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Asymptotic expansion and central limit
theorem for quadratic variations of
Gaussian processes
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Cohen, Guyon, Perrin and Pontier have given assumptions under which the second-order quadratic varia-
tions of a Gaussian process converge almost surely to a deterministic limit. In this paper we present two new
convergence results about these variations: the first is a deterministic asymptotic expansion; the second is
a central limit theorem. Next we apply these results to identify two-parameter fractional Brownian motion
and anisotropic fractional Brownian motion.
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Introduction

In this paper we consider second-order quadratic variations of a Gaussian process X. From Cohen
et al. [10] we know that it converges to a deterministic limit under convenient conditions on the
covariance function of the process. First we sharpen this result: we show that if an asymptotic
expansion of the covariance function is known, we get an asymptotic expansion of the second-
order quadratic variation. Next we establish a central limit theorem related to the previous result.
We apply these results to two-parameter fractional Brownian motion, which is a generalization
of fractional Brownian motion that has non-stationary increments, and to anisotropic fractional
Brownian field, which is a multidimensional anisotropic generalization of fractional Brownian
motion.

In the first section, we state the notation. In the second section, we prove the main theo-
rems about the second-order quadratic variation. In the third section, we study the case of two-
parameter fractional Brownian motion. In the fourth section, we consider anisotropic fractional
Brownian motion.

1. Notation
Let X = {Xt ; t ∈ [0,1]} be a Gaussian process. We denote by t �→ Mt its mean function and by
(s, t) �→ R(s, t) its covariance function.

We define the second-order increments of R as

δh
1 R(s, t) = R(s + h, t) + R(s − h, t) − 2R(s, t),

δh
2 R(s, t) = R(s, t + h) + R(s, t − h) − 2R(s, t).
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For fractional processes (i.e., processes whose properties are close to those of fractional Brown-
ian motion), we use the second-order quadratic variation

Vn(X) =
n−1∑
k=1

[
X(k+1)/n + X(k−1)/n − 2Xk/n

]2
, (1)

because the standard quadratic variation does not satisfy a central limit theorem in general.
To be sure that Vn(X) converges almost surely to a deterministic limit, we need to normalize

this quantity. A result of the form

lim
n→+∞n1−γ Vn(X) =

∫ 1

0
g(t)dt a.s. (2)

is expected, where γ is related to the regularity of the paths of X, and g is related to the non-
differentiability of R on the diagonal {s = t} and is called the singularity function of the process.
In this paper, we consider a class of processes for which a more general normalization is needed.
Moreover, we present a better result because we give an asymptotic expansion of the left-hand
side of (2).

We will say that a Borel function ψ : ]0, a[→ R (a > 0) is regularly varying with index β ∈ R

if ψ(h) = hβL(h), where L is a slowly varying function

∀λ > 0 lim
x→0+

L(λx)

L(x)
= 1.

Let d ∈ N
∗. Standard fractional Brownian motion (FBM) BH = {BH

t ; t ∈ R
d}, with Hurst in-

dex H ∈]0,1[, is the unique continuous centered Gaussian process, which has the covariance
function

∀s, t ∈ R
d Cov(BH

s ,BH
t ) = 1

2 (|s|2H + |t |2H − |s − t |2H ), (3)

where | · | denotes the Euclidean norm.
In next section, we use the notation (we drop the superscript index n wherever it is possible)

�X
(n)
k = X(k+1)/n + X(k−1)/n − 2Xk/n, k = 1, . . . , n − 1,

and

d
(n)
jk = E

(
�X

(n)
j �X

(n)
k

)
, j, k = 1, . . . , n − 1. (4)

2. The results

In this section we sharpen (2). First, we prove a deterministic asymptotic expansion of Vn(X)

under certain conditions on the covariance function. Second, we prove a central limit theorem.
Examples of the application of Theorem 2.1 with a non-trivial slowly varying function L(h)

can be found in Section 4.2.
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2.1. Asymptotic expansion

Theorem 1. Assume that X satisfies the following statements:

1. t �→ Mt = EXt has a bounded first derivative in [0,1].
2. The covariance function R has the following properties:

(a) R is continuous in [0,1]2.
(b) The derivative ∂4R

∂s2 ∂t2 exists and is continuous in ]0,1]2 \ {s = t}. There exist a constant
C > 0, a real γ ∈]0,2[ and a positive slowly varying function L : ]0,1[→]0,+∞[
such that

∀s, t ∈]0,1]2 \ {s = t}
∣∣∣∣ ∂4R

∂s2 ∂t2
(s, t)

∣∣∣∣ ≤ C
L(|s − t |)
|s − t |2+γ

. (5)

(c) There exist q + 1 functions (q ∈ N) g0, g1, . . . , gq from ]0,1[ to R, q real numbers
0 < ν1 < · · · < νq and a function φ : ]0,1[→]0,+∞[ such that:

(i) if q ≥ 1, then ∀0 ≤ i ≤ q − 1, gi is Lipschitz on ]0,1[;
(ii) gq is bounded on ]0,1[;

(iii) we have

sup
h≤t≤1−h

∣∣∣∣∣ (δh
1 ◦ δh

2 R)(t, t)

h2−γ L(h)
− g0(t) −

q∑
i=1

gi(t)φ(h)νi

∣∣∣∣∣ h→0+= o(φ(h)νq ), (6)

where if q = 0, then
∑q

i=1 gi(t)φ(h)νi = 0 and φ(h)νq = 1; else if q 
= 0, then
limh→0+ φ(h) = 0.

3. If q 
= 0, we assume that

lim
n→+∞

logn

nφ(1/n)νq
= 0. (7)

4. If Xis not centered, we make the additional assumption

lim
n→+∞

1

nγ L(1/n)φ(1/n)νq
= 0, (8)

where if q = 0, then φ(1/n)νq = 1.

Then, for all t ∈ [0,1], we have almost surely

n1−γ

L(1/n)
Vn(X)

n→+∞=
∫ 1

0
g0(x)dx +

q∑
i=1

(∫ 1

0
gi(x)dx

)
φ

(
1

n

)νi

+ o

(
φ

(
1

n

)νq
)

. (9)

Remarks. (i) If the assumption (6) is fulfilled for q∗, then it is fulfilled for all q ∈ {0,1, . . . , q∗}
too with the truncated sequences (gi)0≤i≤q and (νi)0≤i≤q . The maximal value of q is given by
the assumption (8), which yields an upper bound for the value of νq .

(ii) Assumption 2 in Theorem 1 implies that the functions gi,0 ≤ i ≤ q , are continuous and
bounded on ]0,1[, and so they are Riemann integrable on this interval.
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(iii) In the case γ > 1, the assumption (8) is a consequence of the assumption (7) and of Kara-
mata’s representation of positive slowly varying functions (see Bingham, Goldie and Teugels [7],
Theorem 1.3.1).

Proof of Theorem 1. We set ν0 = 0 and fix the convention that φ(h)ν0 = 1. Moreover, in the
entire proof K denotes a positive constant whose value does not matter. First we assume that X is
centered.

We prove the following asymptotic expansion for the expectation of Vn(X):

n1−γ

L(1/n)
EVn(X)

n→+∞=
q∑

i=0

(∫ 1

0
gi(x)dx

)
φ

(
1

n

)νi

+ o

(
φ

(
1

n

)νq
)

. (10)

We have

djk = (δ
1/n

1 ◦ δ
1/n

2 R)

(
j

n
,
k

n

)
(11)

and

EVn(X) =
n−1∑
k=1

dkk. (12)

Moreover, the assumption (6) yields

sup
k=1,...,n−1

∣∣∣∣∣ dkk

nγ−2L(1/n)
−

q∑
i=0

gi

(
k

n

)
φ

(
1

n

)νi

∣∣∣∣∣ n→+∞= o

(
φ

(
1

n

)νq
)

. (13)

Therefore,

lim sup
n→+∞

1

φ(1/n)νq

∣∣∣∣∣ n1−γ

L(1/n)
EVn(X) −

q∑
i=0

∫ 1

0
gi(x)dx φ

(
1

n

)νi

∣∣∣∣∣
≤ lim sup

n→+∞
1

φ(1/n)νq

∣∣∣∣∣
n−1∑
k=1

(
dkk

nγ−1L(1/n)
− 1

n

q∑
i=0

gi

(
k

n

)
φ

(
1

n

)νi

)∣∣∣∣∣
+ lim sup

n→+∞
1

φ(1/n)νq

∣∣∣∣∣
q∑

i=0

(∫ 1

0
gi(x)dx − 1

n

n−1∑
k=1

gi

(
k

n

))
φ

(
1

n

)νi

∣∣∣∣∣
= L1 + L2.

We get

L1 = lim sup
n→+∞

1

φ(1/n)νq

∣∣∣∣∣
n−1∑
k=1

(
dkk

nγ−1L(1/n)
− 1

n

q∑
i=0

gi

(
k

n

)
φ

(
1

n

)νi

)∣∣∣∣∣



716 A. Begyn

≤ lim sup
n→+∞

1

φ(1/n)νq
sup

k=1,...,n−1

∣∣∣∣∣ dkk

nγ−2L(1/n)
−

q∑
i=0

gi

(
k

n

)
φ

(
1

n

)νi

∣∣∣∣∣.
Thus (13) implies that L1 = 0.

For L2, notice that

L2 = lim sup
n→+∞

1

φ(1/n)νq

∣∣∣∣∣
q∑

i=0

(∫ 1

0
gi(x)dx − 1

n

n−1∑
k=1

gi

(
k

n

))
φ

(
1

n

)νi

∣∣∣∣∣
≤ lim sup

n→+∞
1

φ(1/n)νq

q∑
i=0

∣∣∣∣∣
∫ (n−1)/n

0
gi(x)dx − 1

n

n−1∑
k=1

gi

(
k

n

)∣∣∣∣∣φ
(

1

n

)νi

+
q∑

i=0

lim sup
n→+∞

φ(1/n)νi

φ(1/n)νq

∫ t

(n−1)/n

gi(x)dx = L
(1)
2 + L

(2)
2 .

The term L
(2)
2 is obviously equal to 0 due to (7) and the fact that the functions gi are bounded.

Moreover the assumption 2(c)(i) in Theorem 1 implies that there exists K > 0 such that for all
0 ≤ i ≤ q − 1,∣∣∣∣∣

∫ (n−1)/n

0
gi(x)dx − 1

n

n−1∑
k=1

gi

(
k

n

)∣∣∣∣∣
≤

n−1∑
k=1

∫ k/n

(k−1)/n

∣∣∣∣gi(x) − gi

(
k

n

)∣∣∣∣dx ≤ K

n−1∑
k=1

∫ k/n

(k−1)/n

(
k

n
− x

)
dx ≤ K

n
.

Consequently,

L
(1)
2 = lim sup

n→+∞
1

φ(1/n)νq

q∑
i=0

∣∣∣∣∣
∫ (n−1)/n

0
gi(x)dx − 1

n

n−1∑
k=1

gi

(
k

n

)∣∣∣∣∣φ
(

1

n

)νi

≤ lim sup
n→+∞

1

φ(1/n)νq

q−1∑
i=0

∣∣∣∣∣
∫ (n−1)/n

0
gi(x)dx − 1

n

n−1∑
k=1

gi

(
k

n

)∣∣∣∣∣φ
(

1

n

)νi

+ lim sup
n→+∞

∣∣∣∣∣
∫ (n−1)/n

0
gq(x)dx − 1

n

n−1∑
k=1

gq

(
k

n

)∣∣∣∣∣
≤ K

q−1∑
i=0

lim sup
n→+∞

1

nφ(1/n)νq
φ

(
1

n

)νi

+ lim sup
n→+∞

∣∣∣∣∣
∫ (n−1)/n

0
gq(x)dx − 1

n

n−1∑
k=1

gq

(
k

n

)∣∣∣∣∣,
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where the first term of the right-hand side is equal to 0 because of (7) and the assumption 2(c)(i)
in Theorem 1, and the second term is equal to 0 according to classical results on Riemann sums.
Therefore, L

(1)
2 = 0. This proves the asymptotic expansion (10).

Next we prove that almost surely

n1−γ

L(1/n)

(
Vn(X) − EVn(X)

) n→+∞= o

(
φ

(
1

n

)νq
)

. (14)

Application of Cochran’s theorem to the Gaussian vector yields√
n1−γ

φ(1/n)νq L(1/n)
�Xk,

So there are n − 1 nonnegative real numbers (µ1,n, . . . ,µn−1,n) and one (n − 1)-dimensional
Gaussian vector Yn, such that its components are independent Gaussian variables N (0,1) and

n1−γ

L(1/n)
Vn(X) =

n−1∑
j=1

µj,n

(
Y

(j)
n

)2
. (15)

As in Bégyn [5], Hanson and Wright’s inequality (see Hanson and Wright [12]) yields that, for
all 0 < ε < 1,

P

(
n1−γ

L(1/n)φ(1/n)νq
|Vn(X) − EVn(X)| ≥ ε

)
≤ 2 exp

(
−Kε2nφ

(
1

n

)νq
)

. (16)

So if we set

ε2
n = 2 logn

Kn
φ

(
1

n

)−νq

,

it follows from (7) that

lim
n→+∞ εn = 0 and

+∞∑
n=0

P

(
n1−γ

L(1/n)φ(1/n)νq
|Vn(X) − EVn(X)| ≥ εn

)
< +∞,

and the Borel–Cantelli lemma yields (14).
Now let us examine the case of non-centered X. Set M = {Mt ; t ∈ [0,1]}. From assumption 1,

n1−γ

L(1/n)
Vn(M)

n→+∞= O
(

1

nγ L(1/n)

)
,

and by adding (8) we obtain

lim
n→+∞

n1−γ

L(1/n)
Vn(M) = 0.
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So, if we apply the theorem to the centered process X̃t = Xt − E(Xt ), using the arguments of
Baxter [3], we obtain the result for X. �

In the sequel, we apply these results to the identification of some fractional models. We will
obtain strongly consistent estimators that will be more interesting in practice if they are asymp-
totically normal. Therefore, we establish a central limit theorem for Vn(X).

2.2. Central limit theorem

The integral

ργ (j, k) =
∫ j+1

j

du

∫ u

u−1
dv

∫ k+1

k

dx

∫ x

x−1

1

(v − y)2+γ
dy (17)

with j − k ≥ 2 is absolutely convergent when γ < 2. Because it depends only on the difference
j − k, we denote it ργ (j − k).

By considering l = j − k ≥ 2 and 0 < γ < 2, we obtain the following equalities: If γ 
= 1,

ργ (l) = (|l − 2|2−γ − 4|l − 1|2−γ + 6|l|2−γ − 4|l + 1|2−γ + |l + 2|2−γ )

(γ − 2)(γ − 1)γ (γ + 1)
; (18)

if γ = 1,

ρ1(l) = 1
2

(|l − 2| log |l − 2| − 4|l − 1| log |l − 1| + 6|l| log |l|
− 4|l + 1| log |l + 1| + |l + 2| log |l + 2|). (19)

Moreover, we notice that (17) yields the existence of a constant K > 0 such that, for all l ≥ 2,
we have |ργ (l)| ≤ Kl−2−γ . For γ ∈]0,2[, set

‖ργ ‖2 =
+∞∑
l=2

ργ (l)2. (20)

We may now prove a central limit theorem with additional assumptions. The preceding formulas
will be useful to compute the asymptotic behavior of djk .

Theorem 2. Assume that X is centered and satisfies the following statements:

1. R is continuous in [0,1]2.
2. Let T = {0 ≤ t ≤ s ≤ 1}. We assume that the derivative ∂4R

∂s2 ∂t2 exists in ]0,1]2 \ {s = t},
and that there exist a continuous function C :T → R, a real γ ∈]0,2[ and a positive slowly
varying function L : ]0,1] → R such that

∀(s, t) ∈ ◦
T

(s − t)2+γ

L(s − t)

∂4R

∂s2 ∂t2
(s, t) = C(s, t), (21)

where
◦
T denotes the interior of T (i.e.,

◦
T = {0 < t < s < 1}).
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3. We assume that there exist q + 1 functions (q ∈ N) g0, g1, . . . , gq from ]0,1[ to R, q real
numbers 0 < ν1 < · · · < νq and a function φ : ]0,1[→]0,+∞[ such that:
(a) if q ≥ 1, then ∀0 ≤ i ≤ q − 1, gi is Lipschitz on ]0,1[;
(b) gq is (1/2 + αq)-Hölderian on ]0,1[ with 0 < αq ≤ 1/2;
(c) there exists t ∈]0,1[ such that g0(t) 
= 0;
(d) we have

lim
h→0+

1√
h

(
sup

h≤t≤1−h

∣∣∣∣∣ (δh
1 ◦ δh

2 R)(t, t)

h2−γ L(h)
− g0(t) −

q∑
i=1

gi(t)φ(h)νi

∣∣∣∣∣
)

= 0, (22)

where if q = 0, then
∑q

i=1 gi(t)φ(h)νi = 0, and where if q 
= 0, then limh→0+ φ(h) = 0;
(e) there exists a bounded function g̃ : ]0,1[→ R such that

lim
h→0+ sup

h≤t≤1−2h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t + h, t)

h2−γ L(h)
− g̃(t)

∣∣∣∣ = 0. (23)

Then we have

√
n

(
n1−γ

L(1/n)
Vn(X) −

∫ 1

0
g0(x)dx −

q∑
i=1

∫ 1

0
gi(x)dx · φ

(
1

n

)νi

)
(L)−→ N (0, σ 2), (24)

where

σ 2 = 2
∫ 1

0
g0(x)2 dx + 4

∫ 1

0
g̃(x)2 dx + 4‖ργ ‖2

∫ 1

0
C(x, x)2 dx. (25)

Remark. (i) In Theorem 1, there was no minimum value for the integer q , but this is not the
case in the assumption (22): we must choose q large enough such that the bias is negligible with
respect to the stochastic error.

(ii) Assumption (22) yields that the functions gi , 0 ≤ i ≤ q , are continuous on ]0,1[.

Proof of Theorem 2. In all the proof, K denotes a positive constant whose value does not matter.
To simplify notation, choose the convention ν0 = 0 and ∀h ∈]0,1[, φ(h)ν0 = 1. Set

bn =
q∑

i=0

∫ 1

0
gi(x)dx φ

(
1

n

)νi

, Tn = √
n

n1−γ

L(1/n)
Vn(X), T̃n = Tn − E(Tn). (26)

We split the proof into three steps: in the first and second steps, we prove the convergence when
n → +∞ of T̃n toward a centered Gaussian law with variance σ 2; in the third step, we prove the
conclusion of Theorem 2.

Step 1. We note that Vn(X) is the square of the Euclidean norm of a (n − 1)-dimensional
Gaussian vector whose components are√

n1−γ

L(1/n)
�Xk, 1 ≤ k ≤ n − 1.
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Hence, by the classical Cochran theorem, we can find an = n − 1 positive real numbers
(λ1,n, . . . , λan,n) and one an-dimensional Gaussian vector Yn, such that its components are inde-
pendent Gaussian variables N (0,1) and

Vn(X) =
an∑

j=1

λj,n

(
Y

(j)
n

)2
, (27)

with the convention that the empty sum is equal to zero.
We set

Sn(X) = Vn(X) − EVn(X).

We want to apply the Lindeberg central limit theorem to Sn(X). We must verify that

λ∗
n = max

1≤j≤an

λj,n = o
(√

VarSn(X)
)
. (28)

We have

λ∗
n ≤ K

n1−γ

L(1/n)
max

1≤k≤n−1

n−1∑
j=1

|djk|.

With the same methods as in Bégyn [5], we can check that

λ∗
n

n→+∞= O
(

1

n

)
.

We have

E[Vn(X)2] =
n−1∑

j,k=1

E[(�Xj )
2(�Xk)

2].

Because the vector (�Xk)1≤k≤N−1 is Gaussian, Isserlis formulas yield (see Isserlis [14])

E[(�Xk)
4] = 3

(
E[(�Xk)

2])2

and, if j 
= k,

E[(�Xj )
2(�Xk)

2] = E[(�Xj )
2]E[(�Xk)

2] + 2(E[�Xj�Xk])2.

Therefore,

VarVn(X) = 2
n−1∑
k=1

d2
kk + 4

∑
1≤k<j≤n−1

d2
jk (29)
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and, consequently,

VarSn(X) ≥ 2
n−1∑
k=1

d2
kk.

Moreover, the assumption (22) yields

lim
n→+∞ sup

1≤k≤n−1

∣∣∣∣ (δ1/n

1 ◦ δ
1/n

2 R)(k/n, k/n)

nγ−2L(1/n)
− g0

(
k

n

)∣∣∣∣ = 0

and, because g0 is bounded on ]0,1[,

lim
n→+∞ sup

1≤k≤n−1

∣∣∣∣( (δ
1/n

1 ◦ δ
1/n

2 R)(k/n, k/n)

nγ−2L(1/n)

)2

− g0

(
k

n

)2∣∣∣∣ = 0.

With the same ideas as in the proof of (10), we can show that the previous limit yields

lim
n→+∞

n3−2γ

L(1/n)2

n−1∑
k=1

d2
kk =

∫ 1

0
g2

0(x)dx.

Therefore,

lim inf
n→+∞

n3−2γ

L(1/n)2
VarSn(X) ≥ 2

∫ 1

0
g2

0(x)dx > 0.

Thus there exists K > 0 such that

0 ≤ λ∗
n√

VarSn(X)
≤ K√

n
,

which yields (28).
Consequently, the Lindeberg central limit theorem yields that when n → +∞,

Sn(X)√
VarSn(X)

(L)−→ N (0,1).

Equivalently, we have shown that when n → +∞,

T̃n√
Var T̃n

(L)−→ N (0,1). (30)

Step 2. Let us prove that

lim
n→+∞ Var T̃n = σ, (31)

where σ 2 was defined in (25).
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We have seen (29):

VarSn(X) = 2
n−1∑
k=1

d2
kk + 4

∑
1≤k<j≤n−1

d2
jk.

Step 2.1. Let us prove that

lim
n→+∞

n3−2γ

L(1/n)2

∑
1≤k<j≤n−1

j−k≥3

d2
jk =

∫ 1

0
C(x, x)2 dx

+∞∑
l=3

ργ (l)2. (32)

If j 
= 1, k 
= 1 and j − k ≥ 3, then

djk = (δ
1/n

1 ◦ δ
1/n

2 )R

(
j

n
,
k

n

)
=

∫ (j+1)/n

j/n

du

∫ u

u−(1/n)

dv

∫ (k+1)/n

k/n

dx

∫ x

x−(1/n)

∂4R

∂s2 ∂t2
(v, y)dy

=
∫ (j+1)/n

j/n

du

∫ u

u−(1/n)

dv

∫ (k+1)/n

k/n

dx

∫ x

x−(1/n)

C(v, y)

(v − y)2+γ
L(v − y)dy.

We set

εn = sup

{∣∣∣∣C(v, y) − C

(
j

n
,
k

n

)∣∣∣∣;3 ≤ j − k ≤ n − 2,
j − 1

n
≤ v ≤ j + 1

n
,
k − 1

n
≤ y ≤ k + 1

n

}
.

Because C is uniformly continuous on the compact set T ,

lim
n→+∞ εn = 0.

Moreover, we set

rn(j, k) =
∫ (j+1)/n

j/n

du

∫ u

u−(1/n)

dv

∫ (k+1)/n

k/n

dx

∫ x

x−(1/n)

L(v − y)

(v − y)2+γ
dy

= nγ−2
∫ j+1

j

du

∫ u

u−1
dv

∫ k+1

k

dx

∫ x

x−1

L((v − y)/n)

(v − y)2+γ
dy,

and because it depends only on j − k, we denote it rn(j − k).
We have∣∣∣∣djk − C

(
j

n
,
k

n

)
rn(j − k)

∣∣∣∣
=

∣∣∣∣∫ (j+1)/n

j/n

du

∫ u

u−(1/n)

dv

∫ (k+1)/n

k/n

dx

∫ x

x−(1/n)

C(v, y) − C(j/n, k/n)

(v − y)2+γ
L(v − y)dy

∣∣∣∣
≤ εnrn(j − k).
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So we must find an upper bound for rn(j −k). Let us note that the function ψ(h) = h−γ /2L(h) is
regularly varying of index −γ /2 < 0. Therefore, the Karamata theorem of uniform convergence
(see Bingham et al. [7], Theorem 1.5.2) yields

lim
h→0+

ψ(zh)

ψ(h)
= 1

zγ/2

uniformly in z ∈ [3,+∞[.
As a consequence, there exists K > 0 (which depends only on L and γ ) such that for n large

enough,

∀z ≥ 3, ψ

(
z

n

)
≤ Kψ

(
1

n

)
. (33)

However, we have

rn(j − k) = n(γ/2)−2
∫ j+1

j

du

∫ u

u−1
dv

∫ k+1

k

dx

∫ x

x−1

ψ((v − y)/n)

(v − y)2+(γ /2)
dy.

Therefore, (17) yields

rn(j − k) ≤ Knγ−2L

(
1

n

)
ργ/2(j − k) ≤ K

nγ−2L(1/n)

(j − k − 2)2+(γ /2)
.

Consequently, we have∣∣∣∣djk − C

(
j

n
,
k

n

)
rn(j − k)

∣∣∣∣ ≤ Kεn

nγ−2L(1/n)

(j − k − 2)2+(γ /2)
,

and because C is bounded,∣∣∣∣d2
jk − C

(
j

n
,
k

n

)2

rn(j − k)2
∣∣∣∣ ≤ Kεn

n2γ−4L(1/n)2

(j − k − 2)4+γ
.

Using the same perturbation argument as in Bégyn ([5], pages 10–11), we can check that it is
still true whenever j = 1 or k = 1. Consequently,

n3−2γ

L(1/n)2

∣∣∣∣∣
n−2∑
l=3

n−1−l∑
k=1

d2
l+k,k −

n−2∑
l=3

rn(l)
2

n−1−l∑
k=1

C

(
k + l

n
,
k

n

)2
∣∣∣∣∣

≤ Kεn

1

n

n−2∑
l=3

n−1−l∑
k=1

1

(l − 2)4+γ
≤ Kεn

+∞∑
l=3

1

(l − 2)4+γ

and the right-hand side is convergent because 4 + γ > 1. This yields

lim
n→+∞

n3−2γ

L(1/n)2

(
n−2∑
l=3

n−1−l∑
k=1

d2
l+k,k −

n−2∑
l=3

rn(l)
2

n−1−l∑
k=1

C

(
k + l

n
,
k

n

)2
)

= 0. (34)
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Moreover,

lim
n→+∞

1

n

n−1−l∑
k=1

C

(
k + l

n
,
k

n

)2

= lim
n→+∞

1

n

n−1−l∑
k=1

C

(
k

n
,
k

n

)2

=
∫ 1

0
C(x, x)2 dx,

thanks to the uniform continuity of C.
In addition, because L is slowly varying, the theorem of dominated convergence yields (using

inequality (33))

lim
n→+∞

rn(l)

nγ−2L(1/n)
= ργ (l).

Hence for all l ≥ 3,

lim
n→+∞

rn(l)
2

n2γ−4L(1/n)2

1

n

n−1−l∑
k=1

C

(
k + l

n
,
k

n

)2

= ργ (l)2
∫ 1

0
C(x, x)2 dx,

and (using (33)) we can check that ∀l ≥ 3,

rn(l)
2

n2γ−4L(1/n)2

1

n

n−1−l∑
k=1

C

(
k + l

n
,
k

n

)2

≤ Kργ/2(l)
2 ≤ K

(l − 2)4+γ
.

Consequently, the theorem of dominated convergence for series yields

lim
n→+∞

n3−2γ

L(1/n)2

n−2∑
l=3

rn(l)
2

n−1−l∑
k=1

C

(
k + l

n
,
k

n

)2

=
∫ 1

0
C(x, x)2 dx

+∞∑
l=3

ργ (l)2.

With (34), we obtain

lim
n→+∞

n3−2γ

L(1/n)2

∑
1≤k<j≤n−1

j−k≥3

d2
jk = lim

n→+∞
n3−2γ

L(1/n)2

n−2∑
l=3

n−1−l∑
k=1

d2
l+k,k

=
∫ 1

0
C(x, x)2 dx

+∞∑
l=3

ργ (l)2.

Step 2.2. Let us prove that

lim
n→+∞

n3−2γ

L(1/n)2

∑
1≤k<j≤n−1

j−k=2

d2
jk = ργ (2)2

∫ 1

0
C(x, x)2 dx. (35)

With the perturbation argument of Bégyn [5], we can check that∣∣∣∣dk+2,k − C

(
k + 2

n
,
k

n

)
rn(2)

∣∣∣∣ ≤ Kεnn
γ−2L

(
1

n

)
ργ/2(2)
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and, consequently,∣∣∣∣d2
k+2,k − C

(
k + 2

n
,
k

n

)2

rn(2)2
∣∣∣∣ ≤ Kεnn

2γ−4L

(
1

n

)2

ργ/2(2)2.

Therefore, using the same arguments as in Step 2.1, we have

lim
n→+∞

n3−2γ

L(1/n)2

∑
1≤k<j≤n−1

j−k=2

d2
jk = lim

n→+∞
n3−2γ

L(1/n)2

n−3∑
k=1

d2
k+2,k

= lim
n→+∞

rn(2)2

n2γ−4L(1/n)

1

n

n−3∑
k=1

C

(
k + 2

n
,
k

n

)2

= ργ (2)2
∫ 1

0
C(x, x)2 dx.

Step 2.3. Let us prove that

lim
n→+∞

n3−2γ

L(1/n)2

∑
1≤k<j≤n−1

j−k=1

d2
jk =

∫ 1

0
g̃(x)2 dx. (36)

This is a consequence of the assumption (23).
Step 2.4. Let us prove that

lim
n→+∞

n3−2γ

L(1/n)2

n−1∑
k=1

d2
kk =

∫ t

s

g0(x)2 dx. (37)

This is a consequence of

lim
h→0+ sup

h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t, t)

L(h)h2−γ
− g0(t)

∣∣∣∣ = 0,

which comes from the assumption (22).
The preceding four steps imply (31). Let us remark that (30) and (31) yield that

T̃n
(L)−→ N (0, σ ). (38)

Step 3. To prove Theorem 2, we use the decomposition

Tn − √
nbn = T̃n + ETn − √

nbn. (39)

Let us prove that

lim
n→+∞|ETn − √

nbn| = 0. (40)
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We have

E(Tn) − √
nbn = √

n

(
n1−γ

L(1/n)

n−1∑
k=1

dkk −
q∑

i=0

∫ t

0
gi(x)dx φ

(
1

n

)νi

)
.

On the one hand,

√
n

∣∣∣∣∣ n1−γ

L(1/n)

n−1∑
k=1

dkk − 1

n

q∑
i=0

φ

(
1

n

)νi n−1∑
k=1

gi

(
k

n

)∣∣∣∣∣
≤ √

n sup
k=1,...,n−1

∣∣∣∣∣ dkk

nγ−2L(1/n)
−

q∑
i=0

gi

(
k

n

)
φ

(
1

n

)νi

∣∣∣∣∣.
Therefore, the assumption (22) yields

lim
n→+∞

√
n

∣∣∣∣∣ n1−γ

L(1/n)

n−1∑
k=1

dkk − 1

n

q∑
i=0

φ

(
1

n

)νi n−1∑
k=1

gi

(
k

n

)∣∣∣∣∣ = 0. (41)

Moreover, if we choose 0 ≤ i ≤ q − 1, we have

√
n

∣∣∣∣∣1

n
φ

(
1

n

)νi n−1∑
k=1

gi

(
k

n

)
− φ

(
1

n

)νi
∫ 1

0
gi(x)dx

∣∣∣∣∣ ≤ Kφ

(
1

n

)νi 1√
n
,

due to the fact that gi is bounded and Lipschitz on ]0,1[ (see the Proof of Theorem 1).
Furthermore,

√
n

∣∣∣∣∣1

n
φ

(
1

n

)νq n−1∑
k=1

gq

(
k

n

)
− φ

(
1

n

)νq
∫ 1

0
gq(x)dx

∣∣∣∣∣ ≤ Kφ

(
1

n

)νq
(

1

n

)νq

,

knowing that gq is bounded and 1/2 + αq -Hölderian on ]0,1[. Consequently,

lim
n→+∞

√
n

∣∣∣∣∣1

n

q∑
i=0

(
φ

(
1

n

)νi n−1∑
k=1

gi

(
k

n

)
−

∫ 1

0
gi(x)dx φ

(
1

n

)νi

)∣∣∣∣∣ = 0. (42)

To finish the proof, just note that (40) is a consequence of (41) and (42).
Next, by combining the Prokhorov theorem, all the preceding steps and the Slutzky lemma

with (39) and (40), we get (24). �

In the sequel, we consider estimators of some functions of the parameters γ , which are con-
structed with both second-order quadratic variations Vn(X) and V2n(X). So the preceding theo-
rem is not sufficient to prove the asymptotic normality of the estimators.
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2.3. Bivariate central limit theorem

The next theorem will be useful to prove the asymptotic normality of our estimators. We de-
fine the following constants, which appear in the asymptotic covariance of the two quadratic
variations:

σ 2
1,cov = 2

∫ 1

0
g̃(t)2 dt + 4ργ (2)

∫ 1

0
g0(t)C(t, t)dt + 4ργ (3)

∫ 1

0
g̃(t)C(t, t)dt

+ 4
∫ 1

0
C(t, t)2 dt

+∞∑
l=4

ργ (l)ργ (l − 2),

σ 2
2,cov = 4

∫ 1

0
g0(t)g̃(t)dt + 4ργ (2)

∫ 1

0
g̃(t)C(t, t)dt

+ 4
∫ 1

0
C(t, t)2 dt

+∞∑
l=3

ργ (l)ργ (l − 1)

and

σ 2∗ = 3σ 2 + σ 2
1,cov + 4σ 2

2,cov. (43)

Theorem 3. We use the same assumptions as in Theorem 2. Then we have

√
n

 n1−γ

L( 1
n
)
Vn(X) − ∫ 1

0 g0(x)dx − ∑q

i=1

∫ 1
0 gi(x)dx · φ( 1

n
)νi

(2n)1−γ

L( 1
2n

)
V2n(X) − ∫ 1

0 g0(x)dx − ∑q

i=1

∫ 1
0 gi(x)dx · φ( 1

2n
)νi

 (L)−→N (0,�), (44)

where the 2 × 2 matrix � is defined by

� =
[

σ 2 2γ−2σ 2∗
2γ−2σ 2∗ σ 2/2

]
. (45)

Proof. We set for λ,µ ∈ R,

Sn(λ,µ) = λ
n1−γ

L(1/n)
Vn(X) + µ

(2n)1−γ

L(1/(2n))
V2n(X).

We begin by showing that when λ,µ ≥ 0,

√
n

(
Sn(λ,µ) − λ

q∑
i=0

∫ 1

0
gi(x)dx φ

(
1

n

)νi

− µ

q∑
i=0

∫ 1

0
gi(x)dx · φ

(
1

2n

)νi

)

(L)−→ N
(

0, λ2σ 2 + µ2 σ 2

2
+ 2γ−1λµσ 2∗

)
. (46)
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First we must prove that

lim
n→+∞nVarSn(λ,µ) = λ2σ 2 + µ2 σ 2

2
+ 2γ−1λµσ 2∗ . (47)

We have

VarSn(λ,µ) = λ2 n2−2γ

L(1/n)2
VarVn(X) + µ2 (2n)2−2γ

L(1/(2n))2
VarV2n(X)

+ 2λµ
21−γ n2−2γ

L(1/n)L(1/(2n))
Cov

(
Vn(X),V2n(X)

)
.

In the Proof of Theorem 2 we showed (31):

lim
n→+∞

n3−2γ

L(1/n)2
VarVn(X) = σ 2 and lim

n→+∞
(2n)3−2γ

L(1/(2n))2
VarV2n(X) = σ 2. (48)

We must compute the term Cov(Vn(X),V2n(X)). We have

�X
(n)
k = �X

(2n)
2k+1 + �X

(2n)
2k−1 + 2�X

(2n)
2k .

Therefore,

Vn(X) =
n−1∑
k=1

[(
�X

(2n)
2k+1

)2 + (
�X

(2n)
2k−1

)2 + 4
(
�X

(2n)
2k

)2

+ 2�X
(2n)
2k+1�X

(2n)
2k−1 + 4�X

(2n)
2k+1�X

(2n)
2k + 4�X

(2n)
2k−1�X

(2n)
2k

]
.

Moreover,

V2n(X) =
2n−1∑
j=1

(
�X

(2n)
j

)2
.

To simplify, we will set the notation �Xl for �X
(2n)
l and dlp for d

(2n)
lp . To compute E[Vn(X) ×

V2n(X)], we use the Isserlis formulas (see Isserlis [14]), which yield

Cov[(�Xl)
2, (�Xj )

2] = 2(E[�Xl�Xj ])2 = 2d2
lj

and

Cov[�Xl�Xp, (�Xj )
2] = 2E[�Xl�Xj ]E[�Xp�Xj ] = 2dlj dpj .

So we can check that

Cov
(
Vn(X),V2n(X)

) =
6∑

i=1

Si,
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with

S1 = 2
n−1∑
k=1

2n−1∑
j=1

d2
2k+1,j , S2 = 2

n−1∑
k=1

2n−1∑
j=1

d2
2k−1,j ,

S3 = 8
n−1∑
k=1

2n−1∑
j=1

d2
2k,j , S4 = 4

n−1∑
k=1

2n−1∑
j=1

d2k−1,j d2k+1,j ,

S5 = 8
n−1∑
k=1

2n−1∑
j=1

d2k+1,j d2k,j , S6 = 8
n−1∑
k=1

2n−1∑
j=1

d2k−1,j d2k,j .

However, using the same techniques as in the Proof of Theorem 2, we obtain the formulas

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
S1 = 2γ−3σ 2,

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
S4 = 2γ−2σ 2

1,cov,

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
S5 = 2γ−1σ 2

2,cov

and, likewise,

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
S2 = 2γ−3σ 2,

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
S3 = 2γ−1σ 2,

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
S6 = 2γ−1σ 2

2,cov.

Hence,

lim
n→+∞

21−γ n3−2γ

L(1/n)L(1/(2n))
Cov

(
Vn(X),V2n(X)

) = 2γ−2σ 2∗ . (49)

Therefore, (47) is a consequence of (48) and (49).
Now we apply the Lindeberg central limit theorem to Sn(λ,µ) in the same manner as in

Theorem 2. We set

S̃n(λ,µ) = Sn(λ,µ) − ESn(λ,µ).
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Because λ ≥ 0 and µ ≥ 0, we can consider Sn(λ,µ) as the Euclidean norm of the Gaussian
vector (Gi;1 ≤ i ≤ 3n − 2):

Gi =
√

λ
n1−γ

L(1/n)
�X

(n)
i , 1 ≤ i ≤ n − 1,

Gi =
√

µ
(2n)1−γ

L(1/(2n))
�X

(2n)
i+1−n, n ≤ i ≤ 3n − 2.

Therefore, Cochran’s theorem yields

Sn(λ,µ) =
an∑

j=1

τj,n

(
Y

(j)
n

)2
,

with an, τj,n, τ ∗
n and Y

(j)
n as in the Proof of Theorem 2. This yields

S̃n(λ,µ) =
an∑

j=1

τj,n

[(
Y

(j)
n

)2 − 1
]
.

Also, we notice that

τ ∗
n ≤ max

1≤j≤3n−2

3n−2∑
i=1

|E(ZiZj )|.

Moreover, if 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ 2n − 1,

E
(
�X

(n)
i �X

(2n)
j

) = E
[(

�X
(2n)
2i+1 + �X

(2n)
2i−1 + 2�X

(2n)
2i

)
�X

(2n)
j

]
= d

(2n)
2i+1,j + d

(2n)
2i−1,j + 2d

(2n)
2i,j ,

so

τ ∗
n ≤ K

n1−γ

L(1/n)

(
λ max

1≤j≤n−1

n−1∑
i=1

∣∣d(n)
ij

∣∣ + µ max
1≤j≤2n−1

2n−1∑
i=1

∣∣d(2n)
ij

∣∣
+ √

λµ max
1≤j≤n−1

2n−1∑
i=1

(∣∣d(2n)
i,2j+1

∣∣ + ∣∣d(2n)
i,2j−1

∣∣ + 2
∣∣d(2n)

i,2j

∣∣)

+ √
λµ max

1≤j≤2n−1

n−1∑
i=1

(∣∣d(2n)
2i+1,j

∣∣ + ∣∣d(2n)
2i−1,j

∣∣ + 2
∣∣d(2n)

2i,j

∣∣))

≤ K
n1−γ

L(1/n)

(
max

1≤j≤n−1

n−1∑
i=1

∣∣d(n)
ij

∣∣ + max
1≤j≤2n−1

2n−1∑
i=1

∣∣d(2n)
ij

∣∣).
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Therefore, with the arguments of Bégyn [5], we can checked that

τ ∗
n ≤ Knγ−2L

(
1

n

)
.

Thus

0 ≤ τ ∗
n√

VarSn(λ,µ)
≤ K√

n
.

Using the Lindeberg central limit theorem, we obtain

Sn(λ,µ) − ESn(λ,µ)√
VarSn(λ,µ)

(L)−→N (0,1).

Hence, as in the Proof of Theorem 2, we establish the convergence announced in (46). With a
generalization of the Cramér–Wold arguments, based on the properties of the Laplace transform
that can be found in Istas and Lang ([15], page 431), we ascertain that the Laplace transform of
the vector

√
n

 n1−γ

L( 1
n
)
Vn(X) − ∫ 1

0 g0(t)dt − ∑q

i=1

∫ 1
0 gi(t)dt · φ( 1

n
)νi

(2n)1−γ

L( 1
2n

)
V2n(X) − ∫ 1

0 g0(t)dt − ∑q

i=1

∫ 1
0 gi(t)dt · φ( 1

2n
)νi


tends on R

2 to the Laplace transform of a Gaussian centered law with covariance matrix �. This
proves the result. �

As we stated in the Introduction, we want to apply these results to estimate the parameters
of some fractional processes. To explain how to use these results, we apply them to the FBM,
even though the consequences are not new in this case. We refer to Sections 3 and 4 for original
consequences.

2.4. Application to fractional Brownian motion

We study the example of the FBM BH . We can check that the theorems of Section 2 can be
applied with γ = 2 − 2H , L(h) = 1, q = 0, g0(t) = 4 − 22H and φ(h) = h.

By applying Theorem 1, it follows that almost surely (see Cohen et al. [10])

lim
n→+∞n2H−1Vn(B

H ) = 4 − 22H . (50)

Next, if we apply Theorem 2, then we obtain (see Coeurjolly [9])

√
n
(
n2H−1Vn(B

H ) − (4 − 22H )
) (L)−→ N (0, σ 2

FBM,H ) (51)

with

σ 2
FBM,H = 2(4 − 22H )2 + (22H+2 − 7 − 32H )2

+ (2H)2(2H − 1)2(2H − 2)2(2H − 3)2‖ρ2−2H ‖2, (52)
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because, when computed, C(s, t) = −H(2H − 1)(2H − 2)(2H − 3) and g̃(t) = (22H+2 − 7 −
32H )/2.

Because of Theorem 3, we get

√
n

(
n2H−1Vn(B

H ) − (4 − 22H )

(2n)2H−1V2n(X) − (4 − 22H )

)
(L)−→N (0,�FBM,H ) (53)

with

�FBM,H =
(

σ 2
FBM,H 2−2H σ 2∗,FBM,H

2−2H σ 2∗,FBM,H 2−1σ 2
FBM,H

)
(54)

and

σ 2
1,cov,FBM,H = (2H)2(2H − 1)2(2H − 2)2(2H − 3)2

+∞∑
l=2

ρ2−2H (l)ρ2−2H (l − 2)

+ 1
2 (22H+2 − 7 − 32H )2, (55)

σ 2
2,cov,FBM,H = (2H)2(2H − 1)2(2H − 2)2(2H − 3)2

+∞∑
l=2

ρ2−2H (l)ρ2−2H (l − 1)

+ 2(4 − 22H )(22H+2 − 7 − 32H ), (56)

σ 2∗,FBM,H = 3σ 2
FBM,H + σ 2

1,cov,FBM,H + 4σ 2
2,cov,FBM,H . (57)

The δ method yields that the statistic

Ĥn = 1

2
− log

V2n(B
H )

Vn(BH )
(2 log 2)−1

is a strongly consistent estimator of H and that (see Coeurjolly [9])

√
n(Ĥn − H)

(L)−→N
(

0,
3σ 2

FBM,H − 22−2H σ 2∗,FBM,H

4(4 − 22H ) log 2

)
.

3. Two-parameter fractional Brownian motion

Two-parameter fractional Brownian motion was introduced by Houdré and Villa [13] as an ex-
ample of a quasi-helix. Two-parameter fractional Brownian motion BH,K = {BH,K

t ; t ∈ R} is
defined, for H ∈]0,1[ and K ∈]0,1], as the unique continuous centered Gaussian process with
covariance function

∀s, t ∈ R RH,K(s, t) = Cov(BH,K
s ,B

H,K
t ) = 1

2K

(
(s2H + t2H )K − |s − t |2HK

)
.
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The process BH,K is HK-self-similar, it has a critical Hölder exponent equal to HK in the
sense of Adler [1], it is, for K = 1, the standard fractional Brownian motion and it has stationary
increments if and only if K = 1.

We refer to Houdré and Villa [13] for the proofs. In their paper, they introduced the
process BH,K under the name bifractional Brownian motion. We suggest here to call it two-
parameter fractional Brownian motion, because it is a monofractal process (the pointwise Hölder
exponent of its trajectories is a.s. constant) and the term ‘bifractional’ may imply that it is a mul-
tifractal process with two values for its pointwise Hölder exponent.

Theorems 1 and 2 yield estimators of H and K , the relevant quantities in the study of BH,K . To
determine the estimators, that we assume that we dispose of the observation of one path of BH,K

on the interval [T1, T2], where T1, T2 ∈ R, T1 < T2. This process is considered to be indexed by
[0,1]. Therefore, we introduce the process Y defined by

∀t ∈ [0,1] Yt = BH,K(τ(t)) with τ(t) = (T2 − T1)t + T1.

We obtain a new process Y , which is centered, Gaussian and has covariance function
rH,K(s, t) = Cov(Ys, Yt ) = RH,K(τ(s), τ (t)), and we dispose of the observation of one path of Y

on [0,1]. The results of Section 2 can be applied to Y under the condition [T1, T2] ⊂ ]0,+∞[.

3.1. The results

First we study the almost sure convergence of the second-order quadratic variations.

Proposition 4. We have when n → +∞,

n2HK−1Vn(Y )
a.s.−→ 4 − 22HK

2K−1
(T2 − T1)

2HK. (58)

Next we study the weak convergence.

Proposition 5. We have, when n → +∞,

√
n

(
n2HK−1Vn(Y ) − 4 − 22HK

2K−1
(T2 − T1)

2HK

)
(L)−→N

(
0,

(T2 − T1)
4HK

22(K−1)
σ 2

FBM,HK

)
, (59)

where σ 2
FBM,HK was defined in (52).

As in the case of the FBM, we can deduce an estimator of HK .

Proposition 6. The statistic

ĤKn = 1

2
− log

V2n(Y )

Vn(Y )
(2 log 2)−1 (60)
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is a strongly consistent estimator of HK and when n → +∞,

√
n(ĤKn − HK)

(L)−→N
(

0,
3σ 2

FBM,HK − 22−2HKσ 2∗,FBM,HK

2K+1(4 − 22HK) log 2
(T2 − T1)

4HK

)
, (61)

where σ 2
FBM,HK and σ 2∗,FBM,HK were defined in (52) and (57).

The quantity HK is relevant in the study of BH,K , but it does not characterize the law of this
process. For this characterization, we need to know both parameters H and K . A refinement
of the previous results enables us to construct strongly consistent and asymptotically normal
estimators of these quantities.

Proposition 7. The statistic

K̂n = 1 − 1

log 2
log

(
n2ĤKn−1

(4 − 22ĤKn)(T2 − T1)2ĤKn

Vn(Y )

)
(62)

is a strongly consistent estimator of K and when n → +∞,

√
n(K̂n − K)

(L)−→ N
(

0,
σ 2

FBM,HK

(4 − 22HK)2 log2 2

)
, (63)

where σ 2
FBM,HK was defined in (52). Moreover the statistic

Ĥn = ĤKn

K̂n

(64)

is a strongly consistent estimator of H and when n → +∞,

√
n(Ĥn − H)

(L)−→N
(

0,
(T2 − T1)

4HK

22(K−1)
η2

)
(65)

with

η2 = H 2

K2
η1 + 1

K2
η2 − 2H

K2
η3

and

η1 = 22K−2σ 2
FBM,HK

(4 − 22HK)2 log2 2(T2 − T1)4HK
,

η2 = 2K−1
3σ 2

FBM,HK − 22−2HKσ 2∗,FBM,HK

4(4 − 22HK) log 2
,

η3 = 22K−2
2−2HKσ 2∗,FBM,HK − σ 2

FBM,HK

2(4 − 22HK)2 log2 2(T2 − T1)2HK
,
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where σ 2∗,FBM,HK was defined in (57).

3.2. Proofs of the results for two-parameter FBM

Proof of Proposition 4. We apply Theorem 1 to the process Y . We need to show only that
assumptions 2(b) and 2(c) (in Theorem 1) are satisfied (the other assumption is obvious).

For assumption 2(b), it is clear that the derivative ∂4rH,K

∂s2 ∂t2 (s, t) exists on ]0,1]2 \ {s = t}. More-

over, we can check that, ∀s, t ∈]0,1]2 \ {s = t},
∂4rH,K

∂s2 ∂t2
(s, t) = −2HK(2HK − 1)(2HK − 2)(2HK − 3)

2K
(T2 − T1)

2HK |s − t |2HK−4

+ (T2 − T1)
4ψ

(
τ(s), τ (t)

)
, (66)

where ψ(τ(s), τ (t)) is continuous on [0,1]2. Therefore, the assumption 2(b) (in Theorem 1) is
satisfied with L(h) = 1 and γ = 2 − 2HK .

For assumption 2(c) (in Theorem 1), computations yield

(δh
1 ◦ δh

2 rH,K)(t, t)

h2HK
= 4 − 22HK

2K−1
(T2 − T1)

2HK + εt (h)

h2HK
(67)

and we can check that εt (0) = ε′
t (0) = ε′′

t (0) = ε
(3)
t (0) = 0. So that Taylor formula yields

∀h ≤ t ≤ 1 − h εt (h) =
∫ h

0

(h − x)3

3! ε
(4)
t (x)dx.

Therefore, we have

sup
h≤t≤1−h

sup
0≤x≤h

∣∣ε(4)
t (x)

∣∣ h→0+= O(1),

which yields

sup
h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 rH,K)(t, t)

h2HK
− (T2 − T1)

2HK 4 − 22HK

2K−1

∣∣∣∣ h→0+= O(h4−2HK). (68)

Therefore, the assumption 2(c) (in Theorem 1) is fulfilled with

g0(t) = 4 − 22HK

2K−1
(T2 − T1)

2HK. (69)

Consequently, we can appply Theorem 1 to Y and obtain (58). �

Proof of Proposition 5. We apply Theorem 2 to the process Y . As in the Proof of Proposition 4,
we need to show only that the assumptions 2 and 3 (in Theorem 2) are satisfied.
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For assumption 2 (in Theorem 2) the previous proof showed formula (66), which yields that
for all s, t ∈]0,1]2 \ {s = t},

∂4rH,K

∂s2 ∂t2
(s, t) = −2HK(2HK − 1)(2HK − 2)(2HK − 3)

2K
(T2 − T1)

2HK |s − t |2HK−4

+ (T2 − T1)
4ψ

(
τ(s), τ (t)

)
,

where ψ(τ(s), τ (t)) is continuous on ]0,1]2. Therefore, the assumption (21) in Theorem 2 is
satisfied with L(h) = 1, γ = 2 − 2HK and

C(s, t) = −2HK(2HK − 1)(2HK − 2)(2HK − 3)

2K
(T2 − T1)

2HK

+ (T2 − T1)
4|s − t |4−2HKψ

(
τ(s), τ (t)

)
. (70)

For assumption 3 (in Theorem 2), formula (68) of the previous proof shows that the assump-

tion 3(d) (in Theorem 2) is fulfilled with q = 0, g0(t) = 8−22HK+1

2K and α0 = 1/2. Moreover, we
can check that

(δh
1 ◦ δh

2 rH,K)(t, t + h)

h2HK
= 22HK+2 − 32HK − 7

2K
(T2 − T1)

2HK + ηt (h)

h2HK
.

With the same arguments as those used for εt (h) in the previous proof, we obtain

sup
h≤t≤1−h

|ηt (h)| h→0+= O(h4).

This shows that the assumption 3(e) (in Theorem 2) is satisfied with

g̃(t) = 22HK+2 − 32HK − 7

2K
(T2 − T1)

2HK. (71)

Consequently, we can appply Theorem 2 to Y and obtain (59). �

Proof of Proposition 6. We apply the δ method with the C1 function

f (x, y) = 1

2
− log(y/x)

2 log 2

to the convergence announced in (44) to yield the result. �

Proof of Proposition 7. First we establish a refinement of Proposition 4. Because of (68), we
have, for all α ∈]0,1[,

sup
h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 rH,K)(s, t)

h2HK
− (T2 − T1)

2HK 8 − 22HK+1

2K

∣∣∣∣ h→0+= o(hα).
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Therefore, the assumption 2(c) of Theorem 1 is fulfilled with q = 1, g0(t) = (T2 − T1)
2HK ×

4−22HK

2K−1 , g1(t) = 0, φ(h) = h and ν1 = α. It yields that almost surely

n2HK−1Vn(Y )
n→+∞= (T2 − T1)

2HK 4 − 22HK

2K−1
+ o

(
1

nα

)
.

Taylor expansions yield that almost surely

ĤKn
n→+∞= HK + o

(
1

nα

)
and

n2ĤKn−1

n2HK−1
n→+∞= 1 + o

(
logn

nα

)
.

With α = 3/4, we obtain that almost surely

n2ĤKn−1

n2HK−1(4 − 22ĤKn)(T2 − T1)2ĤKn

n→+∞= 1

(4 − 22HK)(T2 − T1)2HK
+ o

(
logn

n3/4

)
. (72)

In addition, we have (44):

√
n

(
n2HK−1Vn(Y ) − 4−22HK

2K−1 (T2 − T1)
2HK

(2n)2HK−1V2n(Y ) − 4−22HK

2K−1 (T2 − T1)
2HK

)
(L)−→ N

(
0,

(T2 − T1)
4HK

22(K−1)
�FBM,HK

)
.

If we apply the δ method with the C1 function

f (x, y) =
(

x
1
2 − log(y/x)

2 log 2

)
,

then the Slutsky lemma and (72) yield that there exists a 2 × 2 real matrix A such that

√
n

(
n2ĤKn−1

(4−22ĤKn )(T2−T1)
2ĤKn

Vn(Y ) − 1
2K−1

ĤKn − HK

)
(L)−→N

(
0,

(T2 − T2)
4HK

22(K−1)
A

)
.

By again applying the δ method with the C1 function

f (x, y) =
(

1 − logx
log 2

y

)
,

we obtain

√
n

(
K̂n − K

ĤKn − HK

)
(L)−→ N

(
0,

(T2 − T2)
4HK

22(K−1)
C

)
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with

C =
(

η1 η3
η3 η2

)
.

This proves (63). A final application of the δ method with the C1 function

f (x, y) = y

x

yields (65). �

4. Anisotropic fractional Brownian motion

Let d ∈ N
∗. Let H : Rd →]0,1[ be a Borelian function that is homogeneous of degree zero,

∀ξ ∈ R
d ,∀λ ∈ R \ {0} H(λξ) = H(ξ),

that can be identified with an even function from the sphere Sd−1 into R that we denote H

as well. We assume, moreover, that H takes its values inside the interval [H,H ] ⊂ ]0,1[, with
H = ess infH and H = ess supH .

We define the anisotropic fractional Brownian motion (AFBM) with directional Hurst in-
dex H , denoted A(H), by the harmonizable representation formula

∀u ∈ R
d A(H)(u) =

∫
Rd

ei〈u,ξ〉 − 1

|ξ |H(ξ)+d/2
dW(ξ), (73)

where 〈·, ·〉 is the canonical scalar product and W is a complex random measure in the sense
of Samorodnitsky and Taqqu ([16], 325–328). It is a Gaussian field with stationary increments.
Bonami and Estrade [8] showed that A(H) has a critical Hölder exponent equal to H . More-
over, they showed that the field A(H) is locally asymtotically self-similar (l.a.s.s.) of order H at
any point of R

d (see Definition 8) if and only if Leb({H(θ) = H }) > 0, where Leb(·) denotes
indifferently the Lebesgue measure on R

d or the Lebesgue measure on Sd−1.
Let us recall the definition of the l.a.s.s. property (see Benassi, Jaffard and Roux [4]):

Definition 8. Let β > 0. A process {Xu;u ∈ R
d} is locally asymptotically self-similar (l.a.s.s.)

of order β at point u0 ∈ R
d if the finite-dimensional distributions of the process{

X(u0 + λu) − X(u0)

λβ
;u ∈ R

d

}
converge to the finite-dimensional distributions of a non-zero Gaussian process when λ → 0+.
The limit process is called the tangent process at point u0.

Our purpose is to identify the function H when we consider one realization of the field A(H).
For that we apply the theorems shown in Section 2 and restrict the field to some segment of R

d .
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Figure 1. Geometry of the problem.

To simplify the computations we assume next that d = 2. Note that in this case we can identify
H with an even π -periodic function on R. We consider one realization of A(H), which is observed
in axes denoted by Oxy. We assume too that these axes of observation are equal to the axes of
definition of A(H).

Let [A,B] be the radial segment of length L ∈]0,+∞[ such that the distance between O

and A is equal to Lε (with ε ≥ 0) and the angle between [A,B] and the axes Ox is equal to
ω ∈ [0,2π[. See Figure 1 for more details on the geometry of the problem (and note that the
angle are oriented anticlockwise).

We use the following parametrization of the point u = (u1, u2) ∈ [A,B]:
u1 = L(t + ε) cosω,

(74)
u2 = L(t + ε) sinω,

where t goes over the interval [0,1]. Next we consider the restriction of the field A(H) to the
segment [A,B] with the parametrization (74). Hence we obtain a new process Z indexed by
t ∈ [0,1]:

Zt = A(H)

(
L(t + ε) cosω

L(t + ε) sinω

)
.

It is clear that Z is a centered Gaussian process with stationary increments.
To apply the theorems of Section 2, we must compute the covariance function R of Z that is

given by the following lemma.

Lemma 9. The covariance function of the process (Zt )t∈[0,1] is given by, for all s, t ∈ [0,1],

R(s, t) = 4
∫ π

0
�(θ)

[|s + ε|2H(θ) + |t + ε|2H(θ) − |s − t |2H(θ)
]

dθ, (75)
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with

∀θ ∈ [0,2π] �(θ) = C(1,H(θ))

8C(2,H)2
L2H(θ)| cos(θ − ω)|2H(θ), (76)

where for all d ∈ N
∗ and for all H ∈]0,1[,

C(d,H) =
(

π(d+1)/2�(H + 1/2)

H�(2H) sin(Hπ)�(H + d/2)

)1/2

(77)

and � denotes the Euler gamma function.

Proof of Lemma 9. First we compute the variogram v of the field A(H). For all u ∈ R
2, we have

v(u) = 1

4
E

[(
A(H)(u)

)2] = 1

8

∫
S1

C(1,H(y))2|〈u,y〉|2H(y) dy

= 1

8C(2,H)2

∫ 2π

0
C(1,H(θ))|u1 cos(θ) + u2 sin(θ)|2H(θ) dθ.

Because the field A(H) has stationary increments and is vanishing a.s. at the origin, its covariance
function is given by

∀u,u′ ∈ R
2, Cov

(
A(H)(u),A(H)(u′)

) = 2
(
v(u) + v(u′) − v(u − u′)

)
.

If we take u,u′ in the segment [A,B] with u parametrized by s and u′ by t , we obtain

R(s, t) = Cov
(
A(H)(u),A(H)(u′)

)
= 2

∫ 2π

0
�(θ)

[|s + ε|2H(θ) + |t + ε|2H(θ) − |s − t |2H(θ)
]

dθ.

Because the functions � and H are π-periodic, we obtain (75). �

By applying theorems of Section 2 to the process Z, we are able to estimate H , the Hölder
critical exponent of A(H). We distinguish two cases.

4.1. The l.a.s.s. case

In this subsection we assume that

Leb{H(θ) = ess infH } > 0

and we use the notation

∀H ∈]0,1[ JH = 8
∫ π

0
�(θ)1{H(θ)=H } dθ. (78)
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Proposition 10. We have, when n → +∞,

n2H−1Vn(Z)
a.s.−→ (4 − 22H )JH . (79)

For the central limit theorem we must study the asymptotic of

h �→ 8
∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H<H(θ)≤H+1/4} dθ

when h → 0+. For this purpose, we need to sharpen the assumption on the function H . We get
two kinds of central limit theorem.

Case I. Assume that

Leb
({H < H(θ) ≤ H + 1/4}) = 0.

Proposition 11. We have, when n → +∞,

√
n
(
n2H−1Vn(Z) − (4 − 22H )JH

) (L)−→ N (0, J 2
H σ 2

FBM,H ). (80)

From these results, we can deduce a strongly consistent estimator of H that is asymptotically
normal.

Corollary 12. The statistic

Ĥ n = 1

2
− log

V2n(Z)

Vn(Z)
(2 log 2)−1 (81)

is a strongly consistent estimator of H and

√
n(Ĥ n − H)

(L)−→N
(

0, JH

3σ 2
FBM,H − 22−2H σ 2∗,FBM,H

4(4 − 22H ) log 2

)
, (82)

where σ 2
FBM,H and σ 2∗,FBM,H are as defined in (52) and (57).

Case II. Assume that

Leb
({H < H(θ) ≤ H + 1/4}) > 0.

Proposition 13. We have almost surely

n2H−1Vn(Z)
n→+∞= (4 − 22H )JH + φ

(
1

n

)
+ o

(
φ

(
1

n

))
(83)

with

φ(h) = 8
∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H<H(θ)≤H+1/4} dθ.
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Moreover, when n → +∞,

√
n

(
n2H−1Vn(Z) − (4 − 22H )JH − φ

(
1

n

))
(L)−→N (0, J 2

H σ 2
FBM,H ). (84)

As in Case I, we can deduce a strongly consistent estimator of H that is asymptotically normal.

Corollary 14. The statistic

Ĥ n = 1

2
− log

V2n(Z)

Vn(Z)
(2 log 2)−1, (85)

is a strongly consistent estimator of H and

√
n

(
Ĥ n − H + log

(
(4 − 22H )JH + φ(1/(2n))

(4 − 22H )JH + φ(1/n)

)
(2 log 2)−1

)
(L)−→ N

(
0, JH

3σ 2
FBM,H − 22−2H σ 2∗,FBM,H

4(4 − 22H ) log 2

)
. (86)

Remark. In general, we have

lim
n→+∞ log

(
(4 − 22H )JH + φ(1/(2n))

(4 − 22H )JH + φ(1/n)

)
(2 log 2)−1 = 0,

but the limit

lim
n→+∞

√
n log

(
(4 − 22H )JH + φ(1/(2n))

(4 − 22H )JH + φ(1/n)

)
(2 log 2)−1

does not exist in general.

Example. We assume that

H(θ) = H1]0,θ0[(θ) + H1]θ0,π[(θ)

with H < H and 0 < θ0 < π .
If H > H + 1/4, this is Case I.
If H = H + 1/4, this is Case II. We can check that φ(h) = (4 − 22H+1/2)JH+1/4h

1/2, which
implies

lim
n→+∞

√
n log

(
(4 − 22H )JH + φ(1/(2n))

(4 − 22H )JH + φ(1/n)

)
(2 log 2)−1 = (4 − 22H+1/2)JH+1/4

(4 − 22H )JH

1 − √
2

2
√

2 log 2
.

Therefore, the Slutsky lemma yields that
√

Nn(Ĥ n −H) converges in law to a Gaussian random
variable with mean equal to the opposite of the right-hand side of the previous formula.
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If H < H + 1/4, then this is also Case II and we have φ(h) = (4 − 22H )JH h2(H−H), which
implies

lim
n→+∞

√
n log

(
(4 − 22H )JH + φ(1/(2n))

(4 − 22H )JH + φ(1/n)

)
(2 log 2)−1 = +∞.

In this case, the bias term becomes infinite, so in practice it cannot be ignored.

4.2. The non-l.a.s.s. case

In this subsection we assume that

Leb
({H(θ) = ess infH }) = 0.

Next, we add the following assumptions:

1. H is of class C2 on R and there exists a unique point θ∗ ∈ [0,π[ such that H(θ∗) = H =
infH .

2. H is decreasing on ]θ∗ − π/2, θ∗[ and H is increasing on ]θ∗, θ∗ + π/2[. Moreover,
H ′′(θ∗) > 0.

3. The angle ω is such that ω 
= θ∗ + π/2 (modπ).

These assumptions are classical when the Laplace method is applied. It is well known that they
can be weakened, but we skip the technical details (see Dieudonné [11], page 125).

Proposition 15. For all t0 ∈ R
2, the finite-dimensional distributions of{

(− log ε)1/4 A(H)(t0 + εt) − A(H)(t0)

εH
; t ∈ R

2
}

(87)

converge when ε → 0+ to the finite-dimensional distributions of the process{
C(1,H)

2

(
1

H ′′(θ∗)

)1/4

BH (pθ∗(t)); t ∈ R
2
}
, (88)

where pθ∗(t) is the orthogonal projection of t on the straight line {reiθ∗ , r ∈ R} and BH is a
standard FBM of Hurst index H .

Consequently, the field A(H) is no longer l.a.s.s. and we have shown that a normalization with
a logarithm factor yields a non-trivial limit field. We will see in the sequel that we have the same
behavior for the second-order quadratic variations.

For this section we use the notation

Gθ∗ = 8�(θ∗)
√

π

H ′′(θ∗)
.
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Proposition 16. We have, when n → +∞,

n2H−1
√

lognVn(Z)
a.s.−→ (4 − 22H )Gθ∗ . (89)

Now we want to show a central limit theorem. For that we must strengthen assumptions on H

that were demonstrated in the beginning of Section 4.2:

1. H is of class C∞ and there exists a unique point θ∗ ∈ [0,π[ such that H(θ∗) = H = infH .
2. H is decreasing on ]θ∗ − π/2, θ∗[ and H is increasing on ]θ∗, θ∗ + π/2[. Moreover,

H ′′(θ∗) > 0.
3. H is analytic in the neighborhood of the point θ∗:

H(θ)
θ→θ∗= H +

+∞∑
i=2

Hi(θ − θ∗)i .

4. The angle ω is such that ω 
= θ∗ + π/2 (modπ).

The assumptions imply that the function � is also analytic in the neighborhood of the point θ∗:

�(θ)
θ→θ∗=

+∞∑
i=0

�i(θ − θ∗)i .

In this case, we use the extended Laplace method (see Wong [17]).

Proposition 17. For all q ∈ N, q ≥ 1, we have, almost surely,

n2H−1
√

lognVn(Z)
n→+∞= 16

q∑
i=0

�((i + 1)/2)σi

(logn)i/2
t + o

(
1

(logn)q/2

)
,

where the coefficients σi can be expressed in terms of Hi and �i .

Remark. We can give that explicit forms for the coefficients σi (see Wong [17]). For instance,
the first two coefficients are given by

σ0 = 4 − 22H

16
√

π
Gθ∗ , (90)

σ1 = 2

H ′′(θ∗)

(
�′(θ∗)(4 − 22H )

2
− H(3)(θ∗)�(θ∗)

3H ′′(θ∗)

)
. (91)

Proposition 18. We have, when n → +∞,

√
n logn

(
n2H−1Vn(Z) −

∫ π

0
�(θ)

(
4 − 22H(θ)

)(1

n

)2(H(θ)−H)

1{H(θ)≤H+1/4} dθ

)
(L)−→N (0,G2

θ∗σ
2
FBM,H ). (92)
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Theorem 3 and the Slutsky lemma yield that when n → +∞,

√
n logn

(
n2H−1Vn(Z) − ∫ π

0 �(θ)(4 − 22H(θ))( 1
n
)2(H(θ)−H)1{H(θ)≤H+1/4} dθ

(2n)2H−1V2n(Z) − ∫ π

0 �(θ)(4 − 22H(θ))( 1
2n

)2(H(θ)−H)1{H(θ)≤H+1/4} dθ

)
(L)−→N (0,G2

θ∗�FBM,H ). (93)

As in the previous case, we obtain an estimator of H that is strongly consistent and asymptoti-
cally normal.

Corollary 19. The statistic

Ĥ n = 1

2
− log

V2n(Z)

Vn(Z)
(2 log 2)−1 (94)

is a strongly consistent estimator of H and

√
n

(
Ĥ n − H + log

(
Gθ∗ + φ(1/(2Nn))

Gθ∗ + φ(1/Nn)

)
(2 log 2)−1

)

(L)−→ N
(

0,Gθ∗
3σ 2

FBM,H − 22−2H σ 2∗,FBM,H

4(4 − 22H ) log 2

)
(95)

with

φ(h) = 8
√− logh

∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H(θ)≤H+1/4} dθ

− (4 − 22H )Gθ∗ .

Let us note that because Z is Gaussian and has stationary increments, we can apply the results
of Istas and Lang [15] to estimate H . To do so we must assume that Leb({H(θ) = H }) > 0 and
H ≥ 3/4. Moreover, we need observations of Z along an infinite interval, which is not the case
in our assumptions (t ∈ [0,1]). In this sense, we have improved the result of Istas and Lang [15]
in the case of the AFBM.

Let us note that the estimation of the function H was performed by Ayache et al. [2] and
Biermé [6].

4.3. Proof of the results in the l.a.s.s. case

Proof of Proposition 10. We must check that the assumptions of Theorem 1 are satisfied. For
assumption 2(a) (in Theorem 1), note that the functions H and � are bounded functions that can
be deduced by the Lebesgue theorem of continuity under the symbol integral.

For assumption 2(b) (in Theorem 1), we must compute the derivative ∂4R

∂s2 ∂t2 . For the same
reasons as above, the Lebesgue theorem of differentiability under the symbol integral shows the
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existence of this derivative on ]0,1]2 \ {s = t} and yields the formula

|s − t |2+γ ∂4R

∂s2 ∂t2
(s, t)

= −4
∫ π

0
�(θ)2H(θ)

(
2H(θ) − 1

)(
2H(θ) − 2

)(
2H(θ) − 3

)|s − t |2(H(θ)−H) dθ, (96)

where γ = 2(1−H). Because the right-hand side is bounded, this proves that the assumption 2(b)
(in Theorem 1) is satisfied with L(h) = 1.

Computing (δh
1 ◦ δh

2 R)(s, t), we get

(δh
1 ◦ δh

2 R)(s, t)

= 4
∫ π

0
�(θ)

(−|s − t − 2h|2H(θ) + 4|s − t − h|2H(θ) − 6|s − t |2H(θ)

+ 4|s − t + h|2H(θ) − |s − t + 2h|2H(θ)
)

dθ.

Thus

(δh
1 ◦ δh

2 R)(t, t) = 8
∫ π

0
�(θ)|h|2H(θ)

(
4 − 22H(θ)

)
dθ,

so

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
= 8

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4 − 22H(θ)

)
dθ (97)

with γ = 2 − 2H .
Setting g0(t) = (4 − 22H )JH , we have

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
− g0(t) = 8

∫ π

0
�(θ)1{H(θ)>H }

(
4 − 22H(θ)

)|h|2(H(θ)−H) dθ. (98)

Therefore, the Lebesgue theorem and the fact that the right-hand side does not depend on t yield

lim
h→0+ sup

h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
− g0(t)

∣∣∣∣ = 0.

Hence the assumption 2(c) (in Theorem 1) is fulfilled.
So if we apply Theorem 1 to Z, we obtain (79). �

Proof of Proposition 11. We apply Theorem 2 to Z. We must show that the assumptions 2 and 3
(in Theorem 2) are satisfied. For assumption 2 (in Theorem 2), we must compute the derivative

∂4R

∂s2 ∂t2 . As in the proof of Proposition 10, the Lebesgue theorem of differentiability under the
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symbol integral shows the existence of this derivative on ]0,1]2 \ {s = t} and yields the for-
mula (96),

|s − t |2+γ ∂4R

∂s2 ∂t2
(s, t)

= −4
∫ π

0
�(θ)2H(θ)

(
2H(θ) − 1

)(
2H(θ) − 2

)(
2H(θ) − 3

)|s − t |2(H(θ)−H) dθ,

where γ = 2(1 − H). Hence the assumption 2 (in Theorem 2) is satisfied with L(h) = 1 and
C(s, t) equal to the right-hand side of (96) (the continuity of C on {s = t} is obtained by applying
Lebesgue theorem).

Next we deal with the assumption 3 (in Theorem 2). We have proved (97):

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
= 8

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4 − 22H(θ)

)
dθ.

We set q = 0, α0 = 1/2 and

g0(t) = 8(4 − 22H )

∫ π

0
�(θ)1{H(θ)=H } dθ = (4 − 22H )JH .

We have

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
− g0(t) = 8

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4 − 22H(θ)

)
1{H(θ)>H+1/4} dθ.

Therefore, the Lebesgue theorem yields

lim
h→0+

1√
h

sup
h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
− g0(t)

∣∣∣∣ = 0

and assumption 3(d) (in Theorem 2) is fulfilled.
Moreover, we have

(δh
1 ◦ δh

2 R)(t + h, t) = 4
∫ π

0
�(θ)|h|2H(θ)

(
4.22H(θ) − 32H(θ) − 7

)
dθ,

so

(δh
1 ◦ δh

2 R)(t + h, t)

|h|2−γ
= 4

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4.22H(θ) − 32H(θ) − 7

)
dθ.

Consequently, the theorem of dominated convergence yields

lim
h→0+ sup

h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t + h, t)

|h|2−γ
− g̃(t)

∣∣∣∣ = 0,
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where

g̃(t) = 1
2 (22H+2 − 32H − 7)JH .

Thus, the assumption 3 (in Theorem 2) is fulfilled. �

Proof of Corollary 12. The almost sure convergence is a straightforward consequence of (79).
To get (82), we just apply the δ method with the C1 function:

f (x, y) = − log(y/x)

2 log 2
. �

Proof of Proposition 13. We apply Theorem 1 to Z to obtain a refinement of Proposition 10. We
must show that Assumptions 2(b), 2(c) and 3 (in Theorem 1) are satisfied. For assumption 2(b)
(in Theorem 1), we use the same arguments as in Proposition 11 and obtain the same function
C(s, t) with γ = 2 − 2H and L(h) = 1.

Next we deal with assumption 2(c) (in Theorem 1). Assumption 2(c)(iii) (in Theorem 1) is a
straightforward consequence of the Lebesgue theorem.

Moreover, we have proved (97):

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
= 8

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4 − 22H(θ)

)
dθ.

We set q = 1, α1 = 1/2, ν1 = 1 and

g0(t) = 8(4 − 22H )

∫ π

0
�(θ)1{H(θ)=H } dθ = JH (4 − 22H ),

g1(t) = 1,

φ(h) = 8
∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H<H(θ)≤H+1/4} dθ.

We have

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
− g0(t) − g1(t)φ(h)

= 8
∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H+1/4<H(θ)} dθ

h→0+= o
(√

h
)
,

thanks to Lebesgue theorem. Because the right-hand side does not depend on t , assump-
tion 1(c)(v) (in Theorem 1) is fulfilled.

Moreover, we have

φ(h) = 8
∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H<H(θ)≤H+1/4} dθ.
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Therefore, for h enough small,

φ(h) ≥ Kh2(H+1/4−H) = K
√

h,

which yields that the assumption 2(c)(iii) (in Theorem 1) is satisfied too. The last inequality
yields that the assumption 3 (in Theorem 1) is fulfilled.

Therefore, (83) is a consequence of Theorem 1 applied to Z. To prove (84), we apply Theo-
rem 2. We need to check that assumptions 3(d) and 3(e) (in Theorem 2) are fulfilled. Assump-
tion 3(d) (in Theorem 2) is a straightforward consequence of previous computations. For as-
sumption 3(e) (in Theorem 2), we use the same arguments and the same function g̃(t) as in
Proposition 11. �

Proof of Corollary 14. The almost sure convergence is a straightforward consequence of (79).

To prove (86), we apply the δ method between the points
( n2HK−1Vn(Z)

(2n)2HK−1V2n(Z)

)
and

( (4−22H )JH +φ( 1
n
)

(4−22H )JH +φ( 1
2n

)

)
to the C1 function:

f (x, y) = − log(y/x)

2 log 2
. �

4.4. Proofs of the results in the non-l.a.s.s. case

Proof of Proposition 15. Thanks to Proposition 9, we can compute the variogram of A(H) for
all t ∈ R

2:

v(t) = 1
8

∫ 2π

0
C(1,H(θ))2|t1 cos(θ) + t2 sin(θ)|2H(θ) dθ.

We use the polar coordinates and we parametrize t ∈ R
2 \ {(0,0)} by (ρ(t), α(t)):

t1 = ρ(t) cosα(t),

t2 = ρ(t) sinα(t).

We set vε(t) = ε−2H v(εt), ε > 0, and use the polar parametrization and the π-periodicity of the
function H to obtain

vε(t) = 1
4

∫ θ∗+π/2

θ∗−π/2
C(1,H(θ))2ρ(t)2H(θ)

∣∣cos
(
α(t) − θ

)∣∣2H(θ)
ε2(H(θ)−H) dθ.

We assume that ρ(t) 
= 0 and α(t) 
= θ∗ + π/2 (modπ). The Laplace method (see Dieudonné
[11], Theorem IV.2.5, page 125) yields

vε(t)
ε→0+∼ C(1,H)2

8
ρ(t)2H

∣∣cos
(
α(t) − θ∗

)∣∣2H
√

π

(− log ε)H ′′(θ∗)
.
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Therefore,

lim
ε→0+

√
log

(
1

ε

)
1

ε2H
v(εt) = C(1,H)2

8
ρ(t)2H

∣∣cos
(
α(t) − θ∗

)∣∣2H
√

π

H ′′(θ∗)
.

With a refinement of the Laplace method, we can check that this is still true if ρ(t) = 0 or
α(t) = θ∗ + π/2 (modπ), which are the cases where the limit is vanishing.

Moreover, because A(H) is a Gaussian processes with stationary increments and vanishing
limits at the origin, we have

∀s, t ∈ R
d Cov

(
A(H)

s ,A
(H)
t

) = 2
(
v(s) + v(t) − v(s − t)

)
.

We are able to conclude that the finite-dimensional laws of the process (87), with t0 = 0, converge
toward those of the process defined in (88). Because A(H) has stationary increments, we have the
same result for all t0 ∈ R

d . �

Proof of Proposition 16. As in Proposition 10, we must check that the assumptions of Theo-
rem 1 are satisfied. For assumption 2(b), in Proposition 10 we showed formula (96),

|s − t |2+γ ∂4R

∂s2 ∂t2
(s, t)

= −4
∫ π

0
�(θ)2H(θ)

(
2H(θ) − 1

)(
2H(θ) − 2

)(
2H(θ) − 3

)|s − t |2(H(θ)−H) dθ,

where γ = 2(1 − H). We set L(h) =
√ −1

logh
, where L is slowly varying, and write

|s − t |2+γ

L(|s − t |)
∂4R

∂s2 ∂t2
(s, t)

= −4
∫ π

0
�(θ)2H(θ)

(
2H(θ) − 1

)(
2H(θ) − 2

)(
2H(θ) − 3

)
× √

log(|s − t |)|s − t |2(H(θ)−H) dθ. (99)

If H 
= 1
2 , the Laplace method yields that the right-hand side goes to√

π

H ′′(θ∗)
�(θ∗)2H(2H − 1)(2H − 2)(2H − 3) (100)

when |s − t | → 0. A refinement of the Laplace method allows us to check that it is still true if
H = 1

2 . This implies that the right-hand side of (99) is a continuous function of (s, t) on the set

[0,1]2. Therefore, it is bounded and the assumption 2(b) (in Theorem 1) is satisfied.
For assumption 2(c) (in Theorem 1), we have seen in (97) that

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
= 8

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4 − 22H(θ)

)
dθ
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with γ = 2(1 − H). We want to study the asymptotic behavior of the preceding integral, so we
denote by I (h) the right-hand side of (97). The Laplace method yields

I (h)
h→0+∼ 8�(θ∗)(4 − 22H )

√
2π

(− logh)2H ′′(θ∗)
.

Therefore, we obtain

lim
h→0+

√
(− logh)I (h) = 8�(θ∗)(4 − 22H )

√
π

H ′′(θ∗)
.

As in the Proof of Proposition 10, because
√

(− logh)I (h) does not depend on the variable t , we
have

lim
h→0+ sup

h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t, t)

L(h)|h|2−γ
− g0(t)

∣∣∣∣ = 0,

where g0(t) = (4 − 22H )Gθ∗ . Therefore, the assumption 2(c) (in Theorem 1) is fulfilled with
q = 0. �

Proof of Proposition 17. We apply Theorem 1. The difference from the proof of Proposition 16
comes from assumption 2(c) (in Theorem 1). We must compute an asymptotic expansion of the
expression, which is a consequence of (97),

(δh
1 ◦ δh

2 R)(t, t)

L(h)|h|2−γ
= 4

√− logh

∫ 2π

0
�(θ)|h|2(H(θ)−m)

(
4 − 22H(θ)

)
dθ

with γ = 2(1 − H). The π-periodicity of the functions H and � yields

(δh
1 ◦ δh

2 R)(t, t)

L(h)|h|2−γ
= 8

√− logh

∫ θ∗+π

θ∗
�(θ)

(
4 − 22H(θ)

)
e2(H(θ)−m) logh dθ.

Here we cut this integral into two parts (we integrate on [θ∗, θ∗ +π/2] and on [θ∗ +π/2, θ∗ +π])
and use Theorem II.1.1 from Wong [17] on the extended Laplace method. We obtain

(δh
1 ◦ δh

2 R)(t, t)

L(h)|h|2−γ

h→0+= 16
q∑

i=0

�((i + 1)/2)σi

(− logh)i/2
+ o

(
1

(− logh)q/2

)
, (101)

where the coefficients σi can be expressed in terms of Hi and �i .
Because these quantities do not depend on the variable t , the assumption 2(c)(iii) of Theorem 1

is fulfilled with

gi(t) = 16�

(
i + 1

2

)
σi, εi = 1/2, φ(h) = 1√− logh

, νi = i. �
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Proof of Proposition 18. We apply Theorem 2 to Z. We must show that assumptions 2 and 3 (in
Theorem 2) are satisfied. As in Proposition 16, we can check that assumption 2 (in Theorem 2)
is fulfilled with C(s, t) equal to the right-hand side of (99).

For assumption 3 (in Theorem 2), we have proved (97):

(δh
1 ◦ δh

2 R)(t, t)

|h|2−γ
= 8

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4 − 22H(θ)

)
dθ.

We set q = 0, α1 = 1/2, ν1 = 1 and

g0(t) = (4 − 22H )Gθ∗ ,

g1(t) = 1,

φ(h) = 8
√− logh

∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H(θ)≤H+1/4} dθ

− (4 − 22H )Gθ∗ .

We have

(δh
1 ◦ δh

2 R)(t, t)

L(h)|h|2−γ
− g0(t) − g1(t)φ(h)

= 8
√− logh

∫ π

0
�(θ)

(
4 − 22H(θ)

)|h|2(H(θ)−H)1{H+1/4<H(θ)} dθ

h→0+= o
(√

h
)
,

thanks to the theorem of dominated convergence. Because the right-hand side does not depend
on t , assumption 3(d) (in Theorem 2) is fulfilled.

Moreover, we have

(δh
1 ◦ δh

2 R)(t + h, t) = 4
∫ π

0
�(θ)|h|2H(θ)

(
4.22H(θ) − 32H(θ) − 7

)
dθ

and so

(δh
1 ◦ δh

2 R)(t + h, t)

L(h)|h|2−γ
= 4

√− logh

∫ π

0
�(θ)|h|2(H(θ)−H)

(
4.22H(θ) − 32H(θ) − 7

)
dθ.

Consequently, the Laplace method and the theorem of dominated convergence yield

lim
h→0+ sup

h≤t≤1−h

∣∣∣∣ (δh
1 ◦ δh

2 R)(t + h, t)

L(h)|h|2−γ
− 4�(θ∗)(4.22H − 32H − 7)

√
π

H ′′(θ∗)

∣∣∣∣ = 0.

Thus, the assumption 3(e) (in Theorem 2) is fulfilled with

g̃(t) = 4.22H − 32H − 7

2
Gθ∗ . �
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