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Conjunctive Bayesian networks (CBNs) are graphical models that describe the accumulation of events
which are constrained in the order of their occurrence. A CBN is given by a partial order on a (finite) set
of events. CBNs generalize the oncogenetic tree models of Desper et al. by allowing the occurrence of an
event to depend on more than one predecessor event. The present paper studies the statistical and algebraic
properties of CBNs. We determine the maximum likelihood parameters and present a combinatorial solution
to the model selection problem. Our method performs well on two datasets where the events are HIV
mutations associated with drug resistance. Concluding with a study of the algebraic properties of CBNs, we
show that CBNs are toric varieties after a coordinate transformation and that their ideals possess a quadratic
Gröbner basis.
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1. Introduction

The conjunctive Bayesian network (CBN) model on a finite partially ordered set (poset) was
introduced in Beerenwinkel et al. ([7], Section 4) as well as in the form of noisy-AND models
in the AI literature (e.g., Pearl [20]). Here, we give a self-contained study of the statistical and
algebraic properties of this model. CBNs are specializations of Bayesian networks. They include
the oncogenetic (also called mutagenetic) tree models of Desper et al. [10] which have proven
very useful in cancer research (Radmacher et al. [22]) and in the study of HIV drug resistance
(Beerenwinkel et al. [5]).

The models are motivated by the following class of problems. Consider a finite set of genetic
events, for example, DNA mutations or chromosomal alterations, and assume that the genetic
changes are permanent. In this situation, each individual, defined by its genotype, is completely
characterized by the subset of the events that have occurred. We wish to learn the constraints
on the orders in which these events have accumulated. A CBN is a probabilistic model of this
process derived from a partial order on the set of events. This partial order encapsulates the
dependencies between events.

For example, consider the development of drug resistance in HIV. This evolutionary process
is characterized by the accumulation of resistance mutations in the viral genome. Under fixed
drug pressure, these mutations are virtually non-reversible because they confer a strong selective
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advantage. Thus, the genetic events are fixations of specific amino acid substitutions in the virus
population. In each patient, different combinations of resistance mutations will occur. We seek
to determine the prevalent mutational pathways along which HIV accumulates drug resistance
(cf. Beerenwinkel et al. [6]). An order constraint might read that mutations at position 20 and
82 of the target protein must occur before we can see a mutation at position 54. This constraint
appears in Figure 4(a). We will analyze such data in Section 4 and see that CBNs are an efficient,
accurate tool for this problem.

As another example, the development of cancer is associated with large-scale genetic events
such as the gains or losses of parts of chromosomes (Iwasa et al. [15]). Knowledge of the con-
straints on the accumulation of these genetic events helps in assessing the progression of the
cancer and assigning treatments (cf. Rahnenführer et al. [23]).

A CBN consists of a set of binary random variables, called events, and a partial order on
these events. While we will use the language of the theory of posets, readers can equivalently
think of the partial order as a directed acyclic graph (DAG), with edges encoding the order
relations. CBNs are specializations of Bayesian networks, the difference being that in a CBN,
an event cannot occur until all of its parents have occurred. Thus, the events that occur with
positive probability form a distributive lattice. Distributive lattices are important combinatorial
objects which have been studied in statistics. For example, the LCI models of (Andersson and
Perlman [1] and Andersson et al. [2]) use distributive lattices to encode conditional independence
statements. Although similar in spirit, readers should beware that LCI models are not the same
as CBNs.

Our original motivation for studying CBNs came from work on mutagenetic trees, introduced
in Desper et al. [10]. Mutagenetic trees assume that each event depends on the occurrence of at
most one other previous event. CBNs relax this assumption, allowing for an arbitrary partial order
on the events. By relaxing this assumption, CBNs are able to model a larger range of biomedical
problems effectively.

Even though they generalize currently used models, CBNs are still very restrictive compared
to Bayesian networks in general. However, CBNs have the benefit that the maximum likelihood
parameters and structure can be written down in closed form (Proposition 2 and Theorem 5). This
is an uncommon phenomenon in the theory of graphical models and should be of independent
interest. In addition, the number of parameters in a CBN does not depend on the graph structure,
so we do not need to use, for example, the AIC or BIC procedures.

CBNs have also been studied under the name of noisy-AND models in the AI community
(Meek and Heckerman [17] and Pearl [20,21]) as a model for causal inference. The basic idea
is that a number of causes influence a common effect through latent intermediate variables; the
noisy-AND model requires all causes to have happened before the effect can occur. The study
of these models focuses on learning the causal structure given latent variables, in contrast to our
situation where we wish to learn the structure of a network of observed variables.

In this paper, we show that CBNs have desirable algebraic, statistical and combinatorial prop-
erties. CBN models can be learned efficiently, they can be extended to take into account noise in
the data and they perform better than mutagenetic trees in our applications (cf. Figure 3). This
paper is organized as follows. After formally introducing CBNs in Section 2, we compute the
maximum likelihood (ML) estimator for a CBN in Section 3 and use this to give a combinatorial
characterization of the CBN model of maximal likelihood. Next, in Section 4, we compare the
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performance of CBNs to mutagenetic trees on two data sets of HIV drug resistance mutations.
Finally, in Section 5, we study algebraic properties of CBNs. These properties are surprisingly
similar to other algebraic results for statistical models. This material may ultimately become rel-
evant for statistical inference, but may also be of independent interest to mathematicians. We
determine the prime ideal of algebraic invariants of a CBN and show that this model is a toric
variety in a suitable coordinate system. Our main tool is the Möbius transform, a standard tool
in working with posets which has found application in the graphical models literature (cf. Drton
and Richardson [11], Section 3, and Lauritzen [16], page 239).

2. Conjunctive Bayesian networks

A CBN model is specified by a set E of events, a partial order “≤” on the events and parameters θe

for each event e. We will assume that there are n events, labeled as [n] := {1, . . . , n}. Therefore,
we write the parameters as θ = (θ1, . . . , θn). Frequently, we will abuse notation and refer to
both the model (E,≤, θ) and the poset (E,≤) as E when the meaning is clear from the context.
A relation e1 < e2 between two events in E is interpreted as the requirement that event e1 must
happen before event e2 can. The parameter θe is the conditional probability that the event e ∈ E
has occurred, given that its predecessor events have already occurred.

The state space of the CBN model is the distributive lattice G = J (E) of order ideals in E . An
order ideal is a subset g ⊆ E such that if e2 ∈ g and e1 < e2, then e1 ∈ g. Readers unfamiliar
with posets and their distributive lattices are referred to Beerenwinkel et al. [7], Section 2, for a
brief introduction. The elements of G are called genotypes. Thus, a genotype g ∈ G is a subset
of E or, equivalently, the binary string in which each bit indicates the occurrence of an event.
This terminology presumes a well-defined ground state 0 . . .0 in which none of the events have
yet occurred. In our examples, the unmutated virus strain or the unmutated potential cancer cell
is referred to as the “wild type.” Hence, for describing mutant types, we need only keep track of
which sites differ from the wild type because of the assumption of non-reversibility of events.

We write min(gc) for the minimal elements in the complement gc = E\{g} of a genotype g.
The elements of min(gc) are the events that have not occurred in g but could happen next.
For example, in Figure 1, if g = {1,2}, then min(gc) = {3,4}. The probability of observing
the genotype g ∈ G in the CBN model on the poset E is defined to be

Pg(θ) =
∏
e∈g

θe ·
∏

e∈min(gc)

(1 − θe).

That is, the probability of observing g is the probability that all of the events in g have happened
times the probability that none of the events that depend only on g have happened.

Equivalently, the CBN model on E is the directed graphical model for the binary random
variables (Xe)e∈E whose graph has edges e → f for all cover relations e < f in E and whose
conditional probability tables are

[
Pr

(
Xe = b | Xpa(e) = a

)]
a∈{0,1}pa(e),b∈{0,1} =


1 0
...

...

1 0
1 − θe θe

 ,
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Figure 1. Poset on four events, order ideals and genotype lattice.

where pa(e) denotes the parents of e in the acyclic directed graph E .

Example 1. Let n = 4 and suppose E is the poset defined on four events by the cover relations
1 < 3, 1 < 4, 2 < 3 and 2 < 4. The poset E has precisely seven order ideals, so the distributive
lattice G consists of seven genotypes. They are displayed in Figure 1. The CBN model E is the
family of probability distributions on G which is given parametrically as follows:

P∅(θ) = (1 − θ1)(1 − θ2), P1(θ) = θ1(1 − θ2),

P2(θ) = θ2(1 − θ1), P12(θ) = θ1θ2(1 − θ3)(1 − θ4),

P1234(θ) = θ1θ2θ3θ4, P123(θ) = θ1θ2θ3(1 − θ4),

P124(θ) = θ1θ2θ4(1 − θ3).

The sum of these seven polynomials equals one. The parameters are the conditional probabilities
θe = Pr(Xe = 1 | Xpa(e) = (1, . . . ,1)).

3. Maximum likelihood estimation

Consider any CBN model E on [n]. The data for this model take the form of a function u :G → N,
g �→ ug , where ug is the number of observations of the genotype g. Given such data u ∈ N

G , the
following proposition gives an easy formula for maximum likelihood estimation of the model
parameters.

Proposition 2. For each event e in the CBN model E , the ML estimator θ̂e of θe equals the
relative frequency of the genotypes which contain e among all genotypes that contain the events
which are strictly below e. In symbols,

θ̂e =
∑

g:e∈g ug∑
g:below(e)⊆g ug

for all e ∈ E .



Conjunctive Bayesian networks 897

Proof. The log-likelihood function for the given data u ∈ N
G equals

�u(θ) =
∑
g∈G

ug ·
(∑

e∈g

log θe +
∑

e∈min(gc)

log(1 − θe)

)
.

The partial derivative of this expression with respect to a parameter θe is

∂�u

∂θe

= A

θe

− B

1 − θe

,

where A is the sum over all frequencies ug of genotypes g containing e and B is the sum over
all frequencies ug , where e /∈ g but below(e) ⊆ g. Equating this partial derivative with zero, we
obtain

θ̂e = A

A + B
,

which is precisely the formula asserted in the proposition. �

Example 3. We illustrate Proposition 2 for the model in Example 1 and Figure 1. Since
below(1) = ∅, the ML estimator for θ1 is

θ̂1 = u1 + u12 + u123 + u124 + u1234

u + u1 + u2 + u12 + u123 + u124 + u1234

and similarly for θ2. For θ3, below(3) = {1,2} and hence

θ̂3 = u123 + u1234

u12 + u123 + u124 + u1234
.

The expression for the ML estimator of θ4 is similar.

Remark 4. Proposition 2 shows that the ML estimator for the CBN model is a rational function
of the data. In the language of Catanese et al. [8], this says that the ML degree of every CBN
model is equal to one.

We identify the elements of G with strings in {0,1}n. A probability distribution on G is thus
an element of the (2n − 1)-dimensional simplex � with coordinates indexed by {0,1}n. Write
supp(u) for the non-zero coordinates of u, that is, for the genotypes that occur in the data set. We
say that u separates the events if for any two elements e,f ∈ [n], there exists g ∈ supp(u) such
that g ∩ {e,f } is either {e} or {f }. If this is not the case, then we can consider {e,f } as a single
event and replace [n] by [n − 1].

We call any genotype g ⊆ [n] compatible with the model E if g ∈ J (E) = G. This is equivalent
to Pg(θ) not being the zero polynomial; see also Beerenwinkel and Drton [3], Definition 14.2.
The data u are said to be compatible with E if all g ∈ supp(u) are compatible with E . Our next
theorem is the main result of this section. It gives a combinatorial solution to the problem of
model selection among CBNs. Here, any given data set u : {0,1}n → N is identified with the
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corresponding empirical probability distribution in �. For such u ∈ �, we can compute the ML
estimator θ̂ for each poset E on [n]. We define the ML CBN model for u to be the poset E for
which the log-likelihood �u(θ̂) has the largest numerical value.

Theorem 5. Let u ∈ � be a probability distribution which separates the events. There is then
a unique largest poset Eu such that u is compatible with Eu, and the poset Eu is the unique ML
CBN model for u.

Here, “largest poset” refers to the refinement relation among posets on [n], that is, E ⊂ E ′
means that every relation e < f in E also holds in E ′. Note that this inclusion is reversed for the
induced genotype lattices: E ⊂ E ′ if and only if G = J (E) ⊃ G′ = J (E ′).

Proof of Theorem 5. The probability Pg(θ) is identically zero if and only if g is not in G =
J (E). This implies that the likelihood function

∏
g∈supp(u) Pg(θ)ug is identically zero if and only

if u is not compatible with the poset E . Therefore, we need only consider posets E such that u is
compatible with E .

We claim that there is a unique maximal poset Eu with which u is compatible. Namely, Eu is
the set of all relations e1 < e2 such that g ∩ {e1, e2} 
= {e2} for all g ∈ supp(u). Note that Eu is
then an antisymmetric relation on [n] because u separates the events. The relation Eu is transitive
because g ∩ {e1, e3} = {e3} implies g ∩ {e1, e2} = {e2} or g ∩ {e2, e3} = {e3}. Thus, Eu is a poset
and adding any relation makes u incompatible with it.

It remains to show that if E1 ⊂ E2 ⊆ Eu, then E2 is more likely than E1. It suffices to show this
where E1 and E2 differ by only one relation, which we assume without loss of generality to be
1 < 2. Thus, the events 1 and 2 are incomparable in E1, but 1 must come before 2 in E2.

Let G1 = J (E1) and G2 = J (E2). We begin by finding the ML parameters for the two models.
Write θ̂e for the ML parameters for G1 and η̂e for the ML parameters for G2. According to
Proposition 2, we have

θ̂e =
∑

g∈G1:e∈g ug∑
g∈G1:below(e)⊆g ug

and η̂e =
∑

g∈G2:e∈g ug∑
g∈G2:below(e)⊆g ug

.

Since G1 ⊃ G2 ⊇ supp(u), the numerators of both expressions are the same, that is, we are sum-
ming the counts ug over all genotypes g that contain e.

We claim that θ̂e = η̂e except when e = 2. In both cases, the denominator is the sum over ug

for all genotypes g where e has either already occurred or is allowed to occur next. Since E1 and
E2 differ in only one relation, 1 < 2, the denominators are the same (and hence θ̂e = η̂e) unless
e = 2.

In order to further analyze the ML estimates, we set

V1 =
∑
g:1∈g

ug, V2 =
∑
g:2∈g

ug,

N =
∑

g∈G1:below(2)⊆g

ug, M =
∑

g∈G2:below(2)⊆g

ug.
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With this notation, the maximum likelihood parameters are

θ̂2 = V2

N
and η̂2 = V2

M
.

Note that since event 1 always happens in the data before event 2, we have V2 ≤ V1. Since
E2 has more conditions than E1, we have M ≤ N and since event 1 is required to happen before
event 2 can in E2, we have V1 ≤ M . Combining these inequalities gives us V2 ≤ V1 ≤ M ≤ N .

Our analysis will involve the ratios of the ML parameters

θ̂2

η̂2
= M

N
,

1 − θ̂2

1 − η̂2
= M

N

N − V2

M − V2
. (1)

For i = 1,2, the likelihood function for the given distribution u equals

Lu(θ;Gi ) =
∏
g

(∏
e∈g

θ
ug
e

)
·
( ∏

e∈min(gc)

(1 − θe)
ug

)
.

Substitute θe = θ̂e for i = 1 and θe = η̂e for i = 2. Our assertion states that

Lu(̂θ;G1) ≤ Lu(̂η;G2).

To prove this, we consider the ratio Lu(̂θ;G1)/Lu(̂η;G2), written as a product over g ∈ supp(u),
and we examine the four possibilities for g ∩ {1,2}, given as follows.

Case 1: g = 00∗. Here, event 2 can happen in E1, but it cannot yet happen in E2 since it
requires event 1 to happen first. This contributes a factor (1 − θ̂2)

ug to the product over g in
Lu(̂θ;G1)/Lu(̂η;G2). Since event 2 has not yet happened, there are no factors θ̂2/η̂2 in this
product, so everything else cancels.

Case 2: g = 01∗. This case cannot happen by compatibility.
Case 3: g = 10∗. Event 2 has not happened in either case, so all of the terms in the product

over e ∈ g cancel. The same set of events can happen in both G1 and G2, so everything in the
product over e ∈ min(gc) cancels except the factor with e = 2, which occurs both in Lu(̂θ;G1)

and in Lu(̂η;G2).
Case 4: g = 11∗. This case is similar to case 3, except that event 2 has now happened in both

cases.
The result of this analysis is the identity

Lu(θ̂;G1)

Lu(̂η;G2)
=

∏
g=00∗

(1 − θ̂2)
ug

∏
g=10∗

(
1 − θ̂2

1 − η̂2

)ug ∏
g=11∗

(
θ̂2

η̂2

)ug

. (2)

Note that ∑
g=10∗

ug +
∑

g=11∗
ug = V1 and

∑
g=11∗

ug = V2.
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Therefore,
∑

g=00∗ ug = 1 − V1. Substituting (1) into (2), we obtain

Lu(θ̂;G1)

Lu(̂η;G2)
=

(
N − V2

N

)1−V1
(

M(N − V2)

N(M − V2)

)V1−V2
(

M

N

)V2

(3)

= MV1

N

(N − V2)
1−V2

(M − V2)V1−V2
.

The following lemma shows that (3) is less than or equal to one for all 0 ≤ V2 ≤ V1 ≤ M ≤ N ≤ 1.
This completes the proof of Theorem 5. �

Lemma 6. If x, y, a, b are real numbers with 0 ≤ a ≤ b ≤ x ≤ y ≤ 1, then

xb

y

(y − a)1−a

(x − a)b−a
≤ 1. (4)

Proof. We fix a and b and regard the left-hand side of (4) as a function fa,b(x, y) of x and y.
The two partial derivatives of this function satisfy

∂fa,b

∂x
= a(x − b)

x(x − a)
· fa,b(x, y) and

∂fa,b

∂y
= a(1 − y)

y(y − a)
· fa,b(x, y).

Both expressions are positive on the triangle {(x, y) ∈ R
2 : max(a, b) ≤ x ≤ y ≤ 1}, hence

fa,b(x, y) is bounded above by fa,b(1,1) = (1 − a)1−b ≤ 1. �

We summarize the results of this section in the following algorithm.

Algorithm 7 (Model selection and parameter estimation for CBN models).
INPUT: A probability distribution u ∈ � on the set of genotypes {0,1}n.
OUTPUT: The ML CBN model Eu and the ML parameters θ̂ .
STEP 1: Check whether u separates the n events. If not, group non-distinguished events together,
thus decrementing n, and replace u by the probability distribution which is induced on the smaller
set of genotypes.
STEP 2: Define the poset Eu on [n] as follows. For any two events e,f ∈ [n], we set e < f in Eu

if and only if g ∩ {e,f } 
= {f } for all g ∈ supp(u).
STEP 3: For each event e ∈ [n], compute θ̂e by the formula in Proposition 2.
STEP 4: Output the poset Eu and the vector θ̂ ∈ [0,1]n.

4. Application to HIV genetic data

The use of Algorithm 7 to obtain the ML CBN model is complicated by the presence of noise
in real-world data sets. Any relation e < f between two events e and f will be estimated to be
part of the poset E only if no genotype which contains f but not e has been observed. Thus,
the algorithm will miss relations e < f that have strong, but imperfect, support. The problem of
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noisy data has been analyzed in earlier work on mutagenetic tree models. It can be addressed
by explicit error models in an ML framework, as described in Beerenwinkel and Drton ([3],
Section 14.2) and Beerenwinkel and Drton [4], Section 3.3. Also, Szabo and Boucher [27] have
incorporated an error model directly into the reconstruction algorithm of Desper et al. [10].

We propose the following method for constructing a range of CBN models as the error toler-
ance ε varies. Let Eε be the poset on [n] which consists of all relations e < f which are violated
by at most a fraction ε of the data. Thus, for ε = 0, we recover Eu. Generally, some observations
g ∈ supp(u) will be incompatible with the model Eε . These samples are removed prior to ML es-
timation of the model parameters θ . In order to account for both the compatible and incompatible
data, we use a simple mixture model.

Write Gε = J (Eε) for the genotype space of the model Eε . We assume that the incompatible
genotypes g /∈ Gε are generated with uniform probability 1/(2n −|Gε |). Our mixture model E ′

ε is
given parametrically by the event probabilities θe and a mixture parameter λ as

P ′
g(θ, λ) =

{
λPg(θ), if g ∈ Gε ,
(1 − λ)(2n − |Gε |)−1, if g /∈ Gε

for each observation g ∈ {0,1}n. This expression gives an explicit trade-off between a large
number of compatible samples and a good model fit.

Since the mixing distributions of the model E ′
ε have disjoint support, the log-likelihood func-

tion of the data u: {0,1}n → N decomposes as follows:

�′
u(θ, λ) =

∑
g∈Gε

ug[logλ + logPg(θ)]
(5)

+
∑
g/∈Gε

ug[log(1 − λ) − log(2n − |Gε |)].

Proposition 8. The ML estimators θ̂e of θe under the model E ′
ε are given by Proposition 2. The

ML estimator λ̂ of λ under the model E ′
ε is given by the fraction of the data u which is compatible

with the model Eε . That is,

λ̂ =
∑

g∈Gε
ug∑

g ug

.

Proof. The partial derivatives of (5) with respect to θe are the same as they were in Proposition 2.
Next, if we solve

0 = ∂�′

∂λ
=

∑
g∈Gε

ug

λ
−

∑
g/∈Gε

ug

1 − λ
,

we obtain the above formula for λ̂. �

We now apply these methods to mutation data from HIV that was obtained from patients under
antiretroviral therapy. The set E of genetic events consists of seven amino acid alterations in the
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HIV genome that confer drug resistance. Specifically, as an unordered set,

E = {K20R, M36I, M46I, I54V, A71V, V82A, I84V},
where, for example, K20R indicates the amino acid mutation from lysine (K) to arginine (R)
at position 20 of the HIV protease. We consider two datasets from the Stanford HIV Drug Re-
sistance Database (Rhee et al. [24]), which consist of 112 and 691 observed genotypes under
therapy with the protease inhibitors ritonavir (RTV) and indinavir (IDV), respectively.

Previous studies identified correlations and preferred pathways among the resistance muta-
tions (Condra et al. [9] and Molla et al. [18]). In particular, in Beerenwinkel et al. [7], we used
mutagenetic trees to infer the underlying dependency structure. The posets are displayed in Fig-
ure 2.

For each dataset, we built posets Eε for various values of ε. For each estimated poset, we
report two numbers: the log-likelihood of the data given the mixture model E ′

ε and the mix-
ture parameter λ̂ (i.e., the fraction of the data which was explained by the model Eε ). We
also calculated these numbers for the mutagenetic trees (Figure 2). These results are shown
in Figure 3. Software for building the posets Eε and computing the likelihood is available at
http://bio.math.berkeley.edu/CBN/.

The two posets that maximize �′
u for RTV and IDV, respectively, are displayed in Figure 4.

Note that almost all constructed CBNs Eε performed better than the mutagenetic trees. In order
to estimate the significance of this difference, we repeated the log-likelihood calculation for
each poset using 1000 bootstrap samples from the original data. The difference in log-likelihood
between these optimal posets and the mutagenetic-tree-induced posets is sufficiently large that
their distributions derived from the bootstrap analysis never overlapped. Thus, the difference
between the optimal CBN models and the mutagenetic trees is found to be highly significant.

Comparing the optimal CBNs (Figure 4) to the mutagenetic trees (Figure 2) suggests that the
mutagenetic trees may induce too many relations and may be handicapped by the requirement
that the output is a tree. The posets for RTV share two relations (V82A < M46I and V82A <

Figure 2. Posets corresponding to the mutagenetic trees that were found in Beerenwinkel et al. [7], Fig-
ure 3, for (a) ritonavir (RTV) and (b) indinavir (IDV).

http://bio.math.berkeley.edu/CBN/
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Figure 3. Log-likelihood �′
u for the CBN models Eε (filled circles) for various choices of the error tolerance

ε as a function of the fraction of incompatible genotypes g /∈ Gε . The filled squares correspond to the trees
shown in Figure 2. Quartile bars have been derived from 1000 bootstrap samples. Subfigures correspond to
(a) ritonavir (RTV) and (b) indinavir (IDV).

I54V), while those for IDV share none. The RTV poset [Figure 4(a)] includes the conjunction
that both mutations K20R and V82A must occur before I54V, which cannot be represented in
a mutagenetic tree. By contrast, the IDV poset [Figure 4(b)] could be represented by a mutage-
netic tree, but this tree has not been found by the tree-building procedure of Desper et al. [10].
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Figure 4. Conjunctive Bayesian networks for (a) ritonavir (RTV) and (b) indinavir (IDV) that maximize
the likelihood �′

u. The posets represent the models corresponding to the maxima of the graphs shown in
Figure 3.

Although the posets and trees do not share many relations, they display a similar structure in that
the development of ritonavir resistance is a much more ordered process than for indinavir (see
also Beerenwinkel et al. [7]).

This comparison suggests several advantages of CBNs. First, they provide better model fits
than the posets derived from the mutagenetic tree models. Second, they rely on an ML method
both for parameter estimation and for model selection. This stands in contrast to the algorithm
of Desper et al. [10], which is not an ML procedure. Finally, the perturbed CBNs Eε can cover a
wide range of fractions of unexplained samples, providing a “parametric” picture of the relations
present in the data.

5. Algebraic study of the CBN model

In this final, section we study CBNs from the perspective of algebraic statistics. Following
Pachter and Sturmfels [19], we regard a CBN as an algebraic variety in a space of dimension |G|.
The objective is to compute the prime ideals of all polynomials which vanish on this variety.
These polynomials are the algebraic invariants of the CBN model.

Example 9. For the model with four events and seven genotypes in Example 1, the algebraic
invariants are generated by the three polynomials

p123 · p124 − p12 · p1234, p1 · p2 − p∅ · p12 − p∅ · p123 − p∅ · p124 − p∅ · p1234

and

p∅ + p1 + p2 + p12 + p123 + p124 + p1234 − 1.

Indeed, these three expressions vanish identically if we replace pg by Pg(θ) for each genotype g.
Here “are generated” means that every other polynomial with this property is a linear combina-
tion of the three polynomials.
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The main theorem in this section exhibits an explicit Gröbner basis for the algebraic invariants
of any CBN model. This Gröbner basis consists of a set of quadratic polynomials, together with
the trivial invariant

∑
g∈G pg − 1, exactly as in Example 9. For the special case where E is a

forest, this result was proven in Beerenwinkel and Drton [3], Theorem 14.11. Other widely used
statistical models have Gröbner bases of the same form, for example, decomposable Markov
random fields (Geiger et al. [12]) and Jukes–Cantor models in phylogenetics (Sturmfels and
Sullivant [26]). Among Markov random fields, having a Gröbner basis of quadrics is equivalent
to having ML degree one (Geiger et al. [12], Theorem 4.4). This suggests a possible relationship
between Theorem 5 and Theorem 10 below. The analogy to Jukes–Cantor models is noteworthy.
These models become toric varieties after a linear change of coordinates, known as the Fourier
transform or Hadamard conjugation. The same property will be shown in Corollary 11 for the
CBN models, but the role of the Fourier transform is now played by Möbius inversion on the
distributive lattice G.

To state our algebraic results, we regard the probabilities pg , for each genotype g in G = J (E),
as unknowns. These generate the polynomial ring

R[G] = R[pg :g ∈ G].
In this ring, we consider the prime ideal IE consisting of all polynomials that vanish on the
family of probability distributions defined by the CBN model E . Equivalently, IE is the kernel
of the ring map R[G] → R[E],pg �→ Pg(θ), where R[E] is the polynomial ring generated by the
parameters θe, e ∈ E .

We fix a linear extension of the reverse inclusion order on G, where g = ∅ is the largest
element and g = E is the smallest element. We define ≺ to be the degree reverse lexicographic
monomial ordering on R[G] induced by the variable ordering given by the fixed linear extension.

Theorem 10. The reduced Gröbner basis of the ideal IE with respect to the monomial ordering
≺ consists of the trivial linear invariant

∑
g∈G pg − 1, with leading term p∅, together with one

homogeneous quadratic polynomial

pg · ph − pg∪h · pg∩h + ≺-lower terms (6)

for each incomparable pair of genotypes {g,h} in the distributive lattice G.

Proof. We start our proof of Theorem 10 by recalling that the sum of the polynomials Pg(θ),
equals one. If we take the subsum of all polynomials Pg(θ), where g runs over all genotypes
containing some fixed genotype h ∈ G, then this is essentially the same sum with E replaced by
E\h and we conclude that ∑

g:h⊆g

Pg(θ) =
∏
e∈h

θe.

This expression represents the probability that each event in h has happened. The identity sug-
gests that we perform the following linear change of coordinates in the polynomial ring R[G]:

qh :=
∑

g:h⊆g

pg for all h ∈ G. (7)
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Thus, in the new coordinates qh, the CBN model is precisely the toric variety associated with the
distributive lattice G. A well-known theorem of Hibi [14] states that the ideal of this toric variety
is generated by the binomials

qg · qh − qg∪h · qg∩h, (8)

where {g,h} runs over all incomparable pairs of elements of G. Moreover, these binomials form
a Gröbner basis with the underlined terms as the leading terms. Thus, IE is generated by the
quadrics (8) together with the relation q∅ − 1, which is obtained from (7) under the assumption
that the probabilities pg sum to one. Now, if we rewrite (8) in terms of the original coordinates pg ,
then we obtain quadrics of the form (6).

We claim that the quadrics (8) in the original coordinates pg form a Gröbner basis for IE . This
Gröbner basis will be minimal, but not reduced. We shall verify the Gröbner basis property by
using the theory of sagbi bases (or canonical bases), as described by Sturmfels [25], Section 11.

Let < denote a negative degree monomial ordering on the polynomial ring of parameters,
R[E] = R[θe : e ∈ E]. Thus, < is a local monomial ordering in which 1 = θ0 is the largest mono-
mial and monomials of higher total degree are <-smaller than monomials of lower total degree.
See Greuel and Pfister [13] for an introduction to local monomial orderings.

We shall prove that the coordinate polynomials Pg(θ) of the CBN model form a sagbi basis
for the local ordering <, that is, the <-leading monomials

in<(Pg(θ)) =
∏
e∈g

θe (9)

generate the algebra of all <-leading monomials of polynomials in the image of our ring
map R[G] → R[E], pg �→ Pg(θ). Let JE be the prime ideal in R[G] consisting of all alge-
braic relations on the initial monomials (9). By Hibi’s result, JE is generated by the binomials
pg · ph − pg∪h · pg∩h and these binomials form the reduced Gröbner basis of JE with respect
to ≺.

Let w ∈ R
E be a weight vector which represents the local ordering < for the coordinate poly-

nomials Pg(θ) and let AT w be the induced weight vector in R
G . By Sturmfels [25], Lemma 11.2,

we have

inAT w(IE ) ⊆ JE . (10)

Importantly, pg · ph − pg∪h · pg∩h is the initial form of (8) with respect to AT w, so the reverse
inclusion also holds. Thus, equality holds in (10) and the desired sagbi basis property holds by
Sturmfels [25], Theorem 11.4.

By Sturmfels ([25], Corollary 11.6(a)), we conclude that the quadratic model invariants (8)
form a Gröbner basis of IE with respect to ≺. This Gröbner basis is minimal and it can be
transformed into the reduced Gröbner basis by autoreduction. This completes the proof of Theo-
rem 10. �

A few remarks are in order. The linear transformation between the p-coordinates and the
q-coordinates on the polynomial ring R[G], given in (7), is precisely the Möbius inversion on the
genotype lattice G. Equivalently, the coefficients (+1, −1 or 0) of the monomials in the expanded
model coordinates Pg(θ) are precisely the values of the Möbius function on G.
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Example 9 illustrates Theorem 10 for the model in Example 1. The three model invariants
form a Gröbner basis with leading terms p123 · p124, p1 · p2 and p∅. Möbius inversion on the
genotype lattice pictured in Figure 1 gives

p∅ = q∅ − q1 − q2 + q12, p1 = q1 − q12, p2 = q2 − q12,

p12 = q12 − q123 − q124 + q1234, p1234 = q1234,

p123 = q123 − q1234, p124 = q124 − q1234.

If we perform these substitutions in the reduced Gröbner basis listed in Example 9, then the three
given model invariants simplify to

q∅ − 1, q1 · q2 − q∅ · q12, q123 · q124 − q1234 · q12.

Corollary 11. The Möbius inversion (7) on the distributive lattice G = J (E) is a linear change
of coordinates which identifies the CBN model E with the toric variety of the distributive lattice G
defined by Hibi.

We close with the remark that the sagbi basis property of the coordinate polynomials of the
CBN model, which was established in the course of proving Theorem 10, can be used to ex-
press any polynomial in the coordinate subalgebra rapidly in terms of the generators Pg(θ). This
process, which is known as subduction (Sturmfels [25], Algorithm 11.1), generalizes the classical
procedure of expressing any symmetric polynomial in terms of elementary symmetric functions
and may be of interest to statisticians.
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