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New goodness-of-fit tests for Markovian models in time series analysis are developed which are based on
the difference between a fully nonparametric estimate of the one-step transition distribution function of the
observed process and that of the model class postulated under the null hypothesis. The model specification
under the null allows for Markovian models, the transition mechanisms of which depend on an unknown
vector of parameters and an unspecified distribution of i.i.d. innovations. Asymptotic properties of the test
statistic are derived and the critical values of the test are found using appropriate bootstrap schemes. General
properties of the bootstrap for Markovian processes are derived. A new central limit theorem for triangular
arrays of weakly dependent random variables is obtained. For the proof of stochastic equicontinuity of
multidimensional empirical processes, we use a simple approach based on an anisotropic tiling of the space.
The finite-sample behavior of the proposed test is illustrated by some numerical examples and a real-data
application is given.
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1. Introduction

The analysis of time series is often based on parametric or semi-parametric model assumptions
that must be tested in practice. An important class of stochastic processes used in modelling time
series is that of Markov type, which are described by a specification of the transition kernel,
usually involving a finite-dimensional parameter vector and possibly a partial specification of the
distribution of some innovations.

Many available tests of parametric or semiparametric models in time series analysis originate
from corresponding frameworks with independent and identically distributed data and are based
on the difference between the stationary distribution or the regression/autoregression function
and corresponding empirical counterparts. Tests proposed by Bierens (1982) and McKeague and
Zhang (1994) focus on the conditional mean function. For the autoregression function, an ap-
proach leading to distribution-free tests using a martingale transformation has been proposed
by Koul and Stute (1999). For an overview, see also Delgado and González Manteiga (2001).
Sometimes, the autoregression function that corresponds to a hypothetical model is not explic-
itly known, which causes problems for testing schemes based on it. More importantly, however,
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a model check based on the stationary distribution or the autoregression function is not able to
detect all types of departures from a hypothetical model. It might happen that the autoregres-
sion functions and/or the conditional variance functions of two processes are similar or identical,
whereas their conditional distributions are essentially different.

In the present paper, we derive tests of the validity of a Markov model by directly comparing
the hypothetical, model-based conditional distribution with its model-free estimated empirical
counterpart. Let X = (Xt )t∈Z be the process considered and denote by PX the law of X. Denote
by M the class of Markov processes of order less than or equal to p, that is,

M= {
PX :P

(
Xt ∈ B|σ(Xs, s < t)

)= P(Xt ∈ B | Xt−1) ∀B ∈ B,∀t ∈ Z
}
,

where Xt−1 = (Xt−1, . . . ,Xt−p)′. The problem we consider in this paper is that of testing the
hypothesis

H0 :PX ∈ M0 ∩M
against the alternative

H1 :PX ∈M \M0,

where M0 ⊂M denotes the class of pth order Markov processes described by

M0 = {PX :Xt = G(Xt−1, θ, εt ), εt ∼ Fε i.i.d.; θ ∈ �,Fε ∈ Fε}.
In the above notation, G : Rp × � × R → R is some known function depending on an unknown
parameter vector θ and (εt )t∈Z is a sequence of i.i.d. innovations with distribution Fε belonging
to some appropriate class of distribution functions denoted by Fε . Note that, under the null
hypothesis, the transition kernel generating Xt is known up to the finite-dimensional parameter
vector θ and the distribution function Fε of the innovations. Testing problems fitting into this
framework are discussed in Section 2. In this paper, an appropriate test statistic for the above
testing problem is obtained which is based on the supremum deviation of a fully nonparametric
estimator of the conditional distribution function FXt |Xt−1 from its model-based one. If H0 were
a simple hypothesis, that is, if θ and Fε were specified under H0, then we could consider as a
starting point for a test the deviation process given by

U(0)
n (x, y) = 1√

n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − FH0(y | Xt−1)],
(1.1)

(x, y) ∈ R
p × R,

where FH0(y | Xt−1) denotes the one-step transition distribution function of the Markov model

class postulated under H0 and x 
 y means xi ≤ yi for all i = 1, . . . , p. Note that U
(0)
n (x, y)

measures, for every point (x, y), the difference between the sample one-step transition distribu-
tion function and its model-based version under the null. As we will see in the sequel, appropriate
specifications of the function FH0(y | Xt−1) under H0 lead to useful test statistics. We consider
as important cases AR(p) or ARCH(p) processes and show that the above deviation process
can be asymptotically approximated by a Gaussian process. Note that, although M0 is general
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enough, it may be of interest in some applications to test more restricted versions of M0. For
instance, in ARCH modelling, it is not uncommon to impose specific parametric assumptions
on the distribution Fε of the innovations (cf. Engle (1982) and Bollerslev (1987)). Our inference
procedure also allows for the testing of hypotheses of this type; see the discussion at the end of
Section 3.

Since the parameters of the limiting Gaussian process of the statistic considered depend on
the actual stochastic process in a complicated way, we approximate the null distribution of the
test statistic by means of a model-based bootstrap approach. For the cases considered, the most
natural bootstrap scheme is a model-based bootstrap without an additional smoothing of the
residuals, that is, a bootstrap based on i.i.d. residuals with a discrete distribution. It is known
that such processes may fail to satisfy classical mixing conditions; see, for example, Rosenblatt
(1980). However, using the alternative concept of weak dependence introduced by Doukhan and
Louhichi (1999), we are able to establish some general properties of such bootstrap schemes
which may be of interest in their own right. In a different context and for inference problems
different from those considered here, bootstrap methods related to that proposed in this paper
have been considered by, among others, Basawa, Green, McCormick and Taylor (1990), Rajarshi
(1990), Paparoditis and Politis (2002) and Bühlmann (2002).

Testing problems based on the conditional distribution function have attracted some interest
in recent years. For i.i.d. observations, specification tests of a parametric hypothesis concern-
ing the conditional distribution have been considered by Andrews (1997) and Stinchcombe and
White (1998). For dependent, mostly-mixing observations, tests based on the conditional distrib-
ution function have also been investigated by some authors. Li and Tkacz (2001) proposed a test
based on an L2-type distance between the nonparametrically estimated conditional density and
its model-based parametric counterpart. Corradi and Swanson (2001) and Bai (2003) considered
a Kolmogorov-type test. Testing problems associated with linear restrictions on the conditional
distribution function have been considered by Inoue (1999). Although some of the above ap-
proaches deal with testing problems similar to our own, none of these papers covers the more
general case described by our null hypothesis H0. Furthermore, our analysis is based on the alter-
native concept of weak dependence, which appears to be quite important in the current context.
We investigate basic properties of model-based bootstrap approaches and, as a technical prereq-
uisite for our analysis, we prove a central limit theorem for triangular arrays of weakly dependent
random variables which does not require moment conditions beyond Lindeberg’s.

The paper is organized as follows. In Section 2, we precisely state our assumptions on the
underlying stochastic process and discuss some interesting examples of Markovian models which
fit into our testing framework. In Section 3, the test statistic used is presented and its asymptotic
behavior under validity of the null hypothesis is established. Bootstrap approximations to the
distribution of the test statistic under the null are investigated in Section 4. Some numerical
examples illustrating our theoretical analysis, as well as an application to financial data, are
given in Section 5. In Section 6, we prove a central limit theorem for triangular schemes of
weakly dependent random variables. Section 7 contains the proofs of all statistical results and a
lemma which provides the major step in a proof of stochastic equicontinuity.
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2. Assumptions and examples of processes

We assume that observations X1−p, . . . ,Xn from a real-valued, stationary process X = (Xt )t∈Z

are available. The null hypothesis is that X is a Markov process of order p with a particular form
of the conditional distribution, that is, PX belongs to M0 ∩M. Recall that G : Rp ×�×R → R

is some known function depending on an unknown parameter vector θ and (εt )t∈Z is a sequence
of i.i.d. innovations with distribution Fε . Since our test statistic below requires estimates of θ

and Fε , we must be more specific about the models to be considered and it turns out that as-
ymptotic properties must be derived in a case-by-case manner. We will focus our attention on the
following classes of processes.

2.1. AR(p) processes

Here, we suppose that, under H0, the following condition is satisfied.

(A1) The process X = (Xt )t∈Z obeys the model equation

Xt = θ ′
Xt−1 + εt , (2.1)

where (εt )t∈Z is a sequence of i.i.d. innovations with Eεt = 0, 0 < Eε2
t = σ 2, Eε4

t < ∞
and θ = (θ1, θ2, . . . , θp)′ ∈ � and

� = {θ ∈ R
p : 1 − θ1z − · · · − θpzp 
= 0 for all z ∈ C with |z| ≤ 1}.

In this case, the function G is given as G(Xt−1, θ, εt ) = θ ′
Xt−1 + εt , while P(Xt ≤ y |

Xt−1) = Fε(w(Xt−1, y, θ)) with w(Xt−1, y, θ) = y − θ ′
Xt−1.

It is well known that (2.1) has, under (A1), a unique stationary solution which has a repre-
sentation as a causal linear (MA(∞)-) process, that is, Xt = ∑∞

k=0 αkεt−k , where |αk| ≤ Kρk

for some K < ∞, ρ < 1; see, for example, Brockwell and Davis (1991), page 85. Adapting
the proof of Lemma 9 in Doukhan and Louhichi (1999), it can be shown that (A1) implies, for
s1 < · · · < su < t1 < · · · < tv and arbitrary measurable functions g : Ru −→ R, h : Rv −→ R with
Eg2(Xs1, . . . ,Xsu) < ∞, Eh2(Xt1, . . . ,Xtv ) < ∞,

| cov(g(Xs1 , . . . ,Xsu), h(Xt1 , . . . ,Xtv ))|
(2.2)

≤
√

Eg(Xs1, . . . ,Xsu)
2 Lip(h)

√
Eε2

0

∞∑
k=t1−su

|αk|
[(

k − (t1 − su) + 1
)∧ v

]
.

Furthermore, it can also be shown that, for s1 < · · · < su < t1 ≤ t2, 1 ≤ k1, k2 ≤ p, the following
inequalities hold true: for any measurable g : Ru −→ R with Eg2(Xs1, . . . ,Xsu) < ∞,

| cov(g(Xs1, . . . ,Xsu),Xt1−k1εt1)| ≤ C

√
Eg2(Xs1 , . . . ,Xsu)ρt1−k1−su (2.3)

and, for any measurable g : Ru −→ R with ‖g‖∞ = supx∈Ru |g(x)| < ∞,

| cov(g(Xs1, . . . ,Xsu),Xt1−k1Xt2−k2εt1εt2)| ≤ C‖g‖∞ρmin{t1−k1−su,t2−k2−su}, (2.4)
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where ρr =
√∑∞

k=r |αk|, that is, a weak dependence condition similar to those in Doukhan and
Louhichi (1999) is fulfilled.

2.2. ARCH(p) processes

The class of autoregressive, conditionally heteroscedastic (ARCH) processes was introduced by
Engle (1982). In this case, our null hypothesis means that the process fulfills the following con-
dition.

(A1′) The process X = (Xt )t∈Z is stationary and obeys the model equation

Xt =
√

θ0 + θ1X
2
t−1 + · · · + θpX2

t−pεt , (2.5)

where θ = (θ0, θ1, . . . , θp)′ ∈ � and � = {θ ∈ R
p+1 : θ0 > 0, θi ≥ 0, i = 1, . . . , p and∑p

i=1 θi < 1}. Furthermore, (εt )t∈Z is a sequence of i.i.d. innovations with Eεt = 0,
Eε2

t = 1 and Eε8
t < ∞.

In this case, the function G is given as G(Xt−1, θ, εt ) =
√

θ0 + θ1X
2
t−1 + · · · + θpX2

t−pεt .

Moreover, we have that P(Xt ≤ y | Xt−1) = Fε(w(Xt−1, y, θ)) with w(Xt , y, θ) =
y/

√
θ0 + θ1X

2
t−1 + · · · + θpX2

t−p . Milhøj (1985) obtained a representation of the unique sta-

tionary solution to (2.5) as X̃t = εt · (θ0 · ∑∞
k=0 M(t, k))1/2, where M(t,0) = 1, M(t, k) =∑p

a1,...,ak=1

∏k
i=1 θai

ε2
t−a1−···−ai

. (Obviously,
∑k

i=1 in the second display after equation (2.1) in

Milhøj (1985) should read
∏k

i=1.) The process (X̃t )t∈Z is both weakly and strictly stationary. To
deal with this process, we will exploit the following weak dependence property.

Lemma 2.1. Suppose that (A1′) is fulfilled. There then exist some ρ < 1, C < ∞, such that, for
all s1 < · · · < su < t1 < · · · < tv and arbitrary measurable functions g : Ru −→ R, h : Rv −→ R

with Eg2(Xs1, . . . ,Xsu) < ∞ and Eh2(Xt1, . . . ,Xtv ) < ∞,

| cov(g(Xs1, . . . ,Xsu), h(Xt1 , . . . ,Xtv ))|
(2.6)

≤ C

√
Eg2(Xs1, . . . ,Xsu)Lip(h)ρt1−su .

Furthermore, for s1 < · · · < su < t1 ≤ t2, 1 ≤ k1, k2, k3, k4 ≤ p, the following inequalities hold
true: for any measurable g : Ru −→ R with Eg2(Xs1, . . . ,Xsu) < ∞,∣∣ cov

(
g(Xs1, . . . ,Xsu),X

2
t1−k1

X2
t1−k2

(ε2
t1

− 1)
)∣∣

(2.7)
≤ C

√
Eg2(Xs1, . . . ,Xsu)ρ

t1−su

and, for any measurable g : Ru −→ R with ‖g‖∞ = supx∈Ru |g(x)| < ∞,∣∣ cov
(
g(Xs1, . . . ,Xsu),X

2
t1−k1

X2
t1−k2

X2
t2−k3

X2
t2−k4

(ε2
t1

− 1)(ε2
t2

− 1)
)∣∣

(2.8)
≤ C‖g‖∞ρt1−su .
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2.3. Markov processes driven by diffusions

At this point, we would like to explicitly mention two particular classes of processes which are
of interest in financial mathematics.

2.3.1. Vasicek model

Merton (1971) proposed to model interest rate processes by an Ornstein–Uhlenbeck process (in
continuous time),

dXt = θ1(θ2 − Xt)dt + θ3 dWt, (2.9)

where θ1, θ2, θ3 > 0 and (Wt )t∈Z is a standard Wiener process. This model was further con-
sidered by Vasicek (1977). Assume that we observe this process at equidistant design points �t ,
where t = 0,1, . . . , n. These observations then form a Markov process with stationary and condi-
tionally normal distributed increments where, for s < t , E(Xt | Xs) = θ2 +(Xs −θ2)e−θ1(t−s) and
var(Xt | Xs) = θ2

3 (1 − exp{−2θ1(t − s)})/(2θ1). Hence, introducing appropriate innovations εt ,
we can rewrite (X�t )t∈Z in the form X�t = G(X�(t−1), θ, εt ), where G(X�(t−1), θ, εt ) =
[θ2 + (X�(t−1) − θ2)e−θ1�] + εt and (εt )t∈Z is a sequence of independent normally distributed
variables with zero mean and variance θ2

3 (1−exp{−2θ1(t − s)})/(2θ1). Accordingly, the process
(Yt )t∈Z with Yt = X�t − θ2 is an AR(1) process with parameter eθ1� which satisfies conditions
analogous to (2.2) to (2.4) above.

2.3.2. Cox–Ingersoll–Ross model

Also for the purpose of modelling interest rates, Cox, Ingersoll and Ross (1985) proposed the
specification

dXt = θ1(θ2 − Xt)dt + θ3

√
Xt dWt, (2.10)

where θ1, θ2, θ3 > 0 and (Wt)t≥0 is a standard Wiener process. Again, the values of the process
at equidistant time points form a stationary Markovian process. An explicit description of the
conditional distribution of X�t given X�(t−1) can be found in Cox et al. (1985), page 391. In
the special case where q = 4θ1θ2/θ

2
3 is an integer, it follows that the conditional distribution

of Yt = cX�t [c = 4θ1/(θ3(1 − e−θ1�))] given Yt−1 is noncentral chi-square with q degrees of
freedom and parameter of noncentrality Yt−1e−θ1�.

Let G(λ,x) = F−1
χ2

q (exp{−θ1�}λ)
(x). With an appropriate sequence (εt )t∈Z of independent

uniform(0,1)-distributed innovations, we can write (Yt )t∈Z as Yt = G(Yt−1, θ, εt ),
θ = (θ1, θ2, θ3)

′. From E|G(0, θ, εt )| < ∞ and E|G(u, θ, εt ) − G(v, θ, εt )| = |EG(u, θ, εt ) −
EG(v, θ, εt )| ≤ exp{−θ1�}|u − v|, it follows, analogously to Lemma 10 of Doukhan and
Louhichi (1999), that conditions such as (2.2) to (2.4) are fulfilled.

3. The test statistics and its limit distribution

Consider testing the hypothesis H0 of interest. Since P(Xt ≤ y | Xt−1 = x) cannot be consis-
tently estimated in general, we construct our test statistic from cumulative versions of the hy-



20 M.H. Neumann and E. Paparoditis

pothetical transition probabilities and model-free estimators thereof. As mentioned in the Intro-
duction, the basic idea needed to construct an appropriate deviation process is to consider the
difference between a fully nonparametric version of the one-step transition distribution function
and its parametric version postulated under H0, that is, to consider the basic deviation process
U

(0)
n (x, y) given in (1.1). To specify FH0(y | Xt−1) given in this equation, that is, to specify the

one-step transition distribution function under the null hypothesis, we proceed as follows. Since
the null hypothesis is only partially specified, that is, θ and Fε are unknown, we replace these
unknown quantities by their corresponding sample estimates. In particular, and in order to deal
with the uncertainty introduced by the fact that θ is unknown, we assume the following

(A2) The sequence of estimators θ̂ admits the expansion

θ̂ − θ = 1

n

n∑
t=1

l(Xt−1,Xt ; θ) + oP (n−1/2),

where l(·, ·; ·) is a measurable function from R
p ×R×� to R

k with Eθ l(Xt−1,Xt ; θ) =
(0, . . . ,0)′ and Eθ‖l(Xt−1,Xt ; θ)‖2 < ∞.

Note that in the AR(p) case, assumption (A2) is satisfied with k = p, l(Xt−1,Xt ; θ) =
�−1

p Xt−1εt and �p = �p(θ) = Eθ (Xt−1X
′
t−1) if θ̂ is the commonly used least-squares or Yule–

Walker estimator (cf. Brockwell and Davis (1991)). For the linear ARCH(p) case, (A2) is,
for instance, satisfied if θ̂ is the least-squares estimator of θ = (θ0, θ1, . . . , θp)′. In this case,
k = p + 1, l(Xt−1,Xt ; θ) = C−1

p Yt−1Y
′
t−1θ(ε2

t − 1), where Cp = Cp(θ) = Eθ (Yt−1Y
′
t−1) and

Yt−1 = (1,X2
t−1, . . . ,X

2
t−p)′.

To deal with the fact that Fε is unknown, we replace Fε by the empirical distribution function
of estimated residuals ε̃t , that is,

F̃ε(y) = 1

n

n∑
t=1

I (̃εt ≤ y), (3.1)

where ε̃t = w(Xt ,Xt , θ̂ ). Note that the estimator θ̂ used is assumed to satisfy (A2). Note, further,
that instead of F̃ε , we can also use an estimator of Fε based on centered and/or standardized
residuals like those used in the bootstrap schemes discussed in Section 4. This, however, will
result in an extra term in the asymptotic covariances of the finite-dimensional distributions of the
process Un given below.

The above considerations and the resulting specification of FH0(·|Xt−1) in (1.1) lead to the
basic deviation process

Un(x, y) = 1√
n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − F̃ε(w(Xt−1, y, θ̂))], (3.2)

which is used in the sequel for testing the null hypothesis of interest. A basis for a test of H0 is
now given by the supremum deviation,

Sn = sup
(x,y)∈Rp×R

|Un(x, y)|. (3.3)
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Notice that, for any x1, . . . , xk−1, xk+1, . . . , xp, y (1 ≤ k ≤ p), Un(x1, . . . , xk−1, . . . , xk+1,

. . . , xp, y) is piecewise constant with possible jumps at X1−k, . . . ,Xn−k . Furthermore, Un(x, ·)
has possible jumps at X1, . . . ,Xn and is monotonously nonincreasing between these jumps.
Hence, it follows that

Sn = max
(x,y)∈X n

|Un(x, y)|,

where X n = {−∞,X0, . . . ,Xn−1} × · · · × {−∞,X1−p, . . . ,Xn−p} × {−∞,X1 − 0,

X1, . . . ,Xn − 0,Xn,∞}; that is, it suffices to compute the test statistic by evaluating Un on
the grid X n.

To derive the asymptotic distribution of Sn, we first determine the limit distribution of
the processes Un. Let D = D(R̄p+1) be the space of cadlag functions on the extended
(p + 1)-dimensional Euclidean space R̄

p+1, that is, of functions which are continuous from
above and possess limits from below. It is clear that Un belongs to D with probability 1. Since we
deal with suprema of these processes, it is convenient to endow D with the supremum norm ‖ · ‖
and to prove weak convergence of the distributions in the normed space (D,‖ · ‖). In accordance
with the discussion in Section IV.1 in Pollard (1984), we do not endow the space D with the Borel
σ -field generated by the closed sets under the uniform metric since this σ -field would be too rich,
consequently creating measurability problems. Rather, we use the projection σ -field P generated
by the coordinate projection maps. Since Sn can be written as sup(x,y)∈Qp×Q |Un(x, y)|, it is clear
that it is (P −B)-measurable, where B is the Borel σ -field. The fact that D is not separable does
not matter in the following since the limit process U is concentrated on a separable subset of con-
tinuous functions. Consequently, we can apply the continuous mapping theorem (Theorem V.1
in Pollard (1984)) to derive the limit distribution of the test statistics. The following theorem
establishes the asymptotic behavior of Sn if the null hypothesis is true.

Theorem 3.1. Suppose that H0 is true with Xt = G(Xt−1, θ, εt ) in M0 satisfying (A1) or (A1′).
Assume, further, that (A2) is fulfilled. If n → ∞, then

Un
d−→ U,

where U is a Gaussian process with continuous sample paths, zero mean and covariance function

�((x1, y1), (x2, y2))

=
∑
t∈Z

cov
(
g1(X0,X0;x1, y1) + g2(X0,X0;x1, y1) + g3(X0,X0;x1, y1),

g1(Xt−1,Xt ;x2, y2) + g2(Xt−1,Xt ;x2, y2) + g3(Xt−1,Xt ;x2, y2)
)

with

g1(Xt−1,Xt ;x, y) = I (Xt−1 
 x)[I (Xt ≤ y) − Fε(w(Xt−1, y, θ))],
g2(Xt−1,Xt ;x, y) = l(Xt−1,Xt ; θ)′

∫
{z
x}

Ḟε(w(z, y, θ))P Xt−1(dz)
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and

g3(Xt−1,Xt ;x, y) = −
∫

{z
x}
[
I
(
εt ≤ w(z, y, θ)

)− P
(
εt ≤ w(z, y, θ)

)]
P Xt−1(dz).

Theorem 3.1 and an application of the continuous mapping theorem together yield that an
asymptotically α-level test for testing H0 is given by the following rule: reject H0 if Sn > t1−α,∞,
where t1−α,∞ denotes the (1 − α)-quantile point of the distribution of sup(x,y)∈Rp×R |U(x, y)|.
A bootstrap approach to calculating these quantiles is given in the next section.

We conclude this section by mentioning that testing more specific null hypotheses concerning
the transition kernel of the underlying Markov process is also possible using our approach. For
this, appropriate specifications of the basic deviation process (1.1) can be used, depending on the
specifications imposed of FH0(· | Xt−1). Clearly, the most simple case is that of a fully specified
Markov model, that is, that of testing

H
(1)
0 :PX ∈ {PX :Xt |Xt−1 ∼ F0(· | Xt−1)} ∩M.

The obvious specification of U
(0)
n (x, y) which is appropriate in this case is

U(1)
n (x, y) = 1√

n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − F0(y | Xt−1)]. (3.4)

Another example, which is of more interest in applications, is where the one-step transition
distribution function under the null depends on an unknown vector of parameters θ , but the
distribution function of the innovations is specified, that is, where

H
(2)
0 :PX ∈ {PX :Xt = G(Xt−1, θ, εt ), εt ∼ Fε i.i.d.; θ ∈ �} ∩M.

In this case and instead of (3.2), the specification

U(2)
n (x, y) = 1√

n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − Fε(w(Xt−1, y, θ̂))] (3.5)

should be used. It can be shown, along the same lines as in the proof of Theorem 3.1, that

U
(2)
n

d−→ U(2), where U(2) is a zero-mean Gaussian process, the covariance function of which is
that obtained from �((x1, y1), (x2, y2)) given in Theorem 3.1 after ignoring the component g3.

4. Bootstrap approximations

4.1. The bootstrap procedure

To approximate the distribution of Sn under the null hypotheses, we use a model-based bootstrap
approach which employs the particular structure of the generating equation Xt = G(Xt−1, θ, εt ).
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In this context, the unknown parameter θ is replaced by its estimator θ̂ . Furthermore, the inno-
vations εt are replaced by pseudo-innovations generated according to the empirical distribution
function of estimated errors. In particular, the pseudo-innovations are generated using the empir-
ical distribution function

F̂ε(y) = 1

n

n∑
t=1

I (̂εt ≤ y), (4.1)

where, for instance, in the AR(p)-case, ε̂t is given by ε̂t = ε̃t − n−1∑n
s=1 ε̃s and, in the

ARCH(p)-case, by ε̂t =˜̃εt/

√
n−1

∑n
s=1

˜̃ε2
s with ˜̃εt = ε̃t − n−1∑n

s=1 ε̃s , where ε̃s is defined in
the sentence following equation (3.1).

The bootstrap algorithm used to approximate the distribution of Sn under the null hypothesis
is described by the following three steps.

1. Let X
∗
0 = (X∗

0,X∗−1, . . . ,X
∗
1−p) be some starting values. Given X

∗
t−1 = (X∗

t−1,X
∗
t−2,

. . . ,X∗
t−p), generate X∗

t by

X∗
t = G(X∗

t−1, θ̂ , ε∗
t ),

where ε∗
t are i.i.d. random variables with ε∗

t ∼ F̂ε , where F̂ε is defined in (4.1).
2. Based on the bootstrap pseudo-series (X∗

t )t=1−p,2−p,...,n, let U∗
n (x, y) be defined as

Un(x, y) and obtained by replacing θ̂ and F̃ε in Un(x, y) by θ̂∗ and F̃ ∗
ε , respectively. Here,

θ̂∗ denotes the same estimator as θ̂ based on (X∗
t )t=1−p,2−p,...,n. Furthermore,

F̃ ∗
ε (y) = 1

n

n∑
t=1

I (̃ε∗
t ≤ y), (4.2)

where ε̃∗
t = w(X∗

t ,X
∗
t , θ̂

∗).
The bootstrap analogue of Sn is now given by

S∗
n = sup

(x,y)∈Rp×R

|U∗
n (x, y)|.

3. Reject H0 if

Sn > t∗1−α,∞,

where t∗1−α,∞ denotes the (1 − α)-quantile of the distribution of S∗
n .

4.2. Some basic properties of the bootstrap processes

The derivation of theoretical results for the bootstrap is based on a case-by-case investigation
since to establish properties such as stationarity and weak dependence of the bootstrap process,
the particular model structure generating the X∗

t ’s is explicitly used. Note that the bootstrap
counterpart to (Xt )t∈Z is the stationary (if it exists) process (X∗

t )t∈Z obeying the equations

X∗
t = G(X∗

t−1, θ̂ , ε∗
t ). (4.3)
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We will see below that, in the AR(p) and ARCH(p) cases considered here, a unique solution
to (4.3) exists with a probability tending to 1.

We first deal with the properties of the proposed bootstrap procedure to approximate the hy-
pothesized conditional distributions P Xt |Xt−1 under the null hypothesis. The following lemma
shows that the conditional distributions of the bootstrap process converge to the conditional dis-
tributions of the original process under the null and to some legitimate conditional distribution
under the alternative. This convergence takes place in probability. To formulate such results in a
transparent way, we define the following metric between distributions on (Rd ,Bd):

d(P,Q) = inf
X∼P,Y∼Q

E[‖X − Y‖ ∧ 1],

where the infimum is taken over all pairs (X,Y ) with X ∼ P and Y ∼ Q, and where ‖ · ‖ is any
norm on R

d . A metric similar to this (the Mallows metric) has been used by Bickel and Freedman
(1981), also in the context of proving bootstrap consistency. Convergence in the above metric is,
in particular, equivalent to weak convergence. Concerning the behavior of the estimator θ̂ in the
case that the null hypothesis is not true, we make the following assumption.

(B1) There exists �θ ∈ � such that θ̂ −→ �θ in probability.

Lemma 4.1. Suppose that (A1) or (A1′) and (B1) are fulfilled. Assume, further, that the density
fe = F ′

e of et is bounded, where et = w(Xt−1,Xt ,�θ). Then, for every compact set K ⊂ R
p ,

sup
x∈K

d
(
P X∗

t |X∗
t−1=x,P

Xt |Xt−1=x

θ̄

) P−→ 0.

According to the above lemma, the asymptotic limit of P X∗
t |X∗

t−1 depends on whether the
underlying hypothesis is true or not. In particular, P X∗

t |X∗
t−1 converges to that of the Markov

process generated by Xt = G(Xt−1,�θ, et ), where the innovation sequence has distribution Fe. If
H0 is true, then �θ = θ and Fe = Fε . Note, however, that PX∗ ∈ M0, where PX∗ denotes the law
of X∗ = {X∗

t , t ∈ Z}, even if the null hypothesis is not true. This is important for a good power
behavior of the bootstrap-based test.

The following lemma is the key step in proving consistency properties of Markov bootstrap.
It basically states that convergence of the conditional distributions implies convergence of the
stationary distributions.

Lemma 4.2. Suppose that (Yt )t∈Z and (Y
(n)
t )t∈Z, n ∈ N, are stationary Markov processes of

order p, defined on probability spaces (�,A,P ) and (�n,An,Pn), respectively. Suppose that

(i) for all compact sets K ⊆ R
p ,

sup
y∈K

d
(
P

Y
(n)
t |Y (n)

t−1=y1,...,Y
(n)
t−p=yp

n ,P Yt |Yt−1=y1,...,Yt−p=yp
) −→

n→∞ 0;

(ii) for all y ∈ R
p ,

sup
ỹ:‖ỹ−y‖≤δ

d
(
P Yt |Yt−1=y1,...,Yt−p=yp ,P Yt |Yt−1=ỹ1,...,Yt−p=ỹp

)−→
δ→0

0;



Goodness-of-fit tests for Markovian time series models 25

(iii) (P
Y

(n)
t

n )n∈N is tight;
(iv) there is a unique stationary distribution P Y1,...,Yp that corresponds to P Yt |Yt−1,...,Yt−p .

Then, for all k ∈ N,

P
Y

(n)
1 ,...,Y

(n)
k

n �⇒ P Y1,...,Yk . (4.4)

By Lemmas 4.1 and 4.2, we obtain the following result which shows the convergence of the
finite-dimensional distributions of the bootstrap process to the desired joint distributions under
the corresponding null hypothesis.

Corollary 4.1. Suppose that the assumptions of Lemma 4.1 are satisfied. Then, for all k ∈ N,

d
(
P X∗

t ,...,X∗
t+k ,P

Xt ,...,Xt+k

�θ
) P−→ 0,

where P
Xt ,...,Xt+k

�θ denotes the stationary probability measure of the Markov process (Xt )t∈Z

generated by Xt = G(Xt−1,�θ, et ) and where the i.i.d. innovation sequence satisfies et ∼ Fe.

Our next result deals with the weak dependence properties of the bootstrap processes.

Lemma 4.3. Suppose that the assumptions of Lemma 4.1 are satisfied. There then exist sets �n ⊆
R

n+p such that P((X1−p, . . . ,Xn) ∈ �n) −→
n→∞ 1 and, for any sequence (ωn)n∈N with ωn ∈ �n,

(X∗
t )t∈Z satisfies (conditionally under (X1−p, . . . ,Xn)

′ = ωn) conditions of weak dependence
analogous to (2.2)–(2.4) and (2.6)–(2.8), respectively, with coefficients of weak dependence that
can be majorized by a geometrically decaying series.

4.3. Bootstrap validity

Based on the basic properties of the bootstrap procedure stated in the previous section, we are
now able to justify asymptotically its use in obtaining critical values of the test statistics Sn. As
in (A2), we assume the following.

(B2) The sequence of estimators θ̂∗ admits the expansion

θ̂∗ − θ̂ = 1

n

n∑
t=1

l(X∗
t−1,X

∗
t ; θ̂ ) + oP (n−1/2),

where l(·; ·) satisfies E∗l(X∗
t−1,X

∗
t ; θ̂ ) = 0 and E∗‖l(X∗

t−1,X
∗
t ; θ̂ )‖2 = OP (1).

The next theorem establishes the asymptotic limit of U∗
n which is used to evaluate the distribution

of the test statistic Sn under the null hypothesis.

Theorem 4.1. Assume that (A1) or (A1′) as well as (B1) and (B2) are fulfilled. Suppose, further,
that fe = F ′

e is continuous and fe(z) −→
z→±∞ 0, where Fe denotes the distribution function of et =
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w(Xt−1,Xt ,�θ). There then exist sets �̃n ⊂ R
p+n such that P((X1−p, . . . ,Xn)

′ ∈ �̃n) −→
n→∞ 1

and, for every sequence (ωn)n∈N with ωn ∈ �̃n, we have (the bootstrap distribution is taken
conditionally under (X1−p, . . . ,Xn)

′ = ωn)

U∗
n

d−→ �U

as n → ∞, where �U is a Gaussian process with continuous sample paths, zero mean and covari-
ance function

��((x1, y1), (x2, y2))

=
∑
t∈Z

cov
(�g1(X0,X0;x1, y1) +�g2(X0,X0;x1, y1) +�g3(X0,X0;x1, y1),

�g1(Xt−1,Xt ;x2, y2) +�g2(Xt−1,Xt ;x2, y2) +�g3(Xt−1,Xt ;x2, y2)
)
,

and �gi(Xt−1,Xt ;x, y) is defined for i = 1,2,3 as gi(Xt−1,Xt ;x, y) in Theorem 3.1, with θ

replaced by �θ and Fε by Fe.

Note that if H0 is true, then Ũ = U since �θ = θ and Fe = Fε . In this case, the limiting behavior
of the bootstrap statistic S∗

n is identical to that of the statistics Sn given in Theorem 3.1. On the
other hand, if H0 is not true, then t∗1−α,∞ → c as n → ∞, where c denotes the (1 − α)-quantile

point of the limiting distribution of sup(x,y)∈Rp×R |�U(x, y)|. In this case, n−1/2Sn → C in prob-
ability, where C denotes a positive constant. Therefore,

lim
n→∞P(Sn > t∗1−α,∞) =

{
α, if H0 is true,

1, if H1 is true,

that is, the test based on the bootstrap critical values t∗(i)

1−α,∞ asymptotically achieves the desired
level α and is consistent.

We conjecture that our test has nontrivial power for local alternatives converging to the null
at a

√
n-rate. To illustrate this, consider the simple case of a fully specified null hypothesis H

(1)
0

and sequences of local alternatives corresponding to Markov processes having one-step transition
distribution functions given by

Fn(·|Xt−1) = F0(·|Xt−1) + 1√
n
H(·,Xt−1),

where H(·) is an appropriate function satisfying

1

n

n∑
t=1

I (Xt−1 
 x)H(y,Xt−1) → D(y,x) 
≡ 0 (4.5)
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in probability as n → ∞. In this case, the corresponding deviation process U
(1)
n (y, x) can be

decomposed as

U(1)
n (y, x) = 1√

n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − Fn(y|Xt−1)]

+ 1

n

n∑
t=1

I (Xt−1 
 x)H(y,Xt−1),

from which (taking into account (4.5)) the desired result will follow by showing that

Ũ (1)
n (y, x) = 1√

n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − Fn(y|Xt−1)]

converges to the same Gaussian process as the process (3.4).

5. Numerical examples

Example 1. The test statistic S
(2)
n = max(x,y)∈X n |U(2)

n (x, y)| is applied to test the hypothesis
that the underlying process obeys the ARCH(1) structure

Xt =
√

θ0 + θ1X
2
t−1εt

with independent and standard Gaussian-distributed errors. Three different sample sizes, n =
100, 200 and 400, have been considered. The parameters of the process have been set equal
to θ0 = 0.1 and θ1 = 0.4. The results obtained are based on the least-squares estimator of θ0
and θ1. Table 1 presents the empirical rejection probabilities. To investigate the power of our test
procedure, different types of alternatives have been considered. One alternative to the hypothesis
of an ARCH(1) process with Gaussian errors is where the distribution of the innovations is given

Table 1. Empirical rejection probabilities for testing the hypothesis of an ARCH(1) model

H
(2)
0 TRUE: H

(2)
0 FALSE:

ARCH(1) ARCH(1) ARCH(2) GARCH(1, 1) SV-Model
α εt ∼N (0,1) εt ∼ t5 θ2 = 0.4

n = 100 0.05 0.064 0.202 0.190 0.151 0.460
0.10 0.109 0.310 0.278 0.235 0.660

n = 200 0.05 0.041 0.281 0.295 0.225 0.775
0.10 0.115 0.415 0.402 0.345 0.871

n = 400 0.05 0.046 0.485 0.515 0.366 0.980
0.10 0.112 0.671 0.635 0.495 0.991
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by εt = ηt

√
(ν − 2)/ν, where (ηt )t∈Z is an i.i.d. sequence of t -distributed random variables with

ν degrees of freedom. We also investigated the power of our test for the case where the true
process is an ARCH(2) process with additional parameter θ2 = 0.4, a GARCH(1, 1) process
Xt = σtεt with σ 2

t = 0.08 + 0.7X2
t−1 + 0.2σ 2

t−1 and the simple stochastic volatility (SV) model
Xt = exp{ht/2}εt and ht = −0.9+0.6ht−1 +ωt , where ωt is a sequence of independent standard
Gaussian random variables.

Example 2. Using the test statistic Sn, the hypothesis of interest is that the underlying process
is an i.i.d. process with standard Gaussian- or uniform-distributed innovations. The alternative
considered to this null hypothesis is that the underlying process is a first order autoregressive
process Xt = θXt−1 + εt with εt ∼ N (0,1) and three different values of θ . Table 2 presents
the empirical rejection probabilities of Sn for testing the corresponding null hypothesis based on
sample sizes of length n = 25, n = 50 and n = 100.

The results presented in Tables 1 and 2 are based on 200 replications of the underlying process,
where, for each replication, critical values of the test have been obtained using 500 bootstrap sam-
ples. Although computational requirements prevented us from considering larger sample sizes,
more trials, more bootstrap replications or more complicated models, the results obtained are
very encouraging. In particular, and as these tables show, the test statistic retains the desired
size under the null hypothesis and shows a very good power behavior for the different types of
alternatives considered.

A real-data example. We apply our testing procedure to the first n = 2000 observations of the
monthly log-returns of the Intel stock series analyzed in Tsay (2005). Tsay (2005), page 109,
selected, for this series, the ARCH(1) model

rt = 0.0174 + Xt, Xt =
√

0.0134 + 0.2492X2
t−1εt ,

with standard Gaussian-distributed innovations εt . For this model, the value of the test statistic
S

(2)
n = max(x,y)∈X n |U(2)

n (x, y)| equals 15.025, while a bootstrap estimate of the upper 5% per-

Table 2. Empirical rejection probabilities for testing the hypothesis of an i.i.d. sequence

H
(3)
0 TRUE: H

(3)
0 FALSE:

εt ∼ N (0,1) εt ∼ U(−√
3,

√
3) θ = 0.2 θ = 0.4 θ = 0.6

n = 25 0.05 0.075 0.081 0.105 0.330 0.625
0.10 0.152 0.161 0.268 0.485 0.740

n = 50 0.05 0.041 0.058 0.170 0.585 0.889
0.10 0.104 0.105 0.270 0.709 0.925

n = 100 0.05 0.062 0.069 0.305 0.834 0.995
0.10 0.115 0.118 0.455 0.925 0.998
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centage point of the distribution of the same statistic under the null equals 1.501. This percentage
point has been estimated using B = 1000 bootstrap replications. Our testing procedure therefore
leads to a rejection of the above ARCH(1) model for the Intel stock series. Note that standard
methods, based on residuals, for checking the fit of the above model do not indicate any inade-
quacy of the fitted ARCH(1) model in describing the conditional heteroscedasticity of the data;
see Tsay (2005), page 111, for details.

6. A central limit theorem

The first central limit theorems for weakly dependent sequences were given by Corollary A in
Doukhan and Louhichi (1999) and Theorem 1 in Coulon-Prieur and Doukhan (2000). While the
former result is for sequences of stationary random variables, the latter one is tailor-made for
triangular arrays of asymptotically sparse random variables as they appear with kernel density
estimators. Below, we state a central limit theorem for general triangular schemes of weakly
dependent random variables. An interesting aspect of this result is that no moment condition
beyond Lindeberg’s is required.

Theorem 6.1. Suppose that (Xn,k)k=1,...,n, n ∈ N, is a triangular scheme of (row-wise) station-
ary random variables with EXn,k = 0 and EX2

n,k ≤ C < ∞. Furthermore, we assume that

1

n

n∑
k=1

EX2
n,kI

(|Xn,k|/√n > ε
) −→

n→∞ 0 (6.1)

holds for all ε > 0 and that

var(Xn,1 + · · · + Xn,n)/n −→
n→∞σ 2 ∈ [0,∞). (6.2)

For n ≥ n0, there exists a monotonously nonincreasing and summable sequence (θr )r∈N such
that, for all indices 1 ≤ s1 < s2 < · · · < su < su + r = t1 ≤ t2 ≤ n, the following upper bounds
for covariances hold true: for all measurable and quadratic integrable functions f : Ru −→ R,

| cov(f (Xn,s1, . . . ,Xn,su),Xn,t1)| ≤
√

Ef 2(Xn,s1 , . . . ,Xn,su)θr (6.3)

and for all measurable and bounded functions f : Ru −→ R,

| cov(f (Xn,s1, . . . ,Xn,su),Xn,t1Xn,t2)| ≤ ‖f ‖∞θr , (6.4)

where ‖f ‖∞ = supx∈Ru |f (x)|. Then,

1√
n

(Xn,1 + · · · + Xn,n)
d−→N (0, σ 2).
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Proof. If σ 2 = 0, then we obviously have that 1√
n
(Xn,1 + · · · + Xn,n)

d−→ N (0,0). Therefore,

it remains to prove the assertion in the case σ 2 > 0, which we assume in the rest of the proof. Let
Yn,k = Xn,k/

√
E(Xn,1 + · · · + Xn,n)2. In view of (6.2), it suffices to show that

Yn,1 + · · · + Yn,n
d−→ N (0,1). (6.5)

To prove this, we use the classical Lindeberg method which was first adapted to causal CLT’s by
Rio (1995).

We set σ 2
n = var(Xn,1 + · · · + Xn,n) = nvar(Xn,1) + 2

∑n−1
j=1(n − j) cov(Xn,1,Xn,j+1)

and vn,k = var(Yn,1 + · · · + Yn,k) − var(Yn,1 + · · · + Yn,k−1) = (var(Xn,1) + 2
∑k−1

j=1 cov(Xn,1,

Xn,j+1))/σ
2
n . We obtain, by | cov(Xn,1,Xn,j+1)| ≤ Cθj , that

|nvn,k − 1| ≤ 2C

σ 2
n

(
k−1∑
j=1

jθj +
n−1∑
j=k

(n − j)θj

)
.

Since, by majorized convergence,
∑∞

j=1(j/n)θj −→
n→∞ 0 and

∑∞
j=k θj −→

k→∞ 0, it follows that there

exist k0, n0 ∈ N such that

vn,k ≥ 0 for all (n, k) with n ≥ n0 and k0 ≤ k ≤ n. (6.6)

To simplify the notation in the rest of the proof, we pretend that (6.6) holds for all (n, k) with
n ≥ 1 and 1 ≤ k ≤ n. (Otherwise, we start with n0 and sum the first k0 − 1 random variables in
each row to a new random variable, Yn,0 = Yn,1 + · · · + Yn,k0−1. We then prove the assertion for
the sums Yn,0 + Yn,k0 + · · · + Yn,n.)

Let h : R −→ R be an arbitrary, three times continuously differentiable function with
‖h(j)‖∞ =: Cj < ∞, j = 0, . . . ,3. Furthermore, let Zn,k ∼ N (0, vn,k), k = 1, . . . , n, be inde-
pendent random variables which are also independent of (Yn,k)k=1,...,n. Since vn,1 +· · ·+ vn,n =
1, it follows from Theorem 7.1 in Billingsley (1968) that it suffices to show that

Eh(Yn,1 + · · · + Yn,n) − Eh(Zn,1 + · · · + Zn,n) −→
n→∞ 0. (6.7)

We define Sn,k =∑k−1
j=1 Yn,j and Tn,k =∑n

j=k+1 Zn,j . Then,

Eh(Yn,1 + · · · + Yn,n) − Eh(Zn,1 + · · · + Zn,n) =
n∑

k=1

�n,k,

where

�n,k = E[h(Sn,k + Yn,k + Tn,k) − h(Sn,k + Zn,k + Tn,k)].
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We further decompose �n,k = �
(1)
n,k − �

(2)
n,k , where

�
(1)
n,k = Eh(Sn,k + Yn,k + Tn,k) − Eh(Sn,k + Tn,k) − vn,k

2
Eh(2)(Sn,k + Tn,k),

�
(2)
n,k = Eh(Sn,k + Zn,k + Tn,k) − Eh(Sn,k + Tn,k) − vn,k

2
Eh(2)(Sn,k + Tn,k).

We will show that
n∑

k=1

�
(i)
n,k −→

n→∞ 0 for i = 1,2.

(i) Upper bound for |∑n
k=1 �

(2)
n,k|.

Since EZn,kh
′(Sn,k + Tn,k) = 0, we have, for some random ρn,k ∈ (0,1), that

�
(2)
n,k = E

Z2
n,k

2

[
h(2)(Sn,k + ρn,kZn,k + Tn,k) − h(2)(Sn,k + Tn,k)

]
.

Hence, we obtain that ∣∣∣∣∣
n∑

k=1

�
(2)
n,k

∣∣∣∣∣ ≤ C3

2

n∑
k=1

E|Zn,k|3

(6.8)

≤ C3

2
E|N (0,1)|3 max

1≤k≤n

{√
vn,k

} −→
n→∞ 0.

(ii) Upper bound for |∑n
k=1 �

(1)
n,k|.

Let ε > 0 be arbitrary. We will actually show that∣∣∣∣∣
n∑

k=1

�
(1)
n,k

∣∣∣∣∣≤ ε for all n ≥ n(ε). (6.9)

We have, for some random τn,k ∈ (0,1), that

�
(1)
n,k = EYn,kh

′(Sn,k + Tn,k) + E

[
Y 2

n,k

2
h(2)(Sn,k + τn,kYn,k + Tn,k)

]
− vn,k

2
Eh(2)(Sn,k + Tn,k).

Since EYn,kh
′(Tn,k) = 0, we have, again for some random μn,k,j ∈ (0,1), that

EYn,kh
′(Sn,k + Tn,k) =

k−1∑
j=1

EYn,k[h′(Sn,j+1 + Tn,k) − h′(Sn,j + Tn,k)]

=
k−1∑
j=1

EYn,kYn,j h
(2)(Sn,j + μn,k,j Yn,j + Tn,k).
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This yields, in conjunction with

vn,k = EY 2
n,k + 2

k−1∑
j=1

EYn,kYn,j ,

that

�
(1)
n,k =

k−d∑
j=1

EYn,kYn,j

[
h(2)(Sn,j + μn,k,j Yn,j + Tn,k) − Eh(2)(Sn,k + Tn,k)

]

+
k−1∑

j=k−d+1

EYn,kYn,j

[
h(2)(Sn,j + μn,k,j Yn,j + Tn,k) − Eh(2)(Sn,k + Tn,k)

]
+ 1

2 EY 2
n,k

[
h(2)(Sn,k + τn,kYn,k + Tn,k) − Eh(2)(Sn,k + Tn,k)

]
= �

(1,1)
n,k + �

(1,2)
n,k + �

(1,3)
n,k ,

say. (The value of d does not depend on n and its proper choice is indicated below.)
We now have, by (6.3), that

∣∣�(1,1)
n,k

∣∣≤ k−d∑
j=1

√
EY 2

n,kO

(
1√
n

)
θk−j = O

(
n−1

n∑
j=d

θj

)
.

By choosing d sufficiently large, we obtain that∣∣∣∣∣
n∑

k=1

�
(1,1)
n,k

∣∣∣∣∣≤ ε

3
for all n ≥ n(ε). (6.10)

The term �
(1,2)
n,k will be split up as

�
(1,2)
n,k =

k−1∑
j=k−d+1

EYn,kYn,j

[
h(2)(Sn,j + μn,k,j Yn,j + Tn,k) − h(2)(Sn,j−d + Tn,k)

]

+
k−1∑

j=k−d+1

EYn,kYn,j

[
h(2)(Sn,j−d + Tn,k) − Eh(2)(Sn,j−d + Tn,k)

]

+
k−1∑

j=k−d+1

EYn,kYn,j

[
Eh(2)(Sn,j−d + Tn,k) − Eh(2)(Sn,k + Tn,k)

]
= �

(1,2,1)
n,k + �

(1,2,2)
n,k + �

(1,2,3)
n,k ,
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say. The Lindeberg condition (6.1) yields that, for arbitrary ε′ > 0,∣∣∣∣∣
n∑

k=1

�
(1,2,1)
n,k

∣∣∣∣∣
≤ 2C2

√√√√ n∑
k=1

EY 2
n,kI (|Yn,k| > ε′)

√√√√√ n∑
k=1

k−1∑
j=k−d+1

EY 2
n,j + ε′

√√√√√ n∑
k=1

k−1∑
j=k−d+1

EY 2
n,j

×

√√√√√ n∑
k=1

k−1∑
j=k−d+1

E
[
h(2)(Sn,j + μn,k,j Yn,j + Tn,k) − h(2)(Sn,j−d + Tn,k)

]2

= o(1) + O(ε′).

Using condition (6.4), we obtain that∣∣�(1,2,2)
n,k

∣∣= O(n−1dθd).

From the monotonicity and summability of the sequence (θk)k∈N, it follows that dθd −→
d→∞ 0.

Furthermore, the relation

�
(1,2,3)
n,k = O(n−3/2)

is obvious. Again, for sufficiently large d , these upper estimates yield that∣∣∣∣∣
n∑

k=1

�
(1,2)
n,k

∣∣∣∣∣≤ ε

3
for all n ≥ n(ε). (6.11)

Finally, we obtain, in complete analogy to the calculations above, that

n∑
k=1

�
(1,3)
n,k −→

n→∞ 0, (6.12)

which completes, in conjunction with (6.10) and (6.11), the proof of (6.9). �

7. Proofs of auxiliary lemmas and main results

Proofs of some of our main results are given in this section, while, for some others, we stress
only the essentials. More details, as well as the proofs of Lemma 2.1 and Theorem 4.1, which
are omitted in the sequel, are given in Neumann and Paparoditis (2005).

There has been much effort made in the literature to prove stochastic equicontinuity, often as a
sufficient condition for tightness, of families of multivariate processes. For a family of processes
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(Xn)n∈N with sample paths in C([0,1]q), one seeks to show that, for all δ > 0, η > 0, there exists
an ε > 0 such that

P
(
ωε(Xn) > δ

)≤ η ∀n ≥ n0, (7.1)

where the modulus of continuity is defined as ωε(x) = sup‖s−t‖≤ε |x(s) − x(t)|. For a family of
processes on R

q , one can either transform them to processes on [0,1]q or one can alternatively
show that, for all δ > 0, η > 0, there exists a grid G = {b(1)

0 , . . . , b
(1)
M } × · · · × {b(q)

0 , . . . , b
(q)
M }

with −∞ = b
(r)
0 < · · · < b

(r)
M = ∞, r = 1, . . . , q , such that

P

(
max

1≤i1,...,iq≤M
sup

b(i−1q )
t
b(i)

|Xn(t) − Xn(b(i))| > δ

)
≤ η, (7.2)

for all n ≥ n0. Here, and in the following, we use the notation i = (i1, . . . , iq), t = (t1, . . . , tq)

and b(i) = (b
(1)
i1

, . . . , b
(q)
iq

).
It has been shown, for example, in Pollard (1984), Theorem 3 in Section V.1, that (7.2) and

the weak convergence of finite-dimensional distributions of Xn to those of a process X with
continuous sample paths together imply that (Xn)n∈N converges in distribution (with respect to
the supremum norm) to X. (Pollard actually proves this for processes on [0,1]; the extension to
processes on R

q is, however, obvious.) An obstacle to proving (7.2) arises since the supremum
over an infinite set is involved. Therefore, one often proves, instead of (7.2), that there exists
a sequence of increasingly fine grids, Gn = {t (1)

n,1, . . . , t
(1)
n,Mn

} × · · · × {t (q)

n,1, . . . , t
(q)
n,Mn

}, such that
G ⊆ Gn and

P

(
max

1≤i1,...,iq≤M
sup

t∈Gn:b(i−1q )
t
b(i)

|Xn(t) − Xn(b(i))| > δ

)
≤ η (7.3)

holds for n ≥ n0, and then derives (7.2) by continuity and monotonicity arguments. With a slight
abuse of terminology, we also call property (7.2) stochastic equicontinuity and (7.3) stochastic
equicontinuity on the grids Gn.

In the following, we provide a simple proof of (7.3) based on an anisotropic dyadic tiling of
the space. Such an anisotropic tiling has previously been used in the proof of Proposition 7.3
in Rio (2000), page 100ff. This proof constitutes an alternative to the commonly used approach
based on Bickel and Wichura’s (1971) fluctuation result for their modulus of continuity M ′′, and
to an approach based on an isotropic tiling of the space proposed by Neuhaus (1971).

Lemma 7.1. Let (Xn(t))t∈Rq be a sequence of real-valued stochastic processes. For any hyper-
rectangle B = (s1, t1] × · · · × (sq, tq ], the increment of Xn around B is given by

Xn(B) =
∑

(ε1,...,εq )∈{0,1}q
(−1)q−(ε1+···+εq )Xn

(
s1 + ε1(t1 − s1), . . . , sq + εq(tq − sq)

)
.

We suppose that there exists a sequence of measures (μn)n∈N on (Rq,Bq) with continuous mar-
ginals which converges weakly to a finite measure μ, also having continuous marginals, and

E[Xn(B)]4 ≤ [μn(B) + Cn−q ]1+γ (7.4)
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for all hyperrectangles B and some γ > 0, C < ∞. Let δ and η be arbitrary positive constants.
There then exists a coarse grid G = {b(1)

0 , . . . , b
(1)
M } × · · · × {b(q)

0 , . . . , b
(q)
M } with −∞ =

b
(r)
0 < · · · < b

(r)
M = ∞ (r = 1, . . . , q) and a sequence of fine grids Gn = {t (1)

n,1, . . . , t
(1)
n,Mn

} × · · ·
× {t (q)

n,1, . . . , t
(q)
n,Mn

} with G ⊆ Gn such that

μn

(
R

r−1 × (
t
(r)
n,k−1, t

(r)
n,k

]× R
q−r

)≤ 2μ(Rq)n−1 ∀k = 1, . . . ,Mn,∀r = 1, . . . , q (7.5)

and

P

(
max

1≤i1,...,iq≤M
max

t∈Gn:b(i−1q )
t
b(i)
|Xn(t) − Xn(b(i))| > δ

)
≤ η (7.6)

holds for all n ≥ n0, where n0 is sufficiently large.

Remark 7.1. As already mentioned in the discussion after Theorem 3 of Bickel and Wichura
(1971), it is possible (and, for the bootstrap processes, important) that the measures μn are al-
lowed to depend on n. The term n−q in (7.4) cannot be avoided in our context; see, for example,
(7.15) in the proof of Theorem 3.1 below. Because of this term, we obtain stochastic equiconti-
nuity in a first step only on a grid with cardinality of M

q
n = O(nq). In our applications, stochastic

equicontinuity over the full space will then follow from monotonicity and continuity properties
of the processes involved; see step (i) in the proof of Theorem 3.1 below.

Proof of Lemma 7.1. (i) Dyadic systems of grid points. First, we define dyadic systems of grid
points. At the coarse scales, their choice is tied to the measure μ. Let F (r) be the r th marginal
cumulative distribution function of μ, that is,

F (r)(x) = μ
(
R

r−1 × (−∞, x] × R
q−r

)
.

For an appropriate J0 ∈ N to be determined in part (iii) of this proof, we define, for r = 1, . . . , q

and 0 ≤ j ≤ J0,

b
(r)
j,k =

⎧⎨⎩
−∞, if k = 0,

F (r)−1
(k2−jμ(Rq)), if 1 ≤ k < 2j ,

∞, if k = 2j .

We choose M = 2J0 and b
(r)
k = b

(r)
J0,k

.
At the finer scales, with index j > J0, the grid points are chosen according to μn. We set

F (r)
n (x) = μn

(
R

r−1 × (−∞, x] × R
q−r

)
and choose, for j = J0 + 1, . . . , Jn with 2Jn−1 < n ≤ 2Jn , grid points as follows. For l ∈
{0, . . . ,2J0 − 1} and k ∈ {1, . . . ,2j−J0}, we define b

(r)

j,l2j−J0+k
= b

(r)

j,l2j−J0+k
(n) such that

F (r)
n

(
b

(r)

j,l2j−J0+k
(n)

)= F (r)
n (bJ0,l) + k

2j−J0

[
F (r)

n (bJ0,l+1) − F (r)
n (bJ0,l)

]
.
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(Again, we set b
(r)
j,0(n) = −∞ and b

(r)

j,2j (n) = ∞.) We set Mn = 2Jn + 1 and t
(r)
n,1 = b

(r)
Jn,0, . . . ,

t
(r)
n,Mn

= b
(r)

Jn,2Jn
(r = 1, . . . , q). That is, the fine grids are given as Gn = G(1)

n × · · · × G(q)
n , where

G(r)
n = {b(r)

Jn,0, . . . , b
(r)

Jn,2Jn
}.

Since μn �⇒ μ, we have, for all r = 1, . . . , q , l = 1, . . . ,2J0 and n ≥ n0 with n0 sufficiently
large, that

μn

(
R

r−1 × (
b

(r)
J0,l−1, b

(r)
J0,l

]× R
q−r

)≤ 2μ
(
R

r−1 × (
b

(r)
J0,l−1, b

(r)
J0,l

]× R
q−r

)= 21−J0μ(Rq).

This implies that

μn

(
R

r−1 × (
b

(r)
j,k−1, b

(r)
j,k

]× R
q−r

)≤ 21−jμ(Rq) (7.7)

for all r = 1, . . . , q , j = J0 + 1, . . . , Jn, k = 1, . . . ,2j and n ≥ n0, that is, (7.5) is satisfied.
(ii) A probabilistic bound for the increments of Xn. To simplify notation, in the sequel, we

use multiindices j = (j1, . . . , jq) and k = (k1, . . . , kq). For (j , k) from the set Bn = {(j , k) : 0 ≤
jr ≤ 2Jn,1 ≤ kr ≤ 2jr ∀r}, we define the hyperrectangle

Bj,k = (
b

(1)
j1,k1−1, b

(1)
j1,k1

]× · · · × (
b

(q)

jq ,kq−1, b
(q)
jq ,kq

]
.

We choose any α ∈ (0, γ /4) and define the thresholds

λj = K2−α(j1+···+jq )/q, (7.8)

where K will be chosen below. From (7.7) and 2Jn ≤ 2n we obtain that

μn(Bj,k) + Cn−q ≤ C1 min
1≤r≤q

{2−jr } ≤ C12−(j1+···+jq )/q ∀(j , k) ∈ Bn.

Therefore, we obtain, by Markov’s inequality, that

P
(|Xn(Bj,k)| > λj

) ≤ [μn(Bj,k) + n−q ]1+γ

K4 · 2−4α(j1+···+jq )/q

≤ (
μn(Bj,k) + n−q

)
K−4C

γ

1 2(j1+···+jq )(4α−γ )/q .

This implies that

P
(|Xn(Bj,k)| > λj for any (j , k) ∈ Bn

)
≤ (

μn(R
q) + 2Jnqn−q

)
K−4C

γ

1

Jn∑
j1,...,jq=0

2(j1+···+jq )(4α−γ )/q (7.9)

≤ η,

for n ≥ n0, provided the constant K in (7.8) is large enough.
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(iii) Stochastic equicontinuity of Xn on the fine grid. Now, assume that

|Xn(Bj,k)| ≤ λj for all (j , k) ∈ Bn. (7.10)

Moreover, let t ∈ Gn and i be such that b(i − 1q) 
 t 
 b(i). There then exist hyperrec-
tangles Bj(1),k(1) , . . . ,Bj(L),k(L) with different scale indices j (l) and (j (l), k(l)) ∈ Bn such that

max1≤r≤q j
(l)
r ≥ J0 and

{x :x 
 b(i)} \ {x :x 
 t} =
L⋃

l=1

Bj(l),k(l) . (7.11)

Accordingly, Xn(b(i)) − Xn(t) =∑L
l=1 Xn(Bj(l),k(l) ), which implies that

|Xn(t) − Xn(b(i))| ≤
L∑

l=1

λj(l) ≤ Kq

Jn∑
j1=J0

Jn∑
j2,...,jq=0

2−α(j1+···+jq )/q . (7.12)

Now, choosing J0 ∈ N such that Kq2−J0α/q(1/(1 − 2−α/q))q ≤ δ, we obtain that

|Xn(t) − Xn(b(i))| ≤ δ

holds for all i and t ∈ Gn with b(i − 1q) 
 t 
 b(i), whenever (7.10) is fulfilled. This, however,
implies, in conjunction with (7.9), that (7.6) is satisfied. �

Proof of Theorem 3.1. We apply the method of proving weak convergence for processes de-
scribed by, for example, Wichura (1971), Proposition 1 and Pollard (1984), Theorem 3 in Sec-
tion V.1. To this end, we will prove (i) stochastic equicontinuity of (Un)n∈N and (ii) weak con-
vergence of the finite-dimensional distributions. From step (i), we can identify the prospective
limit process U as a centered Gaussian one. Because of the complicated covariance function,
we cannot immediately see that U possesses a version with continuous sample paths. However,
steps (i) and (ii) together imply that there is a version of U which inherits the property of sto-
chastic continuity from the processes (Un)n∈N. Having this, it is then easy to conclude that this
process has continuous sample paths with probability 1. These facts together yield the desired
convergence of (Un)n∈N to U .

(i) Stochastic equicontinuity of (Un)n∈N. We set q = p + 1. We will show that there exists,
for any δ > 0 and η > 0, a grid G = {b(1)

0 , . . . , b
(1)
M } × · · · × {b(q)

0 , . . . , b
(q)
M } with −∞ = b

(r)
0 <

b
(r)
1 < · · · < b

(r)
M = ∞ (r = 1, . . . , q) such that (with b(i) = (b

(1)
i1

, . . . , b
(q)
iq

)′)

P

(
max

1≤i1,...,iq≤M
sup

t∈Rq :b(i−1q )
t
b(i)

|Un(t) − Un(b(i))| > δ

)
≤ η. (7.13)
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We decompose Un(x, y) as

Un(x, y) = 1√
n

n∑
t=1

I (Xt−1 
 x)[I (Xt ≤ y) − Fε(w(Xt−1, y, θ))]

+ 1√
n

n∑
t=1

I (Xt−1 
 x)[Fε(w(Xt−1, y, θ)) − Fε(w(Xt−1, y, θ̂))]
(7.14)

+ 1√
n

n∑
t=1

I (Xt−1 
 x)[Fε(w(Xt−1, y, θ̂)) − F̂ε(w(Xt−1, y, θ̂))]

=: R(1)
n (x, y) + R(2)

n (x, y) + R(3)
n (x, y),

say. It is now most convenient to prove stochastic equicontinuity for R
(1)
n , R

(2)
n and R

(3)
n sepa-

rately. We will give all details for R
(1)
n and refer to Neumann and Paparoditis (2005) for more

details regarding R
(2)
n and R

(3)
n . For any hyperrectangle B = Bx × By = (s1, t1] × · · · × (sq, tq ],

denote by

R(1)
n (B) = 1√

n

n∑
t=1

I (Xt−1 ∈ Bx)[I (Xt ∈ By) − P(Xt ∈ By | Xt−1)]

the increment of R
(1)
n around B . We will first show that, for all γ ∈ (0,1/q), there exists some

constant Cγ < ∞ such that

E
[
R(1)

n (B)
]4 ≤ Cγ [P Xt−1,Xt (B) + n−q ]1+γ . (7.15)

Let gB(Xt−1,Xt ) = I (Xt−1 ∈ Bx)[I (Xt ∈ By) − P(Xt ∈ By | Xt−1)]. Note that, for sufficiently
integrable random variables Y1, . . . , Y4 with EYi = 0, the relations

EY1 · · ·Y4 = EY1Y2 · EY3Y4 + cov(Y1Y2, Y3Y4)

= cov(Y1, Y2Y3Y4)

= cov(Y1Y2Y3, Y4)

hold true. Since gB is a bounded function with EgB(Xt−1,Xt ) = 0, we consequently obtain
that

E
[
R(1)

n (B)
]4 ≤ 4!

n2

∑
t1≤t2≤t3≤t4

|E[gB(Xt1−1,Xt1) · · ·gB(Xt4−1,Xt4)]|
(7.16)

≤ 4!
{[

n−1∑
r=0

Cr,2(B)

]2

+ 3

n

n−1∑
r=0

(r + 1)2Cr,4(B)

}
,
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where

Cr,q(B) = max
1≤m≤q−1

sup
(t1,...,tq )∈Tr,q (m)

| cov(gB(Xt1−1,Xt1) · · ·gB(Xtm−1,Xtm),

gB(Xtm+1−1,Xtm+1) · · ·gB(Xtq−1,Xtq ))|
and

Tr,q(m) =
{
(t1, . . . , tq) : 1 ≤ t1 ≤ . . . ≤ tq ≤ n, max

1≤j≤q−1
{tj+1 − tj } = tm − tm+1 = r

}
.

(Inequality (7.16) is similar to inequality (2.14) in Doukhan and Louhichi (1999), the only dif-
ference being that the ‘3’ is absent there.)

For small values of r , we use the simple estimate

Cr,q(B) ≤ E|gB(Xt−1,Xt )| ≤ 2P Xt−1,Xt (B). (7.17)

For large values of r , we intend to exploit the weak dependence of the process (Xt )t∈Z in order
to show that Cr,q(B) gets small as r increases. Since gB is not Lipschitz, we define smooth
approximations to gB ,

gB,ε(x, y) =
∫

wε(u)gB+u(x, y)du,

where (wε)ε>0 is a family of nonnegative functions with supp(wε) ⊆ {u = (u1, . . . , up+1) :ui ≥
0 and ‖u‖l1 ≤ ε}, ∫ wε(u)du = 1 and ‖wε‖∞ ≤ Cε−q . Since Lip(gB,ε(u1) · · ·gB,ε(um)) ≤ m ·
Lip(gB,ε) = O(1/ε), we obtain, by (2.2) or (2.6), respectively, that

| cov(gB,ε(Xt1−1,Xt1) · · ·gB,ε(Xtm−1,Xtm),

gB,ε(Xtm+1−1,Xtm+1) · · ·gB,ε(Xt1−1,Xtq ))| (7.18)

≤ C
ρr−p

ε
.

Since |x1 · · ·xq − y1 · · ·yq | ≤ ∑q

i=1 |xi − yi | for all real numbers xi, yi ∈ [−1,1] and, by Lip-
schitz continuity of FX ,

E|gB(Xt−1,Xt ) − gB,ε(Xt−1,Xt )| ≤ Cε,

we obtain that

| cov(gB(Xt1−1,Xt1) · · ·gB(Xtm−1,Xtm),

gB(Xtm+1−1,Xtm+1) · · ·gB(Xt1−1,Xtq ))

− cov(gB,ε(Xt1−1,Xt1) · · ·gB,ε(Xtm−1,Xtm), (7.19)

gB,ε(Xtm+1−1,Xtm+1) · · ·gB,ε(Xtq−1,Xtq ))|
≤ Cε.
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From (7.17) and (7.18) and (7.19) with ε = ρ(r−p)/2, we obtain that

Cr,q(B) ≤ C
(
P Xt−1,Xt (B) ∧ ρ(r−p)/2),

which implies, by (7.16), inequality (7.15).
From (7.15), we conclude, by Lemma 7.1, that there exists a coarse grid G̃ = {b(1)

0 , . . . , b
(1)
M }×

· · · × {b(q)

0 , . . . , b
(q)
M } and a sequence of fine grids G̃n = {t (1)

n,1, . . . , t
(1)
n,Mn

} × · · · × {t (q)

n,1, . . . , t
(q)
n,Mn

}
with G̃ ⊆ G̃n such that

FX

(
t
(r)
n,k

)− FX

(
t
(r)
n,k−1

)≤ Cn−1

and

P

(
max

1≤i1,...,iq≤M
max

t∈G̃n:b(i−1q )
t
b(i)

∣∣R(1)
n (t) − R(1)

n (b(i))
∣∣> δ

6

)
≤ η

6
(7.20)

for all n ≥ n0 and n0 sufficiently large.
To extend property (7.20) to the whole space, we employ a simple monotonicity argument. For

t with t
(r)
n,ir−1 ≤ tr ≤ t

(r)
n,ir

∀r , we have the inequalities

R(1)
n

(
t
(1)
n,i1−1, . . . , t

(q)

n,iq−1

)
− 1√

n

n∑
t=1

[
I
(
Xt−1 
 (

t
(1)
n,i1

, . . . , t
(p)
n,ip

))
P
(
Xt ≤ t

(p+1)
n,ip+1

| Xt−1
)

− I
(
Xt−1 
 (

t
(1)
n,i1−1, . . . , t

(p)

n,ip−1

))
P
(
Xt ≤ t

(p+1)

n,ip+1−1 | Xt−1
)]

≤ R(1)
n (t1, . . . , tq)

≤ R(1)
n

(
t
(1)
n,i1

, . . . , t
(q)
n,iq

)+ 1√
n

n∑
t=1

[· · ·].

It follows from the Bernstein-type inequality for weakly dependent random variables, from
Kallabis and Neumann (2006), that

P

(
1√
n

n∑
t=1

[· · ·] >
δ

6
for any (i1, . . . , iq)

)
≤ η

6
. (7.21)

(7.20) and (7.21) together yield that

P

(
max

1≤i1,...,iq≤M
max

t∈Rq :b(i−1p+1)
t
b(i)

∣∣R(1)
n (t) − R(1)

n (b(i))
∣∣> δ

3

)
≤ η

3
(7.22)

for all n ≥ n0.
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Furthermore, we can also prove property (7.22) for the processes R
(2)
n and R

(3)
n , possibly with

other coarse grids Ĝ and �G. This yields property (7.13) for the grid G, which is the combination
of the grids G̃, Ĝ and �G.

(ii) Weak convergence of finite-dimensional distributions. Let k ∈ N, (x1, y1), . . . , (xk, yk) ∈
R

p × R and c1, . . . , ck ∈ R be arbitrary. By the Cramér–Wold device, it suffices to show that

k∑
l=1

clUn(xl, yl)
d−→ N

(
0,

k∑
l,m=1

clcm�((xl, yl), (xm, ym))

)
. (7.23)

According to (7.14), we can show that

Un(x, y) = 1√
n

n∑
t=1

[g1(Xt−1,Xt ;x, y) + · · · + g3(Xt−1,Xt ;x, y)] + oP (1).

Moreover, it follows from (2.2)–(2.4) and (2.6)–(2.8), respectively, that the triangular scheme
(Zn,t )t=1,...,n with Zn,t =∑k

l=1 cl[g1(Xt−1,Xt ;xl, yl)+· · ·+g3(Xt−1,Xt ;xl, yl)] satisfies con-
ditions (6.1)–(6.4) of the central limit theorem in Section 6. (Note that the function g1(·, ·;x, y)

is discontinuous; we must use an approximation by a smoothed version, as above, for checking
(6.2) to (6.4).) Hence, (7.23) follows immediately from Theorem 6.1.

(iii) The limit process. According to (7.13), there exists a sequence of grids G(N) =
{b(N)

1,0 , . . . , b
(N)
1,MN

}× · · ·×{b(N)
q,0 , . . . , b

(N)
q,MN

} with −∞ = b
(N)
r,0 < · · · < b

(N)
r,MN

= ∞ (r = 1, . . . , q)

and G(N+1) ⊆ G(N) ∀N ∈ N such that

P

(
max

1≤i1,...,iq≤MN

sup
t∈Rq :b(N)(i−1q )
t
b(N)(i)

∣∣Un(t) − Un

(
b(N)(i)

)∣∣≥ 1

N

)
≤ 1

N
(7.24)

for n ≥ nN and nN sufficiently large.
Let G(∞) = ⋃∞

N=1 G(N). Kolmogorov’s consistency theorem ensures that there exists a real-
valued stochastic process Ũ on G(∞) with finite-dimensional distributions⎛⎝ Ũ (t1)

...

Ũ (tk)

⎞⎠∼N

⎛⎝0k,

⎛⎝�(t1, t1) · · · �(t1, tk)
...

. . .
...

�(tk, t1) · · · �(tk, tk)

⎞⎠⎞⎠ .

It follows from the weak convergence proved in step (ii) that Ũ inherits the continuity property
from the processes (Un)n∈N, that is, we have that

P

(
max

1≤i1,...,iq≤MN

max
t∈G(N ′):b(N)(i−1q )
t
b(N)(i)

∣∣Ũ (t) − Ũ
(
b(N)(i)

)∣∣≥ 1

N

)
(7.25)

≤ 1

N
∀N ′ ≥ N.
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By continuity from below of the probability measure P , this implies that even

P

(
max

1≤i1,...,iq≤MN

max
t∈G(∞):b(N)(i−1q )
t
b(N)(i)

∣∣Ũ(t) − Ũ
(
b(N)(i)

)∣∣≥ 1

N

)
≤ 1

N
(7.26)

holds true.
We now extend the process Ũ to a process U on R

q . Fix any t ∈ R
q . There then exists

a sequence (i(N))N∈N such that b(N)(i(N) − 1q) 
 t 
 b(N)(i(N)). It follows from (7.26) that
Ũ (b(N)(i(N))) converges in probability. We set

U(t) = plim
N→∞

Ũ
(
b(N)

(
i(N)

))
.

It is clear that the process U has the same stochastic continuity property as Ũ , that is,

P

(
max

1≤i1,...,iq≤MN

sup
t∈Rq :b(N)(i−1q )
t
b(N)(i)

∣∣U(t) − U
(
b(N)(i)

)∣∣≥ 1

N

)
≤ 1

N
. (7.27)

This means, in particular, that U has, with probability 1, continuous sample paths. Moreover, it
follows from (7.13), (7.23) and (7.27) that the finite-dimensional distributions of Un converge to
those of U . The latter property yields, in conjunction with (7.13) and (7.27), by Theorem 3 in

Section V.1 of Pollard (1984), that Un
d−→ U . �

Proof of Lemma 4.1. First, note that for the function w(·), as it is specified under (A1) or (A1′),
there exists δ > 0 such that, for all θ1, θ2 ∈ Uδ(�θ) = {ϑ ∈ �,‖ϑ − �θ‖ < δ} and all compact sets
K ⊂ R

p+1, |w(x,y, θ1)−w(x,y, θ2)| ≤ L(x, y)‖θ1 −θ2‖ with supx,y∈K L(x, y) < ∞. For such
a δ and K̃ < ∞, define

�n = {(X1−p, . . . ,Xn) :‖θ̂ (X1−p, . . . ,Xn) −�θ‖ < δ,E((ε∗
t )

2 | X1−p, . . . ,Xn) ≤ K̃}.
Choose K̃ < ∞ large enough so that P((X1−p, . . . ,Xn) ∈ �n) → 1 as n → ∞. We then have,
for ωn ∈ �n,∣∣P (X∗

t ≤ y|X∗
t−1 = x

)− Fe(w(x, y,�θ))
∣∣

= |F̂ε(w(x, y, θ̂ )) − Fe(w(x, y,�θ))|
≤ |Fe(w(x, y, θ̂ )) − Fe(w(x, y,�θ))| + |F̂ε(w(x, y, θ̂)) − Fe(w(x, y, θ̂))|.

For the first term on the right-hand side of the last inequality above, we obtain, using (B1), that

sup
x∈K

|Fe(w(x, y, θ̂)) − Fe(w(x, y,�θ))| ≤ ‖fe‖∞‖θ̂ −�θ‖ sup
x∈K

L(x, y) → 0

as n → ∞. The second term can be majorized by ‖F̂ε − Fe‖∞, which converges to zero in
probability; see Neumann and Paparoditis (2005) for details. �



Goodness-of-fit tests for Markovian time series models 43

Proof of Lemma 4.2. Let P (k) = P Y1,...,Yk and P
(k)
n = P Y

(n)
1 ,...,Y

(n)
k . For k = p, the proof that

(4.4) holds true follows the lines of the proof of Theorem 3.3 in Paparoditis and Politis (2002).
For k < p, the assertion follows from (4.4) with k = p, by the continuous mapping theorem.

For k > p, the assertion follows by induction from the result for k = p and the fact that, for any
bounded and uniformly continuous function f : Rk −→ R, the relation∫

f dP (k)
n =

∫
Rk−1

[
E
(
f
(
Y

(n)
1 , . . . , Y

(n)
k

) | (Y (n)
1 , . . . , Y

(n)
k−1

)′ = y
)

− E(f (Y1, . . . , Yk) | (Y1, . . . , Yk−1)
′ = y)

]
P (k−1)

n (dy)

+
∫

Rk−1
E
(
f (Y1, . . . , Yk) | (Y1, . . . , Yk−1)

′ = y
)[

P (k−1)
n (dy) − P (k−1)(dy)

]
+
∫

f dP (k)

−→
n→∞

∫
f dP (k)

holds true. �

Proof of Corollary 4.1. For some null sequence (δn)n∈N and appropriate K < ∞, we define a
set of “favorable events” such that

�̃n ⊆ {(X1−p, . . . ,Xn) :‖θ̂n(X1, . . . ,Xn) −�θ‖ ≤ δn,
(7.28)

E((ε∗
t )

2 | X1−p, . . . ,Xn) ≤ K}.
Moreover, let the �̃n be such that, for any sequence (ωn)n∈N with ωn ∈ �̃n,

L(ε∗
t | (X1−p, . . . ,Xn) = ωn) �⇒ L(et ).

The constant K < ∞ and the sequence (δn)n∈N above are chosen such that δn → 0 and
P((X1−p, . . . ,Xn) ∈ �̃n) → 1 as n → ∞. Now, let (ωn)n∈N be an arbitrary sequence with
ωn ∈ �̃n. We now assume that the bootstrap distributions are taken under the condition that
(X1−p, . . . ,Xn) = ωn. (This refers, in general, to a triangular scheme, but not to a single se-
quence of Xt .) Since θ̂n(X1−p, . . . ,Xn) −→

n→∞
�θ and E((ε∗

t )
2 | X1−p, . . . ,Xn) ≤ K , the condi-

tions of Lemma 4.2 are fulfilled, which yields the assertion. �

Proof of Lemma 4.3. We only stress the essentials of the proof. Let (ωn)n∈N be any sequence
with ωn ∈ �̃n, where �̃n is chosen as in the proof of Corollary 4.1. Assume that the distributions
are taken under the condition (X1−p, . . . ,Xn) = ωn.

For the AR(p) case, let ξ1, . . . , ξp be the roots of the polynomial �θ(·) with �θ(z) = 1 − �θ1z −
· · · − �θpzp . According to (A1), we have that ε := min{|ξ1|, . . . , |ξp|} − 1 > 0. If δn in (7.28) is
sufficiently small, then we obtain, for the roots ξ̂n,1, . . . , ξ̂n,p of θ̂ (z) = 1 − θ̂n,1z − · · · − θ̂n,pzp ,
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that min{|̂ξn,1|, . . . , |̂ξn,p|} ≥ 1 + ε/2; see Theorem 1.4 in Marden (1949). Thus, there exists a
stationary solution to the equation X∗

t = θ̂n,1X
∗
t−1 + · · · + θ̂n,pX∗

t−p + ε∗
t which can be written

as an MA(∞)-process, X∗
t =∑∞

k=0 βn,kε
∗
t−k, where |βn,k| ≤ Cδ(1 + ε/2 − δ)−k for any δ > 0

and corresponding Cδ < ∞. The rest of the proof then follows that in Section 2.1.
To show the weak dependence of the bootstrap process in the ARCH(p), choose δn < η/p

in (7.28), where η = 1 − ∑p

i=1
�θi > 0, and note that, for all θ̂ = (θ̂1, . . . , θ̂p) ∈ Uδ(�θ), there

exists some η̃ ∈ (0,1) such that
∑p

i=1 θ̂i < 1 − η̃. Furthermore, a (unique) stationary solution

to the equation X∗
t = ε∗

t

√
θ̂0 + θ̂1X

∗2

t−1 + · · · + θ̂pX∗2

t−p does exist. The result then follows by
applying the same coupling scheme as in the proof of Lemma 2.1; see Neumann and Paparoditis
(2005) for details. �

Proof of Theorem 4.1. The method of proof is exactly the same as that for Theorem 3.1.
Lemma 4.3 ensures that (X∗

t )t∈Z satisfies appropriate conditions of weak dependence which
yields, in conjunction with the fact that P X∗

t (B) converges to P Xt (B) with a sufficiently fast
rate, that (U∗

n )t∈Z is stochastically equicontinuous. Convergence of the finite-dimensional distri-
butions to a Gaussian limit again follows from Theorem 6.1, while the result of Corollary 4.1
ensures that its covariance function is the same as for the original process under the null; for
details, see Neumann and Paparoditis (2005). �
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