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Ratios of quadratic forms in correlated normal variables which introduce noncentrality into the quadratic
forms are considered. The denominator is assumed to be positive (with probability 1). Various serial corre-
lation estimates such as least-squares, Yule–Walker and Burg, as well as Durbin–Watson statistics, provide
important examples of such ratios. The cumulative distribution function (c.d.f.) and density for such ratios
admit saddlepoint approximations. These approximations are shown to preserve uniformity of relative error
over the entire range of support. Furthermore, explicit values for the limiting relative errors at the extreme
edges of support are derived.
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1. Introduction

Consider the ratio of quadratic forms

R = ε′Aε

ε′Bε
, (1)

where, without loss in generality, A and B are assumed to be n × n symmetric. Let ε ∼ N(μ, In)

and suppose that B is also positive semidefinite, thereby ensuring that the denominator is pos-
itive with probability one. There is no loss in generality in having the covariance of ε as the
identity. This is because, if the distribution of ε were N(μ,�), then (1) describes the model with
�1/2A�1/2 and �1/2B�1/2 replacing A and B, respectively, and �−1/2μ replacing μ in the dis-
tributional assumption on ε. Thus, model (1) incorporates all dependence among the components
of ε, as well as noncentrality that occurs when μ�= 0.

Various types of saddlepoint approximations for the distribution (c.d.f.) and density of R have
been proposed, beginning with the seminal work on serial correlations in Daniels (1956). Further
marginal distributional approximations are given in McGregor (1960), Phillips (1978), Jensen
(1988), Wang (1992), Lieberman (1994a, 1994b) and Marsh (1998). Joint distributional approx-
imations for the set of serial correlations comprising the correlogram were initiated by Daniels
(1956) and continued in Durbin (1980) and Butler and Paolella (1998).

The main contributions of the current paper are in establishing the uniformity of relative errors
for the saddlepoint cdf and density approximations in the right tail when used with univariate
ratios R in a class CR that is defined below. This class encompasses all of the examples in the
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aforementioned papers. Expressions for the limiting relative error are given as the right edge of
support for R is approached and the sample size n is held fixed. These expressions are explicit
in the more elementary settings in which a certain defining eigenvalue is simple and mostly
implicitly defined when it is multiple. The noncentral beta distribution provides an important
example in which the limiting error is explicit, but the defining eigenvalue is multiple.

The left tail of R is dealt with by changing A to −A, thus switching the left tail of R to the
right tail of −R. The results for the right tail of −R can now provide similar uniformity results
for the left tail, when applicable. If −R is a member of class CR, then we say that R is in CL.
However, for the most part, this paper concentrates on the class CR.

The class of ratios CR is technically characterized in terms of a sequence of largest eigenval-
ues. Let (l, r) be the support of R with r possibly infinite and define λn(r) as the largest eigenvalue
of A − rB for r ∈ (l, r). The class CR is characterized as those ratios R whose matrices A and B
admit the limit

0 = lim
r→r

λn(r) (2)

with dimension n fixed. The class CR contains the subset B that consists of all ratios with
bounded support (l, r); this is a property of R that is guaranteed when B > 0, or positive def-
inite. Such ratios include the Durbin–Watson statistics, as well as the Yule–Walker and Burg
estimators of serial correlation with arbitrary lag computed from least-squares residuals. If B ≥ 0
has at least one zero eigenvalue, then r may be finite or infinite. The portion of CR with r = ∞
includes least-squares estimators of serial correlation in various types of models with arbitrary
lag and computed from residuals with trend or covariates removed. Such models include those
with autoregressive lag in the dependent variable and those with lag in the additive noise.

Large sample space asymptotics of the type considered here have not been previously con-
sidered for the class B. The only previous consideration for a member of the class CR − B is
in Jensen (1988), (1995), Chapter 9.4. Results obtained there are in agreement with those below
for the least-squares estimator of lag-one serial correlation when the time series is a mean-zero
AR(1) model.

The class CR excludes F -statistic and Satterthwaite-type ratios which have been considered
in Butler and Paolella (2002). In this work, λn(r) > 0 does not depend on r. For this setting,
saddlepoint uniformity is also maintained; however, a different asymptotic saddlepoint behavior
results from these different assumptions.

Some alternative large sample size asymptotics for the lag-one least-squares estimator, show-
ing that the error is O(n−1) and O(n−3/2) on compact sets as n → ∞, are given in Lieberman
(1994b) and Jensen (1995), Chapter 9.4, respectively, when μ = 0. Such asymptotics, in which
n → ∞, are not considered in this paper.

Since most of the proofs in this paper are long and technical, they have been relegated to the
accompanying technical report, Butler and Paolella (2007).
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2. Saddlepoint approximations

2.1. Distribution theory

The cdf for R in the most general setting with noncentrality is

Pr(R ≤ r) = Pr

(
ε′Aε

ε′Bε
≤ r

)
= Pr

(
ε′(A − rB)ε ≤ 0

)
(3)

= Pr(Xr ≤ 0),

where Xr = ε′(A − rB)ε

A − rB = P′
r�rPr , (4)

where Pr is orthogonal and �r = diag(λ1, . . . , λn), with

λ1 = λ1(r) ≤ · · · ≤ λn = λn(r)

consisting of the ordered eigenvalues of (4). Whenever convenient, we suppress the dependence
of the various quantities on r . The distribution of Xr is therefore

Xr =
n∑

i=1

λiχ
2(1, ν2

i ), (5)

where {ν2
i } are determined as (ν1, . . . , νn)

′ = νr = Prμ and represent the noncentrality parame-
ters of the independent noncentral χ2

1 variables specified in (5). The ordered values of {λi} are in
one-to-one correspondence with the components of νr specified through the particular choice of
Pr . Notationally, we use χ2

k for the central chi-square instead of χ2(k,0).
Before proceeding with the development of a saddlepoint approximation for the distribution

of R, we must first characterize the support of R, its relationship to the eigenvalues λ1(r) and
λn(r) and the convergence strip for the moment generating function of Xr .

Lemma 1. All of the eigenvalues of �r are strictly decreasing in r when B > 0 and decreasing
when B ≥ 0.

Lemma 2. The distribution of R is degenerate at a single point if and only if A = cB for some
scalar constant c.

A description of the support of R requires the consideration of the various cases involved
which depend on eigenvalue decompositions of A and B. Suppose that B has p ≥ 0 zero eigen-
values and let O′

B be the orthogonal matrix of eigenvectors for B such that

OBBO′
B =

(
�B 0
0 0p×p

)
.
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Denote

OBAO′
B =

(
C11 C12
C21 C22

)
,

where C11 is (n − p) × (n − p) and C22 is p × p. Let N(C12) denote the null space in 
p for
matrix C12.

Lemma 3. The support of R is specified in the following set of cases.

1. Suppose that B > 0, hence p = 0, and that A has rank of at least one. The support of R is
then the finite interval (l, r) with l and r being the smallest and largest eigenvalues of B−1A.

2. If p ≥ 1, so that B has at least one zero eigenvalue, then the right edge r is given as follows:
(a) if C22 has a positive eigenvalue, then r = ∞;
(b) if C22 < 0 then r < ∞ and r is the largest eigenvalue of �−1

B (C11 − C12C−1
22 C21);

(c) if C22 ≤ 0 and C22 has at least one zero eigenvalue, then r = ∞ if N(C22) � N(C12);
otherwise r < ∞ and is the largest eigenvalue of �−1

B (C11 − C12OC1�
−1
C O′

C1C21).

Here, O′
C = (OC1,OC2) consists of the eigenvectors of C22,

OCC22O′
C =

(
�C 0
0 0m×m

)
,

�C < 0, m is the multiplicity of the zero eigenvalue and the columns of OC1 and OC2

consist of eigenvectors with nonzero and zero eigenvalues, respectively.

Some of the settings described in Lemma 3 concern ratios that are not in the class CR.

Lemma 4. When considering the right tail, matrices A and B admit a ratio R in the class CR
only for cases 1, 2(b) or 2(c). When considering both the left and right tails, then the class
CR ∩ CL encompasses case 1 and the special setting of case 2(c) in which C22 = 0.

Lemmas 3 and 4 are most easily understood by means of some simple examples. Consider an
F1,1 distribution for R. Then,

A − rB =
(

1 0
0 −r

)
and λ1(r) = −r with λ2(r) ≡ 1. Clearly, this is not in the class CR nor in CL. Since C22 = 1,
a scalar, this is case 2(a).

Next, consider n = 2 and the least-squares estimate of a lag-1 serial correlation in the simplest
setting with R = ε1ε2/ε

2
1 = ε2/ε1. Note that this has the Cauchy distribution when μ = 0 and the

support is (l, r) = (−∞,∞). To see that this ratio is in the classes CR and CL, note that

A − rB =
( −r 1/2

1/2 0

)
(6)
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and that the limiting eigenvalues are

lim
r→−∞

(−r −
√

r2 + 1
)
/2 = 0 = lim

r→∞
(−r +

√
r2 + 1

)
/2. (7)

The example illustrates a case 2(c) ratio in which C12 = 1/2 and C22 = 0 are scalars and
N(C22) � N(C12). The same results hold more generally with least-squares estimates of ser-
ial correlation from regression residuals.

Lemma 5. Suppose that R has a nondegenerate distribution in the class CR, as described in
Lemma 4, B ≥ 0 and A has rank of at least one. The upper range of support r ≤ ∞ for R, as
given in cases 1, 2(b) and 2(c) of Lemma 3, solves λn(r) = 0. If r is an interior point of the
support of R, then the moment generating function of Xr is

MXr (s) =
(

n∏
i=1

(1 − 2sλi)
−1/2

)
exp

{
s

n∑
i=1

λiν
2
i

1 − 2sλi

}
, (8)

convergent in the neighborhood of zero given by

1

2λ1(r)
< s <

1

2λn(r)
. (9)

2.2. C.d.f. saddlepoint approximation

The saddlepoint approximation is based on the cumulant generating function (c.g.f.) for Xr ,
given by KXr (s) = lnMXr (s). The saddlepoint ŝ is the unique root of

0 = K ′
Xr

(ŝ) =
n∑

i=1

(
λi

1 − 2ŝλi

+ λiν
2
i

(1 − 2ŝλi)2

)
(10)

in the range (9). The approximation of Lugannani and Rice (1980) to first order is

P̂r1(R ≤ r) =

⎧⎪⎨⎪⎩
�(ŵ) + φ(ŵ){ŵ−1 − û−1}, if 0 �= E[Xr ],
1

2
+ K ′′′

Xr
(0)

6
√

2πK ′′
Xr

(0)3/2
, if 0 = E[Xr ], (11)

where �(·) and φ(·) denote the distribution and density function of a standard normal random
variable, respectively, and

ŵ = sgn(ŝ)

√
−2KXr (ŝ), û = ŝ

√
K ′′

Xr
(ŝ). (12)

A second-order c.d.f. approximation is given in Butler and Paolella (2007).
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2.3. Density saddlepoint approximation

The saddlepoint density approximation for fR(r), the density of R at r, is derived in Butler
(2007), Chapter 12.1, or Butler and Paolella (2007) as

f̂R(r) = Jr(ŝ)√
2πK ′′

Xr
(ŝ)

MXr (ŝ), (13)

where ŝ is the same saddlepoint used in the c.d.f. approximation and which solves (10). The
factor Jr(ŝ) is computed from

Jr(s) = tr(I − 2s�r )
−1Hr + ν′

r (I − 2s�r )
−1Hr (I − 2s�r )

−1νr (14)

with Hr= PrBP′
r . A second-order saddlepoint density is given in Butler (2007), page 383, or

Butler and Paolella (2007).

Example 6. For matrices A and B in which R ∼ Beta(m/2, (n − m)/2), the saddlepoint density
in (13) is

f̂R(r) = B(m/2, (n − m)/2)

B̂(m/2, (n − m)/2)
fR(r),

where B̂ is Stirling’s approximation for the Beta function B .

3. Uniformity of the approximations in r

The relative errors of Lugannani and Rice’s approximation in (11) and the density approximation
in (13) can be shown to be uniform over [0, r) when in the class CR. These results follow as
consequences of deriving their finite limiting ratios as r → r. The limiting ratios are derived
in Theorems 9, 14 and 15 below. Our approach to computing these limiting ratios follows that
used in Jensen (1988), (1995), Chapter 9.4, and generalizes these results to accommodate both
noncentrality and the special concerns involving multiple eigenvalues.

The nature of these asymptotics is dependent on the multiplicity of the eigenvalue λn(r) = 0,

denoted as m. As a simple eigenvalue with m = 1, the limiting ratios are derived in Theorem 9.
This is a common setting encountered when dealing with serial correlations. With m ≥ 2, how-
ever, the asymptotics are more difficult and such results are deferred to Theorem 14. Exam-
ples of the multiple eigenvalue setting are also common and include least-squares estimates and
Yule–Walker estimates for lag-l serial correlation with l ≥ 2. One important multiple eigenvalue
example is the noncentral beta distribution discussed in Section 4.

The case 2(a) setting is not in CR; however, the relative error can still be shown to be uniform
over [0,∞); see Butler and Paolella (2007).
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3.1. Simple eigenvalue λn(r) = 0

Suppose that r < ∞, under the circumstances of cases 1, 2(b) or 2(c). We assume here that A− rB
has a simple zero eigenvalue with multiplicity m = 1. For general A and B, this multiplicity is
often difficult to anticipate. Define

ν0 = νn(r) := pn(r)
′μ, (15)

where pn(r) is the eigenvector associated with the zero eigenvalue of A − rB.
The situation with r = ∞ is more complicated.

Lemma 7. Suppose case 2(c) with r = ∞. Then, m, the multiplicity of zero eigenvalues in
{λi(∞)}, is the number of zero eigenvalues for C22. If m = 1, then

ν0 = νn(∞) := o′
nO′

B2μ, (16)

where on is the p × 1 eigenvector associated with the zero eigenvalue of C22, O′
B = (OB1,OB2)

and OB2 is n × p and the orthonormal basis for the null space of B used to determine C22.

The AR(1) example in (6) with n = 2 provides a simple example. Here, C22 is the scalar 0 so
that o′

n = 1, and O′
B2 = (0,1). Hence, ν0 = μ2.

Lemma 8. Suppose that the conditions of Lemma 5 hold and let m = 1. Then, as r → r ≤ ∞,

ε = λn(r) → λn(r) = 0 and ŝ = t0/ε + O(1) → ∞, where

t0 = 1

4n

{
2n − 1 + ν2

0 −
√

(ν2
0 + 2n − 1)2 − (2n − 1)2 + 1

}
(17)

and ν0 is defined in (15) or (16). In addition,

û → u0 =
√

n − 1

2
+ 2t2

0

(1 − 2t0)2
+ 4ν2

0 t2
0

(1 − 2t0)3
. (18)

Theorem 9. Suppose that n ≥ 2, R has a nondegenerate distribution in CR, B ≥ 0 and A has
rank of at least one. If m = 1, then the limiting ratio of the true tail probability to its first order
Lugannani–Rice approximation in (11) is

lim
r→r

Pr(R > r)

P̂r1(R > r)
=

√
2π(1 − 2t0)(2t0)

(n−1)/2u0e
−η2

B(1/2, (n + 1)/2)(n/2)
1F1

(
n

2
; 1

2
; ν2

0

2

)
, (19)

where

η2 = ν2
0

2(1 − 2t0)
(20)

and parameters t0, u0 and ν0 are specified in (17), (18) and (15), (16). The first-order saddlepoint
density has the same relative limit. All of these parameters are determined by ν0, so the right-
hand side of (19) is a function of ν0 alone.
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In the central case with ν = 0, the limiting ratio of tail probabilities in Theorem 9 is
B̂( 1

2 , n−1
2 )/B( 1

2 , n−1
2 ), where B̂ is Stirling’s approximation. This same limiting error was de-

rived in Jensen (1995), Chapter 9.4, which considered the tail ratio for the distribution of the
least-squares estimate in a mean zero AR(1) model. Jensen’s (9.4.7) is this value when the dif-
ference in notation is accounted for (our n being n + 1 in that paper).

As ν2
0 → ∞, the limiting ratio in Theorem 9 is 
̂( 1

2 , n−1
2 )/
( 1

2 , n−1
2 ){1 + O(ν−2

0 )}, where 
̂

is Stirling’s approximation. This follows from the large argument asymptotics for 1F1 as given
in 13.1.4 of Abramowitz and Stegun (1972).

Relative errors for the second order cdf and density approximations are also uniform in the
right tail; see Butler and Paolella (2007).

3.2. Multiple eigenvalue λn(r) = 0

In this setting, the asymptotics depend on the relative rates of convergence to zero for the multiple
eigenvalues of A − rB that approach 0 as r → r. If m denotes its multiplicity, then m ≥ 1, by the
definition of r. The allowable values of m are 1 ≤ m ≤ n − 1, but not m = n. This latter value
would make limr→r(A − rB) ≡ 0, in which case the distribution of R approaches a degenerate
distribution, by Lemma 2. For unbounded ratios in case 2(c), the value of m is the dimension of
the null space for C22, whereas, for ratios in B, the value of m is less transparent.

We must first determine the relative rates at which the m largest eigenvalues of A − rB vanish
as r → r in the two separate settings, r < ∞ and r = ∞. For the former setting, general formulae
for these relative rates are given in the next lemma. When r = ∞, the relative rates must be
determined on a case-by-case basis.

Lemma 10. Suppose that r < ∞ and 0 is an eigenvalue of multiplicity m for A − rB. Let the
columns of the n × m matrix U0 be an orthonormal basis for the null space of A − rB. Further-
more, denote the ordered eigenvalues of U′

0BU0 as 0 ≤ τn−m+1 ≤ · · · ≤ τn. If τn > 0, then the
limiting relative rates of convergence to zero for the m largest eigenvalues of A − rB are

lim
r→r

λi(r)

λn(r)
= τi

τn

= ωi (21)

for i = n − m + 1, . . . , n, where 0 ≤ ωn−m+1 ≤ · · · ≤ ωn = 1.

For the most common case, in which B > 0, we have τn−m+1 > 0 so that ωn−m+1 > 0.
To deal with the r = ∞ setting of case 2(c), we reparametrize

D(ε) = (A − rB)/r = εA − B (22)

and let ε = 1/r → 0. If λi(ε) are the ordered eigenvalues of A − ε−1B, then

ψi(ε) = ελi(ε) (23)

are the ordered eigenvalues of (22).
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Lemma 11. Consider case 2(c), in which r = ∞, and assume that the zero eigenvalue has mul-
tiplicity m. λn−m+1(r), . . . , λn(r) are then analytic at r = ∞. If λ′

n(∞) > 0, then the relative
rates of convergence are

ωi = ∂λi(ε)/∂ε|ε=0

∂λn(ε)/∂ε|ε=0
= ∂2ψi(ε)/∂ε2|ε=0

∂2ψn(ε)/∂ε2|ε=0
(24)

for i = n − m + 1, . . . , n.

The limiting noncentrality parameters {ν0i : i = n − m + 1, . . . , n} are more difficult to deter-
mine for m ≥ 2 because they are expressed in terms of the limiting eigenvectors associated with
the eigenvalues that vanish. In the case r < ∞, it is intuitively clear and Lancaster (1964) has
shown formally that these eigenvectors are smoothly defined as r → r. Let P2r be n × m and
consist of the last m columns of P′

r which are the eigenvectors for the m largest eigenvalues of
(A − rB) (which increase in size with column number). P2r is then continuous at r = r and the
limiting noncentrality parameters are

(ν0,n−m+1, . . . , ν0,n)
′ = P′

2rμ. (25)

In the unbounded setting with r = ∞, let the n × m matrix P2ε consist of the eigenvectors corre-
sponding to the largest m eigenvalues of D(ε) in (22). The limiting noncentrality parameters are
then given in (25) with P20 = limε→0 P2ε replacing P2r. In complicated practical examples where
these computations are not explicit, these limiting eigenvectors are best computed numerically
by using a small ε > 0.

Example 12. The least-squares estimate of a lag-2 serial correlation with n = 3 and zero mean
has the form R = ε1ε3/ε

2
1 and leads to the matrix

D(ε) = εA − B =
(−1 0 1

2ε

0 0 0
1
2ε 0 0

)
= Q′

ε

(
ψ−(ε) 0 0

0 0 0
0 0 ψ+(ε)

)
Qε,

where

Q′
ε =

(2ψ−(ε)/ε 0 2ψ+(ε)/ε

0 1 0
1 0 1

)
, ψ±(ε) = − 1

2 ± 1
2

√
1 + ε2.

The eigenvectors in matrix Q′
ε have not been normalized as would be needed to use the nota-

tion P′
ε. The limits of the eigenvalues are limε→0{ψ−(ε),0,ψ+(ε)} = (−1,0,0) and the limiting

normed eigenvectors have P′
ε → I3 as ε → 0. Note that ∂ψ+(ε)/∂ε|ε=0 = 0. Also, the eigenval-

ues of

C22 = O′
B2AOB2 =

(
0 1 0
0 0 1

)( 0 0 1
2

0 0 0
1
2 0 0

)(0 0
1 0
0 1

)
=

(
0 0
0 0

)
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are both zero, as discussed in Lemma 11. The limiting rate

ω2 = lim
r→∞

λ2(r)

λ3(r)
= lim

ε→0

0

∂2ψ+(ε)/∂ε2
= 0

1/2
= 0.

The limiting noncentrality parameters are(
ν02
ν03

)
= P′

20μ =
(

0 1 0
0 0 1

)
μ =

(
μ2
μ3

)
.

Expressions for the limiting relative errors depend on {ωi, ν0i}. All summations in the remain-
der of this subsection are over S = {n − m + 1, . . . , n}.

Lemma 13. Suppose that R is in the class CR and let m be the multiplicity of the zero eigenvalue
of A − rB. Then, as r → r, ε = λn(r) → λn(r) = 0 and ŝ = t0/ε + O(1) → ∞, where t0 is the
unique solution to

0 = −n − m

2t0
+

∑
i∈S

ωi

{
1

1 − 2t0ωi

+ ν2
0i

(1 − 2t0ωi)2

}
(26)

in (0,1/2) with S = {n − m + 1, . . . , n}. In addition,

û → u0 =
√√√√n − m

2
+ 2t2

0

∑
i∈S

ω2
i

{
1

(1 − 2t0ωi)2
+ 2ν2

0i

(1 − 2t0ωi)3

}
. (27)

Theorem 14. Suppose that n ≥ 2 and the conditions of Lemma 13 hold. Define the operator
D0(X) to be the density of the random variable X evaluated at zero. The limiting ratio of the
true tail probability for R to its first order Lugannani–Rice approximation in (11) is then

lim
r→r

Pr(R > r)

P̂r1(R > r)
= √

2πD0

{∑
i∈S

η1iχ
2(1,2η2i ) − 1

2u0
χ2

n−m+2

}
, (28)

where the χ2 terms are independent random variables. Parameters η1i and η2i , for i ∈ S ,
are

η1i = t0ωi

u0(1 − 2t0ωi)
, η2i = ν2

0i

2(1 − 2t0ωi)
.

The limiting ratio for the density approximation is

lim
r→r

fR(r)

f̂R(r)
=

√
2π

WJ

[∑
i∈S

hiiη3iD0

{∑
j∈S

η1jχ
2(1,2η2j ) + η1iχ

2
2 − 1

2u0
χ2

n−m

}
(29)

+
∑
i∈S

∑
j∈S

ν0iν0j η3iη3j hijD0

{∑
k∈S

η1kχ
2(1,2η2k) + η1iχ

2
2 + η1jχ

2
2 − 1

2u0
χ2

n−m

}]
,
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where η3i = (1 − 2t0ωi)
−1,

WJ =
∑
i∈S

hiiη3i +
∑
i∈S

∑
j∈S

ν0iν0j η3iη3j hij > 0,

(hij ) = Hr = limr→r PrBPr and all χ2 variates in (29) are assumed to be independent.

In the case m = 1, the results of Theorem 14 reduce to those in Theorem 9.

4. Noncentral Beta (m
2 , n−m

2 ) distribution

This distribution has

A =
(

Im 0
0 0

)
and B = In so that r = 1 and ωi ≡ 1. This leads to the explicit expression

t0 = 1

2
+ 1

4n

{
(θ − m) −

√
(θ − m)2 + 4θn

}
,

where

θ =
∑
i∈S

ν2
0i =

m∑
i=1

μ2
i .

Furthermore,

u0 =
√

n − m

2
+ 2t2

0

{
m

(1 − 2t0)2
+ 2θ

(1 − 2t0)3

}
.

Theorem 15. For a noncentral Beta(m
2 , n−m

2 ) distribution with min(m,n−m) ≥ 1, the limiting
ratio of the true tail probability to its first-order Lugannani–Rice approximation is

RE =
√

2π(1 − 2t0)
m/2(2t0)

(n−m)/2u0e
−η2

B(m/2, (n − m)/2)(n − m)/2
1F1

(
n

2
; m

2
; θ

2

)
, (30)

where

η2 = θ

2(1 − 2t0)
.

The first-order saddlepoint density has the same relative error limit.

In the central setting with θ = 0, the value in (30) reduces to B̂(m
2 , n−m

2 )/B(m
2 , n−m

2 ). This is
consistent with the computation of the central Beta(m

2 , n−m
2 ) density in Example 6.

As θ → ∞, the limiting ratio for (30) is 
̂( 1
2 , n−m

2 )/
( 1
2 , n−m

2 ){1 + O(θ−1)}, which follows
from the asymptotics for 1F1 given in 13.1.4 of Abramowitz and Stegun (1972).
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5. Examples

5.1. Serial correlations

Least-squares, Yule–Walker and Burg estimates for lag-l correlations are considered in further
detail in Butler and Paolella (2007) as members of the respective classes CR−B, B and B. Both
simple and multiple eigenvalue settings occur in such examples when there is no correction for
mean.

In practice, serial correlations with arbitrary lag l are generally computed from least-squares
residuals and this often ensures that the largest eigenvalue of A − rB has algebraic multiplicity
one. Thus, the simpler situation for the large deviation errors occurs most often in practical data
analysis.

5.2. Numerical example

Numerical confirmation of the large deviation errors in Theorem 9 is possible by considering
the simplest model of Section 2.1. This is the least-squares estimate of lag one with n = 2 in a

model without a location effect. Then, R = ε2/ε1 with εi

indep∼ N(μi,1). The exact density can be
expressed as

fR(r) = 1

2π

∫ ∞

−∞
|x| exp

{
−1

2
(x − μ1)

2
}

exp

{
−1

2
(rx − μ2)

2
}

dx

(31)

= (πδ)−1 exp

{
−1

2
(μ2

1 + μ2
2)

}
+ λθ(μ1 + rμ2)

δ
√

2πδ
,

where

δ = 1 + r2, θ = erf

(
μ1 + rμ2√

2δ

)
, λ = exp

(
−1

2

(μ1r − μ2)
2

δ

)
.

From Theorem 9, the limiting relative errors in the left and right tails are dependent on ν0 alone;
in both tails, this value is ν0 = μ2 so that the limiting relative errors are the same in both tails,
regardless of the values of μ1 and μ2.

The density (31) is both heavy-tailed and bimodal for μ1 = 0.2 and μ2 = 2. Figure 1 plots
the exact density, the normalized version of f̂R in (13) denoted by f̄R and the second-order
saddlepoint f̂R2 given in (20) of Butler and Paolella (2007). While both appear highly accurate
in the tails, only the latter captures the bimodality. Figure 2 plots the ratio of the exact to the
three approximate densities including f̂R , f̄R and f̂R2. As |r| increases, we have numerically
confirmed that fR(r)/f̂R(r) → 0.8222, in agreement with the value computed via Theorem 9.
This value is virtually achieved at |r| = 10. Both f̄R and f̂R2 perform better than f̂R in the tails,
the latter most notably so.

The true cdf of R, or FR(r), must be computed from (31) using numerical integration. In this
case, |r| must be substantially larger before the same limiting ratio, as specified in Theorem 9, is



152 R.W. Butler and M.S. Paolella

Figure 1. Exact density fR (solid), second order f̂R2 (dashed) and normalized f̄R (dotted) approximations.

Figure 2. Error ratios fR/f̂R2 (dashed), fR/f̂R (dashed-dot) and fR/f̄R (dotted).
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Figure 3. The tail error ratios described in (32) for F̂R = P̂r2 (dashed) and F̂R = P̂r1 (dash-dot).

reached. Figure 3 plots

FR(r)

F̂R(r)
1{ŝ<0} + 1 − FR(r)

1 − F̂R(r)
1{ŝ>0} vs. r (32)

with F̂R(r) as the second-order approximation P̂r2 in (17) of Butler and Paolella (2007) and
also as P̂r1 in (11). For these values of μi , P̂r1 is more accurate than P̂r2 only in the range
−1.8 < r < 1.2. At r = −25,000, FR(r)/F̂R(r) = 0.8226 for P̂r1, as given by Theorem 9, while,
for P̂r2, the ratio is 1.015. This latter ratio necessarily includes the factor (1 + OF ), where OF

approximates the limit of the second-order correction term.
If μ1 = μ2 = 0, then R is Cauchy and the saddlepoint density reduces to f̂R(r) = √

π/2fR(r).
Thus, f̄R is exact and the saddlepoint solution to 0 = K ′

X(ŝ) is given by ŝ = r . The relative error
is, B̂(1/2,1/2)/B(1/2,1/2), in agreement with the large sample space theory.
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