. Let K(x1, . . . , xd+1), d ≥ 0, be a Borel function from Rd+1 to R. For fixed
d ≥ 0, define QN = ∑N

n=1(K(Xn, . . . ,Xn+d)− EK(Xn, . . . ,Xn+d)). The present paper aims to
establish the Berry–Esseen-type of rate of convergence for QN/

√
N when QN/

√
N obeys the

central limit theorem with some positive limiting variance σ 2, that is, to determine a positive
real number s such that the uniform distance supx |P(QN/

√
N ≤ x) − �(x/σ)| between the

two distributions P(QN/
√

N ≤ x) and �(x/σ) is O(N−s) as N tends to infinity, where �(·)
is the standard normal distribution function. There is abundant literature investigating the same
problem for i.i.d. sequences or stationary sequences which are weakly dependent (short-range
dependent or short-memory; see Bradley [4] for a review on sequences of weak dependence).
For the former, comprehensive studies are given in, for example, Gnedenko and Kolmogorov [7]
and Petrov [18]. For the latter, which includes the case of m-dependence, a detailed account
of related results can be found in Sunklodas [22]. With an emphasis on the statistical inference
front, Bentkus, Götze and Tikhomirov [1] studied the Berry–Esseen bounds for a general class of
asymptotically normal statistics constructed from absolutely regular random variables. In addi-
tion, considering a Gaussian linear process, Taniguchi [24] studied a problem similar to ours and
derived a bound of order O(N−1/2) by assuming that β > 2 and that the functional K is of the
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form K(x,y) = xy. There are three features that distinguish our setting from those in the litera-
ture mentioned above. First, the function K need not be smooth as considered in Taniguchi [24].
Second, the sequence {Xn}, n ≥ 1, is not necessarily Gaussian. Third, the dependence structure
of {Xn} is determined solely through the decay rate |ai | = O(i−β) of the innovation coefficients
without assuming any mixing-type condition, which is in general, difficult to verify. Moreover,
when β ∈ (1/2,1), {Xn} covers a widely studied class of long-range dependent (or long-memory)
processes (cf. Brockwell and Davis [3]) which is not strong mixing (Rosenblatt [21]). Note that
the mixing-type conditions are not satisfied by long-memory processes with β < 1, but also
sometimes fail to hold even when the hyperbolic decay rate β is greater than 1 (see Bradley [4],
Phan and Tran [19]). With the same setting of non-instantaneous functionals and linear processes,
but mainly dealing with the short-memory case were β > 1, Wu [27] proved central limit theo-
rems for QN/

√
N by treating the innovation sequence {. . . , εn−1, εn} as an infinite-dimensional

Markov chain. When {Xn} is long-range dependent with 1/2 < β < 1, it is important to note
that the asymptotic behavior of QN depends very much on the function K . Although the vari-
ance var(

∑N
n=1 Xn) of partial sums of Xn’s grows with the rate O(N−2β+3), it is possible that

var(QN) = O(N) for certain K’s and that the root-N central limit theorem holds. To prove this
central limit theorem for QN/

√
N , the standard approach is to expand K(Xn, . . . ,Xn+d+1) in

terms of polynomials, provided that either {Xn} is Gaussian (Ho and Sun [15]) or the functional
K under consideration is smooth (Giraitis [8]). To deal with the case where both assumptions
fail, Ho and Hsing [14] introduced a new method based on martingale decomposition to prove
the central limit theorem for instantaneous functionals which include indicator functions and
polynomials. In order to refine the central limit theorem by giving Berry–Esseen bounds for the
rate of convergence, we shall combine the martingale method proposed in Ho and Hsing [14]
with the blocking method (Bernstein [2]). The latter has been extensively used in studying the
asymptotic behavior of the sum of weakly dependent random variables. It is known that under
the weak dependence, the rates achieved by using the blocking method is not as sharp as those
achieved by the Stein–Tikhomirov method (Stein [23], Tikhomirov [26]) which involves using
a linear differential equation in terms of the difference between the distribution (characteristic)
function of the sum of weakly dependent random variables and that of a standard normal random
variable. However the blocking method is still an appealing technique in our setting since the
Stein–Tikhomirov approach is hard to apply in the case where the condition of weak dependence
no longer holds.

The main contribution of the present paper is the derivation of the Berry–Esseen bounds
(given in (5) and (6) in Section 2.2) for the class of stationary sequences generated by apply-
ing a nonlinear transformation to linear processes that are allowed to be long-range dependent
(when 1/2 < β < 1) or short-range dependent (when 1 < β), but need not satisfy any tradi-
tional mixing-type condition. The bounds will depend on the functional K as well as on the
decay rate β of the coefficients {ai}. It is known that the Berry–Esseen rate established for in-
dependent or m-dependent sequences is of order O(N−1/2) (Gnedenko and Kolmogorov [7],
Petrov [18] and Stein [23]). For weakly dependent sequences such as sequences that are strong
mixing, absolutely regular or completely regular, the rate is bounded by O(N−1/2 log2 N) pro-
vided that the mixing coefficients decay exponentially (Tikhomirov [26] and Stein [23]). While
previous results in the literature require that the sequences be independent or weakly dependent,
we demonstrate for the stationary sequence {K(Xn, . . . ,Xn+d)} that the Berry–Esseen bounds
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can still be obtained, even when the underlying process is long-range dependent. Although the
rate we achieve is slower than O(N−1/2), it is as good as those shown for a certain class of
strong mixing sequences whose mixing coefficients decrease hyperbolically to zero (Theorem 1,
Tikhomirov [26]).

The rest of this paper is organized as follows. In the next section, following the introduc-
tion of some notation and technical conditions, are the statements of our major results, Theo-
rems 1 and 2, which deal with the long- and short-memory cases, respectively. Toward the end
of Section 2, we present two commonly seen examples, zero crossings and lag covariances, to
illustrate the results. Section 3 presents the proofs of the theorems, which make frequent use of
two technical lemmas that are presented in Section 4.

2. Main results

Before stating our major results (Theorems 1 and 2 and Corollary 1 in Section 2.2), we give a
brief description of our approach. Define Zn = K(Xn,Xn+1, . . . ,Xn+d) − EK(Xn,Xn+1, . . . ,

Xn+d) and Xn,m = ∑m
i=1 aiεn−i . We first extend the martingale decomposition technique intro-

duced in Ho and Hsing [14] to the case of non-instantaneous functionals to establish that there
exist an integer r ≥ 1 and a real sequence {bj1,...,jr } such that the sequence of autocovariances
of the sequence {Zn} decays with the same rate as that of

∑
d≤j1,...,jr<∞ bj1,...,jr

∏t+1
s=1 εn+d−js .

Here, the integer r is determined by the functional K and the underlying sequence {Xn}, and
the coefficient bj1,...,jr is asymptotically of order O(j

−β

1 · · · j−β
r ). Suppose that 1/2 < β < 1

(the long-memory case) and r(2β − 1) > 1. It is then clear that the sequence of autocovari-
ances of {Zn} is summable, that is,

∑∞
k=0 |EZnZn+k| < ∞. This property suggests that even

when {Xn} is long-memory, one can apply a certain nonlinear transformation to it to obtain
a sequence {Zn} which behaves like a short-memory one and which obeys the central limit
theorem. Based on this, it is then plausible to approximate Zn by Zn,�(N)), with Zn,�(N) =
K(Xn,�(N),Xn+1,�(N), . . . ,Xn+d,�(N)) − EK(Xn,�(N),Xn+1,�(N), . . . ,Xn+d,�(N)), where �(N)

increases to infinity at an appropriate rate as N → ∞. For fixed N and suitably chosen increasing
sequences {�(N)}, {kN } and {AN }, we adopt the blocking method (Bernstein [2]) to select kN

disjoint blocks of Zn,�(N)’s from {Z1,�(N), . . . ,ZN,�(N)}, each having size AN , such that these
blocks are sufficiently far apart from each other and thus mutually independent. Our results then
follow from deriving the Berry–Esseen bound for the kN independent blocks and letting the N

tend to infinity. The specific form of bj1,...,jr ’s and the precise values of kN , �N and AN will be
given in the next subsection and during the course of the proofs, respectively.

2.1. Notation and technical conditions

For u ≥ 1 define (d + 1)-dimensional vectors of partial differentiation operators as

Au =
(

Au,1
∂

∂x1
, . . . ,Au,1+d

∂

∂xd+1

)
,
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where

Au,v =
{

au−(d+1−v), if u − (d + 1 − v) > 0,

0, if u − (d + 1 − v) ≤ 0,

for 1 ≤ v ≤ d + 1. For example,

A1 =
(

0, . . . ,0, a1
∂

∂xd+1

)
,

A2 =
(

0, . . . ,0, a1
∂

∂xd

, . . . , a2
∂

∂xd+1

)
, . . .

and for u ≥ d + 1,

Au =
(

au−d

∂

∂x1
, . . . , au

∂

∂xd+1

)
.

Also, define

Bj =
d+1∑
i=1

Aj,i

∂

∂xi

and for r ≥ 2,

Bj1···jr =
d+1∑

u1,...,ur=1

Aj1,u1 · · ·Ajr ,ur

∂r

∂xu1 · · · ∂xur

,

where ∂r/∂xu1 · · · ∂xur denotes partial differentiation with respect to the variables xu1, . . . , xur ,
r times. That is, for any smooth function G(·),

Bj1···jr ◦ G(x1, . . . , xd+1) =
d+1∑

u1,...,ur=1

Aj1,u1 · · ·Ajr ,ur

∂rG(x1, . . . , xd+1)

∂xu1 · · · ∂xur

. (1)

Recall that Xn,j = ∑j

i=1 aiεn−i . For 1 ≤ j ≤ ∞, define X̃n,j = Xn − Xn,j and

Xn,j = (
Xn,(j−d)∨0,Xn+1,(j−d+1)∨0, . . . ,Xn+d,j

)
,

X̃n,j = Xn − Xn,j = (
X̃n,(j−d)∨0, X̃n+1,(j−d+1)∨0, . . . , X̃n+d,j

)
.

Let

Xn = (Xn,Xn+1, . . . ,Xn+d),

x = (x1, . . . , xd+1).

For 1 ≤ j ≤ ∞ and fixed d , let [j ] denote the set of d + 1 indices (j − d) ∨ 0, (j − d + 1) ∨
0, . . . , j − 1, j and F[j ] the joint distribution function of X1,j . Note that Xn,∞ = Xn, that F[∞]
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denotes the joint distribution of (X1, . . . ,Xd+1) and that if any index in [j ] is zero, its corre-
sponding distribution is set to be a point mass at zero with probability one. Define

K[j ](x1, . . . , xd+1) =
∫

K(x1 + u1, . . . , xd+1 + ud+1)dF[j ](u1, . . . , ud+1)

or, in abbreviated from,

K[j ](x) =
∫

K(x + u)dF[j ](u).

Let i = (i1, . . . , id+1). We denote the ith partial derivative of K[j ](x1, . . . , xd+1) by

K i[j ](x1, . . . , xd+1) = ∂i1,...,id+1K[j ](x1, . . . , xd+1)

∂x
i1
1 · · · ∂x

id+1
d+1

whenever it exists. Define ZN,0 = NEK(Xn) and for r ≥ 1,

ZN,r =
N∑

n=1

∑
1≤j1<···<jr<∞

Bj1···jr ◦ K∞(0)

r∏
s=1

εn+d−js

and

QN,p =
N∑

n=1

K(Xn) −
p∑

r=0

ZN,r , p ≥ 0.

Note that for the instantaneous case, that is, d = 0, Bj1···jr ◦ K∞(0) = aj1 · · ·ajr K∞(0) and
ZN,r = K∞(0)

∑N
n=1

∑
1≤j1<···<jr<∞

∏r
s=1 ajs εn−js , which is precisely K∞(0)YN,r as defined

in Ho and Hsing ([14], page 1638).
Below are some regularity conditions that will be needed for the results stated in the next

subsection. Let i = (i1, . . . , id+1) and x = (x1, . . . , xd+1).

(C1) For a certain positive integer J , the partial derivatives K i[d+1](x) of K[d+1](x) of order
i = (i1, . . . , id+1) with 0 ≤ i1 + · · · + id+1 ≤ J + 2 are continuous and one of the following two
conditions holds:

(i) K i[d+1](x) is bounded and Eε8
1 < ∞;

(ii) K i[d+1](x) is unbounded, but there is a polynomial function Ui(x) of degree M such that

|K i[d+1](x)| ≤ |Ui(x)| for all x ∈ Rd+1, and Eε
max{8,4M}
1 + EU4

i (X1) < ∞.

(C2) E[K(X1) − K(X1,�)]2 → 0 as � → ∞.

Condition (C1) that describes a concrete class of transformations K is not presented in the
full generality as given in Ho and Hsing [14], yet it covers most of interesting cases in the
literature. We choose to use (C1) merely for presentational simplicity since our main purpose
is to introduce a method to obtain a rate of convergence in the current setting rather than to
seek a class of transformations K as general as possible. Note that in part (i) of (C1), indicator
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functions are included if the distribution function G of ε1 is sufficiently smooth. Condition (C1)
ensures the following useful property needed later for proving theorems: for (i1, . . . , id+1) with
0 ≤ i1 + · · · + id+1 ≤ J + 2 and j ≥ d + 1, K

(i1,...,id+1)

[j ] is continuous and satisfies

K
(i1,...,id+1)

[j ] (x1, . . . , xd+1)
(2)

=
∫

K
(i1,...,id+1)

[j−1] (x1 + y1, . . . , xd+1 + yd+1)dGj−d(y1) · · ·dGj(yd+1),

where Gu is the distribution of auε1. (2) can be shown by using an argument similar to that
used in proving Lemma 2.1 of Ho and Hsing [14]. Condition (C2) is a technical assumption
and seems to be a natural assumption for the �-truncation argument we employ in Section 3 for
proving theorems.

2.2. Theorems

In characterizing the limiting theorems for the case of instantaneous transformations, Ho and
Hsing [14] proposed a quantity called power rank, which is analogous to the Hermite rank when
Xt is Gaussian. In the following, the multivariate version of the power rank is introduced for
non-instantaneous transformations.

Definition 1. We say that the d + 1-dimensional transformation K has power rank ν if all of

the partial derivatives K
(i1,...,id+1)

[∞] (0, . . . ,0) of K[∞](0, . . . ,0) of order i1, . . . , id+1 with i1 +
· · · + id+1 = s ≤ ν exist and the following conditions are satisfied: K

(i1,...,id+1)

[∞] (0, . . . ,0) = 0
if i1 + · · · + id+1 ≤ s < ν, and there exists (i′1, . . . , i′d+1) with i′1 + · · · + i′d+1 = ν such that

K
(i′1,...,i′d+1)

[∞] (0, . . . ,0) is non-zero.

Theorem 1. Assume that |ai | = O(i−β), β ∈ (1/2,1), and that conditions (C1) and (C2) hold.
Let p be any positive integer satisfying J ≥ p + 1 > (2β − 1)−1. Then

N−1/2QN,p
d→ N(0, σ 2), (3)

where σ 2 = limN→∞ N−1 var(QN,p). Assume, furthermore, that σ 2 > 0 and that for some
α1 > 0

E[K(X1) − K(X1,�)]2 = O(�−α1) as � → ∞. (4)

Then

sup
x

|P(N−1/2QN,p ≤ x) − �(x/σ)| = O
(
N−Q′/(3(2Q′+1))

)
, (5)

where Q′ = α1 ∧ (2β − 1) ∧ ((p + 1)(2β − 1) − 1).
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Remark 1. (i) For the case of long-range dependence, if the power rank is one (e.g., K is lin-
ear and p = 0), then the formula for of Q′ given in Theorem 1 is not applicable. even though
the limit is Gaussian. This is consistent with the fact that in the circumstances, the normalized
partial sums follow a non-central limit theorem, that is, the normalization constant is NH , with
H > 1/2. For the general long-memory case where (p + 1)(2β − 1) < 1 with p ≥ 1, then one
has non-Gaussian limiting distributions. Consider, for example, the case where K is univari-
ate and has rank equal to 2. The limit is then usually referred to as the Rosenblatt distribution
(Taqqu [25]), having a close form of characteristic function. A Berry–Esseen bound in these
circumstances is feasible to obtain and will be discussed in a future paper. For the general case
of nonlinear and non-instantaneous K and non-Gaussian {Xn}, however, the technical difficul-
ties caused by lacking analytical forms of the characteristic functions of both the partial sums
N−H

∑N
n=1(K(Xn, . . . ,Xn+d)−µ) and their limit still remain to be overcome. When K(x) = x

is the identity function and Xn is linear without normality assumption, Hall [10] obtained the
Edgeworth expansion for the sample mean. The result obtained relies on the fact that the limit
is Gaussian and the characteristic function of the sample mean can be written down explicitly
by utilizing the linear structure of Xn. (ii) The rate given in (5) can be slightly improved if con-
dition (4) is strengthened to E[K(X1,X1,�)]2k = O(�−α(k)) for some positive integer k > 1 (as
suggested by the referee). In order to achieve the improvement, one needs to deal with the com-
plicated expansion of (QN,p − QN,p,�)

2k (see (7) for the definition of QN,p,�) to compute its
expectation. The details involved are tedious and highly technical, and are omitted in the present
paper.

An important implication of Theorem 1, as stated in the following corollary, is the case where
the functionals are of power rank greater than one. We first note that if the power rank of K is
p + 1 ≥ 2, then for each 1 ≤ r ≤ p, all Bj1···jr ◦ K∞(0)’s vanish and, as a result, ZN,r = 0 and
QN = QN,p .

Corollary 1. Let β ∈ (1/2,1) and p + 1 be the power rank of K . Assume conditions (C1) and
(C2) hold. If J ≥ p + 1 > (2β − 1)−1, then

N−1/2QN
d→ N(0, σ 2) as N → ∞.

Furthermore, the convergence rate (5) holds if (4) is satisfied.

Theorem 2. Assume |ai | = O(i−β),β > 1, and that conditions (C1) and (C2) hold. Then

N−1/2QN
d→ N(0, σ 2) as N → ∞. (6)

Under assumption (4), (5) holds for Q′ = α1 ∧ (2β − 2).

Remark 2. For condition (4), if K is a polynomial function of degree D, then α1 = 2β − 1
provided that Eε2D

1 < ∞.

Remark 3. (i) Note that in Theorem 2 that a Berry–Esseen bound can be achieved regardless
of the power rank of the functionals. (ii) For the short-range dependent {Xn} considered in
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Theorem 2, if K(x) = x, an O(N−1/2) bound can be obtained by applying Theorem 2 stated
in Dedecker and Prieur [6] under an additional dependence condition ((7.19) in Dedecker and
Prieur [6]) which is in terms of some new mixing coefficients and weaker than the traditional
mixing-type coefficients. The condition, however, would require stronger summability restric-
tions on the innovation coefficients {ai}. It is still unknown whether the same O(N−1/2) rate can
be extended to the case of general functionals K .

Remark 4. We use two examples to further illustrate the theorems. Recall that our underlying
process is defined as Xn = ∑∞

i=1 aiεn−i , where the εi are mean zero i.i.d. and have at least fi-
nite second moment and where |ai | = O(i−β) with β > 1/2. (i) Zero crossings. Assume that
{Xn} is long-range dependent with 1/2 < β < 1, and that the distribution of Xn is standard
normal. Define the functional K as K(Xn,Xn+1) = 1 if XnXn+1 < 0 and 0 if XnXn+1 ≥ 0.
In other words,

∑N
n=1 K(Xn,Xn+1) counts the total number of times that the sample path of

{X1, . . . ,XN } crosses zero. (See Kedem [16] for useful applications of zero crossings in time
series analysis.) It is indicated in Ho and Hsing ([14], Remark 2 on page 1640) that when {Xn} is
Gaussian and the functional is instantaneous (i.e., d = 0), the power rank is identical to the Her-
mite rank as defined in Taqqu [25]. This property can be seen to hold for the non-instantaneous
case. Therefore, the power rank of K is two since its Hermite rank is, as computed in Ho and
Sun [15], two. Suppose, further, that 2(2β − 1) > 1. Then, by Corollary 1, the zero-crossing
counts obey the central limit theorem with convergence rate as specified in (5), where α1 can be
shown to be 2β −1 since K(Xn,Xn+1) is of power rank two. (ii) Lag covariances. The functional
we consider is K(Xn, . . . ,Xn+d) = XnXn+d , which is frequently used when estimating lag co-
variances. While there has been much work done on central limit theorems on lag covariances
for stationary sequences (see, e.g., Hannan [12], Hall and Heyde [11], Giraitis and Surgailis [9],
Phillips and Solo [20], Hosking [13], Wu and Min [28], among others), the issue of Berry–Esseen
bounds in the framework considered in Theorems 1 or 2 has not been addressed before. Straight-
forward computation shows that the power rank of K is two. Corollary 1 can then be applied by
the same argument as in the preceding example (1). Also, note that one can compute the value of
bj1,j2 ≡ Bj1,j2 ◦ K[∞](0,0) by using formula (1), which can, in this particular case, be alterna-
tively verified by simply multiplying XnXn+d out and comparing the coefficients. For example,
since K(x1, . . . , xd+1) = x1xd+1, it follows from formula (1) that b1,j = 0 for 1 < j ≤ d and a2

1
for j = d + 1, which coincide with the corresponding coefficients in the expansion of XnXn+d

by multiplication. More specifically, in the expansion of

XnXn+d − EXnXn+d =
∑

j �=i+d

aiaj εn−iεn+d−j +
∞∑
i=1

aiai+d(ε2
n−i − Eε2

1),

the second (or square) term follows the
√

N central limit theorem since
∑∞

i=1 |aiai+d | < ∞,
while it requires the extra condition 2(2β − 1) > 1 for the same asymptotic normality to hold for
the first (or cross product) term.
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3. Proofs

Recall that

ZN,r =
N∑

n=1

∑
1≤j1<···<jr<∞

Bj1···jr ◦ K∞(0)

r∏
s=1

εn+d−js ,

QN,p =
N∑

n=1

K(Xn) −
p∑

r=0

ZN,r , p ≥ 0.

Define the truncated versions of ZN,r and QN,p as

ZN,r,� =
N∑

n=1

∑
1≤i1<···<ir≤�

Bj1···jr

r∏
s=1

εn+d−js , r ≥ 1,

and

QN,p,� =
N∑

n=1

K(Xn,�) −
p∑

r=0

ZN,r,�.

(7)

≡
N∑

n=1

Tn(p,n).

Also, define

X̃n,j,� = X̃n,j − X̃n,�, 1 ≤ j ≤ �.

The main building block of our proof is the following martingale decomposition of K(Xn) −
EK(Xn):

K(Xn) − EK(Xn) =
∞∑

j=1

[
K[j−1](X̃n,j−1) − K[j ](X̃n,j )

]
, (8)

where K[0] = K . Fix n,n′, j, j ′ and write

K[i](X̃m,i) = E(K(Xm)|Fm+d−i−1),

where Fs is the σ -field generated by εk, k ≤ s. Suppose that n − j �= n′ − j ′ and, without loss of
generality, assume that n − j < n′ − j ′. Then

E
[
K[j−1](X̃n,j−1) − K[j ](X̃n,j )

][
K[j ′−1](X̃n′,j ′−1) − K[j ′](X̃n′,j ′)

]
= E{[E(K(Xn)|Fn+d−j ) − E(K(Xn)|Fn+d−j−1)]

× [E(K(Xn′)|Fn′+d−j ′) − E(K(Xn′)|Fn′+d−j ′−1)]} (9)
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= E{[E(K(Xn)|Fn+d−j ) − E(K(Xn)|Fn+d−j−1)]
× E[E(K(Xn′)|Fn′+d−j ′) − E(K(Xn′)|Fn′+d−j ′−1)|Fn+d−j ]}

= E{[E(K(Xn)|Fn+d−j ) − E(K(Xn)|Fn+d−j−1)]
× [E(K(Xn′)|Fn+d−j ) − E(K(Xn′)|Fn+d−j )]}

= 0.

We now build a representation for QN,p − QN,p,�, which will be central to the proofs,
based on the martingale decomposition (8). The main step to achieve the representation is
to use

∑p

r=1(
∏r

s=1 εn+d−js )Bj1···jr ◦ K[∞](0) for suitable p to approximate the summand
K[j−1](X̃n,j−1) − K[j ](X̃n,j ) (for j ≥ d + 1) by repeated applications of the martingale de-
composition technique and differentiation. The task is carried out in a similar fashion for both
the QN,p and its truncated version QN,p,�. Write

QN,p − QN,p,� = T
(1)
N,1,� +

p−1∑
t=1

(
T

(t+1)
N,1,� − T

(t)
N,1,�

) + T
(p)

N,2,� + TN,3� + T
(p)

N,4�, (10)

where

T
(t)
N,1,� =

[
N∑

n=1

∞∑
j=d+1

(
K[j−1](X̃n,j−1) − K[j ](X̃n,j )

)

−
t−1∑
r=1

N∑
n=1

∑
d+1≤j1<···<jr<∞

Bj1···jr ◦ K∞(0)

r∏
s=1

εn+d−js

−
N∑

n=1

∑
d+1≤j1<···<jt<∞

Bj1···jt ◦ K[jt ](X̃n,jt )

t∏
s=1

εn+d+1−js

]

−
[

N∑
n=1

∞∑
j=d+1

(
K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�)

)

−
t−1∑
r=1

N∑
n=1

∑
d+1≤j1<···<jr≤�

Bj1···jr ◦ K[�](0)

r∏
s=1

εn+d−js

−
N∑

n=1

∑
d+1≤j1<···<jt≤�

bj1···jt K[jt ](X̃n,jt ,�)

t∏
s=1

εn+d+1−js

]
, 0 ≤ t ≤ p,

T
(p)

N,2,� =
[

N∑
n=1

∑
d+1≤j1<···<jp<∞

(
t+1∏
s=1

εn+d−js

)
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× {
Bj1···jp ◦ [

K[jp](X̃n,jp ) − K[∞](0)
]}]

−
[

N∑
n=1

∑
d+1≤j1<···<jp≤�

(
t+1∏
s=1

εn+d−js

)

× {
Bj1···jp ◦ [

K[jp](X̃n,jp,�) − K[�](0)
]}]

,

TN,3,� =
[

N∑
n=1

d∑
j=1

(
K[j−1](X̃n,j−1) − K[j ](X̃n,j )

)]

−
[

N∑
n=1

d∑
j=1

(
K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�)

)]
,

T
(p)

N,4,� = −
p∑

r=1

N∑
n=1

∑
1=j1<···<jr

jr≥�+1

Bj1···jr ◦ K∞(0)

r∏
s=1

εn+d−js

+
p∑

r=1

N∑
n=1

∑
1=j1<···<jr≤�

[
Bj1···jr ◦ (

K[�](0) − K[∞](0)
)]( r∏

s=1

εn+d−js

)
.

By applying the same martingale decomposition technique used for (8) to Bj1···jt ◦(K[jt ](X̃n,jt )−
K[∞](0)), we have

Bj1···jt ◦ (
K[jt ](X̃n,jt ) − K[∞](0)

)
= Bj1···jt ◦

{ ∞∑
i=1

[
K[jt+i−1](X̃n,jt+i−1) − K[jt+i](X̃n,jt+i )

]}
,

which implies that

∑
d+1≤j1<···<jt<∞

(
t∏

s=1

εn+d−js

)
Bj1···jt ◦ (

K[jt ](X̃n,jt ) − K[∞](0)
)

(11)

=
∑

d+1≤j1<···<jt+1<∞

(
t∏

s=1

εn+d−js

)
Bj1···jt ◦ (

K[jt+1−1](X̃n,jt+1−1) − K[jt+1](X̃n,jt+1)
)
.
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Similarly, repeating the same procedure, but replacing ∞ by �, we have

∑
d+1≤j1<···<jt≤�

(
t∏

s=1

εn+d−js

)
Bj1···jt ◦ (

K[jt ](X̃n,jt ,�) − K[�](0)
)

(12)

=
∑

d+1≤j1<···<jt+1≤�

(
t∏

s=1

εn+d−js

)
Bj1···jt ◦ (

K[jt+1−1](X̃n,jt+1−1,�) − K[jt+1](X̃n,jt+1,�)
)
.

With the help of (11) and (12), we can express T
(t+1)
N,1,� − T

(t)
N,1,� as

T
(t+1)
N,1,� − T

(t)
N,1,� =

N∑
n=1

∑
d+1≤j1<···<jt+1<∞

(
t∏

s=1

εn+d−js

)
Bj1···jt ◦ Ln,jt+1,�,

where

Ln,j,� =
[
K[j−1](X̃n,j−1) − K[j ](X̃n,j ) − εn+d−j

(
d+1∑
u=1

Aj,u

∂

∂xu

)
◦ K[j ](X̃n,j )

]

−
[
K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�) − εn+d−j

(
d+1∑
u=1

Aj,u

∂

∂xu

)
◦ K[j ](X̃n,j,�)

]

× I (j ≤ �).

We also write

TN,1,� =
N∑

n=1

∞∑
j=d+1

Ln,j,�,

TN,2,� =
N∑

n=1

∑
d+1≤j1<···<jp<∞

(
p∏

s=1

εn+d−js

)
Bj1···jp ◦ Mn,jp,�,

TN,3,� =
N∑

n=1

d∑
j=1

Pn,j,�,

where

Mn,j,� = [
K[j ](X̃n,j ) − K[∞](0)

] − [
K[j ](X̃n,j,�) − K[�](0)

]
I (j ≤ �)

and

Pn,j,� = [
K[j−1](X̃n,j−1) − K[j ](X̃n,j )

] − [
K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�)

]
I (j ≤ �).
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By repeating the same argument used in (9), we have

cov(Ln,j,�,Ln′,j ′,�) = 0 if n − j �= n′ − j ′, (13)

cov

((
t∏

s=1

εn+d−js

)
Ln,jt+1,�

)
,

(
t∏

s=1

εn′+d−j ′
s

)
Ln′,j ′

t+1,�

)
= 0

(14)
if n − js �= n′ − j ′

s for some 1 ≤ s ≤ t + 1,

cov

((
p∏

s=1

εn+d−js

)
Mn,jp,�,

(
p∏

s=1

εn′+d−j ′
s

)
Mn′,j ′

p,�

)
= 0

(15)
if n − js �= n′ − j ′

s for some 1 ≤ s ≤ p,

cov(Pn,j,�,Pn′,j ′,�) = 0 if n − j �= n′ − j ′ (16)

and, for any pair of real numbers C1 and C2,

cov

(
C1

r1∏
s=1

εn−js ,C2

r2∏
s=1

εn′−j ′
s

)
= 0 if r1 �= r2, or if r1 = r2 = r,

(17)
but n − js �= n′ − j ′

s for some 1 ≤ s ≤ r.

In order to estimate the growth rate of var(QN,p − QN,p,�), we also need to compute the non-
zero covariances for Ln,j,�, Mn,j,� and Pn,j,�. In the following, the results of Lemma 4.1 of the
next section are used to bound those covariances. Setting n − j = n′ − j ′, we obtain

| cov(Ln,j,�,Ln′,j ′,�)| ≤ C

( ∑
m≥�+1

a2
m

)
a2
j a

2
j ′ (18)

by the second result of Lemma 4.1(i) and

| cov(Mn,jp,�,Mn′,j ′
p,�)| ≤ C

∑
m≥�

a2
m, � ≥ 1, (19)

by Lemma 4.1(ii). In addition, by (2) and Jensen’s inequality,

EP 2
n,j,� ≤ C sup

1≤j≤�

E
[
K[j ](X̃1,j ) − K[j ](X̃1,j,�)

]2 ≤ CE[K(X1) − K(X1,�)]2. (20)

Combining the orthogonality properties (13)–(17) and the bounds (18)–(20), we can argue the
same way as in Ho and Hsing ([14], proofs of Theorems 3.1 and 3.2) and obtain, as � → ∞ and
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uniformly for N ,

N−1 var
(
T

(1)
N,1,�

) = O
(
�−(2β−1)

)
(by (18)),

N−1 var
(
T

(t+1)
N,1,� − T

(t)
N,1,�

) = O
(
�−(2β−1)

)
(by (18)),

N−1 var
(
T

(p)

N,2,�

) = O
(
�−((p+1)(2β−1)−1)

)
(by (19))

and

N−1 var(TN,3,�) = O(�−α1) (by (20) and (4)),

where the bound O(�−α1) should be o(1) if, instead of (4), the weaker condition (C2) is assumed.
In addition,

N−1 var
(
T

(p)

N,4,�

) = O
(
�−(2β−1)

)
,

which follows from

(
Bj1···jr ◦ [

K[∞](0) − K[�](0)
])2 ≤ E

(
Bj1···jr ◦ [

K[j ](X̃1,j ) − K[j ](X̃1,j,�)
])2

= O

(∑
i≥�

a2
i

)
.

The above inequality, which holds uniformly for all of the configurations of {j1, . . . , jr}, is im-
plied by equation (1) and the first result of part (i) of Lemma 4.1 Consequently, as N,� → ∞,
N−1 var(QN,p − QN,p,�) is o(1) under (C2) and

N−1 var(QN,p − QN,p,�) = O
(
�−min{α1,2β−1,(p+1)(2β−1)−1}) (21)

uniformly over N , if the stronger condition (4) is assumed.

Proof of Theorem 1. We prove (5) by the blocking method (Bernstein [2]). Let AN,BN , and
�N be three increasing sequence of positive integers which satisfy

(1) AN + BN < N and AN + BN = o(N);
(2) BN = o(AN) and �N = cBN�,0 < c < 1 (·� is the greatest integer symbol).

Here, AN and BN , as in the standard setting of the blocking method, are the size of each block and
the length between two adjacent blocks, respectively. The exact values of these three sequences
AN,BN and �N are to be specified later. Recall Tn(p, �) defined in (7). Define kN = N/(AN +
BN) and, for s = 1,2, . . . , kN�,

mN,s(p, �N) =
sAN+(s−1)BN∑

n=(s−1)(AN+BN)+1

Tn(p, �N),
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bN,s(p, �N) =
s(AN+BN)∑

n=sAN+(s−1)BN )+1

Tn(p, �N),

MN,p =
kN �∑
s=1

mN,s(p, �N) and BN,p =
kN �∑
s=1

bN,s(p, �N)

and

RN,p = QN,p,�N
− (MN,p + BN,p).

Set AN = Na� and BN = Nb�, 1 > a > b > 0. Then �N = cNb�,0 < c < 1. For large N ,
since Tn(p, �N),1 ≤ n ≤ N, are �N -dependent, {mN,s(p, �N), s = 1, . . . , kN�} form an i.i.d.
sequence. Then, given the result of Lemma 4.2, we can apply the Berry–Esseen theorem (cf.
Theorem 7.4.1 of Chung [5]) to the double array {mN,s(p, �N),N ≥ 1, s = 1, . . . , kN�} to ob-
tain

sup
x

|P(N−1/2MN,p ≤ x) − �(σ−1x)| = O
(
N−(1−a)/2). (22)

We assume for the moment that N−1/2QN,p is asymptotically normal with positive variance σ 2.
The role of asymptotic normality will become evident later. Set δN = N−δ, δ > 0 and �N,p =
N−1/2(QN,p − MN,p). Using the Petrov inequality,

|P(U + V ≤ x) − �(x)|
≤ sup

x
|P(U ≤ x) − �(x)| + ε√

2π
+ P(|V | ≥ ε)

(Petrov [17]), where U and V are any two random variables and ε is any positive real number,
we have

sup
x

|P(N−1/2QN,p ≤ x) − �(σ−1x)|

≤ sup
x

|P(N−1/2MN,p ≤ x) − �(σ−1x)| + σ−2(√2π
)−1

δN + P(|�N,p| > δN)

≡ I1 + I2 + I3,

where I1 = O(N−(1−a)/2) as already shown in (22), I2 = O(N−δ) by definition, and I3 can
furthermore be bounded by, using Chebyshev’s inequality,

I3 ≤ 9δ−2
N N−1[E(QN,p − QN,p,�N

)2 + EB2
N,p + ER2

N,p]
≡ I3,1 + I3,2 + I3,3.

From (21),

I3,1 = O
(
N−(bQ′−2δ)

)
,
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where Q′ = α1 ∧ (2β −1)∧ ((p +1)(2β −1)−1). Because {bN,s(p, �N), s = 1, . . . , kN�} also
forms an i.i.d. sequence, we can, as justified by Lemma 4.2, apply the Berry–Esseen theorem and
obtain

I3,2 = O
(
N−(a−b−2δ)

)
.

It is easy to see that

I3,3 = O
(
N−(1−a−2δ)

)
.

Combining the above five rates that separately dominate I1, I2, I3.1, I3.2, I3.3 gives that the opti-
mal choice of δ will be the largest value that satisfies the following inequalities:

1 − a ≥ 2δ, bQ′ − 2δ ≥ δ, a − b − 2δ ≥ δ, 1 − a ≥ 3δ.

After some elementary algebra, we get δ = Q′/[3(2Q′ + 1)]. It is immediate from I3 = o(1) that
(3) holds. The proof is completed. �

Proof of Theorem 2. The proof is similar to that of Theorem 1 with p = 0. Recall that

Pn,j,� = [
K[j−1](X̃n,j−1) − K[j ](X̃n,j )

]
− [

K(j−1)(1),j−1(X̃n,j−1,�) − K[j ](X̃n,j,�)
]
I (j ≤ �).

Then

var(QN,0 − QN,0,�) ≤ RN,1,� + RN,2,� + RN,3,�,

where, with j ′ = n′ − n + j ,

RN,1,� = 8
N∑

n=1

�∑
j=d+1

n+�−j∑
n′=n

cov(Pn,j,�,Pn′,j ′,�),

RN,2,� = 8
N∑

n=1

N∑
n′=n

∞∑
j=�+1

cov(Pn,j,�,Pn′,j ′,�),

RN,3,� = 4
N∑

n=1

d∑
j=1

n+d−j∑
n′=n

cov(Pn,�,Pn′,�).

By (iii) of Lemma 4.1 and the fact that the |aj | are summable,

N−1var(RN,1,�) ≤ C

( ∞∑
i=�+1

a2
i

)( ∞∑
j=1

|aj |
)2

= O
(
�−(2β−1)

)
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and

N−1var(RN,2,�) ≤ C

( ∞∑
j=�+1

|aj |
)2

= O
(
�−2(β−1)

)
.

Following the same argument as in proving N−1var(TN,3,�) = O(�−α1), we have

var(RN,3,�) = O(�−α1).

Hence,

var(QN,0 − QN,0,�) = O
(
�−(α1∧(2β−2))

)
.

The rest of the proof is identical to that of Theorem 1, except that the rate is

I3,1 = O
(
N−(bQ′−2δ)

)
with Q′ = α1 ∧ (2β − 2).

This concludes the proof. �

4. Technical lemmas

Below are two technical lemmas, Lemmas 4.1 and 4.2, that were used in the preceding section
to prove the two main theorems. Lemma 4.1 is the multivariate version of Lemma 6.2 of Ho and
Hsing [14]. The proof is omitted since it is similar to that of Ho and Hsing [14] and the main
task is to directly apply the regularity conditions (C1) and (C2).

Lemma 4.1. Assume that conditions (C1) and (C2) hold. Let 0 ≤ i1 + · · · + id+1 ≤ J . Then, for
some universal constant C,

(i) for j ≥ d + 1 and � ≥ j ,

E

[
∂i1+···+id+1(K[j ](X̃1,j ) − K[j ](X̃1,j,�))

∂x
i1
1 · · · ∂x

id+1
d+1

]2

≤ C

∞∑
m=�+1

a2
m

and

E

[
∂i1+···+id+1Ln,j,�

∂x
i1
1 · · · ∂x

id+1
d+1

]2

≤ C

( ∞∑
m=j

a2
m

)( ∞∑
m=�+1

a2
m

)
;

(ii) for j ≥ d + 1 and � ≥ j ,

E

[
∂i1+···+id+1Mn,j,�

∂x
i1
1 · · · ∂x

id+1
d+1

]2

≤ C

( ∞∑
m=j

a2
m

)( ∞∑
m=�+1

a2
m

)
;
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(iii) for j ≥ 2,

E
{[

K[j−1](X̃n,j−1) − K[j ](X̃n,j )
] − [

K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�)
]
I (j ≤ �)

}2

≤ C

( ∞∑
m=�+1

a2
m

)
(a2

j ).

In the preceding Lemma 4.1, we use the fact that there exists a constant C such that
maxj−d−1≤i≤j+d+1 |ai | ≤ C|aj |.

In Lemma 4.2 below, a moment inequality of fourth order for Qh(N),p,�N
is established so that

the blocking method can be applied. To prove the lemma, the representation used in the previous
section for Qh(N),p,�N

(see the identity (10)) is needed. For the sake of presentation, we recall it
below.

QN,p,� =
N∑

n=1

K(X∗
n,�) −

p∑
r=0

ZN,r,�

=
N∑

n=1

Tn(p, �) (23)

= S
(1)
N,1,� +

p−1∑
t=1

(
S

(t+1)
N,1,� − S

(t)
N,1,�

) + S
(p)

N,2,� + SN,3,� + S
(p)

N,4,�,

where the various S quantities are defined as follows:

S
(t+1)
N,1,� − S

(t)
N,1,� =

N∑
n=1

∑
d+1≤j1<···<jt+1<∞

(
t∏

s=1

εn+d−js

)
Bj1···jt ◦ L∗

n,jt+1,�

and

SN,1,� =
N∑

n=1

∞∑
j=d+1

L∗
n,j,�,

where

L∗
n,j,� =

[
K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�)

− εn+d−j

(
d+1∑
u=1

Aj,u

∂

∂xu

)
◦ K[j ](X̃n,j,�)

]
I (j ≤ �),
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SN,2,� =
N∑

n=1

∑
d+1≤j1<···<jp<∞

(
p∏

s=1

εn+d−js

)
Bj1···jp ◦ M∗

n,jp,�,

SN,3,� =
N∑

n=1

d∑
j=1

P ∗
n,j,�,

where

M∗
n,j,� = [

K[j ](X̃n,j,�) − K[�](0)
]
I (j ≤ �)

and

P ∗
n,j,� = [

K[j−1](X̃n,j−1,�) − K[j ](X̃n,j,�)
]
I (j ≤ �),

S
(p)

N,4,� = −
p∑

r=1

N∑
n=1

∑
1=j1<···<jr≤�

[
Bj1···jr ◦ (

K[�](0) − K[∞](0)
)]( r∏

s=1

εn+d−js

)
.

Lemma 4.2. If conditions (C1) and (C2) hold, then

sup
N

E

(
h(N)−1/2

h(N)∑
n=1

Tn(p, �N)

)4

< ∞, (24)

where �N and h(N) are increasing sequences of positive integers less than N which diverge to
+∞.

Proof. In view of the representation (23), it suffices to show that (24) holds for each of

S
(1)
h(N),1,�N

,
(
S

(t+1)
h(N),1,�N

− S
(t)
h(N),1,�N

)
, t = 1, . . . , p − 1,

S
(p)

h(N),2,�N
, Sh(N),3,�N

and S
(p)

h(N),4,�N
.

We only prove the case of S
(p)

h(N),2,�N
since the other cases are similar or simpler (for the case

of S
(1)
h(N),1,�). Because the index s in S

(p)

h(N),2,�N
only has a finite range, we can assume that it is

fixed. Using the orthogonality property given in (15), we get

E

{
h(N)∑
n=1

∑
d+1≤j1<···<jp≤�

(
p∏

s=1

εn+d−js

)
Bj1···jp ◦ Mn,jp,�

}4

≤ C

{
h(N)

h(N)−1∑
k1,k2,k3=0

∑
d+1≤j1<···<jp<∞

[
p∏

u=1

(
ju(ju + k1)(ju + k2)(ju + k3)

)−β

]

(25)



320 T.-L. Cheng and H.-C. Ho

×(
jp(jp + k1)(jp + k2)(jp + k3)

)−(β−1/2)

+
[
h(N)

h(N)−1∑
k=0

∑
d+1≤j1<···<jp<∞

(
p∏

u=1

(
ju(ju + k)

)−β

)(
jp(jp + k)

)−(β−1/2)

]2}
,

for some constant C independent of N and �. To derive the right-side of (25), we make use of part
(ii) of Lemma 4.1, as well as the fact that the coefficient Aj1,u1 · · ·Ajp,up in Bj1···jr is bounded
above by C(j1 · · · jp)−β . Because of the assumption (p + 1)(2β − 1) > 1,

h(N)−1∑
k=0

∑
2≤j1<···<jp<∞

(
p∏

u=1

(
ju(ju + k)

)−β

)(
jp(jp + k)

)−(β−1/2) = O(1). (26)

Hence, the second part inside the braces on the right-hand side of (25) is of order O(h2(N)).
Similarly, the first part of the right-hand side of (25) is bounded by

h−2(N)

{
h(N)

h(N)−1∑
k=0

∑
2≤j1<···<jp<∞

[
p∏

u=1

(
ju(ju + k)

)−β

]
[jp(jp + k)]−(β−1/2)

}3

(27)
= O(h(N)).

Combining (26) and (27) gives E(S
(p)

h(N),2,�N
)4 = O(h2(N)). Hence, (24) follows. The proof is

thus completed. �
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