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We establish bounds for the covariance of a large class of functions of infinite variance stable random vari-
ables, including unbounded functions such as the power function and the logarithm. These bounds involve
measures of dependence between the stable variables, some of which are new. The bounds are also used to
deduce the central limit theorem for unbounded functions of stable moving average time series. This result
extends the earlier results of Tailen Hsing and the authors on central limit theorems for bounded functions
of stable moving averages. It can be used to show asymptotic normality of wavelet-based estimators of the
self-similarity parameter in fractional stable motions.
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1. Introduction

Consider a (non-Gaussian) symmetric α-stable (SαS, in short), α ∈ (0,2), two-dimensional ran-
dom vector (ξ, η). By definition (see, e.g., Samorodnitsky and Taqqu [19]), this means that any
linear combination uξ + vη is an SαS random variable, that is, it has a characteristic function
Eeiθ(uξ+vη) = e−σα |θ |α , where σ > 0 is the scale coefficient, denoted by ‖uξ + vη‖α . We will
sometimes assume that α > 1 so that the variables ξ and η have finite mean. These random
variables, however, always have infinite variance since α < 2. Nevertheless, functions K(ξ) and
L(η) of these random variables may have finite variance, as is the case for bounded functions
K,L or unbounded functions K(x) = |x|β/2 with β < α/2, L(y) = ln |y|. For such functions,
the covariance

Cov(K(ξ),L(η)) (1.1)

is well defined.
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We are interested here in bounds on the covariance (1.1) when ξ and η are dependent. (Ex-
amples of such ξ, η are provided in Section 2.) We seek bounds on (1.1) in terms of workable
measures of dependence between ξ and η. Since ξ and η have infinite variance, dependence
measures other than the usual covariance must be used. Some alternative measures of depen-
dence are available in the stable case, such as codifference and covariation (Samorodnitsky and
Taqqu [19]). We will use a measure similar to the covariation and also introduce a new measure
of dependence.

Bounds on the covariance (1.1) are useful for several reasons. From a general perspective, they
complement the work on bounds of covariances of other random variables. In some cases, for
example, Gaussian variables and integer power functions, these covariances can be computed
explicitly in terms of covariance between the two variables. In other cases, more general depen-
dence measures, such as various types of mixing, are studied. As with bounds on covariances for
other variables, bounds on (1.1) are useful for establishing limit results. In fact, we will use the
obtained bounds to deduce the central limit theorem (CLT) for partial sums

1

N1/2

N∑
n=1

(
K(ξn) − EK(ξn)

)
, (1.2)

where K is as in (1.1) and ξn is an SαS moving average time series with α ∈ (1,2). As K

can be unbounded, this result extends the CLTs for partial sums (1.2), with bounded functions
K considered in Hsing [11] and Pipiras and Taqqu [16]. A related paper of Wu [23], which
allows functions K to be unbounded, will be compared with our result below. We also apply
the obtained CLT to establish the asymptotic normality of wavelet-based estimators of the self-
similarity parameter in linear fractional stable motion. The obtained asymptotic normality result
is, to our knowledge, the first of its type.

The paper is organized as follows. Section 2 contains some preliminaries and statements of
the main results on bounds of the covariance (1.1). A useful measure of dependence is studied
in Section 3. The proofs of the main results on covariance bounds can be found in Section 4.
Section 5 contains auxiliary results. In Section 6, we show the CLT for partial sums (1.2) and
in Section 7, we apply it to deduce asymptotic normality of wavelet-based estimators in linear
fractional stable motion.

2. Results on covariance bounds

Let (ξ, η) be an SαS, α ∈ (0,2), random vector, as in Section 1. We will be concerned throughout
only with distributional properties of (ξ, η). Therefore (Samorodnitsky and Taqqu [19]), we may
suppose, without loss of generality, that

(ξ, η) =
(∫

S

f (s)M(ds),

∫
S

g(s)M(ds)

)
, (2.1)

where (S,µ) is a measure space, f,g ∈ Lα(S,µ) and M is the so-called SαS random measure
on S with the control measure µ. Heuristically, M(ds), s ∈ S, can be viewed as a sequence
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of independent SαS random variables with scale coefficients µ(ds). More precisely, for any
Borel set A, M(A) is an SαS random variable with scale coefficient ‖M(A)‖α = µ(A)1/α .
Moreover, if A1, . . . ,An are disjoint Borel sets, M(A1 ∪ · · · ∪ An) = M(A1) + · · · + M(An)

and M(A1), . . . ,M(An) are independent. Because the random variables M(A1), . . . ,M(An) are
SαS, the resulting vector (ξ, η) is SαS. (For more details, see Chapter 3 in Samorodnitsky and
Taqqu [19].) With the notation ‖f ‖α = (

∫
S
|f (s)|αµ(ds))1/α , the relation (2.1) also means that

the characteristic function of (ξ, η) is given by

Eei(uξ+vη) = e−‖uf +vg‖α
α , (2.2)

that is, ‖uξ + vη‖α = ‖uf + vg‖α .
According to Samorodnitsky and Taqqu [19], the space (S,µ) in (2.1) can be taken as S =

(0,1), µ = Lebesgue measure. Other choices are possible and are often used.

Example 2.1. Consider SαS random variables

ξ =
∞∑

k=−∞
fkεk, η =

∞∑
k=−∞

gkεk,

where
∑ |fk|α < ∞,

∑ |gk|α < ∞ and {εn} is an i.i.d. sequence of SαS random variables (with
scaling coefficient 1). Then, S = Z, µ = counting measure, f (n) = fn and g(n) = gn.

Example 2.2. Consider an SαS stationary time series given by the moving average representa-
tion

ξn =
∫

R

a(n − x)M(dx), (2.3)

where a ∈ Lα(R,dx) and M is an SαS random measure on R having the Lebesgue control dx.
Take ξ = ξ0 and η = ξn. Then, (S,µ) = (R,dx) and f (·) = a(−·), g(·) = a(n − ·).

We shall use the following quantities related to ξ and η.

Definition 2.1. Set

[ξ, η]∗1 =
∫

S

|f (s)|α−1|g(s)|µ(ds), [ξ, η]1 = [ξ, η]∗1 + [η, ξ ]∗1, (2.4)

[ξ, η]2 =
∫

S

|f (s)g(s)|α/2µ(ds). (2.5)

Observe that, unlike [ξ, η]∗1, the quantities [ξ, η]1 and [ξ, η]2 are symmetric in their arguments
ξ and η. Observe also that, by Hölder’s inequality, [ξ, η]2 < ∞ with α ∈ (0,2) and [ξ, η]∗1 < ∞
with α ∈ (1,2). The quantities [ξ, η]1 and [ξ, η]2 can be viewed as measures of dependence
between the random variables ξ and η. In particular, the dependence measure [ξ, η]1 is related
to the covariation measure of a stable random vector (ξ, η). The covariation, however, does not
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involve absolute values (see Samorodnitsky and Taqqu [19], Section 2.7). Observe, also, that the
representation (2.1) of random variables ξ and η is not unique: for example, another representa-
tion could be obtained from (2.1) by a change of variables. It is therefore important to note that
the quantities in (2.4)–(2.5) are invariant with respect to the representation (2.1) of ξ and η, as
stated in the following proposition. See Section 4 for its proof.

Proposition 2.1. The quantities [ξ, η]∗1, [ξ, η]1 and [ξ, η]2 in (2.4)–(2.5) do not depend on the
representation (2.1) of (ξ, η).

We shall often assume that ξ and η satisfy the following conditions.

Assumption (A1). There is a constant ε1 > 0 such that

‖f ‖α/2
α ‖g‖α/2

α −
∫

S

|f (s)g(s)|α/2µ(ds) ≥ ε1‖f ‖α/2
α ‖g‖α/2

α . (2.6)

Assumption (A2). There is a constant ε2 > 0 such that, for all u,v ∈ R,

‖uf + vg‖α
α ≥ ε2(‖uf ‖α

α + ‖vg‖α
α). (2.7)

For example, the variables ξ and η in Example 2.2 satisfy these assumptions for sufficiently
large n, where the constants ε1 and ε2 do not depend on n. Indeed, as proved in Section 4, we
have the following.

Proposition 2.2. Let α ∈ (0,2) and {ξn}n∈Z be an SαS average time series from Example 2.2.
Then, for sufficiently large n, the random variables ξ = ξ0 and η = ξn satisfy Assumptions (A1)
and (A2), where the constants ε1 and ε2 do not depend on n.

We shall now state the assumptions on the functions K,L in (1.1) which are used in this work.
We shall assume the following.

Assumption (K1). There are β ∈ (0, α/2) and x0 > 0 such that, for |x| > x0,

|K(x)| ≤ const|x|β. (2.8)

Assumption (K2). The function K(x)/x is non-increasing for x > x0 and non-decreasing for
x < −x0.

Assumption (K3). The function K is bounded on |x| ≤ x0 except possibly at a finite number of
points x1, . . . , xp , around which the function K is integrable.

Assumption (K1) is quite natural since it ensures that EK(ξ1)
2 < ∞. Assumption (K2) is

rather technical and depends on our method of proof. Examples of functions K satisfying
(K1)–(K3) are |x|β with β ∈ (−1, α/2), (ln |x|)m with m ≥ 1 and many others. The choice of
assumptions is also motivated by the applications to central limit theorems in Sections 6 and 7.
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The following results, proved in Section 4, provide bounds for the covariance Cov(K(ξ),L(η))

under various assumptions on the functions K and L. In Theorem 2.1, we suppose that K and L

are any two integrable functions. Theorem 2.2 concerns the functions K and L that are non-zero
only for large values of the argument and which satisfy Assumption (K2). Theorem 2.3 is a
combination of the previous two results. Finally, Theorem 2.4 is a consequence of Theorems 2.1,
2.2 and 2.3.

Theorem 2.1. Let α ∈ (0,2) and ξ, η be two SαS random variables (2.1) that satisfy Assump-
tion (A1). Let also K,L ∈ L1(R). Then,

|Cov(K(ξ),L(η))| ≤ C‖K‖1‖L‖1[ξ, η]2, (2.9)

where the constant C depends on ε1, α, ‖ξ‖α and ‖η‖α .

Theorem 2.2. Let α ∈ (1,2) and ξ, η be two SαS random variables (2.1) that satisfy Assump-
tions (A1) and (A2). Also, let K and L be two functions satisfying Assumptions (K1) and (K2)
with x0 = b ≥ 1. Set Kb(x) = K(x)1{|x|>b} and Lb(x) = L(x)1{|x|>b}, x ∈ R. Then

|Cov(Kb(ξ),Lb(η))| ≤ Cb2β−α([ξ, η]1 + [ξ, η]2), (2.10)

where the constant C depends on ε1, ε2, α, β , ‖ξ‖α and ‖η‖α .

Theorem 2.3. Let α ∈ (1,2) and ξ, η be two SαS random variables (2.1) that satisfy Assump-
tions (A1) and (A2). Also, let Kb be a function as in Theorem 2.2 and L ∈ L1(R). Then,

|Cov(Kb(ξ),L(η))| ≤ Cbβ−1 log(b + 1)‖L‖1([η, ξ ]∗1 + [η, ξ ]2), (2.11)

where the constant C depends on ε1, ε2, α, β , ‖ξ‖α and ‖η‖α .

Theorem 2.4. Let α ∈ (1,2) and ξ, η be two SαS random variables (2.1) that satisfy Assump-
tions (A1) and (A2). Also, let K and L be two functions that satisfy Assumptions (K1)–(K3).
Then

|Cov(K(ξ),L(η))| ≤ C([ξ, η]1 + [ξ, η]2), (2.12)

where the constant C depends on ε1, ε2, K , L, ‖ξ‖α and ‖η‖α .

Remark 2.1. Observe that the bounds (2.10) and (2.11) involve the cut-off parameter b. In par-
ticular, as b → ∞, both bounds converge to 0, which is consistent with the fact that the two
covariances also tend to 0. These results are therefore acceptable in the sense that the effects of
the cut-off b and the dependence are separated in the bounds. We also note that explicit expres-
sions for the constants C in the bounds of the covariances above can be deduced from the proofs
of the results, but these are not pursued here.
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3. Measure of dependence

In this section, we establish some results on a measure of dependence Uξ,η between ξ and η

defined below. These results will be used in Section 4.

Definition 3.1. For SαS random variables ξ and η in (2.1) and u,v ∈ R, set

Uξ,η(u, v) = Eeiuξ+ivη − EeiuξEeivη = e−‖uf +vg‖α
α − e−‖uf ‖α

α−‖vg‖α
α . (3.1)

We can find the measure of dependence Uξ,η in Section 4.7 of Samorodnitsky and Taqqu [19],
as well as

Iξ,η(u, v) = ‖uf + vg‖α
α − ‖uf ‖α

α − ‖vg‖α
α (3.2)

and −Iξ,η(1,−1), which is called the codifference. Observe that

|Uξ,η(u, v)| ≤ |Iξ,η(u, v)|, u, v ∈ R, (3.3)

due to the inequality |e−x − e−y | ≤ |x − y|, x, y > 0. The next result, borrowed from Delbeke
and Segers [10], provides various bounds on Uξ,η. For notational simplicity, we shall write

∫
hdµ

for the integral
∫
S
h(s)µ(ds) below, whenever this is not confusing.

Lemma 3.1. Let α ∈ (0,2) and the function Uξ,η be defined by (3.1). Then, for all u,v ∈ R,

|Uξ,η(u, v)| ≤ 2|uv|α/2[ξ, η]2, (3.4)

|Uξ,η(u, v)| ≤ 2|uv|α/2e−(|u|α/2‖ξ‖α/2
α −|v|α/2‖η‖α/2

α )2[ξ, η]2, (3.5)

|Uξ,η(u, v)| ≤ 2|uv|α/2e−2(‖ξ‖α/2
α ‖η‖α/2

α −[ξ,η]2)|uv|α/2[ξ, η]2. (3.6)

Proof. Inequality (3.4) follows from (3.3) and

|Iξ,η(u, v)| ≤ 2|uv|α/2
∫

|fg|α/2 dµ = 2|uv|α/2[ξ, η]2, (3.7)

which follows from relation (5.8) below. As for inequalities (3.5) and (3.6), by using |ex − 1| =
|ex − e0| ≤ e|x||x|, x ∈ R, and (3.7), we obtain

|Uξ,η(u, v)| = e−‖uf ‖α
α−‖vg‖α

α |e−Iξ,η(u,v) − 1| ≤ e−‖uf ‖α
α−‖vg‖α

α |Iξ,η(u, v)|e|Iξ,η(u,v)|

≤ 2|uv|α/2[ξ, η]2e−‖uf ‖α
α−‖vg‖α

α+2|uv|α/2
∫ |fg|α/2dµ

≤ 2|uv|α/2e−(|u|α/2‖f ‖α/2
α −|v|α/2‖g‖α/2

α )2
e−2(‖f ‖α/2

α ‖g‖α/2
α −∫ |fg|α/2dµ)|uv|α/2[ξ, η]2.

This yields both inequalities (3.5) and (3.6) since
∫ |fg|α/2 dµ ≤ ‖f ‖α/2

α ‖g‖α/2
α and the expo-

nents of the two exponentials are negative. �

The following two results concern the partial derivatives of the function Uξ,η . We shall use the
notation a〈p〉 = sign(a)|a|p with a,p ∈ R. The next lemma follows from Lemma 5.1 below.
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Lemma 3.2. Let α ∈ (1,2) and SαS random variables ξ, η be given by (2.1). Then, for u,v ∈ R,

∂Uξ,η

∂u
(u, v) = −α

∫
(uf + vg)〈α−1〉f dµ e−‖uf +vg‖α

α

(3.8)

+ α

∫
(uf )〈α−1〉f dµ e−‖uf ‖α

α−‖vg‖α
α

and

∂2Uξ,η

∂u∂v
(u, v) = −α(α − 1)

∫
|uf + vg|α−2fg dµ e−‖uf +vg‖α

α

+ α2
∫

(uf + vg)〈α−1〉f dµ

∫
(uf + vg)〈α−1〉g dµ e−‖uf +vg‖α

α (3.9)

− α2
∫

(uf )〈α−1〉f dµ

∫
(vg)〈α−1〉g dµ e−‖uf ‖α

α−‖vg‖α
α ,

provided, for the relation (3.9), that∫
|uf + vg|α−2|f ||g|dµ < ∞. (3.10)

Remark 3.1. When s ∈ S is such that f (s) = 0 or g(s) = 0, we assume in (3.10) and (3.9) that
|uf (s)+vg(s)|α−2|f (s)||g(s)| = 0. This expression is clearly zero if one of f (s) or g(s) is zero;
if both are zero, then their values do not contribute in the definition (2.1) of ξ and η.

In the following lemma, we provide bounds for the partial derivatives in Lemma 3.2, using
Assumption (A2).

Lemma 3.3. Let α ∈ (1,2) and ξ, η be two SαS random variables given by (2.1). Under As-
sumption (A2),∣∣∣∣∂Uξ,η

∂u
(u, v)

∣∣∣∣ ≤ C
(|v|α−1[η, ξ ]∗1e−ε2(‖uξ‖α

α+‖vη‖α
α) + |u|α−1|Uξ,η(u, v)|), (3.11)∣∣∣∣∂2Uξ,η

∂u∂v
(u, v)

∣∣∣∣ ≤ C
(
U1(u, v) + U2(u, v) + U3(u, v)

)
, (3.12)

where the constant C may depend on α, ε2,‖ξ‖α and ‖η‖α , and

U1(u, v) =
∫ ∣∣|uf | − |vg||α−2|f |∣∣g|dµ e−ε2(‖uξ‖α

α+‖vη‖α
α), (3.13)

U2(u, v) = (|u|2α−2 + |v|2α−2)e−ε2(‖uξ‖α
α+‖vη‖α

α)[ξ, η]1, (3.14)

U3(u, v) = |u|α−1|v|α−1|Uξ,η(u, v)|. (3.15)



1098 V. Pipiras, M.S. Taqqu and P. Abry

Proof. We consider only the bound (3.12), which is more difficult to prove. We shall denote by C

a generic constant which may change from occurrence to occurrence and also by Ũ1, Ũ2 and Ũ3
the three terms on the right-hand side of (3.9). Since α−2 < 0, by using |uf +vg| ≥ ||uf |−|vg||
and Assumption (A2), we obtain

|Ũ1| ≤ C

∫ ∣∣|uf | − |vg|∣∣α−2|f ||g|dµ e−ε2(‖uf ‖α
α+‖vg‖α

α) = CU1(u, v).

To bound |Ũ2 + Ũ3|, add and subtract to Ũ2 a similar term, where the first integral is replaced
by

∫
(uf )〈α−1〉f dµ, and to Ũ3 a similar term, where the exponential is replaced by e−‖uf +vg‖α

α .
Then, by twice applying the triangle inequality,

|Ũ2 + Ũ3| ≤ C

∫
|u|α−1|f |α dµ

∫
|v|α−1|g|α dµ|Uξ,η(u, v)|

+ C

∫
|uf + vg|α−1|g|dµ e−‖uf +vg‖α

α

∫ ∣∣(uf + vg)〈α−1〉 − (uf )〈α−1〉∣∣|f |dµ

+ C

∫
|u|α−1|f |α dµ e−‖uf +vg‖α

α

∫ ∣∣(uf + vg)〈α−1〉 − (vg)〈α−1〉∣∣|g|dµ.

Now, by using inequality (5.7) below and Hölder’s inequality, we obtain

|Ũ2 + Ũ3| ≤ C‖f ‖α
α‖g‖α

α|u|α−1|v|α−1|Uξ,η(u, v)|

+ C(|u|α−1‖f ‖α−1
α ‖g‖α + |v|α−1‖g‖α

α)e−‖uf +vg‖α
α |v|α−1

∫
|g|α−1|f |dµ

+ C|u|α−1‖f ‖α
αe−‖uf +vg‖α

α |u|α−1
∫

|f |α−1|g|dµ

≤ C′(U3(u, v) + U2(u, v)
)
,

using Assumption (A2) and the relation |uv|α−1 ≤ C(|u|2α−2 + |v|2α−2). �

In the following three results, we give bounds on various integrals of Uξ,η and integrals of its
partial derivatives.

Lemma 3.4. Let α ∈ (0,2) and ξ, η be SαS random variables that satisfy Assumption (A1).
Then ∫

R

∫
R

|Uξ,η(u, v)|dudv ≤ C[ξ, η]2, (3.16)

where constant C depends on ε1, α,‖ξ‖α and ‖η‖α .

Proof. We consider the integral over (0,∞) × (0,∞) only and examine it over four regions.
Over (0,1) × (0,1), by using (3.4), we have∫ 1

0

∫ 1

0
|Uξ,η(u, v)|dudv ≤ 2

∫ 1

0

∫ 1

0
uα/2vα/2 dudv[ξ, η]2 = C[ξ, η]2.
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Over (1,∞) × (1,∞), by using (3.6) and Assumption (A1), we can bound the integral by

2
∫ ∞

1

∫ ∞

1
e−ε1‖f ‖α/2

α ‖g‖α/2
α uα/2vα/2

uα/2vα/2 dudv[ξ, η]2.

Observe that the integral here is finite, since we can bound e−ε1‖f ‖α/2
α ‖g‖α/2

α uα/2vα/2
up to a constant

by (uv)−p for arbitrarily large p > 0. Over (0,1) × (1,∞), by using (3.5), we have as a bound,

2
∫ 1

0

∫ ∞

1
e−(uα/2‖f ‖α/2

α −vα/2‖g‖α/2
α )2

uα/2vα/2 dudv[ξ, η]2.

The integral here is again finite. A similar bound holds over the region (1,∞)× (0,1) and hence
the result (3.16) is valid. �

Lemma 3.5. Let α ∈ (1,2) and ξ, η be SαS random variables that satisfy Assumptions
(A1) and (A2). Also, let

F(u) =
{ |u|−β, if |u| < 1/b,

bβ−1|u|−1, if |u| ≥ 1/b,
(3.17)

where b ≥ 1 and β ∈ (0, α/2). Then,∫
R

∫
R

∣∣∣∣∂Uξ,η

∂u
(u, v)

∣∣∣∣F(u)dudv ≤ Cbβ−1 log(b + 1)([η, ξ ]∗1 + [ξ, η]2), (3.18)

∫
R

∫
R

∣∣∣∣∂2Uξ,η

∂u∂v
(u, v)

∣∣∣∣F(u)F (v)dudv ≤ Cb2β−α([ξ, η]1 + [ξ, η]2), (3.19)

where the constant C depends on α,β, ε1, ε2,‖ξ‖α and ‖η‖α . In particular, the derivative
∂2

∂v ∂u
Uξ,η is well defined a.e. dudv.

Proof. Consider first inequality (3.19), which is more difficult to prove. By Lemma 3.3, it is

enough to show that the bound (3.19) holds when ∂2

∂u∂v
Uξ,η is replaced by U1, by U2 and by U3.

Since U1, U2, U3 and F are even functions in u and v, it is enough to consider the integral over
(0,∞) × (0,∞). Let us denote this integral with U1, U2 and U3 by I1, I2 and I3, respectively.
That is, Ik = ∫ ∞

0

∫ ∞
0 Uk(u, v)F (u)F (v)dudv, k = 1,2,3. As in the proof of Lemma 3.3, we

shall denote a generic constant by C.
Bounding I1: We have

I1 ≤
∫

S

|f (s)||g(s)|
∫ ∞

0

∫ ∞

0

∣∣|f (s)|u − |g(s)|v∣∣α−2
F(u)F (v)dudv µ(ds)

=:
∫

S

|f (s)||g(s)|I1(s)µ(ds).



1100 V. Pipiras, M.S. Taqqu and P. Abry

By using Lemma 5.2 below, when f (s) �= 0 and g(s) �= 0, we obtain

I1(s) =
∫ ∞

0

∫ ∞

0

∣∣∣∣∣∣∣∣f (s)

g(s)

∣∣∣∣u − v

∣∣∣∣α−2

F(u)F (v)dudv|g(s)|α−2

≤ Cb2β−α

(
1 +

∣∣∣∣f (s)

g(s)

∣∣∣∣α−2)
|g(s)|α−2

= Cb2β−α
(|f (s)|α−2 + |g(s)|α−2).

In view of the remark following Lemma 3.2, we conclude that I1 ≤ Cb2β−α[ξ, η]1.
Bounding I2: We consider I2 over four regions (0,1/b) × (0,1/b), (1/b,∞) × (1/b,∞),

(0,1/b) × (1/b,∞) and (1/b,∞) × (0,1/b), and denote the corresponding integrals by I2,1,
I2,2, I2,3 and I2,4. We shall also consider U2 with only the term |u|2α−2 (in the case of |v|2α−2,
the bound is obtained by symmetry). Over (0,1/b) × (0,1/b), after the changes of variables
u → u/b, v → v/b, we obtain

I2,1 ≤
∫ 1/b

0

∫ 1/b

0
u2α−2u−βv−β dudv[ξ, η]1 ≤ Cb−2α+2β [ξ, η]1

since −β + 1 > 0 and 2α − 2 − β + 1 > 0. Over (1/b,∞) × (1/b,∞),

I2,2 =
∫ ∞

1/b

∫ ∞

1/b

u2α−2e−ε2|u|α‖f ‖α
α−ε2|v|α‖g‖α

αbβ−1u−1bβ−1v−1 dudv[ξ, η]1

≤ b2β−2
∫ ∞

0
u2α−3e−ε2|u|α‖f ‖α

α du

∫ ∞

1/b

e−ε2|v|α‖g‖α
α v−1 dv[ξ, η]1

≤ Cb2β−2 log(b + 1)[ξ, η]1

since 2α − 2 > 0. Over (0,1/b) × (1/b,∞),

I2,3 ≤
∫ 1/b

0

∫ ∞

1/b

u2α−2e−ε2|v|α‖g‖α
αu−βbβ−1v−1 dudv[ξ, η]1

= b−2α+2+β−1bβ−1
∫ 1

0
u2α−2−β du

∫ ∞

1/b

e−ε2|v|α‖g‖α
α v−1 dv[ξ, η

]
1

≤ Cb−2α+2β log(b + 1)[ξ, η]1.

Similarly, over (1/b,∞) × (0,1/b),

I2,4 ≤
∫ ∞

1/b

∫ 1/b

0
u2α−2e−ε2|u|α‖f ‖α

αbβ−1u−1v−β dudv[ξ, η]1

≤
∫ ∞

0
u2α−3e−ε2|u|α‖f ‖α

α du

∫ 1/b

0
v−β dv bβ−1[ξ, η]1 = Cb2β−2[ξ, η]1.



Bounds for the covariance of functions of infinite variance stable random variables 1101

We conclude that I2 ≤ Cb2β−2 log(b + 1)[ξ, η]1.
Bounding I3: We shall here use inequalities (3.4)–(3.6). As in the case of I2, denote the integral

I3 over the same four regions by I3,1, I3,2, I3,3 and I3,4, respectively. Then, by using (3.4), we
have

I3,1 ≤ C

∫ 1/b

0

∫ 1/b

0
uα−1vα−1uα/2vα/2u−βv−β dudv[ξ, η]2 ≤ Cb−3α+2β [ξ, η]2.

By using (3.6) and Assumption (A1), and making the changes of variables u = b−1x2/α, v =
b−1y2/α below, we obtain

I3,2 ≤ Cb2β−2
∫ ∞

1/b

∫ ∞

1/b

uα−1vα−1uα/2vα/2e−2ε1‖f ‖α/2
α ‖g‖α/2

α |uv|α/2
u−1v−1 dudv[ξ, η

]
2

≤ Cb2β−3α

∫ ∞

1

∫ ∞

1
e−2ε1‖f ‖α/2

α ‖g‖α/2
α b−αxy(xy)2(α−1)/α dx dy[ξ, η]2.

By a further changes of variables x = bαw and wy = z, we have

I3,2 ≤ Cb2β−3α+α+2(α−1)

∫ ∞

b−α

dw

w

∫ ∞

w

e−2ε1‖f ‖α/2
α ‖g‖α/2

α zz2(α−1)/αdz[ξ, η]2

≤ Cb2β−2 log(b + 1)[ξ, η]2,

by splitting and bounding
∫ ∞
b−α

∫ ∞
w

≤ ∫ 1
b−α

∫ ∞
0 + ∫ ∞

1

∫ ∞
w

. Turning to I3,3, this time using (3.5)
and making the changes of variables u = x2/αb−1, v = y2/αb−1 below, we obtain

I3,3 ≤ Cbβ−1
∫ 1/b

0

∫ ∞

1/b

uα−1vα−1uα/2vα/2e−(uα/2‖f ‖α/2
α −vα/2‖g‖α/2

α )2
u−βv−1 dudv[ξ, η]2

≤ Cb2β−3α

∫ 1

0

∫ ∞

1
x2(α−β)/αy2(α−1)/αe−(xb−α/2‖f ‖α/2

α −yb−α/2‖g‖α/2
α )2

dx dy[ξ, η]2.

By making another change of variables yb−α/2 = w, it is easy to see that the last expression
can be bounded (up to a constant) by b2β−3αb(α/2)+α−1[ξ, η]2 = b2β−((3α)/2)−1[ξ, η]2. One ob-
tains the same bound for I3,4 by symmetry. We can now conclude that I3 ≤ Cb2β−2 log(b +
1)[ξ, η]2.

The result (3.19) of the lemma follows from the bounds obtained for I1, I2 and I3. The in-
equality (3.18) can be shown in a similar way by using (3.11). �

Lemma 3.6. Let α ∈ (1,2) and ξ, η be SαS random variables (2.1) satisfying Assumptions (A1)
and (A2). Also, let

G(u) =
{ |u|−β, if |u| < 1,

1, if |u| ≥ 1,
(3.20)
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where β ∈ (0, α/2). Then, ∫
R

∫
R

∣∣∣∣∂Uξ,η

∂u
(u, v)

∣∣∣∣G(u)dudv ≤ C < ∞, (3.21)

∫
R

∫
R

∣∣∣∣∂2Uξ,η

∂u∂v
(u, v)

∣∣∣∣G(u)G(v)dudv ≤ C < ∞, (3.22)

where the constant C depends on α,β, ε1, ε2,‖ξ‖α and ‖η‖α .

Proof. We prove only the bound (3.22). The generic constants C and C′ below are as in the
statement of the lemma. As in the proof of Lemma 3.5, we consider the integral (3.22) over

(0,∞) × (0,∞) only and denote it by J1, J2 and J3 when ∂2

∂u∂v
Uξ,η is replaced by U1, U2 and

U3 in Lemma 3.3, respectively. To bound J1, we can apply the bound for the integral I1 in the
proof of Lemma 3.5 with b = 1 because the difference between the functions F and G can be
accounted for by bounding the term e−ε2(‖uf ‖α

α+‖vg‖α
α) in U1 by C|u|−1|v|−1 when |u| > 1 or

|v| > 1. We therefore obtain J1 ≤ C[ξ, η]1 ≤ C(‖ξ‖α−1
α ‖η‖α + ‖η‖α−1

α ‖ξ‖α) ≤ C′ < ∞. In the
case of J2, we have

J2 =
∫ ∞

0

∫ ∞

0
(|u|2α−2 + |v|2α−2)e−ε2(‖uf ‖α

α+‖vg‖α
α)G(u)G(v)dudv[ξ, η]1

and by bounding the exponential by Ce−ε3(‖uf ‖α
α+‖vg‖α

α)|u|−1|v|−1 when |u| > 1 or |v| > 1, we
can again account for the difference between the functions F and G. We can therefore again apply
the bound for the integral I2 in the proof of Lemma 3.3 with b + 1 and obtain J2 ≤ C[ξ, η]1 ≤
C′ < ∞, as above. The integral

J3 =
∫ ∞

0

∫ ∞

0
|u|α−1|v|α−1|Uξ,η(u, v)|G(u)G(v)dudv

can be bounded by using techniques from the proof of Lemma 3.4, together with the bounds
(3.4)–(3.6) for Uξ,η and the inequality [ξ, η]2 ≤ ‖ξ‖α/2

α ‖η‖α/2
α = C < ∞. �

4. Proofs of the main results

We shall prove here Propositions 2.1 and 2.2 and Theorems 2.1–2.4.

Proof of Proposition 2.1. The vector (ξ, η) in (2.1) has the so-called minimal representation

(ξ, η)
d=

(∫
S̃

f̃ (̃s)M̃(d̃s),

∫
S̃

g̃(̃s)M̃(d̃s)

)
, (4.1)

where M̃ is an SαS random measure on S̃ with the control measure µ̃. For more information
on minimal representations, see Rosiński [18] or [17], Section 2. It is therefore enough to show
that the quantities [ξ, η]∗1, [ξ, η]1 and [ξ, η]2 in (2.4)–(2.5) remain the same when either the
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representation (2.1) is used or when the minimal representation (4.1) is used. We consider only
the quantity [ξ, η]2 in (2.5).

We may assume, without loss of generality, that {s :f (s) �= 0 or g(s) �= 0} = S µ-a.e. (other-
wise, the set {s :f (s) = 0, g(s) = 0} = S can be eliminated from the representation (2.1) without
changing [ξ, η]2). By Remark 2.5 in Rosiński [17], there are maps φ :S 
→ S̃ and h :S 
→ R \ {0}
such that

f (s) = h(s)f̃ (φ(s)), g(s) = h(s)g̃(φ(s)) (4.2)

a.e. µ(ds) and

µ̃ = µh ◦ φ−1, (4.3)

where µh(ds) = |h(s)|αµ(ds). By using (4.2) and (4.3), and making a change of variables, we
have ∫

S

|f (s)g(s)|α/2µ(ds) =
∫

S

|f̃ (φ(s))g̃(φ(s))|α/2µh(ds) =
∫

S̃

|f̃ (̃s)g̃(̃s)|α/2µ̃(d̃s).

This proves the result for the quantity [ξ, η]2 in (2.5). �

Proof of Proposition 2.2. Let (Tna)(x) = a(n − x), n ∈ Z, x ∈ R. In view of (2.3), ξ0 and ξn

have kernels f = T0a and g = Tna. That ξ0 and ξn satisfy Assumption (A1) follows from the
facts that ‖Tna‖α = ‖T0a‖α and

∫
R

|(T0a)(x)(Tna)(x)|α/2 dx → 0 as n → ∞. To see why the
last integral converges to 0, first write it as∫

R

|a(−x)a(n − x)|α/2 dx =
∫ ∞

l

|a(−x)a(n − x)|α/2 dx +
∫ l

−∞
|a(−x)a(n − x)|α/2 dx

≤ ∥∥a(−·)1(l,∞)

∥∥α/2
α

‖a(−·)‖α/2
α + ‖a(−·)‖α/2

α

∥∥a(·)1(n−l,∞)

∥∥α/2
α

,

by the Cauchy–Schwarz inequality and a change of variables. Now, observe that the first term in
the bound is arbitrarily small for large fixed l and that the second term converges to 0 for fixed l

as n → ∞.
We now show that they also satisfy Assumption (A2). We consider only the case α ∈ [1,2);

the case α ∈ (0,1) can be proven by considering ‖ · ‖α
α below. For some l ∈ R, we have, by

2(x + y)p ≥ xp + yp , x, y,p > 0, and by Minkowski’s inequality applied to the norm ‖ · ‖α ,

‖uT0a + vTna‖α = ∥∥(uT0a + vTna)1(−∞,l) + (uT0a + vTna)1(l,∞)

∥∥
α

≥ 1
2

∥∥(uT0a + vTna)1(−∞,l)

∥∥
α

+ 1
2

∥∥(uT0a + vTna)1(l,∞)

∥∥
α

≥ 1
2

(∥∥uT0a1(−∞,l)

∥∥
α

− ∥∥vTna1(−∞,l)

∥∥
α

)
(4.4)

+ 1
2

(∥∥vTna1(l,∞)

∥∥
α

− ∥∥uT0a1(l,∞)

∥∥
α

)
= 1

2

(∥∥T0a1(−∞,l)

∥∥
α

− ∥∥T0a1(l,∞)

∥∥
α

)|u|
+ 1

2

(∥∥T0a1(l−n,∞)

∥∥
α

− ∥∥T0a1(−∞,l−n)

∥∥
α

)|v|.
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Since ‖T0a‖α = limm→∞ ‖T0a1(−∞,m)‖α , there is a constant M > 0 such that, for all m ≥ M ,∥∥T0a1(−∞,m)

∥∥
α

− ∥∥T0a1(m,∞)

∥∥
α

≥ 1
2‖T0a‖α,∥∥T0a1(−m,∞)

∥∥
α

− ∥∥T0a1(−∞,−m)

∥∥
α

≥ 1
2‖T0a‖α.

By applying these inequalities to (4.4), by fixing l ≥ M and taking n such that n − l ≥ M or
n ≥ (M + l), we obtain

‖uT0a + vTna‖α ≥ 1

4
(‖uT0a‖α + ‖vTna‖α) ≥ 1

4 · 21/α
(‖uT0a‖α

α + ‖vTna‖α
α)1/α,

which is Assumption (A2). �

We shall denote the Fourier transform and its inverse by

(Fh)(u) =
∫

Rn

eiu·xh(x)dx,

(4.5)

(F−1k)(x) = (Gk)(x) = 1

(2π)n

∫
Rn

e−ix·uk(u)du

and we shall also use the measure of dependence Uξ,η , which was analyzed in Section 3. The
following two lemmas are used in the proofs of Theorems 2.1–2.4.

Lemma 4.1. Let K be a function satisfying Assumptions (K1) and (K2) with x0 = b ≥ 1. Set
Kb(x) = K(x)1{|x|>b} and Kb,n(x) = K(x)1{b<|x|<n}, x ∈ R, n ∈ N. Then,∣∣∣∣(GKb(x)

x

)
(u)

∣∣∣∣ ≤ C

{ |u|−β, if |u| < 1/b,

bβ−1|u|−1, if u ∈ R,
(4.6)

where the constant C does not depend on b. Moreover, for fixed b,∣∣∣∣(GKb,n(x)

x

)
(u)

∣∣∣∣ ≤ C

{ |u|−β, if |u| < 1/b,

|u|−1, if u ∈ R,
(4.7)

where the constant C does not depend on n.

Proof. The second inequality in (4.6) follows from

2π

∣∣∣∣(GKb(x)

x

)
(u)

∣∣∣∣ ≤
∣∣∣∣(∫ −b

−∞
+

∫ ∞

b

)
K(x)

x
e−ixu dx

∣∣∣∣
≤ 4(|K(b)| + |K(−b)|)

b|u| ≤ Cbβ−1|u|−1,

where we used Assumptions (K1) and (K2), together with the inequality∣∣∣∣ ∫ d

c

eixuf (x)dx

∣∣∣∣ ≤ 4

|u| max
x∈[c,d] |f (x)|, (4.8)
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valid for c < d , u ∈ R and a function f monotonic on [c, d]. (The inequality (4.8) is a conse-
quence of the second mean value theorem; see, e.g., in Kawata [12], page 24). As for the first
inequality in (4.6), when 0 < |u| < 1/b, we obtain

2π

∣∣∣∣(GKb(x)

x

)
(u)

∣∣∣∣ ≤
∫

R

1{b<|x|<1/|u|}
|K(x)|

|x| dx +
∣∣∣∣(∫ −1

−∞
+

∫ ∞

1

)
K(z/|u|)

z
e−iz sign(u) dz

∣∣∣∣.
Using the fact that K(z/|u|)

z/|u| is monotone for |z|/|u| > b, hence for |z| > 1, and applying (4.8), we
obtain

2π

∣∣∣∣(GKb(x)

x

)
(u)

∣∣∣∣ ≤ 2
∫ 1/|u|

b

xβ−1 dx + 4

(
K

(
1

|u|
)

+ K

(
− 1

|u|
))

≤ C|u|−β.

The bound (4.7) can be proven in a similar way. �

Lemma 4.2. Let α ∈ (1,2) and ξ, η be two SαS random variables (2.1) that satisfy Assumptions
(A1) and (A2). Then, for (x, y) ∈ R

2, x, y �= 0,

(GUξ,η)(x, y) = 1

ix

(
G ∂

∂u
Uξ,η

)
(x, y), (4.9)

(GUξ,η)(x, y) = − 1

xy

(
G ∂2

∂u∂v
Uξ,η

)
(x, y). (4.10)

Proof. Since, by Lemma 3.6, ∂
∂u

Uξ,η,
∂2

∂u∂v
Uξ,η ∈ L1(R2) and also, by Assumption (A2) and

the bound (3.11), limu→∞ Uξ,η(u, v) = 0 and limv→∞( ∂
∂u

Uξ,η)(u, v) = 0, we obtain, using the
integration by parts formula, that

(2π)2(GUξ,η)(x, y) =
∫

R2
e−ixu−iyvUξ,η(u, v)dudv

= − 1

ix

∫
R

dv e−iyv

∫
R

d(e−ixu)Uξ,η(u, v)

= 1

ix

∫
R

dv e−iyv

∫
R

du e−ixu ∂Uξ,η

∂u
(u, v) = (2π)2

ix

(
G ∂

∂u
Uξ,η

)
(x, y)

= − 1

(ix)(iy)

∫
R

du e−ixu

∫
R

d(e−iyv)
∂Uξ,η

∂u
(u, v)

= − (2π)2

xy

(
G ∂2

∂u∂v
Uξ,η

)
(x, y). �

We next provide the proofs of Theorems 2.1–2.4.

Proof of Theorem 2.1. Let ψξ,η , ψξ and ψη be the density functions of (ξ, η), ξ and η, re-
spectively. Also, let φξ,η , φξ and φη be the characteristic functions of (ξ, η), ξ and η, respec-
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tively. By using the inversion formula for the densities of (ξ, η), ξ and η, and K,L ∈ L1(R) and
Uξ,η ∈ L1(R2), we obtain that

Cov(K(ξ),L(η)) = EK(ξ)L(η) − EK(ξ)EL(η)

=
∫

R2
K(x)L(y)

(
ψξ,η(u, v) − ψξ (u)ψη(v)

)
dx dy

=
∫

R2
K(x)L(y)

(
(Gφξ,η)(x, y) − (Gφξ )(x)(Gφη)(y)

)
dx dy

=
∫

R2
K(x)L(y)(GUξ,η)(x, y)dx dy

=
∫

R2
(GK)(u)(GL)(v)Uξ,η(u, v)dudv,

by Fubini’s theorem. The bound (2.9) follows by using |(GK)(u)| ≤ C‖K‖1, |(GL)(u)| ≤
C‖L‖1 and Lemma 3.4. �

Proof of Theorem 2.2. For n ≥ 1, set Kb,n(x) = Kb(x)1{|x|≤n} = K(x)1{b<|x|≤n} and Lb,n(x) =
L(x)1{b<|x|≤n}, x ∈ R. Since, by Lemma 3.6, ∂2

∂u∂v
Uξ,η ∈ L1(R2) and Kb,n,Lb,n ∈ L1(R), we

obtain, using (4.10), that

Cov(Kb,n(ξ),Lb,n(η)) =
∫

R2
Kb,n(x)Lb,n(y)(GUξ,η)(x, y)dx dy

= −
∫

R2

Kb,n(x)

x

Lb,n(y)

y

(
G ∂2

∂u∂v
Uξ,η

)
(x, y)dx dy (4.11)

= −
∫

R2

(
GKb,n(x)

x

)
(u)

(
GLb,n(y)

y

)
(v)

∂2Uξ,η

∂u∂v
(u, v)dudv.

Now, observe that, by using Assumption (K2) and the inequality (4.8) above, we have(
GKb,n(x)

x

)
(u) = 1

2π

∫
R

e−iux K(x)

x
1{b<|x|≤n} dx

(4.12)

−→ 1

2π

∫
R

e−iux K(x)

x
1{b<|x|} dx =:

(
GKb(x)

x

)
(u)

as n → ∞, for all u ∈ R (u �= 0). Then, by letting n → ∞ in (4.11) and using (4.7) in Lemma 4.1,
Lemma 3.6 and the dominated convergence theorem, we obtain that

Cov(Kb(ξ),Lb(η)) = −
∫

R2

(
GKb(x)

x

)
(u)

(
GLb(y)

y

)
(v)

∂2Uξ,η

∂u∂v
(u, v)dudv. (4.13)

The bound (2.10) follows from (4.6) in Lemma 4.1 and (3.19) in Lemma 3.5. �
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Remark 4.1. Note that the proof of Theorem 2.1 fails for Theorem 2.2 because it may happen
that GKb is not defined (this is the case, e.g., when Kb(x) = log2 |x|1{|x|>b}). This is why we
consider GKb(x)/x instead in (4.12). Note, also, that (GKb(x)/x)(u) in (4.12) is an improper
integral because we could have Kb(x)/x /∈ L1(R) ∪ L2(R) and thus the usual L1- or L2-Fourier
transforms for Kb(x)/x may not be defined. What helped was the monotonicity of the function
Kb(x)/x.

Remark 4.2. In order to avoid dealing with complications involving ∂2

∂u∂v
Uξ,η , one may think

of transferring (by the integration by parts formula) the derivative ∂2

∂u∂v
from Uξ,η onto (G·) to

obtain

Cov(Kb(ξ),Lb(η)) = −
∫

R2

∂

∂u

(
GKb(x)

x

)
(u)

∂

∂v

(
GLb(y)

y

)
(v)Uξ,η(u, v)dudv. (4.14)

The problem with (4.14), however, is that the derivatives of (G·) are not easy to manipulate.
Consider, for example, the functions Kb(x) = Lb(x) = |x|β1{|x|>b} with β ∈ (0, α/2) which
appear in the wavelet applications. We can verify that

∂

∂u

(
GKb(x)

x

)
(u) = i

π
sign(u)

(
βu−β−1

∫ ∞

bu

zβ−1 sin zdz + bβ sinbu

u

)
and hence the right-hand side of (4.14) involves the integral with sinbu sinbv as part of its
integrand. It turns out that we cannot estimate this integral by putting absolute values on the
integrand (the sign of sinbu sinbv is important). We therefore worked with the formula (4.13)
instead.

Remark 4.3. Although the formula (4.14) is not used here, it may be useful in other contexts.
For example, if we take ln | · | for the functions Kb and Lb , we obtain

Cov(ln |ξ |, ln |η|) = 1

4

∫
R

∫
R

Uξ,η(u, v)
dudv

|u||v| . (4.15)

The formula (4.15) is proved rigorously in Delbeke and Segers [10], where it is used to bound
the covariance (4.15).

Proof of Theorem 2.3. For n ≥ 1, set Kb,n(x) = K(x)1{b<|x|≤n}, x ∈ R. Since, by Lemma 3.6,
∂
∂u

Uξ,η ∈ L1(R2) and Kb,n ∈ L1(R), we obtain, using Lemma 4.2, that

Cov(Kb,n(ξ),L(η)) =
∫

R2
Kb,n(x)L(y)(GUξ,η)(x, y)dx dy

= 1

i

∫
R2

Kb,n(x)

x
L(y)

(
G ∂

∂u
Uξ,η

)
(x, y)dx dy (4.16)

= 1

i

∫
R2

(
GKb,n(x)

x

)
(u)(GL)(v)

∂Uξ,η

∂u
(u, v)dudv.
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By letting n → ∞ in (4.16) and using (4.12), (4.7), Lemma 3.6 and the dominated convergence
theorem, we obtain that

Cov(Kb(ξ),L(η)) = 1

i

∫
R2

(
GKb(x)

x

)
(u)(GL)(v)

∂Uξ,η

∂u
(u, v)dudv. (4.17)

The bound (2.11) follows from (4.6) in Lemma 4.1 and (3.18) in Lemma 3.5. �

Proof of Theorem 2.4. Let x0,K and x0,L be the points in Assumptions (K1)–(K3) correspond-
ing to the functions K and L, respectively. For b > max{x0,K, x0,L} and b ≥ 1, set Kb(x) =
K(x)1{|x|>b} and Lb(x) = L(x)1{|x|>b}, x ∈ R. By Assumption (K3), we have K = Kb + K̃ and
L = Lb + L̃, with K̃, L̃ ∈ L1(R,dx). The bound (2.12) follows by first writing

|Cov(K(ξ),L(η))| ≤ |Cov(Kb(ξ),Lb(η))| + |Cov(Kb(ξ), L̃(η))|
(4.18)

+ |Cov(K̃(ξ),Lb(η))| + |Cov(K̃(ξ), L̃(η))|

and then using Theorems 2.1, 2.2 and 2.3 to bound the terms on the right-hand side
of (4.18). �

5. Auxiliary results

We prove here some results which were used in Sections 2 and 3. The following lemma was used
in the proof of Lemma 3.2. It involves signed powers a〈p〉 = |a|p sign(a). We write

∫
hdµ =∫

S
h(s)µ(ds) for notational simplicity.

Lemma 5.1. Let f,g ∈ Lα(S,µ) with α ∈ (1,2) and set

F(u, v) =
∫

|uf + vg|α dµ, u, v ∈ R. (5.1)

Then, for u,v ∈ R,

∂F

∂u
(u, v) = α

∫
(uf + vg)〈α−1〉f dµ,

(5.2)
∂2F

∂v ∂u
(u, v) = α(α − 1)

∫
|uf + vg|α−2fg dµ,

provided, for the second equality in (5.2), that∫
|uf + vg|α−2|f ||g|dµ < ∞. (5.3)
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Proof. By the mean value theorem, we have, for some u∗ = u∗(u, v,h, x) ∈ [u,u + h] (we
consider h > 0),∣∣∣∣ 1

h

(
F(u + h,v) − F(u, v)

) − α

∫
(uf + vg)〈α−1〉f dµ

∣∣∣∣
= l

∣∣∣∣ ∫ 1

h

(|(u + h)f + vg|α − |uf + vg|α)
dµ − α

∫
(uf + vg)〈α−1〉f dµ

∣∣∣∣
= α

∣∣∣∣ ∫ (
(u∗f + vg)〈α−1〉 − (uf + vg)〈α−1〉)f dµ

∣∣∣∣
≤ 2α

∫
|u − u∗|α−1|f |α dµ ≤ 2αhα−1

∫
|f |α dµ → 0,

by (5.7) in Lemma 5.3, as h → 0, which proves the result for the first derivative. The case
of the second partial derivative of F is more delicate. By the mean value theorem with v∗ =
v∗(u, v,h, x) ∈ [v, v + h], we have

1

h

(
∂F

∂u
(u, v + h) − ∂F

∂u
(u, v)

)
= α

∫
1

h

((
uf + (v + h)g

)〈α−1〉 − (uf + vg)〈α−1〉)f dµ

= α(α − 1)

∫
|uf + v∗g|α−2fg dµ.

Since |uf + v∗g|α−2 → |uf + vg|α−2, as h ↓ 0, and, by (5.6) in Lemma 5.3 below,

(α − 1)|uf + v∗g|α−2|f ||g|
= 1

h

∣∣(uf + (v + h)g
)〈α−1〉 − (uf + vg)〈α−1〉∣∣|f | ≤ 2|uf + vg|α−2|f ||g|,

the dominated convergence theorem and condition (5.3) together imply that

1

h

(
∂F

∂u
(u, v + h) − ∂F

∂u
(u, v)

)
h↓0−→ α(α − 1)

∫
|uf + vg|α−2fg dµ,

which proves the result for the second partial derivative. �

The next lemma was used in the proof of Lemma 3.5.

Lemma 5.2. Let α ∈ (1,2), r > 0 and F(u) = |u|−β for |u| < 1/b and F(u) = bβ−1|u|−1 for
|u| ≥ 1/b, where b ≥ 1 and β ∈ (0, α/2). Then,

I0(r) :=
∫ ∞

0

∫ ∞

0
|ru − v|α−2F(u)F (v)dudv ≤ Cb2β−α(1 + rα−2), (5.4)

where the constant C depends only on α and β .
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Proof. Observe that F(b−1u) = bβF1(u), where F1(u) = |u|−β for |u| < 1 and F1(u) = |u|−1

for |u| ≥ 1. Then, since

I0(r) =
∫ ∞

0

∫ ∞

0
|rb−1u − b−1v|α−2F(b−1u)F (b−1v)b−2 dudv

= b2β−α

∫ ∞

0

∫ ∞

0
|ru − v|α−2F1(u)F1(v)dudv,

it is enough to show (5.4) with b = 1. Consider the integral I0(r) over four regions (0,1)× (0,1),
(1,∞) × (1,∞), (0,1) × (1,∞) and (1,∞) × (0,1), and denote the corresponding integrals by
I0,1(r), I0,2(r), I0,3(r) and I0,4(r), respectively. By making the changes of variables v = ry,u =
yw below, we obtain that

I0,1(r) =
∫ 1

0

∫ 1

0
|ru − v|α−2u−βv−β dudv

=
∫ 1/r

0
dy

(∫ 1/y

0
dw|w − 1|α−2w−β

)
yα−1−2β rα−1−β.

First, suppose that r ≥ 1. We examine I0,1(r) in three cases, depending on the behavior of the
inner integral above.

Case 1: α − 2 − β + 1 = α − 1 − β > 0. In this case, since r ≥ 1 and α < 2, we have

I0,1(r) ≤ C

∫ 1/r

0
y−(α−1−β)yα−1−2β dy rα−1−β = C′rα−2 ≤ C′.

Case 2: α − 1 − β < 0. In this case, since r ≥ 1 and β < 1, we have

I0,1(r) ≤ C

∫ 1/r

0
yα−1−2β dy rα−1−β = C′rβ−1 ≤ C′.

Case 3: α − 1 − β = 0. By using the integration by parts formula, we have

I0,1(r) ≤ C

∫ 1/r

0
| logy|y−β dy ≤ C′(rβ−1 log r + rβ−1) ≤ C′′.

This shows that I0,1(r) ≤ C when r ≥ 1. If 0 < r ≤ 1, then, by writing I0,1(r) = ∫ 1
0

∫ 1
0 |u −

r−1v|α−2u−βv−β dudv rα−2 and using symmetry, we can conclude, as above, that I0,1(r) ≤
Crα−2. Hence, I0,1(r) ≤ C(1 + rα−2) for any r > 0.

Turning to the integral I0,2(r), supposing first that r ≥ 1 and making the change of variables
ru = y below, we obtain that

I0,2(r) =
∫ ∞

1

∫ ∞

1
|ru − v|α−2u−1v−1 dudv =

∫ ∞

r

dy

∫ ∞

1
dv|y − v|α−2y−1v−1 ≤ C.

By using the symmetry argument above (see the case of I0,1(r)), we can deduce that I0,2(r) ≤
rα−2 when 0 < r ≤ 1. Hence, I0,2(r) ≤ C(1 + rα−2) for any r > 0.
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By making the changes of variables v = ry,u = yw, we obtain that

I0,3(r) =
∫ 1

0
du

∫ ∞

1
dv|ru − v|α−2u−βv−1

(5.5)

=
∫ ∞

1/r

dy

(∫ 1/y

0
dw|w − 1|α−2w−β

)
yα−2−β rα−2.

Consider first r ≥ 1. In this case, we have

I0,3(r) =
∫ ∞

1
dy

(∫ 1/y

0
dw|w − 1|α−2w−β

)
yα−2−β rα−2

+
∫ 1

1/r

dy

(∫ 1/y

0
dw|w − 1|α−2w−β

)
yα−2−β rα−2 =: I 1

0,3(r) + I 2
0,3(r).

For the integral I 1
0,3(r), we have I 1

0,3(r) = C
∫ ∞

1 yβ−1yα−2−β dy rα−2 ≤ C′rα−2 ≤ C′ since

r ≥ 1. To bound the integral I 2
0,3(r), we consider the following three cases.

Case 1: α − 1 − β > 0. In this case, we have

I 2
0,3(r) ≤ C

∫ 1

1/r

y−(α−1−β)yα−2−β dy rα−2 = C′(log r)rα−2 ≤ C′.

Case 2: α − 1 − β < 0. In this case, we have

I 2
0,3(r) ≤ C

∫ 1

1/r

yα−2−β dy rα−2 = C′rβ−1 ≤ C′.

Case 3: α − 1 − β = 0. In this case, we have

I 2
0,3(r) ≤ C

∫ 1

1/r

| logy|y−1 dy rα−2 = C′(log r)2rα−2 ≤ C′′.

This shows that I 2
0,3(r) ≤ C when r ≥ 1. Now, consider 0 < r ≤ 1. Since r−1 ≥ 1, by using (5.5),

we obtain that

I0,3(r) ≤
∫ ∞

1
dy

(∫ 1/y

0
dw|w − 1|α−2w−β

)
yα−2−β rα−2 = Crα−2.

Hence, I0,3(r) ≤ C(1 + rα−2) for any r > 0. It can be similarly shown that the same bound holds
for I0,4(r). This proves the result (5.4). �
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The following inequalities were used in the proofs of Lemmas 3.1, 3.3 and 5.1.

Lemma 5.3. Let x1, x2 ∈ R. When α ∈ (1,2), the following inequalities hold∣∣x〈α−1〉
1 − x

〈α−1〉
2

∣∣ ≤ 2|x2|α−2|x1 − x2| (x2 �= 0), (5.6)∣∣x〈α−1〉
1 − x

〈α−1〉
2

∣∣ ≤ 2|x1 − x2|α−1. (5.7)

Moreover, when α ∈ (0,2), ∣∣|x + y|α − |x|α − |y|α∣∣ ≤ 2|xy|α/2. (5.8)

Proof. The inequality (5.6) follows from the inequality |(1 + z)〈q〉 − 1| ≤ 2|z|, with q ∈ (0,1)

and z ∈ R, in Lemma 3.4 of Cioczek-Georges and Taqqu [7]. We provide here a geometric proof,
which is best understood by graphing the function p(x) = x〈α−1〉, x ∈ R. Suppose, without loss
of generality, that x2 < 0. Then, there exists an x∗ such that the slope of the line connecting the
points (x2, x

〈α−1〉
2 ) and (x∗, (x∗)〈α−1〉) is the largest among the slopes connecting (x2, x

〈α−1〉
2 )

and (x, x〈α−1〉) with x ∈ R, x �= x2. This x∗ satisfies 0 < x∗ ≤ |x2|. Then,

|x〈α−1〉
1 − x

〈α−1〉
2 |

|x1 − x2| ≤ |(x∗)〈α−1〉 − x
〈α−1〉
2 |

|x∗ − x2| = |x∗|α−1 + |x2|α−1

|x∗| + |x2| ≤ 2|x2|α−1

|x2| = 2|x2|α−2,

which is the inequality (5.6).
We now turn to the inequality (5.7). When x1, x2 > 0 or x1, x2 < 0, it follows from a sharper

bound |ap

1 − a
p

2 | ≤ |a1 − a2|p , valid for a1, a2 > 0 and p ∈ (0,1). When x1 > 0, x2 < 0 or
x1 < 0, x2 > 0, we have∣∣〈x1〉α−1 − 〈x2〉α−1

∣∣ = |x1|α−1 + |x2|α−1 ≤ 2(|x1| + |x2|)α−1 = 2|x1 − x2|α−1.

Finally, the inequality (5.8) follows from |x|α + |y|α − 2|xy|α/2 = ||x|α/2 − |y|α/2|2 ≤ |x +
y|2α/2 = |x + y|α and |x + y|α = |x + y|2α/2 = (|x|2 +|y|2 + 2|xy|)α/2 ≤ |x|α +|y|α + 2|xy|α/2

since 0 < α/2 < 1. �

6. Application to central limit theorems

The following result now follows easily from the covariance bounds in Theorems 2.1–2.4 and
the central limit theorems for bounded functionals of SαS moving averages considered in Pipiras
and Taqqu [16] and Hsing [11].

Theorem 6.1. Let α ∈ (1,2) and {ξn}n≥0 be an SαS moving average defined by (2.3) with a
function a ∈ Lα(R,dx), a(x) = 0 for x < 0. Suppose that K is a function satisfying Assumptions
(K1)–(K3). If

∞∑
m=1

(∫ m

m−1
|a(x)|α dx

)1/2

< ∞,

∞∑
n=1

[ξ0, ξn]1 < ∞, (6.1)
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then

N−1/2SN = N−1/2
N∑

n=1

(
K(ξn) − EK(ξn)

) d→ N (0, σ 2) (6.2)

as N → ∞, where

σ 2 = lim
N→∞N−1 Var(SN) = Var(K(ξ0)) + 2

∞∑
n=1

Cov(K(ξ0),K(ξn)). (6.3)

The limit in (6.3) exists and is finite and the series in (6.3) converges absolutely.

Remark 6.1. The assumption of Theorem 6.1 that moving averages are causal (i.e., a(x) = 0 for
x < 0) is also present in the available central limit theorems for bounded functions K (see Hsing
[11], Pipiras and Taqqu [16]).

The easiest way to verify condition (6.1) is to use, when possible, the stronger condition
stated in the following lemma. Its proof is elementary and is given below. We use the notation
[ξ0, ξn]γ,δ = ∫

R
|a(−x)|γ |a(n − x)|δ dx.

Lemma 6.1. Let γ > 0, δ > 0 be such that γ + δ = α with α > 0. Also, let a ∈ Lα(R,dx). Then,

∞∑
m=−∞

(∫ m

m−1
|a(x)|α dx

)min{γ,δ}/α
< ∞ �⇒

∞∑
n=−∞

[ξ0, ξn]γ,δ < ∞. (6.4)

In particular, when α ∈ (1,2), we have

∞∑
m=−∞

(∫ m

m−1
|a(x)|α dx

)(α−1)/α

< ∞ �⇒
∞∑

n=1

[ξ0, ξn]1 < ∞, (6.5)

∞∑
m=−∞

(∫ m

m−1
|a(x)|α dx

)1/2

< ∞ �⇒
∞∑

n=1

[ξ0, ξn]2 < ∞. (6.6)

Proof. By setting I = ∑∞
n=1[ξ0, ξn]γ,δ , the result (6.4) follows from Hölder’s inequality,

I =
∑

m,n∈Z

∫ m

m−1
|a(z)|γ |a(n + z)|δ dz

≤
∑

m,n∈Z

(∫ m

m−1
|a(z)|α dz

)γ /α(∫ m

m−1
|a(n + z)|α dz

)δ/α

=
∑
m∈Z

(∫ m

m−1
|a(z)|α dz

)γ /α ∑
n∈Z

(∫ n+m

n+m−1
|a(z)|α dz

)δ/α

,
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making the substitution n → n − m in the last summation. �

Example 6.1. Let α ∈ (1,2) and a : R 
→ R be a bounded function such that a(x) = 0 for x < 0
and |a(x)| ≤ Cx−p for x > 0 and some p > 1/α. Then, for m ≥ 1 and some constant C,∫ m

m−1
|a(x)|α dx ≤ Cm−pα.

Since 0 < (α−1)/α < 1/2, the conditions on the left-hand sides of (6.6) and (6.5) hold as long as∑∞
m=1 |m|−p(α−1) < ∞ or, equivalently, p > 1/(α − 1). Then, by (6.5), the function a satisfies

condition (6.1) of Theorem 6.1 for p > 1/(α − 1).

Proof of Theorem 6.1. Suppose, for simplicity, that p = 1 in Assumption (K3) and set Kb(x) =
K(x)1{|x|>b} and K1,b(x) = K(x)1{|x−x1|<1/b}. Then, the function Lb(x) = K(x) − Kb(x) −
K1,b(x) is bounded. Denote the partial sum in (6.2) by Sb,N when K is replaced by Lb. To show
(6.2), by Theorem 4.2 of Billingsley [6], it is enough to prove that:

(i) N−1/2Sb,N
d→ N (0, σ 2

b ) as N → ∞;
(ii) σ 2

b → σ 2 as b → ∞;
(iii) lim supb→∞ lim supN→∞ N−1 Var(SN − Sb,N ) = 0.

Part (i) follows from Theorem 2.1 of Pipiras and Taqqu [16] since the first condition in (6.1)
holds and the function Lb is bounded. Moreover,

σ 2
b = lim

N→∞N−1 Var(Sb,N ). (6.7)

Part (ii) will follow from (iii). Indeed, since

|Var1/2(Sb1,N ) − Var1/2(Sb2,N )| ≤ Var1/2(Sb1,N − SN) + Var1/2(Sb2,N − SN),

if (iii) holds, then σb converges to some σ by the Cauchy criterion. To prove (iii), observe that

SN − Sb,N =
N∑

n=1

(
Kb(ξn) − EKb(ξn)

) +
N∑

n=1

(
K1,b(ξn) − EK1,b(ξn)

)
and hence

N−1 Var(SN − Sb,N ) ≤ 2N−1 Var

(
N∑

n=1

(
Kb(ξn) − EKb(ξn)

))

+ 2N−1 Var

(
N∑

n=1

(
K1,b(ξn) − EK1,b(ξn)

))

= 2 Var(Kb(ξ0)) + 4
N−1∑
n=1

(
1 − n

N

)
Cov(Kb(ξ0),Kb(ξn))
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+ 2 Var(K1,b(ξ0)) + 4
N−1∑
n=1

(
1 − n

N

)
Cov(K1,b(ξ0),K1,b(ξn)),

which implies that

lim sup
N→∞

N−1 Var(SN − Sb,N ) ≤ 2 Var(Kb(ξ0)) + 4
∞∑

n=1

|Cov(Kb(ξ0),Kb(ξn))|

+ 2 Var(K1,b(ξ0)) + 4
∞∑

n=1

|Cov(K1,b(ξ0),K1,b(ξn))|.

One can bound these sums by using Theorems 2.2 and 2.1 and Proposition 2.2. Sums involving
the bounds [ξ0, ξn]1 converge by the second relation in (6.1) and the sum involving the bound
[ξ0, ξn]2 converges by the first relation in (6.1) and Lemma 6.1 above. Part (iii) then follows by
letting b → ∞.

To show that σ 2 is the asymptotic variance of N−1/2SN in (6.3), first observe that

|N−1/2 Var1/2(SN) − σ | ≤ |N−1/2 Var1/2(SN − Sb,N )| + |N−1/2 Var1/2(Sb,N ) − σ |.
Then, the first relation in (6.3) follows by taking lim supb→∞ lim supN→∞ in the above inequality
and using (6.7) and parts (ii) and (iii) above. Finally, we need to show that the series in (6.3)
converges absolutely. By Theorem 2.4 and Proposition 2.2, we get, for sufficiently large n,

|Cov(K(ξ0),K(ξn))| ≤ C([ξ0, ξn]1 + [ξ0, ξn]2).

The absolute convergence then follows by using, as before, the relations (6.1) and Lemma 6.1. �

Corollary 6.1. Theorem 6.1 is also valid for SαS moving averages {ξn}n≥0 defined in (2.3) by
using function a such that a(x) = 0 when x < x0, for some x0 < 0.

Proof. Observe that the kernel a(n− x) in (2.3) can be replaced by a(n− (x − x0)) =: ã(n− x)

without changing the distribution of {ξn}n≥0. The function ã is such that ã(x) = 0 for x < 0 and,
if the function a satisfies (6.1), then so does the function ã. Then, by applying Theorem 6.1 to
the moving average defined via the function ã, we conclude that (6.2) and (6.3) hold. �

Remark 6.2. A related paper of Wu [23] also contains a central limit theorem for infinite variance
causal moving averages (not necessarily stable) of the “discrete” form Xn = ∑∞

k=0 akεn−k and
possibly unbounded functions K ; see Theorem 1(a) in Wu [23]. The method of proof in Wu [23]
is based on general central limit theorems for Markov chains developed by Michael Woodroofe
and is quite different from the one presented here. The following observations shed light on the
relationship between the result of Wu [23] and Theorem 6.1 above.

First, there are unbounded functions K that satisfy the assumptions of Theorem 6.1 but not
those of Theorem 1(a) of Wu [23]. An example is the function K(x) = log2 |x| − E log2 |X0|,
of particular interest in the wavelet-based application discussed below. Theorem 1(a) in Wu [23]
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involves the function LKn(x), where Kn(w) = EK(w + Xn,1), Xn,1 = a0εn + a1εn−1 + · · · +
an−1ε1 and

Lf (x) = sup
y:|y−x|<1

|f (y) − f (x)|
|y − x|

is a local Lipschitz constant. For the logarithm function K above,

LKn(x) ≥ 1

ln 2
E

1

|x + Xn,1|
= ∞

and hence Theorem 1(a) of Wu [23] cannot be applied.
Second, consider, for example, the power function K(x) = |x|β − E|X0|β with β < α/2,

also of interest in wavelet-based application. Theorem 1(a) of Wu [23] applies to this power
function under suitable conditions. We next examine how these conditions compare to those in
Theorem 6.1 above. First, we can verify that the condition on LKn in Wu [23] is satisfied when
(β − 1)2q/(q − 1) > −1 or 1/q < 2β − 1. Observe that since Wu requires q > 1, we obtain
2β − 1 > 0 and hence α > 1, as in Theorem 6.1 above. Second, the condition on Kn in Wu [23]
can be seen to be verified when β2q/(q−1) < α or 1/q < (α−2β)/α. Comparing the conditions
on LKn and Kn, observe that they are verified if 1/q < 2β − 1 when 1/2 < β < α/(α + 1), and
if 1/q < (α − 2β)/α when α/(α + 1) < β < α/2.

Now, suppose that the moving average coefficients an satisfy |an| ∼ Cn−p as n → ∞, where
p > 1/α. The condition on an in Wu [23] requires that

∑
n |an|α/2q < ∞ or 1 < pα/2q . From

the bounds on 1/q above, it is therefore necessary to have 1 < pα(2β − 1)/2 when 1/2 < β <

α/(α +1), and 1 < p(α −2β)/2 when α/(α +1) < β < α/2. On the other hand, by Example 6.1
above, the conditions on an of Theorem 6.1 are satisfied when 1 < p(α − 1). When α/(α + 1) <

β < α/2, observe that α − 2β < 2(α − 1). Hence, Theorem 6.1 is stronger than Theorem 1(a) in
Wu [23]. When 1/2 < β < α/(α +1), observe that α(2β −1) < 2(α−1) and hence Theorem 6.1
remains stronger. Combining these observations, Theorem 6.1 is stronger than Theorem 1(a) of
Wu [23] for the above power function. Presently, we are not aware of any unbounded functions
where Theorem 1(a) of Wu [23] performs better.

Theorem 6.1 has the following multivariate extension which is used in the next section. The
proof of the extension is analogous to that of Theorem 6.1 and is omitted, except for a sup-
plementary result on the form of a limit covariance. Let cj > 0 be positive real numbers for
j = 1, . . . , J . Consider the SαS moving average sequences {ξj,n}n≥0, j = 1, . . . , J , given by

ξj,n =
∫

R

aj (n − cj x)M(dx), (6.8)

where aj ∈ Lα(R,dx) and aj (x) = 0 for x < 0 and M is an SαS random measure with the
Lebesgue control measure on R. Fix nj , j = 1, . . . , J , and let Nj be positive integers such that,
as N → ∞,

Nj ∼ N

nj

. (6.9)
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Theorem 6.2. Let α ∈ (1,2) and {ξj,n}n≥0, j = 1, . . . , J , be SαS moving averages defined
by (6.8) with aj such that aj (x) = 0 when x < x0, for some fixed x0. Suppose that, for each
j = 1, . . . , J , the function Kj and the kernel aj in (6.8) satisfy conditions (K1)–(K3) and (6.1),
respectively. Then, as N → ∞,

(N
−1/2
j Sj,Nj

)Jj=1 =
(

N
−1/2
j

Nj∑
n=1

(
Kj(ξj,n) − EKj(ξj,n)

))J

j=1

d→ N (0,σ ), (6.10)

where σ = (σjk)j,k=1,...,J with

σjk = lim
N→∞E

Sj,Nj

N
1/2
j

Sk,Nk

N
1/2
k

, (6.11)

which exists and is finite.
If, in addition, cj = 2−j , nj = 2j and, for all k > j ,

∑∞
n=1[ξj,n, ξk,0]1 < ∞, then the asymp-

totic covariance (6.11) is given by

σjk = 2(j−k)/2
∞∑

n=−∞
Cov(Kj (ξj,n),Kk(ξk,0)), k ≥ j, (6.12)

where the series in (6.12) converges absolutely.

Proof. We prove the series representation (6.12). Recall that we now suppose cj = 2−j and
nj = 2j . We shall also assume, for simplicity, that njNj = N in (6.9). (The general case can be
proven in a similar way.) Then, Nj = 2k−jNk and we have, for k ≥ j ,

ESj,Nj
Sk,Nk

=
Nj∑

n1=1

Nk∑
n2=1

Cov(Kj (ξj,n1),Kk(ξk,n2))

=
2k−j Nk∑
n1=1

Nk∑
n2=1

Cov(Kj (ξj,n1−2k−j n2
),Kk(ξk,0))

=
2k−j −1∑

p=0

Nk∑
n1=1

Nk∑
n2=1

Cov(Kj (ξj,2k−j n1−p−2k−j n2
),Kk(ξk,0))

=
2k−j −1∑

p=0

Nk∑
n=−Nk

(Nk − |n|)Cov(Kj (ξj,2k−j n−p),Kk(ξk,0)).
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After dividing by N
1/2
j N

1/2
k = 2(k−j)/2Nk and letting N → ∞, we then obtain by (6.11), that

σjk = 2(j−k)/2
2k−j −1∑

p=0

∞∑
n=−∞

Cov(Kj (ξj,2k−j n−p),Kk(ξk,0))

= 2(j−k)/2
∞∑

n=−∞
Cov(Kj (ξj,n),Kk(ξk,0)),

provided the series is absolutely convergent. This can be established by first using a result for
ξj,n, analogous to Proposition 2.2 and Theorem 2.4, to conclude that, for sufficiently large n,

|Cov(Kj (ξj,n),Kk(ξk,0))| ≤ C([ξj,n, ξk,0]1 + [ξj,n, ξk,0]2). (6.13)

When k = j , the convergence of the series with the terms on the right-hand side of (6.13) follows
from the fact that the aj ’s satisfy (6.1). When k > j , we use the assumption

∑
n[ξj,n, ξk,0]1 < ∞,

together with the observation that the first relation in (6.1) with a = aj and a = ak implies∑
n[ξj,n, ξk,0]2 < ∞, which can be proven as was (6.6) in Lemma 6.1. �

7. Asymptotic normality of wavelet-based estimators

We here apply Theorem 6.2 to prove the asymptotic normality of wavelet-based estimators of the
self-similarity parameter in linear fractional stable motion (LFSM). LFSM is an SαS self-similar
stationary-increments process with the integral representation

X(t) =
∫

R

{(t − u)κ+ − (−u)κ+}M(du), t ∈ R, (7.1)

where

κ = H − 1/α, (7.2)

H ∈ (0,1) is the self-similarity parameter, α ∈ (0,2) is the stability parameter and M is an SαS

random measure with the Lebesgue control measure on R. Self-similarity means that for all
c > 0, the processes X(ct) and cH X(t) have the same finite-dimensional distributions. LFSM is
an infinite variance counterpart of fractional Brownian motion, which is the only Gaussian self-
similar process with stationary increments. It is often taken as a representative process for self-
similar processes with stationary increments having infinite variance. (The more general double-
sided LFSM cannot be considered for Theorem 7.1 below because of the causality assumption
discussed in Remark 6.1.) For more information on LFSM, see Section 7 of Samorodnitsky and
Taqqu [19].

Wavelets have already proven useful for estimating the self-similarity parameter of fractional
Brownian motion and a related long-memory parameter in finite variance long-memory time
series (Veitch and Abry [22], Bardet [5] and Abry, Flandrin, Taqqu and Veitch [2]). This work was
motivated to a great extent by applications to data traffic in communication networks. Following
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this line of research, several authors have suggested using wavelets to estimate the self-similarity
parameter H in LFSM as well. From a mathematical point of view, it is interesting to see to what
extent existing wavelet methodology applies to this extended class of processes. There is indeed
evidence that some teletraffic data deviates from Gaussianity and has heavy tail, characteristic of
processes with infinite variance.

The discrete wavelet transform of LFSM (or of other deterministic or stochastic functions) is
a sequence of discrete wavelet transform coefficients {dj,k}j,k∈Z, defined by

dj,k =
∫

R

X(t)ψj,k(t)dt =
∫

R

X(t)2−j/2ψ(2−j t − k)dt. (7.3)

Here, ψ : R 
→ R is the so-called wavelet function which has Q ≥ 1 zero moments, that is,∫
R

ψ(t)tm dt = 0, m = 0, . . . ,Q − 1 and
∫

R

ψ(t)tQ dt �= 0. (7.4)

It was shown by Delbeke and Abry [8,9] and Pesquet-Popescu [15] that the discrete wavelet
transform coefficients of LFSM are well defined for a bounded, compactly supported wavelet ψ

when H − 1/α > −1 and that the following Fubini-type result holds for j, k ∈ Z:

dj,k =
∫

R

(∫
R

(t − u)κ+ψj,k(t)dt

)
M(du) =

∫
R

2j (κ+1/2)h(k − 2−j u)M(du), (7.5)

where

h(u) =
∫

R

(s + u)κ+ψ(s)ds, u ∈ R. (7.6)

Moreover, it is easy to see that for each j ∈ Z, the sequence {dj,k}k∈Z is stationary, that is, for all
l ∈ Z, {dj,k+l} =d {dj,k}, and that the following scaling relation holds:

{dj,k}k∈Z

d= {
2j (H+1/2)d0,k

}
k∈Z

. (7.7)

Let us also note that, in practice, the wavelet coefficients are computed (rather, approximated) by
using fast pyramidal Mallat-type algorithms (see, e.g., Mallat [14]).

A wavelet-based estimator of H can be defined by

Ĥ =
∑
j

wj

1

Nj

Nj∑
n=1

log2 |dj,n| − 1

2
. (7.8)

The summation here is over some finite number of consecutive indices j , called octaves or scales,
and each integer Nj corresponds to the number of available wavelet coefficients of LFSM over
the time interval [0,N] at scale j . Roughly speaking, we have Nj = 2−jN (up to border effects)
and thus Nj = Nj(N) → ∞ as N → ∞. Finally, the wj ’s satisfy the relations∑

j

wj = 0,
∑
j

jwj = 1 (7.9)
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and can be viewed as weights for a linear least square estimation of a slope in (j, Yj ), where Yj

is the term multiplying wj in (7.8). While the wavelet coefficients dj,k have infinite variance,
log2 |dj,k| has finite variance, as do the estimators Ĥ . Theorem 6.2 implies that this estimator is
asymptotically normal.

Theorem 7.1. Let Ĥ be the self-similarity parameter estimator in LFSM defined by (7.8) for
bounded and compactly supported wavelets. Suppose that α ∈ (1,2) and that

Q − H >
1

α(α − 1)
. (7.10)

Then,

N1/2(Ĥ − H)
d→ N (0, σ 2) (7.11)

as N → ∞, where

σ 2 =
∑
j,k

wjwk2j/22k/2σj,k,

with

σj,k = 2(j−k)/2
∞∑

n=−∞
Cov(log2 |dj,n|, log2 |dk,0|) (7.12)

if k ≥ j , and σj,k = σk,j if j > k. We also have

σ 2 = lim
N→∞NE(Ĥ − H)2. (7.13)

Remark 7.1. Because convergence in (7.11) is to a normal law, a rate of N1/2 is expected. In
Kokoszka and Taqqu [13], the Whittle method is used to estimate the long-range dependence
parameter in stable FARIMA time series. A faster rate of essentially N1/α is obtained, but also a
limit which has infinite variance and is hence more spread out.

Proof of Theorem 7.1. Without loss of generality, we suppose that the sum in (7.8) is over
octaves j = 1, . . . , J for some fixed J . By using (7.7), we can write

N1/2(Ĥ − H) =
∑
j

wj 2j/2 1

N
1/2
j

Nj∑
n=1

(log2 |dj,n| − E log2 |dj,n|) = wYt , (7.14)

where t stands for “transposed,” w = (21/2w1, . . . ,2J/2wJ ) and Y = (Y (1,N1), . . . , Y (J,NJ )),
with

Y(j,Nj ) = N
−1/2
j

Nj∑
n=1

(log2 |dj,n| − E log2 |dj,n|).
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Therefore, to prove that Ĥ is asymptotically normal, it is enough to establish the asymptotic
normality of the vector Y. Observe that, by (7.5), this vector can be expressed as that in (6.10) and
(6.8) with cj = 2−j and aj (x) = 2j (κ+1/2)h(x), where j = 1, . . . , J . Moreover, since the wavelet
ψ has compact support, there exists an x0 ∈ R such that h(x) = 0 for x < x0 and thus aj (x) = 0
for x < x0 as well. Then, by Theorem 6.2, we get asymptotic normality, provided the function
log2 |x| satisfies (K1)–(K3) and the function a(x) = h(x) satisfies (6.1). It is easy to verify that
K(x) = log2 |x| satisfies (K1)–(K3). The function h satisfies (6.1) by using Lemma 7.1 below
and Example 6.1, provided that Q − κ > 1/(α − 1) or, equivalently, Q − H > 1/(α(α − 1)).

Let us now show that σ 2 can be expressed as in the theorem. By using (7.14) and Theorem 6.2,
it is enough to show that under the assumption (7.10),

∑∞
n=1[dj,n, dk,0]1 < ∞ for all k > j . This

can be established as in Example 6.1 by using aj (x) = 2j (κ+1/2)h(x), Lemma 7.1 below and the
implication (6.5). �

The following result was used in the proof of Theorem 7.1 above.

Lemma 7.1. Let h be the function defined by (7.6), where the wavelet ψ has compact support,
is bounded and has Q ≥ 1 zero moments. Then, for sufficiently large u, |h(u)| ≤ Cuκ−Q, where
C is some constant.

Proof. By applying Taylor’s formula to the function fu(s) = (s +u)κ+, which is infinitely differ-
entiable on any interval s ∈ [−M,M], M > 0, for sufficiently large u, we have that

(s + u)κ+ = uκ+ + · · · + κ(κ − 1) · · · (κ − Q + 2)

(Q − 1)! u
κ−Q+1
+ sQ−1

+ κ(κ − 1) · · · (κ − Q + 1)

Q! (s0 + u)
κ−Q
+ sQ,

where s0 ∈ [−M,M]. If the wavelet ψ has compact support, we then deduce the result by us-
ing (7.4). �

Note that the greater the value of Q in Lemma 7.1, the faster |h(u)| decreases as u grows.
Thus, in view of (7.5), when Q increases, the sequence {dj,k}k∈Z becomes almost independent.
This is one of the main advantages of working with the wavelet coefficients rather than with
LFSM itself. A more comprehensive and applied study of wavelet-based estimators of the self-
similarity parameter in LFSM (and further results) can be found in Abry, Delbeke and Flandrin
[1], Abry, Pesquet-Popescu and Taqqu [4], Abry, Fladrin, Taqqu and Veitch [3], Stoev, Pipiras
and Taqqu [21] and Stoev and Taqqu [20].

Remark 7.2. An alternative estimator for the self-similarity parameter in LFSM can be defined
as

Ĥ ∗ = 1

β

∑
j

wj log2

(
1

Nj

Nj∑
n=1

|dj,n|β
)

− 1

2
, −1 < β < α/2. (7.15)



1122 V. Pipiras, M.S. Taqqu and P. Abry

The asymptotic normality result for Ĥ ∗ can be established as in Theorem 7.1 with

σj,k = 2(j−k)/2
∞∑

n=−∞

Cov(|dj,n|β, |dk,0|β)

(ln 2)2E|dj,0|βE|dk,0|β (7.16)

if k ≥ j , and σj,k = σk,j if j > k. However, because of the presence of the function log2 in (7.15),
we cannot deduce that the relation (7.13) holds, namely that σ 2 is the asymptotic (normalized)
variance of Ĥ ∗.

Remark 7.3. Another interesting question not addressed here is that of joint estimation of H

and σ . We plan to pursue this question in future work.
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[18] Rosiński, J. (2006). Minimal integral representations of stable processes. Probab. Math. Statist. 26

121–142. MR2301892
[19] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Processes: Stochastic Models with

Infinite Variance. London: Chapman and Hall. MR1280932
[20] Stoev, S. and Taqqu, M.S. (2005). Asymptotic self-similarity and wavelet estimation for long-range

dependent FARIMA time series with stable innovations. J. Time Ser. Anal. 26 211–249. MR2122896
[21] Stoev, S., Pipiras, V. and Taqqu, M.S. (2002). Estimation of the self-similarity parameter in linear

fractional stable motion. Signal Processing 82 873–1901.
[22] Veitch, D. and Abry, P. (1999). A wavelet-based joint estimator of the parameters of long-range de-

pendence. IEEE Trans. Inform. Theory 45 878–897. MR1682517
[23] Wu, W.B. (2003). Additive functionals of infinite-variance moving averages. Statist. Sinica 13

1259–1267. MR2026072

Received August 2006 and revised June 2007

http://www.ams.org/mathscinet-getitem?mr=1741803
http://www.ams.org/mathscinet-getitem?mr=1733161
http://www.ams.org/mathscinet-getitem?mr=0464353
http://www.ams.org/mathscinet-getitem?mr=1421153
http://www.ams.org/mathscinet-getitem?mr=1614527
http://www.ams.org/mathscinet-getitem?mr=2047688
http://www.ams.org/mathscinet-getitem?mr=1349166
http://www.ams.org/mathscinet-getitem?mr=2301892
http://www.ams.org/mathscinet-getitem?mr=1280932
http://www.ams.org/mathscinet-getitem?mr=2122896
http://www.ams.org/mathscinet-getitem?mr=1682517
http://www.ams.org/mathscinet-getitem?mr=2026072

	Introduction
	Results on covariance bounds
	Measure of dependence
	Proofs of the main results
	Auxiliary results
	Application to central limit theorems
	Asymptotic normality of wavelet-based estimators
	Acknowledgements
	References

