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Let {Xj } be independent, identically distributed random variables. It is well known that the functional
CUSUM statistic and its randomly permuted version both converge weakly to a Brownian bridge if second
moments exist. Surprisingly, an infinite-variance counterpart does not hold true. In the present paper, we
let {Xj } be in the domain of attraction of a strictly α-stable law, α ∈ (0,2). While the functional CUSUM
statistics itself converges to an α-stable bridge and so does the permuted version, provided both the {Xj }
and the permutation are random, the situation turns out to be more delicate if a realization of the {Xj }
is fixed and randomness is restricted to the permutation. Here, the conditional distribution function of the
permuted CUSUM statistics converges in probability to a random and nondegenerate limit.
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1. Introduction

Let X,X1, . . . ,Xn, . . . be independent, identically distributed random variables. CUSUM-based
procedures, frequently used to test for time homogeneity of an underlying random phenomenon,
are functionals of the process

Zn(t) = 1

sn
√

n

�nt�∑
j=1

(Xj − X̄n), t ∈ [0,1], (1.1)

where �·� denotes integer part and

X̄n = 1

n

n∑
j=1

Xj and s2
n = 1

n − 1

n∑
j=1

(Xj − X̄n)
2

are the sample mean and sample variance, respectively. The asymptotic properties of {Zn(t)}
are immediate consequences of Donsker’s invariance principle (see Billingsley (1968)). Denote

by
D[0,1]−→ convergence in the space D[0,1] of cadlag functions equipped with the Skorokhod

J1-topology. We state the following fundamental theorem.

Theorem 1.1. If EX2 < ∞, then

Zn(t)
D[0,1]−→ B(t) (n → ∞),
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where {B(t) : t ∈ [0,1]} is a Brownian bridge.

One of the main problems in testing for a homogeneous data generating process is that of ob-
taining approximations for the critical values. It is well known, however, that the convergence of
functionals of Zn(t) to their limit distributions is often quite slow (sometimes even the conver-
gence speed is unknown), raising the question of whether Theorem 1.1 is reasonably applicable
in the case of small sample sizes. To avoid these complications, along with bootstrap methods,
the permutation principle has been suggested to simulate critical values. For a recent, compre-
hensive survey of this topic, we refer to Hušková (2004). Let π = (π(1), . . . , π(n)) be a random
permutation of (1, . . . , n) which is independent of X = (X1,X2, . . .). The permuted version of
Zn(t) is then defined by

Zn,π (t) = 1

sn
√

n

�nt�∑
j=1

(
Xπ(j) − X̄n

)
, t ∈ [0,1]. (1.2)

One can think of Zn,π (t) as a CUSUM process whose summands are chosen from X1, . . . ,Xn by
drawing from a box without replacement. The following result establishes the limiting behavior
of Zn,π (t) and hence shows that the permutation method works to simulate critical values. Also,
note that empirical evidence suggests that the convergence to the limit is faster than for Zn(t).

Theorem 1.2. If EX2 < ∞, then, for almost all realizations of X,

Zn,π (t)
D[0,1]−→ B(t) (n → ∞),

where {B(t) : t ∈ [0,1]} is a Brownian bridge.

Theorem 1.2 states that, for almost all realizations of the data, the permutation method provides
the asymptotically correct critical values. A proof can be found in Billingsley (1968), pages 209–
214.

In this paper we are interested in the asymptotics of the analogues of Zn(t) and Zn,π (t) in the
infinite-variance case EX2 = ∞. To this end, let α ∈ (0,2] and recall that a random variable ξα

is strictly α-stable if its characteristic function has the form

φα(t) =

⎧⎪⎨
⎪⎩

exp(−ct2/2), if α = 2,

exp

(
−c|t |α

[
1 − iβ sgn(t) tan

(
π

2
α

)])
, if α ∈ (0,1) ∪ (1,2), β ∈ [−1,1],

exp(−c|t |), if α = 1,

for some c > 0. This definition includes the normal law (α = 2) and the Cauchy law (α = 1),
where the latter is moreover assumed to be symmetric. Note that E[ξα] exists only for α ∈ (1,2]
and E[ξ2

α ] only for α = 2. Since scaling the random variables Xn does not change the normalized
partial sum processes in (1.5) and (1.6) below, for our purposes it will suffice to consider the case
c = 1. The class of stable distributions has become more and more important in theory as well as
in applications. Stable laws appear in a natural way in areas such as radio engineering, electron-
ics, biology and economics (see Zolotarev (1986), Chapter 1). For other expositions on α-stable
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random variables and processes, we refer to Samorodnitsky and Taqqu (1994) and Bingham et
al. (1987).

In what follows, let α ∈ (0,2) and consider independent, identically distributed random vari-
ables {Xj } which are in the domain of attraction of a strictly α-stable law. In the case α 	= 1, this
is equivalent to saying that there is a function L(x), slowly varying at infinity, such that

1

n1/αL(n)

n∑
j=1

(Xj − μα)
D−→ ξα (n → ∞), (1.3)

where ξα is a strictly α-stable random variable and μα = 0 if α ∈ (0,1). We say that L is slowly
varying at infinity if limt→∞ L(ct)/L(t) = 1 for all c > 0. In the case α = 1, we will assume (1.3)
with μα = 0, excluding nonlinear centering sequences which would prevent the weak conver-
gence of the process An(t) in (1.5) below. If (1.3) holds, then there is a p ∈ [0,1] such that the
tail probabilities of X and |X| satisfy the relations

lim
y→∞

P {X > y}
P {|X| > y} = p and lim

y→∞
P {X < −y}
P {|X| > y} = q, (1.4)

where q = 1 − p and β = 2p − 1; see Feller (1966) and Petrov (1995) for details.
To define the counterparts of Zn(t) and Zn,π (t) in the infinite-variance case, introduce the

process

An(t) = 1

Tn

�nt�∑
j=1

(Xj − X̄n), t ∈ [0,1], (1.5)

and its permuted version

An,π (t) = 1

Tn

�nt�∑
j=1

(
Xπ(j) − X̄n

)
, t ∈ [0,1], (1.6)

where Tn = maxj≤n |Xj | and π = (π(1), . . . , π(n)) is a random permutation of (1, . . . , n),
independent of X. In contrast to the finite-variance case, Tn is a natural norming factor in
(1.5) and (1.6) since

∑n
j=1(Xj − μα)/Tn has a nondegenerate limit distribution.

One might now expect {An(t)} and {An,π (t)} to follow an asymptotic pattern similar to that
of {Zn(t)} and {Zn,π (t)}. Consequently, given a realization of X, one might want to use the
permutation principle to simulate critical values that have a higher accuracy in the case of small
sample sizes. Surprisingly, this turns out to be impossible. While a version of Theorem 1.1 holds
true for {An(t)}, an adaptation of Theorem 1.2 cannot be given for almost all realizations of X.
On the contrary, we will show that, conditioned on X, the distribution function of the permuted
process {An,π (t)} converges to a random and nondegenerate limit for every fixed t . On the other
hand, there is an averaging effect: if both X and π are assumed to be random, then An,π (t) and
An(t) converge weakly to the same limit, namely to an α-stable bridge.

The paper is organized as follows. In Section 2, we will precisely formulate our results. Their
proofs will be given in Section 3.
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2. Results

First, we study the limiting behavior for the sequence {An(t) : t ∈ [0,1]}. Its weak convergence
can be derived from the joint convergence of

{
1

n1/αL(n)

�nt�∑
j=1

(Xj − μα): t ∈ [0,1]
}

and
Tn

n1/αL(n)
.

To deal with these two sequences, we are going to apply the method developed in LePage et
al. (1981), where it was proven that any stable distribution can be represented as an infinite
sum of random variables constructed from partial sums of exponential random variables. More
specifically, let {Ej } be a sequence of independent, identically distributed exponential random
variables having expected value 1 and define the sequence {Zj } by

Zj = (E1 + · · · + Ej)
−1/α, j ≥ 1. (2.1)

Additionally, let {δj } be independent, identically distributed random variables, independent of
{Ej }, satisfying P {δj = 1} = p and P {δj = −1} = q , with p and q specified in (1.4). Then,
define

η =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k=1

δkZk, α ∈ (0,1],
∞∑

k=1

(
δkZk − (p − q)E[ZkI {0 < Zk ≤ 1}]), α ∈ (1,2).

(2.2)

LePage et al. (1981), Theorem 1, showed that the sums in (2.2) converge with probability one
and

η
D= ξα/c1 with some constant c1. (2.3)

Consider a random vector (Wα(t),Z) such that Wα(t) is a strictly α-stable process, Z D=
Z1 and the joint distribution of (Wα(t),Z) is defined by the requirement that for any
0 = t1 < · · · < tK = 1, we have

(
Wα(t2) − Wα(t1),Wα(t3) − Wα(t2), . . . ,Wα(tK) − Wα(tK−1),Z

)
D=

(
(t2 − t1)

1/αη1, (t3 − t2)
1/αη2, . . . , (tK − tK−1)

1/αηK−1, max
1≤j≤K−1

(tj+1 − tj )
1/αZj

)
,

where (η1,Z1), . . . , (ηK−1,ZK−1) are independent, identically distributed random vectors, dis-
tributed as (η,Z). The following theorem is essentially known; see Kasahara and Watanabe
(1986), Section 9.
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Theorem 2.1. If (1.3) holds, then

(
1

n1/αL1(n)

�nt�∑
j=1

(Xj − μα),
Tn

n1/αL1(n)

)
D2[0,1]−→ (Wα(t),Z) (n → ∞),

where L1(x) = c1L(x) with c1 given in (2.3). The distribution of the vector (Wα(t),Z) is defined
above.

The asymptotic behavior of {An(t)} is now an immediate consequence of Theorem 2.1 and the
continuous mapping theorem.

Corollary 2.1. If (1.3) holds, then

An(t)
D[0,1]−→ 1

ZBα(t) (n → ∞),

where, for t ∈ [0,1], Bα(t) = Wα(t) − tWα(1).

The process {Bα(t) : t ∈ [0,1]} is sometimes called an α-stable bridge. Very little is known
about the distributions of functionals of Bα(t)/Z and therefore it is hard to determine critical
values needed to construct asymptotic test procedures. It would hence be beneficial to apply the
permutation method to obtain critical values for functionals of An(t). However, as the subsequent
series of theorems shows, Theorem 1.2 does not have an infinite-variance counterpart.

Consider the process {An,π (t)} defined in (1.6) and let both X and π be random. We then
obtain the following result.

Theorem 2.2. If (1.3) holds, then

An,π (t)
D[0,1]−→ 1

ZBα(t) (n → ∞), (2.4)

where, for t ∈ [0,1], Bα(t) = Wα(t) − tWα(1).

Obviously, Theorem 2.2 is much weaker than Theorem 1.2 since it is only valid for the average
of the realizations. However, a stronger result, holding true for almost all realizations of X,
cannot be proved. Let PX and EX denote conditional probability and expected value given X,
respectively.

In order to state the main result of our paper, we introduce some further notation. Let t ∈ (0,1)

and, on some probability space, consider sequences {Sj : j ≥ 1}, {S∗
j : j ≥ 1}, {δj (t) : j ≥ 1},

{δ∗
j (t) : j ≥ 1} such that these sequences are mutually independent, {Sj : j ≥ 1}, {S∗

j : j ≥ 1} are

partial sums of independent exponential random variables with parameter 1 and {δj (t) : j ≥ 1},
{δ∗

j (t) : j ≥ 1} are both sequences of independent random variables taking the values 1 and 0 with
probabilities t and 1 − t , respectively. Let S be the σ -algebra generated by {Sj , S

∗
j : j ≥ 1}.
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Theorem 2.3. Let t ∈ (0,1). If (1.3) holds, then

PX{An,π (t) ≤ x} D−→ PS{R(t) ≤ x} (n → ∞)

for any real x, where

R(t) = 1

M

[
−w1

∞∑
j=1

1

S
1/α
j

(
δj (t) − t

) + w2

∞∑
j=1

1

(S∗
j )1/α

(
δ∗
j (t) − t

)]

with w1 = q1/α , w2 = p1/α , where p and q are defined by (1.4) and

M = max

{
w1

S
1/α

1

,
w2

(S∗
1 )1/α

}
. (2.5)

Theorem 2.3 immediately implies that PX{An,π (t) ≤ x} cannot converge to P {Bα(t)/Z ≤ x}
with probability one. Note that Theorem 2.3 is the permutation analogue of Athreya (1987),
which showed that the conditional distribution of the appropriately normalized bootstrap sample
mean converges in distribution to a nondegenerate random variable. The limits in Athreya (1987)
and Theorem 2.3 are different due to the sampling with replacement in the bootstrap case and
without replacement in the permutation case.

Theorem 2.3 describes the limiting conditional distribution of An,π (t) for any fixed t . Its
proof can be modified to yield the asymptotic conditional distribution of vectors (An,π (t1), . . . ,

An,π (tr )) for any choices of 0 < t1 < · · · < tr < 1. To do so, we must extend the definition of the
sequences {δj (t)} and {δ∗

j (t)}. Let {Uj } and {U∗
j } be independent, identically distributed random

variables, uniform on [0,1], which are independent of {Sj } and {S∗
j }, and let

δj (t) = I {Uj ≤ t} and δ∗
j (t) = I {U∗

j ≤ t} (j ≥ 1). (2.6)

Therein, I {A} is the indicator function of a set A. Note that for a single t , this definition coin-
cides with the definition in terms of Bernoulli variables given above. The latter, however, do not
carry any information on the joint behavior for a collection t1, . . . , tr . We arrive at the following
theorem.

Theorem 2.4. Let 0 < t1 < · · · < tr < 1. If (1.3) holds, then, as n → ∞,

PX{An,π (t1) ≤ x1, . . . ,An,π (tr ) ≤ xr} D−→ PS{R(t1) ≤ x1, . . . ,R(tr ) ≤ xr}
for any real x1, . . . , xr , where R(t) is defined in Theorem 2.3 with the δj (t), δ

∗
j (t) from (2.6).

The proof of Theorem 2.3 will show that An,π (t) depends only on the very large and very
small order statistics. These, however, are asymptotically independent, explaining why the infi-
nite sums defining R(t) in Theorems 2.3 and 2.4 are independent. In addition, δj (t) is the limit
of an indicator variable which determines whether or not the j th smallest order statistic is among
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the first �nt� permuted observations. The same reasoning applies to δ∗
j (t) and the location of the

j th largest order statistic in the permutation π .
The previous results concern the asymptotic properties of {An(t)} and {An,π (t)}, but it is

possible to consider modifications of these processes which involve replacing the normalization
Tn by a more general sequence

T (ν)
n =

(
n∑

j=1

|Xj − X̄n|ν
)1/ν

with some ν > α.

The corresponding CUSUM processes are then defined by

A(ν)
n (t) = 1

T
(ν)
n

�nt�∑
j=1

(Xj − X̄n), A(ν)
n,π (t) = 1

T
(ν)
n

�nt�∑
j=1

(
Xπ(j) − X̄n

)
, t ∈ [0,1].

Analogues of Theorems 2.1 and 2.2 can easily be established by exploiting the joint convergence
of the partial sum processes

∑�nt�
j=1 Xj and

∑�nt�
j=1 |Xj |ν . Theorems 2.3 and 2.4 also remain true

(with some modifications in the corresponding limit processes) so that, conditionally on X, the
permuted sequence {A(ν)

n,π (t)} cannot converge weakly in D[0,1].

3. Proofs

Proof of Theorem 2.2. Note that, by the assumptions on {Xj },

{An(t) : t ∈ [0,1]} D= {An,π (t) : t ∈ [0,1]},

so the result follows from Corollary 2.1. �

From now on, we fix a realization of X. Permuting the X’s is equivalent to selecting n elements
from X1,X2, . . . ,Xn without replacement. The proof of Theorem 2.3 will be based on the order
statistics X1,n ≤ · · · ≤ Xn,n of X1, . . . ,Xn. Our first goal is therefore to express An,π (t) in terms
of X1,n, . . . ,Xn,n. To do so, let

ε
(n)
j (t) =

{
1, if Xj,n is among the first �nt� elements chosen,
0, otherwise,

that is, the sequence {ε(n)
j (t)} identifies those of the order statistics which are selected by the

permutation π in the first �nt� positions. If there are identical observations, then we add multiples
of 1/n2+1/α to the Xj,n’s to break the ties. Since this procedure will not change the asymptotics,
from now on, we assume, without loss of generality, that all observations are different. It is then
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easy to see that

�nt�∑
j=1

(
Xπ(j) − X̄n

) =
n∑

j=1

(Xj,n − X̄n)ε
(n)
j (t) =

n∑
j=1

(Xj,n − X̄n)ε̄
(n)
j (t),

where ε̄
(n)
j (t) = ε

(n)
j (t) − EXε

(n)
j (t) = ε

(n)
j (t) − �nt�/n is the centered version of ε

(n)
j (t).

The proof of Theorem 2.3 will be the consequence of a series of lemmas to be stated next.
Since {Xj } is a sequence of random variables in the domain of attraction of a strictly α-stable
random variable with α ∈ (0,2), only the very small and very large order statistics will contribute
asymptotically to An,π (t), which is shown in Lemmas 3.1 and 3.3.

Let VarX denote conditional variance with respect to X.

Lemma 3.1. If (1.3) holds, then

lim
K→∞ lim sup

n→∞
P

{
PX

{
1

n1/αL(n)

∣∣∣∣∣
n−K∑

j=K+1

(Xj,n − X̄n)ε̄
(n)
j (t)

∣∣∣∣∣ ≥ ε

}
≥ δ

}
= 0

for all ε > 0 and δ > 0.

Proof. Observe that the statement of our theorems does not change if we replace Xj by Xj − c

and thus we can assume that μα = 0 for all α ∈ (0,2). Clearly EXε̄
(n)
j (t) = 0 and

EX
[(

ε̄
(n)
j (t)

)2] = �nt�
n

−
(�nt�

n

)2

, j = 1, . . . , n, (3.1)

and, for j 	= k,

EX
[
ε̄
(n)
j (t)ε̄

(n)
k (t)

] = �nt�(�nt� − 1)

n(n − 1)
−

(�nt�
n

)2

= −�nt�(n − �nt�)
n2(n − 1)

. (3.2)

Further we have

EX

[
n−K∑

j=K+1

(Xj,n − X̄n)ε̄
(n)
j (t)

]
= 0

and

VarX

(
n−K∑

j=K+1

(Xj,n − X̄n)ε̄
(n)
j (t)

)

=
n−K∑

j,k=K+1

(Xj,n − X̄n)(Xk,n − X̄n)E
[
ε̄
(n)
j (t)ε̄

(n)
k (t)

]
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≤ �nt�
n

n − �nt�
n

n−K∑
j=K+1

(Xj,n − X̄n)
2 + 1

n − 1

∣∣∣∣∣
n−K∑

j,k=K+1,k 	=j

(Xj,n − X̄n)(Xk,n − X̄n)

∣∣∣∣

≤
n−K∑

j=K+1

(Xj,n − X̄n)
2 + 1

n − 1

∣∣∣∣∣
(

n−K∑
j=K+1

(Xj,n − X̄n)

)2

−
n−K∑

j=K+1

(Xj,n − X̄n)
2

∣∣∣∣∣
≤ 2

n−K∑
j=K+1

(Xj,n − X̄n)
2 + 1

n − 1

(
n−K∑

j=K+1

(Xj,n − X̄n)

)2

.

Now,

n−K∑
j=K+1

(Xj,n − X̄n)
2 ≤

n−K∑
j=K+1

X2
j,n + 2|X̄n|

∣∣∣∣∣
n−K∑

j=K+1

Xj,n

∣∣∣∣∣ + nX̄2
n.

Using (1.3) with μα = 0, we obtain

nX̄2
n

n2/αL2(n)
= 1

n

(
1

n1/αL(n)

n∑
j=1

Xj

)2

= oP (1) (n → ∞).

As a consequence of Theorem 4.1 in Csörgő et al. (1986), we obtain that, for all K ≥ 1,

1

n1/αL(n)

∣∣∣∣∣
n−K∑

j=K+1

Xj,n

∣∣∣∣∣ =OP (1)

as n → ∞. Therefore,

1

n2/αL2(n)
|X̄n|

∣∣∣∣∣
n−K∑

j=K+1

Xj,n

∣∣∣∣∣ = 1

n

∣∣∣∣∣ 1

n1/αL(n)

n∑
j=1

Xj

∣∣∣∣∣
∣∣∣∣∣ 1

n1/αL(n)

n−K∑
j=K+1

Xj,n

∣∣∣∣∣ = oP (1).

Clearly, the random variables X2
j belong to the domain of attraction of a stable law with para-

meter α/2, with norming factor n2/αL2(n) and centering factor 0. Hence, Corollary 3.1, Theo-
rem 4.1 and Proposition A.3 of Csörgő et al. (1986) imply that

1

n2/αL2(n)

n−K∑
j=K+1

X2
j,n

D−→ A(K) (n → ∞),

where

A(K) = q2/α

∞∑
j=K+1

1

S
2/α
j

+ p2/α

∞∑
j=K+1

1

(S∗
j )2/α

.
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Clearly, A(K) → 0 a.s. as K → ∞. Another application of Theorem 4.1 in Csörgő et al. (1986)
yields that, for any K ≥ 1 and n → ∞,

1

n − 1

1

n2/αL2(n)

(
n−K∑

j=K+1

(Xj,n − X̄n)

)2

= 1

n − 1

(
1

n1/αL(n)

n−K∑
j=K+1

(Xj,n − X̄n)

)2

= oP (1).

The assertion of Lemma 3.1 is now obtained from Markov’s inequality. �

Without loss of generality, we henceforth assume that all processes used in this paper are
defined on the same probability space. In the following, we shall utilize a result of Berkes and
Philipp (1979) to show that, on the remaining index range j ∈ [0,K] ∪ [n − K + 1, n], the
dependent random variables {ε(n)

j (t)} can be approximated with the sequence of independent

Bernoulli variables {δ(n)
j (t)} introduced above.

Lemma 3.2. If (1.3) holds, then, for each n and each t ∈ (0,1), there exist independent, identi-
cally distributed random variables δ

(n)
j (t), j = 1, . . . , n, independent of {Xj }, with

P
{
δ
(n)
j (t) = 1

} = �nt�
n

and P
{
δ
(n)
j (t) = 0

} = n − �nt�
n

(3.3)

such that

PX

{
K∑

j=1

(Xj,n − X̄n)
(
ε
(n)
j (t) − δ

(n)
j (t)

) 	= 0

}
≤ 48K2

n
(3.4)

and

PX

{
n∑

j=n−K+1

(Xj,n − X̄n)
(
ε
(n)
j (t) − δ

(n)
j (t)

) 	= 0

}
≤ 48K2

n
(3.5)

for all K = 1, . . . , �n/2�.

Note that relations (3.4) and (3.5) are obvious for K ≥ √
n/48, but we will use the lemma for

constant K .

Proof of Lemma 3.2. For j ≥ 1, let γ2j−1 = ε
(n)
j (t) and γ2j = ε

(n)
n−j+1(t). To replace the depen-

dent ε
(n)
j (t) with the independent δ

(n)
j (t) given in (3.3), we need to derive an upper bound for

the difference between the conditional probability P {γk = ak|γk−1 = ak−1, . . . , γ1 = a1} and the
probability P {γk = ak}. To do so, consider a set A = {x1, . . . , xn} and choose from it a subset
of �nt� elements. The probability that this subset contains r fixed elements of A but does not
contain another fixed s elements of A is p

(n)
r,s (t) = (

n−r−s
�nt�−r

)
/
(

n
�nt�

)
. Provided that k = r + s, it

holds that P {γ1 = a1, . . . , γk = ak} = p
(n)
r,s (t), where r of the coefficients aν are equal to 1 and s
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are equal to 0. Similarly, P {γ1 = a1, . . . , γk = ak, γk+1 = 1} = p
(n)
r+1,s(t). Consequently,

P {γk+1 = 1|γ1 = a1, . . . , γk = ak} = p
(n)
r+1,s(t)

p
(n)
r,s (t)

= �nt� − r

n − r − s
.

Since it can be assumed that 1 ≤ k ≤ n/2, we can estimate∣∣∣∣ �nt� − r

n − r − s
− t

∣∣∣∣ ≤ 1 + r + s

n − r − s
= 1 + k

n(1 − k/n)
<

1 + k

n

(
1 + 2k

n

)
≤ 4k

n
.

In a similar fashion, we can obtain

|P {γk+1 = 1} − t | ≤ 4k

n
.

Thus, for ak+1 = 1 (and consequently for ak+1 = 0), we have

∣∣P {γk+1 = ak+1|γk = ak, . . . , γ1 = a1} − P {γk+1 = ak+1}
∣∣ ≤ 8k

n

for all k = 2, . . . , n. Hence, applying Theorem 2 of Berkes and Philipp (1979), there exist inde-
pendent Bernoulli random variables δ

(n)
j (t), j = 1, . . . , n, satisfying (3.3) such that

P

{∣∣ε(n)
k (t) − δ

(n)
k (t)

∣∣ ≥ 48k

n

}
≤ 48k

n

and

P

{∣∣ε(n)
n−k+1(t) − δ

(n)
n−k+1(t)

∣∣ ≥ 48k

n

}
≤ 48k

n

for k = 1, . . . , �n/2�. Since the variables ε
(n)
j (t) and δ

(n)
j (t) take only the values 0 and 1, the

last two formulas imply that, with the exception of a set of probability not exceeding 48K2/n,
all differences ε

(n)
j (t) − δ

(n)
j (t) in the sum in (3.4), and similarly in the sum in (3.5), are equal

to 0. �

The following lemma is the counterpart of Lemma 3.1, in which the ε̄
(n)
j (t) are replaced by

mean-corrected variables δ̄
(n)
j (t).

Lemma 3.3. If (1.3) holds, then

lim
K→∞ lim sup

n→∞
P

{
PX

{
1

n1/αL(n)

∣∣∣∣∣
n−K∑

j=K+1

(Xj,n − X̄n)δ̄
(n)
j (t)

∣∣∣∣∣ ≥ ε

}
≥ δ

}
= 0

for all ε > 0 and δ > 0, where δ̄
(n)
j (t) = δ

(n)
j (t) − �nt�/n.
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Proof. The assertion follows along the lines of the proof of Lemma 3.1. �

Let Sj,n = (Xj,n − X̄n)/Tn denote the standardized extreme order statistics. The joint weak
convergence of the Sj,n, j ∈ [1,K] ∪ [n − K + 1, n], is given in the following lemma. Recall
from Section 2 that {Sj : j ≥ 1} and {S∗

j : j ≥ 1} are sums of independent sequences consisting of
independent exponential random variables with parameter 1.

Lemma 3.4. If (1.3) holds, then, as n → ∞,

(Sj,n : j ∈ [1,K] ∪ [n − K + 1, n]) D−→ 1

M

(
− w1

S
1/α

1

, . . . ,− w1

S
1/α
K

,
w2

(S∗
K)1/α

, . . . ,
w2

(S∗
1 )1/α

)
,

where w1 = q1/α , w2 = p1/α and M is the random variable defined in (2.5).

Proof. Csörgő et al. (1986), page 110, showed that

1

n1/αL(n)
(Xj,n : j ∈ [1,K] ∪ [n − K + 1, n])

D−→
(

− w1

S
1/α

1

, . . . ,− w1

S
1/α
K

,
w2

(S∗
K)1/α

, . . . ,
w2

(S∗
1 )1/α

)
.

Since, by (1.3), X̄n/Tn
P→ 0 and, clearly, Tn = max{|X1,n|, |Xn,n|}, Lemma 3.4 is proved. �

Proof of Theorem 2.3. In view of Lemma 3.1, we have

lim sup
n→∞

L
(

distX
1

n1/αL(n)

n∑
j=1

(Xj,n − X̄n)ε̄
(n)
j (t),

distX
1

n1/αL(n)

∑
j∈[1,K]∪[n−K+1,n]

(Xj,n − X̄n)ε̄
(n)
j (t)

)
= B(K),

where B(K)
P→ 0 as K → ∞. Here, distX denotes conditional distribution with respect to

X and L is the Lévy distance. We used here the fact that if, for two random variables ξ and η,
we have P(|ξ − η| ≥ ε) ≤ ε, then the Lévy distance of the distributions of ξ and η is not greater
than ε. By Lemma 3.3, the previous relation remains valid if we replace ε̄

(n)
j (t) by δ̄

(n)
j (t). Fur-

ther, ε̄
(n)
j (t) − δ̄

(n)
j (t) = ε

(n)
j (t) − δ

(n)
j (t) and thus Lemma 3.2 implies that for any fixed K , the

Lévy distance of the conditional distributions

distX
1

n1/αL(n)

∑
j∈[1,K]∪[n−K+1,n]

(Xj,n − X̄n)ε̄
(n)
j (t)
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and

distX
1

n1/αL(n)

∑
j∈[1,K]∪[n−K+1,n]

(Xj,n − X̄n)δ̄
(n)
j (t)

tends to 0 in probability as n → ∞. Since Tn/(n
1/αL(n)) has a non-degenerate limit distribution,

the above statements remain valid if we replace the norming factor n1/αL(n) by Tn. Thus, it
suffices to consider the limiting behavior of

distX
1

Tn

( ∑
j∈[1,K]∪[n−K+1,n]

(Xj,n − X̄n)δ̄
(n)
j (t)

)
= distX

( ∑
j∈[1,K]∪[n−K+1,n]

Sj,nδ̄
(n)
j (t)

)

for fixed K . By the Skorokhod–Dudley–Wichura representation theorem (see, e.g., Shorack and
Wellner (1986), page 47), on a sufficiently large probability space, one can redefine the vectors
(Sj,n : j ∈ [1,K] ∪ [n − K + 1, n]) and the independent sequences {Sj : j ≥ 1}, {S∗

j : j ≥ 1} such
that the convergence relation in Lemma 3.4 holds almost surely. Since the Lévy distance of the
distribution of two sums∑

j∈[1,K]∪[n−K+1,n]
cj δ̄

(n)
j (t) and

∑
j∈[1,K]∪[n−K+1,n]

c′
j δ̄

(n)
j (t)

is not greater than
∑

j∈[1,K]∪[n−K+1,n] |cj − c′
j | for any real sequences {cj }, {c′

j }, it follows that
for the redefined variables Sj,n, Sj , S∗

j , we have

L
(

distS
∑

j∈[1,K]∪[n−K+1,n]
Sj,nδ̄

(n)
j (t),

distS
1

M

[
−w1

K∑
j=1

1

S
1/α
j

δ̄
(n)
j (t) + w2

K∑
j=1

1

(S∗
j )1/α

δ̄
(n)
n−j+1(t)

])
P−→ 0

as n → ∞. Clearly, this redefinition will change the random distribution

distX
∑

j∈[1,K]∪[n−K+1,n]
Sj,nδ̄

(n)
j (t)

(as it will be defined on a new probability space), but not its distribution. Hence, it suffices to
show that the Lévy distance of the conditional distributions

distS
1

M

(
−w1

K∑
j=1

1

S
1/α
j

δ̄
(n)
j (t) + w2

K∑
j=1

1

(S∗
j )1/α

δ̄
(n)
n−j+1(t)

)
(3.6)

and

distS
1

M

(
−w1

K∑
j=1

1

S
1/α
j

(
δj (t) − t

) + w2

K∑
j=1

1

(S∗
j )1/α

(
δ∗
j (t) − t

))
(3.7)
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tends to 0 a.s. for any fixed K ≥ 1 and that the conditional distribution in (3.7) converges a.s.
to the same expression with K = ∞. The first statement is obvious from the fact that δ̄

(n)
j (t) =

δj (t) − �nt�/n and the second statement follows from the fact that, by the strong law of large
numbers, we have Sj/j → 1 a.s. and thus

VarS

(
1

S
1/α
j

(
δj (t) − t

)) =O(j−2/α) a.s.,

whence it follows that the series

∞∑
j=1

1

S
1/α
j

(
δj (t) − t

)
and

∞∑
j=1

1

(S∗
j )1/α

(
δ∗
j (t) − t

)

are, conditionally on S, a.s. convergent by the Kolmogorov two series theorem. Note, finally,
that, by a theorem of Lévy (1931), page 150 (see also Breiman (1968), page 51, Problem 16), the
distribution

distS
1

M

(
−w1

∞∑
j=1

1

S
1/α
j

(
δj (t) − t

) + w2

∞∑
j=1

1

(S∗
j )1/α

(
δ∗
j (t) − t

))

is a.s. continuous. Since weak convergence of (ordinary) distributions to a continuous limit im-
plies the pointwise convergence of the corresponding distribution functions, Theorem 2.3 fol-
lows. �

The proof of Theorem 2.4 requires a simple modification of Lemma 3.2.

Lemma 3.5. If (1.3) holds, then, for each n and each choice of 0 < t1 < · · · < tr < 1, there
exist independent, identically distributed random vectors (δ

(n)
j (t1), . . . , δ

(n)
j (tr )), j = 1, . . . , n,

independent of {Xj }, such that

(
δ
(n)
j (t1), . . . , δ

(n)
j (tr )

) D=
(

I

{
U ≤ �nt1�

n

}
, . . . , I

{
U ≤ �ntr�

n

})
,

where U denotes a uniform random variable on [0,1] and, further, for all δ > 0,

PX

{
max

1≤≤r

1

n1/αL(n)

∣∣∣∣∣
K∑

j=1

(Xj,n − X̄n)
(
ε
(n)
j (t) − δ

(n)
j (t)

)∣∣∣∣∣ > δ

}
P−→ 0

and

PX

{
max

1≤≤r

1

n1/αL(n)

∣∣∣∣∣
n∑

j=n−K+1

(Xj,n − X̄n)
(
ε
(n)
j (t) − δ

(n)
j (t)

)∣∣∣∣∣ > δ

}
P−→ 0.
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Proof. The assertion of Lemma 3.5 follows by applying the approximation procedure in the
proof of Lemma 3.2 to the vector (ε

(n)
j (t1), . . . , ε

(n)
j (tr )) instead of ε

(n)
j (t). Since the changes are

routine, we omit the details. �

Proof of Theorem 2.4. The proof can be given by repeating the arguments developed in the
proof of Theorem 2.3, replacing Lemma 3.2 with Lemma 3.5. �
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