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This paper is concerned with the estimation of the period of an unknown periodic function in Gaussian
white noise. A class of estimators of the period is constructed by means of a penalized maximum likelihood
method. A second-order asymptotic expansion of the risk of these estimators is obtained. Moreover, the
minimax problem for the second-order term is studied and an estimator of the preceding class is shown to
be second order efficient.
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1. Introduction

The framework. Let x be a random process defined by the equation

dx(t) = f (t/θ)dt + dW(t), t ∈ [−T/2, T /2], θ > 0, T > 0, (1)

where f is an unknown real periodic function with period 1, θ is a period parameter which we
seek to estimate and W(t) is the standard Brownian motion on [−T/2, T /2]. It is assumed that
x(t) is observed continuously on [−T/2, T /2] and that θ belongs to an interval � = [αT ,βT ],
where αT ,βT are reals such that 0 < αT < βT < +∞. Throughout the paper, the asymptotic
framework T → +∞ is considered.

Motivation. When f is known, under smoothness and identifiability conditions, the maxi-
mum likelihood estimator is asymptotically efficient; see Ibragimov and Has’minskii [12], The-
orem 5.1, page 203. Here, we are interested in the semi-parametric problem: the parameter θ

must be estimated, but f is an infinite-dimensional nuisance parameter. In a seminal paper, Gol-
ubev [9] gives an asymptotically efficient estimator of the period in this framework. In a recent
article, Gassiat and Lévy-Leduc [7] obtain an asymptotically efficient estimator of the period in
a discretized version of (1) and address the problem of estimation of multiple periods when the
signal is a sum of different periodic functions.

From a practical point of view, the problem of period estimation arises in many different
areas, such as communications, seismic signal processing and laser vibrometry (see Prenat [16]).
Model (1) can be seen as the signal observed by a receptor situated at some distance from a
vibrating source. The frequency of the source vibration equals θ−1 and the noise dW(t) stands
for the degradation of the original signal due to the distance between the source and receptor.
For other practical applications and further references on the subject, we refer to Gassiat and
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Lévy-Leduc [7] and Lavielle and Lévy-Leduc [14]. In the latter, the authors propose a practical
method for estimating the frequency in the discrete-time model cited above, when the number of
observations at hand is fixed.

Semi-parametric estimators and second-order efficiency. We now return to the general semi-
parametric framework. The aim is to estimate the parameter without knowing the nuisance func-
tion f and, if possible, to obtain the same optimal asymptotic variance for the estimator as in the
parametric framework (see van der Vaart [18], Chapter 25, or Bickel, Klaassen and Wellner [1]).
If this is possible, which is the case in model (1), we say that there is no information loss.

However, for a given model, there is often a large choice of asymptotically efficient estima-
tors. This motivates the study of the second order term for the estimator’s quadratic risk. This
problem was studied for partial linear models by Golubev and Härdle [10]. In this paper, the au-
thors construct second-order efficient estimators when the nuisance function belongs to a known
functional class. Golubev and Härdle [11] give nonparametric adaptive versions of their estima-
tors. For essentially nonlinear models, the first result on semi-parametric second-order efficiency
was established by Dalalyan, Golubev and Tsybakov [6]. In this paper, the translation model
x(t) = f (t − θ) + εn(t), t ∈ [−1/2,1/2], is considered and the authors study, as ε tends to zero,
the asymptotic second-order properties of a class of penalized maximum likelihood estimators.
Second-order adaptive versions of these results are obtained by Dalalyan [5].

As noted by Dalalyan et al. [6], the study of this problem is of particular interest since, asymp-
totically, the second-order terms in a semi-parametric setting are often not much smaller than the
first-order terms. Typically, as we shall see for model (1), when the first-order term is T −3/2, the
second-order term can be of the order of T −3/2 × T −2/5.

Objective and results. The goal of this paper is to investigate the second-order efficiency in the
semi-parametric problem of period estimation. One of the key tools in the paper by Dalalyan
et al. [6] is the fact that the model can be projected onto a basis and thus described as a discrete
collection of independent submodels. As we shall see in the sequel, this property does not hold in
our framework. Thus we must work globally on the whole model and hence introduce appropriate
methodologies, for instance, the formulation of the criterion upon which the estimation is based
as the action of a compact operator on some functional space.

In this paper, we obtain the second-order risk term over a large family of period estimators.
We also obtain a lower bound for the second-order term, which is achieved by an estimator of
the preceding family. This is the first result about second-order estimation in the period model.
It provides a theoretical basis for the choice of the smoothing parameters in the construction of
the estimator. It also highlights the important role played by the nonparametric nuisance part of
the model. For instance, it originally motivated the work of Castillo, Lévy-Leduc and Matias [3],
where the authors study the problem of sharp adaptive estimation of f in model (1).

Structure of the paper. In Section 2, we construct a class of estimators using the penalized max-
imum likelihood method. Section 3 contains our main asymptotic results: we give the second-
order properties of the preceding estimators and study the lower bound for the risk over all esti-
mators. Moreover, we construct an estimator achieving the optimal second-order rate. Section 4
is devoted to technical proofs.
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2. Penalized maximum likelihood estimator

Let us first introduce some useful notation. As the function f in (1) is 1-periodic, we may assume
that f can be written as a convergent Fourier series,

f (x) =
∑
k∈Z

cke2iπkx = a1 + √
2
∑
k≥1

a2k cos(2πkx) + a2k+1 sin(2πkx) =
∑
k≥1

akεk(x), (2)

where ε1(x) = 1 and, for k ≥ 1, ε2k(x) = √
2 cos(2πkx) and ε2k+1(x) = √

2 sin(2πkx).
The Fisher information for a continuously differentiable f in model (1) is, as T tends to

infinity,

IT (f, θ) = {1 + o(1)} T 3

12θ4

∑
k∈Z

(2πk)2|ck|2. (3)

Note that this quantity is asymptotically one quarter of the one given by Ibragimov and
Has’minskii [12], page 209, since here, the observation interval is [−T/2, T /2] and not [0, T ].
Also, note that it depends on both f and θ . To simplify the notation, we denote it by IT in the
sequel when we do not want to emphasize this dependence.

We now construct a family of estimators of the period which allows us to deal with efficiency
at the second order. We use the method of penalized maximum likelihood introduced by Dalalyan
et al. [6]. Note that here, model (1) cannot be partitioned into a discrete collection of projected
one-dimensional submodels since the space of projection would be L2([0, θ ]) and θ is unknown.
Thus the object of our study is the global likelihood function of the model.

The likelihood for estimating θ in model (1) depends on θ and f , which is given by its Fourier
coefficients (ak). To eliminate the nuisance parameters (ak), we first assume that the ak’s are
independent centered Gaussian random variables with variance σ 2

k and independent of the noise,
that is, we put a prior distribution on (ak). To estimate the ak’s, we maximize the posterior distri-
bution of (ak) given to the observations {x(t)}. Note that this is equivalent to the maximization
of the joint likelihood of ({x(t)}, (ak)) or of its logarithm, which, thanks to the Girsanov formula
(see, e.g., Ibragimov and Has’minskii [12], Appendix 2), is given by the following function �:

�[τ, {x(t)}, (ak)] = −1

2

∫ T/2

−T/2
f (t/τ)2 dt +

∫ T/2

−T/2
f (t/τ)dx(t) −

∑
k≥1

a2
k

2σ 2
k

. (4)

Taking the partial derivatives of the last quantity with respect to the Fourier coefficients ak and
using the approximation

∫ T/2
−T/2 εk(t/τ )f (t/τ )dt ≈ akT , we find that the maximum is approxi-

mately obtained for (a∗
k ) such that

(T + σ−2
k )a∗

k =
∫ T/2

−T/2
εk(t/τ )dx(t).
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Let f ∗ be the function with Fourier coefficients (a∗
k ). Then

∫ T/2
−T/2 f ∗(t/τ )dx(t) = ∑

k≥1(T +
σ−2

k )a∗2
k and

∫ T/2
−T/2 f ∗(t/τ )2 dt ≈ T

∑
k≥1 a∗2

k . Thus

�[τ, {x(t)}, (a∗
k )] ≈

∑
k≥1

1

T + σ−2
k

(∫ T/2

−T/2
εk(t/τ )dx(t)

)2

.

For reasons of symmetry (for the minimax problem, we will assume that f lies in a Sobolev
ellipsoid, see Section 3.3), for k ≥ 1, we impose the identity σ2k = σ2k+1. This means that we
put the same weights on sine and cosine for a given frequency. Hence, writing, for k ≥ 0, λk =
(T + σ−2

2k+1)
−1T , which is in [0,1], we obtain the weighted criterion

L(τ ) =
∑
k≥1

λk

T

∣∣∣∣ ∫ T/2

−T/2
e2ikπt/τ dx(t)

∣∣∣∣2

. (5)

Note that we have dropped the first term in the sum since it does not depend on θ . Moreover,
there is no restriction associated with using the Fourier basis; the preceding construction can be
used with any orthonormal basis {εk} of L2[0,1].

Equation (5) can be seen as a weighted version of the estimator proposed by Golubev [9]. Note
that the weight λk is outside the square of the integral. We are thus introducing a weight on the
‘energy’ and not directly on the data, contrary to data tapers methods, which have been studied
in the context of frequency estimation (among others) by Chen, Wu and Dahlhaus [4]. In fact, the
results obtained by the two methods are of different natures. We also note from equation (4) that
the estimation of the nuisance parameters ak is done by an (approximate) penalized maximum
likelihood method and thus the ‘Bayesian approach’ leads, in fact, to penalization (see, e.g.,
Kimeldorf and Wahba [13]).

We are now able to construct our estimator. As noted by Golubev [9] or Gassiat and Lévy-
Leduc [7], direct maximization of (5) would not allow us to distinguish the multiples of the
unknown period. To avoid this problem, we aim to take the smallest approximate minimizer of
L(τ ) by choosing

ET =
{
τ ∈ �, L(τ ) ≥ (1 − log−1/4 T ) sup

τ∈�

L(τ )

}
, (6)

eT = infET . (7)

Now, let B(x,R) = {τ ∈ �, | x
τ

− 1| < R}. We define our estimator as

θ∗ = Arg max
τ∈B(eT ,1/4)

L(τ ). (8)

In order to understand the behavior of the criterion L(τ ), we introduce some useful notation. We
define symmetrized weights over Z by letting λ−k = λk and we set λ0 = 0. The symbols

∑
k ,∑

k �=0,
∑

k≥0 denote sums over Z, Z
∗ and N, respectively. Then

L(τ ) = [
(τ) + X(τ ) + �(τ)]/2,
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where 


(τ) =
∑

k

λkT
−1

∣∣∣∣ ∫ T/2

−T/2
e2ikπt/τ f (t/θ)dt

∣∣∣∣2

,

X(τ ) = 2
∑

k

λkT
−1

∫ T/2

−T/2
e2ikπt/τ f (t/θ)dt

∫ T/2

−T/2
e−2ikπt/τ dW(t),

�(τ) =
∑

k

λkT
−1

∣∣∣∣ ∫ T/2

−T/2
e2ikπt/τ dW(t)

∣∣∣∣2

.

(9)

3. Second-order asymptotics in the period model

Let us begin this section with some definitions. We say that a function is o(1) (resp., O(1)) if it
tends to zero (resp., is bounded) as T goes to infinity. If (zk) is a sequence of complex numbers
indexed by Z, then

‖z‖2 =
∑

k

|zk|2, ‖z‖1 =
∑

k

|zk| and, for m ≥ 1,
∥∥z(m)

∥∥2 =
∑

k

|zk|2(2πk)2m.

We write simply ‖z′‖ instead of ‖z(1)‖. If v is a square-integrable function, ‖v‖ denotes its
L2-norm on [0,1]. In the sequel, C denotes a universal constant.

3.1. Assumptions on the model

Let us recall that � = [αT ,βT ]. We assume that as T tends to +∞,

(P1) α−1
T = O(T ) (P2) βT = O(logT ).

Let us assume that f belongs to some class F = F(ρ,C0) of smooth functions whose Fourier
coefficients (ck) satisfy the Fourier expansion (2) and

(F1) |c1|2 ≥ ρ > 0 (F2)
∑

k

(2πk)4|ck|2 ≤ C0 < +∞.

We consider sequences of weights (λk) such that λ0 = 0, λ1 = 1 and for all integers k, λ−k = λk

and 0 ≤ λk ≤ 1. We also assume that there exists NT tending to +∞ such that

(W0) λk = 0 for k ≥ NT and N4
T = o(T ) as T tends to +∞.

Moreover, we assume that there exist positive constants ρ1 and C1 such that

(W1) ‖λ′‖ ≥ ρ1 log2 T max
k≥1

λk(2πk);

(W2)
∑

k

λk(2πk)4 ≤ C1T .



Semi-parametric second-order efficient estimation of the period of a signal 915

Finally, we use the following technical assumption:

(T)

[∑
k

(1 − λk)(2πk)2|ck|2
]2

= o

[
1

logT

∑
k

(1 − λk)
2(2πk)2|ck|2

]
.

The o and O in the previous assumptions are meant to be uniform with respect to f and λ.
In the sequel, all o and O will be. Assumptions (F1) and (F2) are regularity conditions on f .
Assumptions (W0), (W1) and (W2) are satisfied for quite a large variety of weight sequences.
For instance, they are fulfilled for projection weights (1|k|≤NT

), provided that NT ≥ C log4 T and
N5

T = O(T ).
Let us briefly study two consequences of the preceding assumptions. First, (F1) and (F2) imply

that there exists a constant h > 0—for example h = ρ/C0—such that for any integer p ≥ 2,∑
q �=0

|cpq |2 ≤ (1 − h)
∑
q �=0

|cq |2. (10)

Second, since the weights are between 0 and 1, we have (1 − λk)
2 ≤ (1 − λk) and thus

∑
k

(1 − λk)(2πk)2|ck|2 ×
∑

k

(1 − λk)
2(2πk)2|ck|2 ≤

[∑
k

(1 − λk)(2πk)2|ck|2
]2

.

Using (T), we obtain ∑
k

(1 − λk)(2πk)2|ck|2 = o(log−1 T ). (11)

In particular, note that for each fixed k, the weight λk tends to 1 as T tends to +∞.

3.2. Second-order asymptotics for the risk

Let us introduce the following functional, where the ck’s are the Fourier coefficients of f .

RT (f,λ) =
∑

k

(2πk)2
(

(1 − λk)
2|ck|2 + 1

T
λ2

k

)
. (12)

This functional corresponds to a term of nonparametric estimation. In fact, suppose that we have
at hand a Gaussian sequence model defined by yk = ck + T −1/2ζk , where ζk = (1/

√
2)(ζ1,k +

iζ2,k) and {ζ1,k}, {ζ2,k} are independent sequences of standard normal random variables. Denot-
ing by f the function with Fourier coefficients ck , suppose we seek to estimate the derivative
f ′ given by the Fourier coefficients c′

k = 2ikπck . Now, consider the linear estimator f̂ ′ de-

fined by the Fourier coefficients (ĉ′
k) = (λk(2ikπ)yk). Then (12) is nothing but the quadratic risk

E(‖f̂ ′ − f ′‖2).
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Theorem 1. Under assumptions (P), (F), (W) and (T), uniformly in f ∈ F and in θ ∈ �, the
estimator θ∗ defined by (8) satisfies, as T tends to +∞,

Eθ,f

(
(θ∗ − θ)2IT (f, θ)

) = 1 + {1 + o(1)}RT (f,λ)

‖f ′‖2
. (13)

Remark 1. The preceding theorem gives a second-order expansion for the risk. By (11),∑
k(2πk)2(1 − λk)

2|ck|2 = o(log−1 T ). Moreover, (W0) gives T −1 ∑
k(2πk)2λ2

k ≤ CT −1N3
T =

o(T −1/4). Hence, RT (f,λ) = o(1) as T tends to +∞.

Remark 2. The second-order term ‖f ′‖−2RT (f,λ) is the same as the one obtained by Dalalyan
et al. [6] and similar to the one obtained by Golubev and Härdle [10]. It seems to be a general
feature of smooth semi-parametric models that the term of order 2 reflects the estimation of the
score function of the model.

Remark 3. In this paper, we consider model (1) on the centered interval [−T/2, T /2]. It can be
checked that for a different interval of length T , for example [0, T ], equation (13) still holds.

Proof of Theorem 1. Here, we give the main lines of the proof, the technical aspects being dealt
with in Section 4. A transversal object is the criterion L on which the definition of θ∗ relies. We
study its deterministic part 
 in Section 4.1 by means of Fourier techniques. In Section 4.2, we
study the stochastic parts X and � by introducing a well-chosen operator on L2[−T/2, T /2].

The first step is to obtain consistency results for θ∗. Let us define the event

A0 =
{

sup
τ∈�

|X(τ ) + �(τ)| ≤ T 3/4
}
. (14)

The complement of A0 has probability o(T −p) for any integer p, by Lemma 6.
Due to Lemma 1, with γT = T 1/8, we have supτ∈� 
(τ) ≤ T {∑k �=0 |ck|2 + o(γ

−1/2
T )}. Thus,

on the event A0, we have supτ∈� L(τ ) ≤ T {∑k �=0 |ck|2 + o(γ
−1/2
T ) + T −1/4}/2.

On the other hand, again using Lemma 1 and the definition of A0, we have, on A0, 2L(θ) ≥
T {∑k �=0 |ck|2 + o(log−1 T ) − T −1/4}. Thus θ ∈ ET on A0 for sufficiently large T . For any
integers p ≥ 2 and j ≥ 1, bounding the weights from above by 1 and using (10), we obtain∑

q λqj |cqp|2T ≤ ∑
q �=0 |cqp|2T ≤ (1 − h)

∑
q �=0 |cq |2T . Hence, with εT = T −3/8, we have

ET ⊂ ⋃
j≥1 B(jθ, εT ) on A0. Therefore, eT ∈ B(θ, εT ) on A0.

The definition of θ∗ then implies that θ∗ /∈ B(2θ, εT ) on A0, thus

θ∗ ∈ B(θ, εT ) on A0.

In fact, we need to refine this rate. For any D > 0, let us define the event A1 as

A1 = {|θ∗ − θ |T 3/2θ−2 ≤ D log1/2 T }. (15)

Lemma 11 establishes that for every integer p, for sufficiently large D, P(Ac
1) is o(T −p).
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The next step is to introduce the variable τ̂ , which is a theoretical tool for our proof (of course,
it is not an estimator since it requires knowledge of θ ):

L′(θ) + (̂τ − θ)E(L′′(θ)) = 0. (16)

By Lemma 12, τ̂ has the desired second-order expansion. It remains to show that θ∗ and τ̂ are
sufficiently close, that θ∗ has the same expansion as τ̂ at order 2.

E
(
(θ∗ − θ)2IT

) = E
(
(θ∗ − θ)2IT 1A1

) + E
(
(θ∗ − θ)2IT 1Ac

1

)
.

Using (P1), (P2) and (43), we arrive at the conclusion that

E
(
(θ∗ − θ)2IT 1Ac

1

) ≤ Cβ2
T α−4

T T 3P(Ac
1),

which is negligible compared to a given power of T if D is chosen sufficiently large. Now,

E
(
(θ∗ − θ)2IT 1A1

)
= E

(
(̂τ − θ)2IT

) + E
([(θ∗ − τ̂ )2 + 2(θ∗ − τ̂ )(̂τ − θ)]IT 1A1

) − E
(
(̂τ − θ)2IT 1Ac

1

)
.

The first term in the above expression gives the appropriate expansion, by Lemma 12, while the
last one is negligible due to (43), (P1) and (P2). The middle term must still be dealt with and this
is carried out by Lemma 13. Hence, the expansions of the risk for θ∗ and τ̂ are the same, which
proves Theorem 1. �

3.3. Lower bound for the risk

In this section, we establish a lower bound, in the minimax sense, for the second-order term over
all possible estimators of θ . For any β > 0, L > 0, let us define

Wβ,L =
{

f = {ck}k∈Z,
∑

k

|2πk|2β |ck|2 ≤ L

}
.

The expression of the second-order term in Theorem 1 suggests minimizing the functional
RT (f,λ). The behavior of this functional is well understood; see Pinsker [15] or Tsybakov [17],
Chapter 3 for a complete overview of the subject. There exists a function s in Wβ,L and a se-
quence q in l2 such that (s, q) is a saddle point of RT (f,λ) over Wβ,L × l2(Z). We have

rT = RT (s, q) = inf
λ∈l2

sup
f ∈Wβ,L

RT (f,λ) = 1

T

∑
k

(2πk)2qk. (17)

We also have explicit expressions for s and q in terms of the solution WT of the equation

1

T

∑
k∈Z∗

[(
WT

|k|
)β−1

− 1

]
+
(2π|k|)2β = L. (18)
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Let g be a function in F(ρ,C0). Let us denote by gk its Fourier coefficients. For any δ > 0
and fixed β > 0,L > 0, we define a neighborhood of g as follows:

Fδ(g) = {f = g + v,‖v‖ ≤ δ, v ∈Wβ,L}.

Theorem 2. Suppose that β ≥ 2 and L > 0. For any δT → 0 such that there exists α > 0 with
δ2
T T /W 1+α

T → +∞, as T tends to +∞,

inf
θ̂

sup
θ,f ∈FδT

(g)

Eθ,f

(
(θ̂ − θ)2IT (θ, f )

) ≥ 1 + {1 + o(1)} rT

‖g′‖2
,

where the infimum is taken over all estimators θ̂ based on the observations {x(t)} and where rT
is defined by (17).

Proof. The first step is to change variables so that, contrary to (3), the Fisher information will
no longer depend on the parameter of interest. Let us define ω = θ−1. It is not hard to check that
the Fisher information JT (f ) for estimating ω in model (1) equals

JT (f ) = θ4IT (θ, f ) = {1 + o(1)}T 3‖f ′‖2/12

and, in particular, up to the o(1) term, does not depend on θ . Since the mapping θ̂ → θ̂/θ2

between the set of estimators of θ and the set of estimators of ω is one to one, we obtain

inf
θ̂

sup
θ∈�,f ∈FδT

(g)

Eθ,f

(
(θ̂ − θ)2IT (θ, f )

) = inf
ω̂

sup
ω,f ∈FδT

(g)

Eω,f

(
(ω̂ − ω)2JT (f )

)
,

where the last infimum is taken over all estimators ω̂ based on the observations {x(t)} and where
the supremum is taken over ω ∈ [β−1

T ,α−1
T ].

The second step is to bound the minimax risk from below by a well-chosen Bayes risk. Let
us define a prior on f putting a prior on each Fourier coefficient of f , concentrating around the
Fourier coefficient gk of g in the following way:

fk = gk + σk{ξk,1 + iξk,2},
where for p = 1,2, ξk,p ∼ N (0,1/2) are independent and independent of {W(t)} and

σ 2
k =

{
0, |k| ≤ γT WT ,
(1 − γT )|sk|2, |k| > γT WT ,

(19)

where γT = 1/ logT and the sk’s are the Fourier coefficients of the function defined in (17). We
then choose as prior for ω a distribution with density π on [αT ,βT ], where π vanishes at the
endpoints of the interval and such that the Fisher information Jπ = ∫

π ′(ω)2π−1(ω)dx is finite.
We denote by �σ (f ) the distribution associated with the preceding prior on f . We then let

JT =
∫

JT (f )d�σ (f ) = {1 + o(1)}T
3

12

∑
k

(2πk)2(|gk|2 + 2σ 2
k ).
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In the sequel, we shall denote by E the expectation in the full Bayesian model.
For the preceding choice of σ 2

k , the random function f is close to g with high probability. More
precisely, one can check (as in Dalalyan et al. [6]) that P(FδT

(g)c) decreases at an exponential
rate. Moreover, it is also not difficult to check that with this choice of σ 2

k , we have∣∣12JT T −3 − ‖g′‖2
∣∣ = o(1). (20)

T −1
∑

k

(2πk)2µk = {1 + o(1)}rT , with µk = σ 2
k

T −1 + σ 2
k

. (21)

Let us bound the minimax risk below using the full Bayesian model:

inf
ω̂

sup
ω,f ∈FδT

(g)

Eω,f

(
(ω̂ − ω)2JT (f )

) ≥ inf
ω̂

E
(
(ω̂ − ω)2JT 1FδT

(g)(f )
)

(I)

− sup
ω̂

E
(
(ω̂ − ω)2(JT − JT (f )

)
1FδT

(g)

)
. (II)

The outline of the proof of the theorem is then as follows. We bound (I) from below:

(I) ≥ inf
ω̂

JT E
(
(ω̂ − ω)2) − Cβ2

T T 3P(FδT
(g)c).

The second term in this difference is negligible, due to the exponential bound on P(FδT
(g)c).

Let us denote by JT (ω) the Fisher information associated with the observations {x(t)} in the
Bayesian model with respect to f with fixed ω. The Van Trees inequality (see Gill and Levit [8])
applied to the full Bayesian model gives

inf
ω̂

E
(
(ω̂ − ω)2) ≥ 1∫

JT (ω)π(dω) + Jπ

.

The key point of the proof is then to obtain an expansion of JT (ω). Note that as the model
cannot be partitioned into one-dimensional submodels, the Fisher information JT (ω) is not a
sum of Fisher information over submodels and must thus has to be handled globally. As T tends
to +∞, with the σ 2

k ’s defined by (19), we have

JT (ω) = JT − {1 + o(1)}T
2

12

∑
k

(2πk)2µk. (22)

The proof of (22) is not difficult, but it is technical. For detailed calculations, we refer the reader
to Castillo [2].

Using equation (22), we may deduce

inf
ω̂

JT E
(
(ω̂ − ω)2) ≥ JT

JT − {1 + o(1)}(T 2/12)
∑

k(2πk)2µk + Jπ

.
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Now, using (20) and (21), we obtain

inf
ω̂

JT E
(
(ω̂ − ω)2) ≥ 1

1 − {1 + o(1)}‖g′‖−2(rT − 12T −3Jπ)
.

Using the fact that T −3 = o(rT ) and the inequality (1 + x)−1 ≥ 1 − x, valid for x > −1,

inf
ω̂

JT E
(
(ω̂ − ω)2) ≥ 1 + {1 + o(1)}‖g′‖−2rT .

Finally, (II) is negligible with respect to (I), as in Dalalyan et al. [6]. �

Remark 4. Changing variables works well in our framework since the Fisher information (3)
has a quite simple separated form in f and θ . This might not be the case for other models.
For instance, in the Cox model, the form of the efficient Fisher information as given in van der
Vaart [18], page 416 is more involved and a change of variables does not seem to make the
parameter of interest vanish. We think that this difficulty could be overcome by also carefully
choosing a prior on the θ -parameter.

3.4. Achieving the lower bound

Theorem 3. Assume that the conditions of Theorem 2 are fulfilled and that there is some p >

β ≥ 2 such that the sum
∑ |2πk|2p|gk|2 is finite. Then there exists a sequence of weights λ∗ such

that the corresponding estimator θ̂ (λ∗) defined by (8) achieves the bound of Theorem 2. That is,
as T tends to +∞,

sup
θ∈�,f ∈FδT

(g)

Eθ,f

((
θ̂ (λ∗) − θ

)2IT (θ, f )
) = 1 + {1 + o(1)}‖g′‖−2rT .

Let us comment on the rate of convergence for the second-order term obtained above. Pinsker’s
theory (see Pinsker [15]) states that, up to a constant which can be computed in terms of β and
L, rT in [17] is of the order T (2−2β)/(2β+1). For example, in the case β = 2, the optimal second-
order term is of the order T −2/5. This semi-parametric rate is fairly slow compared to the first-
order rate, which is, up to a constant, T −3/2, highlighting the importance of second-order terms
in semi-parametric estimation. Moreover, the less regular the function, the more significant the
second-order term.

Proof of Theorem 3. The idea is to use slightly modified Pinsker weights for λ∗ by letting

λ∗
k =

{
1, |k| ≤ γT WT ,
[1 − (|k|/WT )β−1]+, |k| > γT WT ,

(23)

where WT satisfies (18). It is not difficult to check that these weights satisfy assumptions (W)
and (T). Due to Theorem 1, it suffices to check that the supremum of RT (f,λ∗) for f in the
vanishing neighborhood under consideration is indeed equivalent to rT . There is no difficulty
with respect to Dalalyan et al. [6], so this argument is omitted. �
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4. Proof of Theorem 1

Definition 1. We say that the probability of a measurable set A is negligible if, for all integers p,
we have P(A(K)) = o(T −p) as T tends to +∞.

4.1. Behavior of the deterministic part �

Let us denote by φ̂ the Fourier transform of the indicator function of [−1/2,1/2]: φ̂(x) =∫ 1/2
−1/2 e2iπxt dt = sin(πx)/(πx). In the sequel, we use the following bounds on φ̂. For any p ∈ N,

there exist constants Mp > 0, depending only on p, such that∣∣φ̂(p)(u)
∣∣ ≤ Mp for u ∈ [−1,1], ∣∣φ̂(p)(u)

∣∣ ≤ Mp/|u| for |u| > 1/4. (24)

|φ̂′(u)| ≤ C1|u| for all u ∈ R,
∣∣φ̂(3)(u)

∣∣ ≤ C2|u| for all u ∈ R. (25)

For any real number x, let us denote by �(x) its distance to Z and by ]x[ the (smallest) integer
realizing this distance. Let us also introduce the auxiliary notation

ak,l = T

θ

(
l − kθ

τ

)
, bk,l = T

θ
(l − k).

Using (2), we obtain


(τ) =
∑

k

λkT

∣∣∣∣∣∑
l

cl φ̂(ak,l)

∣∣∣∣∣
2

, (26)


(τ) =
∑

k

λkT

[∣∣∣∣∣c]kθ/τ [φ̂
(

T

θ
�(kθ/τ)

)
+

∑
l �=]kθ/τ [

clφ̂(ak,l)

∣∣∣∣∣
2]

. (27)

For any p, j ∈ Z, we denote by p ∧ j the greatest common divisor of p and j .

Lemma 1. Let γT = T 1/8 and εT = T −3/8. Then, as T tends to +∞,


(τ) = o(γ
−1/2
T T ), if τ /∈

⋃
j≥1,0<p≤γT

B(jθ/p, εT ), (28)


(τ) ≤
{∑

q

λqj |cqp|2 + o(γ
−1/2
T )

}
T , if τ ∈ B(jθ/p, εT ) (p ≤ γT ,p ∧ j = 1), (29)


(θ) =
{∑

k �=0

|ck|2 + o(log−1 T )

}
T . (30)
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Proof. First, note that, without restriction, we can just study the sum over |l| ≤ γT in (26).
Indeed, using the Cauchy–Schwarz inequality, ‖λ‖1 ≤ NT = o(T 1/4) and (F2), we have

∑
k

λkT

∣∣∣∣∣ ∑
|l|>γT

clφ̂(ak,l)

∣∣∣∣∣
2

≤ ‖λ‖1T
∑

|l|>γT

1

l4

∑
|l|>γT

l4|cl |2 = o(γ −1
T T ). (31)

In the remainder of the proof, p and j are two relatively prime integers such that p ≤ γT . Also,
note that by symmetry, we can always assume that k is positive.

Assume that τ is not in a ball B(jθ/p, εT ) with p ≤ γT and j ≥ 1. For any l such that
|l| ≤ γT and any integer k, this implies that |ak,l | ≥ Tβ−1

T εT ≥ 1. By (24), we have |φ̂(ak,l)|2 ≤
β2

T T −2ε−2
T . Using (26) and (31), this yields 
(τ) = o(γ

−1/2
T T ).

Assume that τ is in a ball B(jθ/p, εT ) with p ≤ γT and p ∧ j = 1. In this case, we observe
that the sum over l �= ]kθ/τ [ in (27) is negligible, due to the triangle inequality, (F2) and (24).
There are then two cases for the integer k in (27):

• There exists an integer q such that k = qj . Then, for sufficiently large T , ]kθ/τ [= pq since

|kθ/τ − pq| < pqεT ≤ γT NT εT = o(1).

• The integer k is not a multiple of j . Then k = qj + r with r < j . Note that∣∣∣∣kθ

τ
−

(
pq + rp

j

)∣∣∣∣ ≤ pqεT + rpεT

j
≤ CpqεT ≤ C

γT NT εT

j
.

Since p ∧ j = 1, kθ/τ is at a distance to the integers larger than 1/2j . Since τ must lie in
�, we have jθ/p ≤ 2βT . Thus, j−1 ≥ θ/(2pβT ). Therefore,∣∣∣∣Tθ �(kθ/τ)

∣∣∣∣ ≥ T

4γT βT

,

which allows us to prove that the corresponding term is negligible, using (24).

Finally, writing (27) at τ = θ , it is easy to check, by similar arguments, that


(θ) =
∑

k

λk|ck|2T + o{(βT T −1 + NT β2
T T −2)T }.

Moreover, due to (11),
∑

k �=0(1 − λk)|ck|2 ≤ ∑
k(1 − λk)(2πk)2|ck|2 = o(log−1 T ), which es-

tablishes (30). �

Let us define the following weighted Fisher information:

I(λ) = T 3

12θ4

∑
k

λk(2πk)2|ck|2, I(λ2) = T 3

12θ4

∑
k

λ2
k(2πk)2|ck|2. (32)
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Lemma 2. As T tends to +∞,


′(θ)2 = T 3θ−4o(‖λ′‖2T −1), 
′′(θ) = −2 I(λ) + T 3θ−4o(‖λ′‖2T −1).

Proof. For any τ in �, taking the derivative with respect to τ in (9),


′(τ ) = T 2

τ 2

∑
k

λkk
∑
p,l

cpcl

(
φ̂′(ak,l)φ̂(ak,p) + φ̂′(ak,p)φ̂(ak,l)

)
. (33)

Now, consider the case τ = θ and write the sum over p, l in (33) as

∑
p,l

=
∑

p=k,l=k

+
{ ∑

p=k,l �=k

+
∑

p �=k,l=k

}
+

∑
p �=k,l �=k

= a + b + c. (34)

Then note that a = 0, |b| ≤ |ck|∑p |cp|θT −1 and |c| ≤ (
∑

p |cp|)2θ2T −2. Hence, 
′(θ) =
O(T/θ), which, using (P2) and (W1), gives the first expansion. The expansion for 
′′(θ) is
obtained similarly. �

Let us define the set VA1 as

VA1 = {τ ∈ �, |τ − θ | ≤ DT −3/2θ2 log1/2 T }. (35)

Lemma 3. As T tends to +∞, uniformly in τ ∈ VA1 , we have


′(τ ) = O(θ−2T 3/2 log1/2 T ), 
′′(τ ) = O(θ−4T 3), 
(3)(τ ) = o(θ−6T 4).

Proof. Using (25) and the fact that τ lies in VA1 , |φ̂′(ak,k)| ≤ C1|ak,k| ≤ CkT −1/2 log1/2 T .
We again write the sum (33) as in (34). By to (25) and (F2), the term corresponding to∑

p=k=l is bounded above by CT 3/2θ−2 log1/2 T
∑

λkk
2|ck|2 ≤ CT 3/2θ−2 log1/2 T . Simi-

larly, one concludes that the term
∑

p=k,l �=k +∑
p �=k,l=k is bounded above by C(T θ−1 +

T 3/2θ−2 log1/2 T ) and that the term
∑

p �=k,l �=k is bounded above by
∑

λkk ≤ N2
T , which to-

gether with (P2) and (W0), gives the result. The other two expansions are obtained similarly. �

4.2. Behavior of the stochastic parts X and �

Let K
τ
T be the operator on L2([−T/2, T /2]) such that for any g in L2([−T/2, T /2]),

K
τ
T g(t) =

∫ T/2

−T/2

{
T −1

∑
k

λke2iπk(t−u)/τ

}
g(u)du =

∫ T/2

−T/2
Kτ

T (t − u)g(u)du.

Then X(τ ) is nothing but 2
∫

K
τ
T f (·/θ)(t)dW(t). Thus, X and its derivative are centered

Gaussian random variables of variance

E
(
X(p)(τ )2) = 4

∫ T/2

−T/2

∣∣[Kτ
T f (·/θ)](p)(t)

∣∣2 dt. (36)
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On the other hand, note that for every T and τ , the operator K
τ
T acting on L2[−T/2, T /2] is self-

adjoint and compact. Namely, it is a convolution operator with bounded kernel Kτ
T . The spectral

theorem (see, e.g., Yoshida [19]) then states that it can be characterized by eigenvalues {βk}k∈Z

and an orthonormal basis of eigenvectors {vk}k∈Z.
Using expansions over the basis {vk}, one can check that there exists a sequence {αk}k∈Z of

independent N (0,1) random variables such that

�(τ) =
∫ T/2

−T/2

∫ T/2

−T/2
Kτ

T (t − u)dW(u)dW(t) =
∑

k

βk α2
k . (37)

This also holds for the derivatives of � , replacing the kernel Kτ
T by its derivatives. Let us denote

by β
(p)
k the eigenvalues of K

τ(p)
T . It then follows from (37) that for p ≥ 0,

E
[
�(p)(τ )

] =
∑

k

β
(p)
k =

∫ T/2

−T/2
K

τ(p)
T (0)dt, (38)

Var
[
�(p)(τ )

] = 2
∑

k

β
(p)2
k = 2

∫ T/2

−T/2

∫ T/2

−T/2

∣∣Kτ(p)
T (t − u)

∣∣2 dt du, (39)

where Var denotes the variance. These formulas allow the deviations of the process �(p) to be
controlled through the study of its Laplace transform.

Lemma 4. There exists C > 0 such that, for all τ ∈ �, E(X(τ )2) ≤ CT .

Proof. Let γk = ∑
l cl φ̂(ak,l). Then

E(X(τ )2) = 4T

∫ 1/2

−1/2

∣∣∣∣∣∑
k

λk

∑
l

cl φ̂(ak,l) exp{2ikπtT /τ }
∣∣∣∣∣
2

dt,

E(X(τ )2) = 4T
∑

k

λ2
k|γk|2 + 4T

∑
k �=k′

λkλk′γkγk′O(βT T −1),

where we used the fact that
∫ 1/2
−1/2 exp{2i(k − k′)πtT /τ }dt = 1k=k′ + 1k �=k′O(βT T −1) for all

integers k, k′. The first term in the last sum is similar to 
(τ) (see (26), with λ2
k replacing λk) and

thus it is a O(T ) uniformly in τ thanks to Lemma 1. The second term is O(‖λ‖2
1βT T −1), which

proves the lemma. �

Lemma 5. For all τ ∈ �, for all positive integers p,

E
(
X(p)(τ )2) ≤ CT 2p+1τ−4p

∑
k

λ2
k(2πk)2p

(∣∣c]kθ/τ [
∣∣2 + O(β2

T T −2)
)
,

E
(
�(p)(τ )2) ≤ CT 2pτ−4p

∥∥λ(p)
∥∥2

.
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Proof. Defining ξk(τ ) = {∑l cl φ̂(ak,l(τ ))}(p), the derivative being with respect to τ , we have

E
(
X(p)(τ )2) = 4T

∫ 1/2

−1/2

∣∣∣∣∣∑
k

λke2iπkT t/τ ξk

∣∣∣∣∣
2

dt

≤ 4T

[∑
k

λ2
k|ξk|2 + O(βT T −1)

∑
k �=m

λkλmξkξm

]
.

Since |∑k �=m λkλmξkξm| ≤ (
∑

k λ2
k|ξk|)2 ≤ NT

∑
k λ2

k|ξk|2, by the Cauchy–Schwarz inequality,

E
(
X(p)(τ )2) ≤ CT

∑
k

λ2
k|ξk|2.

One now checks that the predominant term coming from the pth derivative while evaluating ξk

is T pτ−2pkpφ̂(p)(ak,l). Hence,

|ξk|2 ≤ CT 2pθ−4pk2p
∑

l

∣∣clφ̂
(p)(ak,l)

∣∣2

≤ CT 2pτ−4p(2πk)2p

[∣∣c]kθ/τ [
∣∣2 + O

([∑
l

|cl |βT T −1

]2)]
,

which proves the result for X(p).
To bound �(p), we use (39). Again, one checks that when evaluating the pth derivative, there

is one dominating term, which is

E
(
�(p)(τ )2) ≤ CT −2τ−4p

∑
k,l

λkλl(2π)2p(kl)p

×
∫ T/2

−T/2

∫ T/2

−T/2
(t − u)2p exp{2iπ(t − u)(k − l)/τ }dudt

≤ CT −2τ−4p
∑

k

λ2
k(2πk)2pO(T 2p+2).

�

Remark 5. In the sequel, we use Lemma 5 for neighborhoods V of θ such that, for any τ ∈ V
and any integer k such that |k| ≤ NT , we have ]kθ/τ [= k.

Lemma 6. For any integer p, as T tends to +∞,

P

(
sup
τ∈�

|X(τ ) + �(τ)| > log2 T

[
T 1/2 +

∑
k

λk

])
= o(T −p).

Proof. The proof is not difficult, using Lemma 14 (as in Golubev [9]), and is thus omitted. �
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Lemma 7. If I(λ2) is defined by (32), then as T tends to +∞,

E(X′(θ)2) = 4 I(λ2)+T 3θ−4o(‖λ′‖2T −1).

Proof. Let ys = ∑
l cl(2iπ)φ̂(bl,s) and zs = −∑

l cl φ̂
′(bl,s). Then

T −3θ4E(X′(θ)2) = 4
∫ 1/2

−1/2

∣∣∣∣∣∑
k

λkk(tyk − zk) exp{2iπktT /θ}
∣∣∣∣∣
2

dt

= 4
∑

k

λ2
kk

2(|yk|2/12 + |zk|2)

+ O(θT −1)
∑
k �=p

λkλpkp(|ykyp| + |ykzp| + |ypzk| + |zkzp|).

Now, note that ys = 2iπcs +O(θT −1) and zs = O(θT −1). This yields the result using, for the re-
mainder term, the fact that, by the Cauchy–Schwarz inequality and (F2), we have

∑
k λ2

kk
2|ck| ≤

C‖λ‖ and
∑

k λkk|ck| ≤ C. �

Lemma 8. As T tends to +∞,

E(� ′(θ)2) = T 2θ−4{1 + o(1)}
∑

k

(2πk)2λ2
k/3.

Proof. Using (36), we obtain

E(� ′(θ)2) = 8π2T 2θ−4
∑
k,p

kpλkλp

∫ T/2

−T/2

∫ T/2

−T/2
exp

(
2iπ(t − u)(k − p)/θ

)
(t − u)2 dt du,

E(� ′(θ)2) = T 2θ−4{(1/3) + O(θ2T −2)}
∑

k

(2πk)2λ2
k. �

Lemma 9. If we recall that MT = maxk λk(2πk), then the quantities

P
(

sup
VA1

|X′′(τ )| > T 5/2 logT θ−4
)

, P
(

sup
VA1

|� ′′(τ )| > T 5/2 logT θ−4
)

,

P
(

sup
VA1

∣∣X(3)(τ )
∣∣ > T 7/2 logTMT θ−6

)
, P

(
sup
VA1

∣∣�(3)(τ )
∣∣ > T 3 logT

∥∥λ(3)
∥∥θ−6

)
are negligible in the sense of Definition 1. Moreover,

E
(

sup
VA1

∣∣X(3)(τ )
∣∣2

)
= O(T 8θ−12), E

(
sup
VA1

∣∣�(3)(τ )
∣∣2

)
= O(T 8θ−12 log1/2 T ).

Proof. The proof is standard, using Lemmas 14 and 5, and is thus omitted. �
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4.3. Conclusion of the proof

Lemma 10. Let µT = T 1/16 and B = B(θ, θT −1µ−1
T ). Then, for any τ ∈ B, we have


(τ) − 
(θ) = −(τ − θ)2 I(λ)+o{(τ − θ)2 I(λ) + (τ − θ) I(λ)1/2}, (40)

X(τ ) − X(θ) = 2(τ − θ){1 + o(1)} I(λ2)
1/2 N + (τ − θ)R1(τ ), (41)

�(τ) − �(θ) = (τ − θ)R2(τ ), (42)

where N is an N (0,1) random variable and for i = 1,2, the process Ri satisfies

∃C1,C2 > 0,∀x ∈ [0, logT ] P
(

sup
B

|Ri | > xI1/2
T

)
≤ (1 + C1µT x) exp(−C2x

2).

Proof. To prove (40), note that


(τ) − 
(θ) =
∑

k

λkT

[∣∣∣∣∣ckφ̂(ak,k) +
∑
l �=k

clφ̂(ak,l)

∣∣∣∣∣
2

−
∣∣∣∣∣ck +

∑
l �=k

clφ̂(bk,l)

∣∣∣∣∣
2]

=
∑

k

λkT |ck|2{|φ̂(ak,k)|2 − 1}

+
∑

k

λkT

[∣∣∣∣∣∑
l �=k

clφ̂(ak,l)

∣∣∣∣∣
2

−
∣∣∣∣∣∑

l �=k

clφ̂(bk,l)

∣∣∣∣∣
2]

+ γ

= α + β + γ,

where γ regroups the crossed terms coming from each of the squares. But for all real u, φ̂(u) =
1 − π2u2/6 + u3ψ(u) with ψ bounded on R, so

α = −(T 3τ−2θ−2/12)
∑

k

λk(2πk)2|ck|2(τ − θ)2{1 + kT (τ−1 − θ−1)O(1)}.

Now, note that by (F1), the rate of I(λ) is a constant times T 3θ−4. Using the fact that
∑

k3|ck|2
is finite and the fact that τ lies in B, we obtain α = − I(λ)(τ − θ)2{1 + o(1)}.

To bound |β|, we use the inequality ||a|2 − |b|2| ≤ |a − b|(|a| + |b|) and (24):∣∣∣∣∣∑
l �=k

cl{φ̂(ak,l) − φ̂(bk,l)}
∣∣∣∣∣ ≤

∑
l

|cl |
[

sup
[ak,l ,bk,l ]

|φ̂′|
]
|ak,k| ≤ C(2θ/T )|k||1 − θ/τ |T/θ,

∑
l �=k

|cl |[|φ̂(ak,l)| + |φ̂(bk,l)|] ≤ C(2θ/T ).

Thus, |β| is bounded from above by C
∑

k λk|k||τ − θ | ≤ CN2
T |τ − θ |, which is o((τ −

θ) I(λ)1/2). The same holds for γ , similarly.
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Note that by means of a Taylor expansion, there can be seen to exist random reals c and d such
that:

X(τ ) − X(θ) = X′(θ)(τ − θ) + X′′(c)(τ − θ)2/2,

�(τ) − �(θ) = � ′(d)(τ − θ),

where the distribution of X′(θ) is N (0,E(X′(θ)2)) and E(X′(θ)2) is given by Lemma 7.
Let us now control the deviations of X′′(c). It suffices to control the supremum of X′′(τ ) for τ

in B. Note that for any γ > 0,

E(exp{2γ X′′(τ )}) = exp{2γ 2E(X′′(τ )2)}.
Using Lemma 5 and the definition of B, we obtain that, for any y > 0 and γ > 0,

P
(

sup
τ∈B

|X′′(τ )| > y

)
≤ 2 exp(−γy + CT 5θ−8γ 2)

(
1 + γCT 5/2

∫
B

dτ

τ 6

)
≤ 2 exp(−γy + CT 5θ−8µ2)(1 + γCT 5/2NT θ−4µ−1

T ).

Letting y = µT T 5/2θ−4x and γ = ηT −5/2θ4x with sufficiently small η, we obtain the desired
bound for R1.

Finally, we control the deviations of � ′ on B. For any real γ such that γ −1 > 8 supp β
(1)
p ,

using (37) and the inequality − log(1 − u) ≤ u + u2 for u < 1/2, we have

E(exp{2γ� ′(τ )}) = exp

{
−

∑
p

log
(
1 − 4γβ(1)

p

)
/2

}
≤ exp

{
2γ

∑
p

β(1)
p + 8γ 2

∑
p

β(1)2
p

}
.

Then, using (38),
∑

p β
(1)
p = 0. Using (39) and Lemma 5,

∑
p β

(1) 2
p ≤ T 2τ−4‖λ(1)‖2. In par-

ticular, supp β
(1)
p ≤ CT θ−2‖λ(1)‖. To conclude, we apply Lemma 14 with γ = ηI−1/2

T x and
sufficiently small η. �

Lemma 11. As T tends to +∞, for any integer p and sufficiently large D,

P(|θ∗ − θ |T 3/2θ−2 ≥ D log1/2 T ) = o(T −p). (43)

Proof. We proceed in two steps. Recall that from Section 3, we have θ∗ ∈ B(θ, εT ) on A0, where
P(Ac

0) is negligible. We first show that P(θ∗ ∈ B(θ, θT −1µ−1
T )c) is negligible. Note that if V is

a neighborhood of θ such that ]kθ/τ [= k for all |k| ≤ NT and τ in V (e.g., V = B(θ, εT )), we
have


(τ) − 
(θ) =
∑

k

λkT |ck|2
(|φ̂(ak,k)|2 − 1

) + O

(
T NT

βT

T

)
.

Let us define C = B(θ, εT ) ∩ B(θ, θ
T µT

)c . We next prove that P(θ∗ ∈ C) is negligible. Note that

for C = π2/2, D = π2 and any u ∈ R, we have |φ̂(u)|2 − 1 ≤ −Cu2(D + u2)−1, thus for any
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τ ∈ C,


(τ) − 
(θ) ≤ −T
∑

k

λk|ck|2 Ck2

Dµ2
T + k2

+ O(NT βT )

≤ −T µ−2
T C

∑
|k|≤µT

λkk
2|ck|2 + O(NT βT )

≤ −CT µ−2
T since µ2

T βT NT = o(T ).

Recall that θ∗ is defined by (8) and let η = X + � . Then

P(θ∗ ∈ C) ≤ P
(
θ /∈ B(eT ,1/4)

) + P
(

L(θ) ≤ sup
C

L(τ )

)
,

P(θ∗ ∈ C) − P(Ac
0) ≤ P

(

(θ) ≤ sup

C

(τ) + 2 sup

�

|η(τ)|
)

≤ P
(

2 sup
�

|η(τ)| ≥ CT µ−2
T

)
.

Using Lemma 6, we conclude that P(θ∗ ∈ B(θ, θ
T µT

)c) is negligible.

Letting A′ = {θ∗ ∈ B(θ, θ
T µT

)} and Ex = { θ2

2T µT
> |τ − θ | > xI−1/2

T } for x > 0, we have

P(|θ∗ − θ |I1/2
T > x) ≤ P

(
sup

|τ−θ |>xI−1/2
T

L(τ ) ≥ L(θ)

)
≤ P

(
sup
Ex

L(τ ) − L(θ) ≥ 0

)
+ P(A′c).

Now, write L(τ )−L(θ) = 
(τ)−
(θ)+X(τ )−X(θ)+�(τ)−�(θ). Note that for sufficiently
large T , by (40), we have 
(τ)−
(θ) ≤ −(τ −θ)2 I(λ)/2 for any τ ∈ Ex . Then using expansions
(41) and (42), we obtain

P(|θ∗ − θ |I1/2
T > x)

≤ P
(

sup
Ex

(τ − θ)
[− 1

2 (τ − θ) I(λ) + 2 I(λ2)
1/2 N + (R1 +R2)

] ≥ 0

)
+ P(A′c)

≤ P(x ≤ CN ) + P
(

x ≤ I−1/2
T sup

Ex

|R1 +R2|
)

+ P(A′c).

To conclude, we use the standard bound for the tail of a Gaussian random variable and Lemma 10,
and we set x = D log1/2 T with sufficiently large D. �

Lemma 12. As T tends to +∞,

E
(
(̂τ − θ)2IT

) = 1 + {1 + o(1)}RT (f,λ)

‖f ′‖2
.

Proof. The definition of τ̂ implies that E((̂τ − θ)2IT )[E(L′′(θ))]2 = E(L′(θ)2)IT . To compute
the expectations, note that (38) is zero for p ≥ 1 and that X′(θ)� ′(θ) has zero mean since it is a
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product of an uneven number of stochastic integrals with respect to dW(t). Thus, 4[E(L′′(θ))]2 =

′′(θ)2 and 4E(L′(θ)2) = 
′(θ)2 + E(X′(θ)2) + E(� ′(θ)2).

Using Lemmas 7, 8 and 2, we can write the following expansion of the risk for τ̂ :

E
(
(̂τ − θ)2) =

[
I(λ2)+T 3

θ4
o

(‖λ′‖2

T

)
+ T 2

θ4

π2

3

∑
k

λ2
kk

2{1 + o(1)}
]

×
[

I(λ) + T 3

θ4
o

(‖λ′‖2

T

)]−2

,

E
(
(̂τ − θ)2IT

) =
[

1 + ‖f ′‖−2

{∑
k

(λ2
k − 1)(2πk)2|ck|2 + 1

T

∑
k

λ2
k(2πk)2 + o

(‖λ′‖2

T

)}]

×
[

1 + ‖f ′‖−2
∑

k

(λk − 1)(2πk)2|ck|2 + o

(‖λ′‖2

T

)]−2

.

Using (11), we can expand the denominator. Then using the expansion of (1− ε)−2 around ε = 0
and the fact that, due to (T),

∑
k(1 − λk)(2πk)2|ck|2 = o(RT (f,λ)1/2), we obtain

E
(
(̂τ − θ)2IT

) =
[

1 + ‖f ′‖−2

{∑
k

(λ2
k − 1)(2πk)2|ck|2 + 1

T

∑
k

λ2
k(2πk)2 + o

(‖λ′‖2

T

)}]

×
[

1 − 2‖f ′‖−2
∑

k

(λk − 1)(2πk)2|ck|2 + o(RT (f,λ))

]
,

E
(
(̂τ − θ)2IT

) = 1 + ‖f ′‖−2
∑

k

(2πk)2
(

(1 − λk)
2|ck|2 + 1

T
λ2

k

)
+ o(RT (f,λ)).

�

Lemma 13. Let RT be the functional defined by (12). Then, as T tends to +∞,

E
(
(θ∗ − τ̂ )2IT 1A1

) = o(RT (f,λ)T −1), (44)

E
(
(θ∗ − τ̂ )(̂τ − θ)IT 1A1

) = o(RT (f,λ)T −1). (45)

Proof. Note that by Lemma 1 combined with Lemma 6, the criterion L admits on A0 a local
maximum inside the ball B(eT ,1/4). Thus, L′(θ∗) = 0 on this event. Using a Taylor expansion
of L(τ ), there exists ω ∈ [θ, θ∗] such that

L′(θ∗) = 0 = L′(θ) + (θ∗ − θ)L′′(θ) + 1
2 (θ∗ − θ)2L(3)(ω).

Using (16), we deduce that

(θ∗ − τ̂ )E(L′′(θ)) = (θ − θ∗){L′′(θ) − E(L′′(θ))} − 1
2 (θ − θ∗)2L(3)(ω). (46)
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Note that using Lemmas 3 and 9,

E
[

sup
VA1

∣∣L(3)(ω)
∣∣2

]
≤ E

[
sup
VA1

∣∣
(3)
∣∣2 + ∣∣X(3)

∣∣2 + ∣∣�(3)
∣∣2

]
≤ CT 8θ−12 log1/2 T .

Note that on A1, (θ∗ − θ)2 ≤ D2θ4T −3 logT . Moreover, thanks to Lemma 2, E(L′′(θ))−2 =
4E(
′′(θ))−2 ≤ (CT 3θ−4)−2. Thanks to Lemma 5,

E{L′′(θ) − E(L′′(θ))}2 ≤ E(X′′(θ)2) + E(� ′′(θ)2) ≤ CT 5θ−8.

From the preceding inequalities, we conclude that

E
(
(θ∗ − τ̂ )2IT 1A1

) ≤ C(logT )5/2T −1 ≤ C(logT )−3/2T −1‖λ′‖2 = o(RT (f,λ)),

by (W1), which proves (44). Finally, (45) is proved by similar arguments. �

Lemma 14. Let (Xt ) be a stochastic process differentiable a.s., µ and x positive real numbers
and I an interval of R. We then have

P
(

sup
τ∈I

Xτ > x

)
≤ exp(−µx) sup

τ∈I

(E exp(2µXτ ))
1/2

(
1 + µ

∫
τ∈I

(E|X′
τ |2)1/2 dτ

)
.

Proof. The proof of this lemma can be found in Golubev [9]. �
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