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Let T be a general sampling statistic that can be written as a linear statistic plus an error term. Uniform
and non-uniform Berry–Esseen type bounds for T are obtained. The bounds are the best possible for many
known statistics. Applications to U-statistics, multisample U-statistics, L-statistics, random sums and func-
tions of nonlinear statistics are discussed.
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1. Introduction

Let X1, X2, . . . ,Xn be independent random variables and let T := T (X1, . . . ,Xn) be a general
sampling statistic. In many cases T can be written as a linear statistic plus an error term, say
T = W + �, where

W =
n∑

i=1

gi(Xi), � := �(X1, . . . ,Xn) = T − W

and gi := gn,i are Borel measurable functions. Typical cases include U-statistics, multisample
U-statistics, L-statistics and random sums. Assume that

E(gi(Xi)) = 0 for i = 1,2, . . . , n and
n∑

i=1

E(g2
i (Xi)) = 1. (1.1)
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It is clear that if � → 0 in probability as n → ∞, then we have the central limit theorem

sup
z

|P(T ≤ z) − �(z)| → 0, (1.2)

where � denotes the standard normal distribution function, provided that the Lindeberg condition
holds:

∀ε > 0,

n∑
i=1

Eg2
i (Xi)I

(|gi(Xi)| > ε
) → 0.

If in addition, E|�|p < ∞ for some p > 0, then by the Chebyshev inequality, one can obtain the
rate of convergence

sup
z

|P(T ≤ z) − �(z)| ≤ sup
z

|P(W ≤ z) − �(z)| + 2(E|�|p)1/(1+p). (1.3)

The first term on the right-hand side of (1.3) is well understood via the Berry–Esseen inequality.
For example, using Stein’s method, Chen and Shao [9] obtained

sup
z

|P(W ≤ z) − �(z)|

≤ 4.1

(
n∑

i=1

Eg2
i (Xi)I

(|gi(Xi)| > 1
) +

n∑
i=1

E|gi(Xi)|3I
(|gi(Xi)| ≤ 1

))
. (1.4)

However, the bound (E|�|p)1/(1+p) is, in general, not sharp for many commonly used statistics.
Many authors have worked toward obtaining better Berry–Esseen bounds. For example, sharp
Berry–Esseen bounds have been obtained for general symmetric statistics by van Zwet [24] and
Friedrich [12]. An Edgeworth expansion with remainder O(n−1) for symmetric statistics was
proved by Bentkus, Götze and van Zwet [3].

The main purpose of this paper is to establish uniform and non-uniform Berry–Esseen bounds
for general nonlinear statistics. The bounds are the best possible for many known statistics. Our
proof is based on a randomized concentration inequality approach to bounding P(W +� ≤ z)−
P(W ≤ z). Because proofs of uniform and non-uniform bounds for sums of independent random
variables can be proved via Stein’s method (Chen and Shao [9]), which is much neater and
simpler than the traditional Fourier analysis approach, this paper provides a direct and unifying
treatment toward the Berry–Esseen bounds for general nonlinear statistics.

This paper is organized as follows. The main results are stated in next section, three applica-
tions are presented in Section 3 and an example is given in Section 4 to show the sharpness of
the main results. Proofs of the main results are given in Section 5. For the proofs of other results,
including Example 4.1, the reader is referred to our technical report (Chen and Shao [10]).

Throughout this paper, C will denote an absolute constant whose value may change at each ap-
pearance. The Lp norm of a random variable X is denoted by ‖X‖p , that is, ‖X‖p = (E|X|p)1/p

for p ≥ 1.
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2. Main results

Let {Xi,1 ≤ i ≤ n}, T , W and � be defined as in Section 1. In the following theorems, we
assume that (1.1) is satisfied. Put

β =
n∑

i=1

E|gi(Xi)|2I
(|gi(Xi)| > 1

) +
n∑

i=1

E|gi(Xi)|3I
(|gi(Xi)| ≤ 1

)
(2.1)

and let δ > 0 satisfy

n∑
i=1

E|gi(Xi)|min(δ, |gi(Xi)|) ≥ 1/2. (2.2)

Theorem 2.1. For each 1 ≤ i ≤ n, let �i be a random variable such that Xi and (�i,W −
gi(Xi)) are independent. Then

sup
z

|P(T ≤ z) − P(W ≤ z)| ≤ 4δ + E|W�| +
n∑

i=1

E|gi(Xi)(� − �i)| (2.3)

for δ satisfying (2.2). In particular, we have

sup
z

|P(T ≤ z) − P(W ≤ z)| ≤ 2β + E|W�| +
n∑

i=1

E|gi(Xi)(� − �i)| (2.4)

and

sup
z

|P(T ≤ z) − �(z)| ≤ 6.1β + E|W�| +
n∑

i=1

E|gi(Xi)(� − �i)|. (2.5)

The next theorem provides a non-uniform bound.

Theorem 2.2. For each 1 ≤ i ≤ n, let �i be a random variable such that Xi and (�i, {Xj ,

j �= i}) are independent. Then, for δ satisfying (2.2) and for z ∈ R1,

|P(T ≤ z) − P(W ≤ z)| ≤ γz + e−|z|/3τ, (2.6)

where

γz = P
(|�| > (|z| + 1)/3

) +
n∑

i=1

P
(|gi(Xi)| > (|z| + 1)/3

)

+
n∑

i=1

P
(|W − gi(Xi)| > (|z| − 2)/3

)
P

(|gi(Xi)| > 1
)
, (2.7)
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τ = 22δ + 8.5‖�‖2 + 3.6
n∑

i=1

‖gi(Xi)‖2‖� − �i‖2. (2.8)

In particular, if E|gi(Xi)|p < ∞ for 2 < p ≤ 3, then

|P(T ≤ z) − �(z)|
≤ P

(|�| > (|z| + 1)/3
)

+ C(|z| + 1)−p

(
‖�‖2 +

n∑
i=1

‖gi(Xi)‖2‖� − �i‖2 +
n∑

i=1

E|gi(Xi)|p
)

. (2.9)

A result similar to (2.5) was obtained by Friedrich [12] for gi = E(T |Xi) using the method of
characteristic function. Our proof is direct and simpler, and the bounds are easier to calculate.
The non-uniform bounds in (2.6) and (2.9) for general nonlinear statistics are new.

Remark 2.1. Assume E|gi(Xi)|p < ∞ for p > 2. Let

δ =
(

2(p − 2)p−2

(p − 1)p−1

n∑
i=1

E|gi(Xi)|p
)1/(p−2)

. (2.10)

Then (2.2) is satisfied. This follows from the inequality

min(a, b) ≥ a − (p − 2)p−2ap−1

(p − 1)p−1bp−2
(2.11)

for a ≥ 0 and b > 0.

Remark 2.2. If β ≤ 1/2, then (2.2) is satisfied with δ = β/2.

Remark 2.3. Let δ > 0 be such that

n∑
i=1

Eg2
i (Xi)I

(|gi(Xi)| > δ
) ≤ 1/2.

Then (2.2) holds. In particular, if X1,X2, . . . ,Xn are independent and identically distributed
(i.i.d.) random variables and gi = g1, then (2.2) is satisfied with δ = c0/

√
n, where c0 is a con-

stant such that E(
√

ng1(X1))
2I (|√ng1(X1)| > c0) ≤ 1/2.

Remark 2.4. In Theorems 2.1 and 2.2, the choice of �i is flexible. For example, one can
choose �i = �(X1, . . . ,Xi−1,0,Xi+1, . . . ,Xn) or �i = �(X1, . . . ,Xi−1, X̂i ,Xi+1, . . . ,Xn),
where {X̂i,1 ≤ i ≤ n} is an independent copy of {Xi,1 ≤ i ≤ n}. The choice of gi is also flexi-
ble. It can be more general than gi(x) = E(T |Xi = x), which is commonly used in the literature.
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Remark 2.5. Let X1, . . . ,Xn be independent normally distributed random variables with mean
zero and variance 1/n, and let W , T and � be as in Example 4.1. Then

E|W�| +
n∑

i=1

E|Xi |3 +
n∑

i=1

E
∣∣Xi

(
�(X1, . . . ,Xi, . . . ,Xn) − �(X1, . . . ,0, . . . ,Xn)

)∣∣
≤ Cε2/3 (2.12)

for (1/ε)4/3 ≤ n ≤ 16(1/ε)4/3. This together with (4.5) shows that the bound in (2.4) is achiev-
able. Moreover, the term

∑
E|gi(Xi)(� − �i)| in (2.4) cannot be dropped.

3. Applications

Theorems 2.1 and 2.2 can be applied to a wide range of different statistics and provide the bounds
of the best possible order in many instances. To illustrate the usefulness and the generality of
these results, we give three applications in this section. The uniform bounds refine many existing
results by specifying absolute constants, while the non-uniform bounds are new for many cases.
Because the results are direct applications of Theorems 2.1 and 2.2, and the proofs are more or
less routine verifications of assumptions, the proofs are omitted. Refer to Chen and Shao [10] for
detailed proofs. One may also refer to Chen and Shao [10] for applications to random sums of
independent random variables with non-random centering and to functions of nonlinear statistics.

3.1. U-statistics

Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables, and let h(x1, . . . , xm) be a real-
valued Borel measurable symmetric function of m variables, where m (2 ≤ m < n) may depend
on n. Consider the Hoeffding [17] U-statistic

Un =
(

n

m

)−1 ∑
1≤i1<···<im≤n

h(Xi1, . . . ,Xim).

The U-statistic elegantly and usefully generalizes the notion of a sample mean. Numerous investi-
gations on the limiting properties of the U-statistics have been done during the last few decades.
A systematic presentation of the theory of U-statistics was given by Koroljuk and Borovskich
[19]. We refer to the studies on uniform Berry–Esseen bounds for U-statistics by Filippova [11],
Grams and Serfling [13], Bickel [4], Chan and Wierman [8], Callaert and Janssen [7], Serfling
[21], van Zwet [24] and Friedrich [12]. One can also refer to the work of Wang, Jing and Zhao
[26] on uniform Berry–Esseen bounds for studentized U-statistics.

Applying Theorems 2.1 and 2.2 to the U-statistic yields the following result:
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Theorem 3.1. Assume that Eh(X1, . . . ,Xm) = 0 and σ 2 = Eh2(X1, . . . ,Xm) < ∞. Let g(x) =
E(h(X1,X2, . . . ,Xm)|X1 = x) and σ 2

1 = Eg2(X1). Assume that σ1 > 0. Then

sup
z

∣∣∣∣∣P
( √

n

mσ1
Un ≤ z

)
− P

(
1√
nσ1

n∑
i=1

g(Xi) ≤ z

)∣∣∣∣∣ ≤ (1 + √
2)(m − 1)σ

(m(n − m + 1))1/2σ1
+ c0√

n
, (3.1)

where c0 is a constant such that Eg2(X1)I (|g(X1)| > c0σ1) ≤ σ 2
1 /2. If in addition

E|g(X1)|p < ∞ for 2 < p ≤ 3, then

sup
z

∣∣∣∣P
( √

n

mσ1
Un ≤ z

)
− �(z)

∣∣∣∣ ≤ (1 + √
2)(m − 1)σ

(m(n − m + 1))1/2σ1
+ 6.1E|g(X1)|p

n(p−2)/2σ
p

1

(3.2)

and, for z ∈ R1,∣∣∣∣P
( √

n

mσ1
Un ≤ z

)
− �(z)

∣∣∣∣ ≤ 9mσ 2

(1 + |z|)2(n − m + 1)σ 2
1

+ 13.5e−|z|/3m1/2σ

(n − m + 1)1/2σ1

+ CE|g(X1)|p
(1 + |z|)pn(p−2)/2σ

p

1

. (3.3)

Moreover, if E|h(X1, . . . ,Xm)|p < ∞ for 2 < p ≤ 3, then for z ∈ R1,∣∣∣∣P
( √

n

mσ1
Un ≤ z

)
− �(z)

∣∣∣∣
≤ Cm1/2E|h(X1, . . . ,Xm)|p

(1 + |z|)p(n − m + 1)1/2σ
p

1

+ CE|g(X1)|p
(1 + |z|)pn(p−2)/2σ

p

1

. (3.4)

Note that the error in (3.1) is O(n−1/2) only under the assumption of the finite second moment
of h. The result appears to be previously unknown. The uniform bound given in (3.2) is not new,
but the specifying constant for general m is new. The finite second moment of h is not the weakest
assumption for the uniform bound. Friedrich [12] obtained an O(n−1/2) when E|h|5/3 < ∞. We
refer the reader to Bentkus, Götze and Zitikis [2] and Jing and Zhou [18] for discussions on the
necessity of the moment condition.

For the non-uniform bound, Zhao and Chen [27] proved that if m = 2, E|h(X1,X2)|3 < ∞,
then ∣∣∣∣P

( √
n

mσ1
Un ≤ z

)
− �(z)

∣∣∣∣ ≤ An−1/2(1 + |z|)−3 (3.5)

for z ∈ R1, where the constant A depends not on n and z, but on the moment of h. Clearly,
(3.4) refines Zhao and Chen’s result specifying the relationship of the constant A with the mo-
ment condition. After we finished proving Theorem 3.1, Wang [25] informed the second author
that he also obtained (3.4) for m = 2 and p = 3.

Theorems 2.1 and 2.2 can also be applied to derive uniform and non-uniform bounds for the
non-i.i.d. case. Especially the uniform bound of Alberink [1] can be easily recovered.
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Remark 3.1. Equation (3.3) implies that

∣∣∣∣P
( √

n

mσ1
Un ≤ z

)
− �(z)

∣∣∣∣ ≤ Cm1/2σ 2

(1 + |z|)3(n − m + 1)1/2σ 2
1

+ CE|g(X1)|p
(1 + |z|)pn(p−2)/2σ

p

1

(3.6)

for |z| ≤ ((n − m + 1)/m)1/2. For |z| > ((n − m + 1)/m)1/2, a bound like (3.6) can be easily
obtained by using the Chebyshev inequality. On the other hand, if (3.6) holds for any z ∈ R1,
then it appears necessary to assume E|h(X1, . . . ,Xm)|p < ∞.

Remark 3.2. Theorem 3.1 shows that the central limit theorem can still hold even when m =
m(n) → ∞. However, the explicit Berry–Esseen bounds in (3.1) and (3.2) may not be optimal in
terms of m. For the special case of elementary symmetric polynomials (i.e., h(x1, x2, . . . , xm) =
x1 x2 . . . xm − µm, where µ = E(X1) �= 0), discussed in van Es and Helmers [23], σ/σ1 in (3.1)
and (3.2) is of order rm, where r > 1, which is equivalent to requiring m ≤ c logn for some c > 0
so that the bound tends to 0, whereas in the result of van Es and Helmers [23], the bound tends
to 0 as long as m = o(n1/2). The Berry–Esseen bound obtained by van Es and Helmers [23] gives
an optimal dependence on m.

3.2. Multisample U-statistics

Consider k independent sequences {Xj1, . . . ,Xjnj
} of i.i.d. random variables, j = 1, . . . , k. Let

h(xjl, l = 1, . . . ,mj , j = 1, . . . , k) be a measurable function symmetric with respect to mj argu-
ments of the j th set, mj ≥ 1, j = 1, . . . , k. Let

θ = Eh(Xjl, l = 1, . . . ,mj , j = 1, . . . , k).

The multisample U-statistic is defined as

Un̄ =
{

k∏
j=1

(
nj

mj

)−1
}∑

h(Xjl, l = ij1, . . . , ijmj
, j = 1, . . . , k),

where n̄ = (n1, . . . , nk) and the summation is carried out over all 1 ≤ ij1 < · · · < ijmj
≤ nj ,

nj ≥ 2mj , j = 1, . . . , k. Clearly, Un̄ is an unbiased estimate of θ . The two-sample Wilcoxon
statistic and the two-sample ω2-statistic are two typical examples of multisample U-statistics.
Without loss of generality, assume θ = 0. For j = 1, . . . , k, define

hj (x) = E
(
h(X11, . . . ,X1m1; . . . ;Xk1, . . . ,Xkmk

)|Xj1 = x
)

and let σ 2
j = Eh2

j (Xj1) and

σ 2
n̄ =

k∑
j=1

m2
j

nj

σ 2
j .
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A uniform Berry–Esseen bound with O((min1≤j≤k nj )
−1/2) for the multisample U-statistics was

obtained by Helmers and Janssen [15] and Borovskich [6] (see Koroljuk and Borovskich [19],
pages 304–311). The next theorem refines their results.

Theorem 3.2. Assume that θ = 0, σ 2 := Eh2(X11, . . . ,X1m1; . . . ;Xk1, . . . ,Xkmk
) < ∞ and

max1≤j≤k σj > 0. Then for 2 < p ≤ 3,

sup
z

|P(σ−1
n̄ Un̄ ≤ z) − �(z)| ≤ (1 + √

2)σ

σn̄

k∑
j=1

m2
j

nj

+ 6.6

σ
p
n̄

k∑
j=1

m
p
j

n
p−1
j

E|hj (Xj1)|p (3.7)

and for z ∈ R1,

|P(σ−1
n̄ Un ≤ z) − �(z)| ≤ 9σ 2

(1 + |z|)2σ 2
n̄

(
k∑

j=1

m2
j

nj

)2

+ 13.5e−|z|/3 σ

σn̄

k∑
j=1

m2
j

nj

+ C

(1 + |z|)pσ
p
n̄

k∑
j=1

m
p
j E|hj (Xj1)|p

n
p−1
j

. (3.8)

3.3. L-statistics

Let X1, . . . ,Xn be i.i.d. random variables with a common distribution function F and let Fn be
the empirical distribution function defined by

Fn(x) = n−1
n∑

i=1

I (Xi ≤ x), for x ∈ R1.

Let J (t) be a real-valued function on [0,1] and define

T (G) =
∫ ∞

−∞
xJ (G(x))dG(x)

for non-decreasing measurable function G. Put

σ 2 =
∫ ∞

−∞

∫ ∞

−∞
J (F (s))J (F (t))F (min(s, t))

(
1 − F(max(s, t))

)
ds dt

and

g(x) =
∫ ∞

−∞
(
I (x ≤ s) − F(s)

)
J (F (s))ds.

The statistic T (Fn) is called an L-statistic (see Serfling [21], Chapter 8). Uniform Berry–Esseen
bounds for the L-statistic that smooths J were given by Helmers [14] and Helmers, Janssen and
Serfling [16]. Applying Theorems 2.1 and 2.2 yields the following uniform and non-uniform
bounds for L-statistics.



Normal approximation for nonlinear statistics 589

Theorem 3.3. Let n ≥ 4. Assume that EX2
1 < ∞ and E|g(X1)|p < ∞ for 2 < p ≤ 3. If the

weight function J (t) is Lipschitz of order 1 on [0,1], that is, there exists a constant c0 such that

|J (t) − J (s)| ≤ c0|t − s|, for 0 ≤ s, t ≤ 1, (3.9)

then

sup
z

∣∣P (√
nσ−1(T (Fn) − T (F )

) ≤ z
) − �(z)

∣∣ ≤ (1 + √
2)c0‖X1‖2√
nσ

+ 6.1E|g(X1)|p
n(p−2)/2σp

(3.10)

and ∣∣P (√
nσ−1(T (Fn) − T (F )

) ≤ z
) − �(z)

∣∣
≤ 9c2

0EX2
1

(1 + |z|)2nσ 2
+ C

(1 + |z|)p
(

c0‖X1‖2√
nσ

+ E|g(X1)|p
n(p−2)/2σp

)
. (3.11)

4. An example

In this section we give an example to show that the bound of (2.4) in Theorem 2.1 is achievable.
Moreover, the term

∑
E|gi(Xi)(�−�i)| in (2.4) cannot be dropped. The example also provides

a counterexample to a result of Shorack [22] and of Bolthausen and Götze [5]. We refer to Chen
and Shao [10] for a detailed proof.

Example 4.1. Let X1, . . . ,Xn be independent normally distributed random variables with mean
zero and variance 1/n. Define

W =
n∑

i=1

Xi, T := Tε = W − ε|W |−1/2 + εc0 and � = T − W = −ε|W |−1/2 + εc0,

where c0 = E(|W |−1/2) = √
2/π

∫ ∞
0 x−1/2e−x2/2 dx. Let {X̂i,1 ≤ i ≤ n} be an independent

copy of {Xi,1 ≤ i ≤ n} and define

α = 1

n

n∑
i=1

E|�(X1, . . . ,Xi, . . . ,Xn) − �(X1, . . . , X̂i , . . . ,Xn)|. (4.1)

Then ET = 0 and for 0 < ε < 1/64 and n ≥ (1/ε)4,

P(T ≤ ε c0) − �(εc0) ≥ ε2/3/6, (4.2)

E|W�| + E|�| ≤ 7ε, (4.3)

E|�| +
n∑

i=1

E|Xi |3 + √
α ≤ Cε, (4.4)

where C is an absolute constant.
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Clearly, (4.2) implies that

sup
z

|P(Tε ≤ z) − �(z)| ≥ ε2/3

6
. (4.5)

A result from Shorack [22] (see Lemma 11.1.3, page 261) states that for any random variables
W and �,

sup
z

|P(W + � ≤ z) − �(z)| ≤ sup
z

|P(W ≤ z) − �(z)| + 4E|W�| + 4E|�|. (4.6)

Another result, which is in Theorem 2 of Bolthausen and Götze [5], states that if ET = 0, then

sup
z

|P(T ≤ z) − �(z)| ≤ C

(
E|�| +

n∑
i=1

E|gi(Xi)|3 + √
α

)
, (4.7)

where C is an absolute constant and α is defined in (4.1).
In view of (4.3), (4.4) and (4.5), the results of Shorack and of Bolthausen and Götze can be

shown to lead to a contradiction.

5. Proofs of main theorems

Proof of Theorem 2.1. Equation (2.5) follows from (2.4) and (1.4). When β > 1/2, (2.4) is
trivial. For β ≤ 1/2, (2.4) is a consequence of (2.3) and Remark 2.2. Thus, we need only to
prove (2.3). Note that

−P(z − |�| ≤ W ≤ z) ≤ P(T ≤ z) − P(W ≤ z) ≤ P(z ≤ W ≤ z + |�|). (5.1)

It suffices to show that

P(z ≤ W ≤ z + |�|) ≤ 4δ + E|W�| +
n∑

i=1

E|gi(Xi)(� − �i)| (5.2)

and

P(z − |�| ≤ W ≤ z) ≤ 4δ + E|W�| +
n∑

i=1

E|gi(Xi)(� − �i)|, (5.3)

where δ satisfies (2.2). Let

f�(w) =
{−|�|/2 − δ, for w ≤ z − δ,

w − 1
2 (2z + |�|), for z − δ ≤ w ≤ z + |�| + δ,

|�|/2 + δ, for w > z + |�| + δ.
(5.4)
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Let

ξi = gi(Xi), M̂i(t) = ξi{I (−ξi ≤ t ≤ 0) − I (0 < t ≤ −ξi)},

Mi(t) = EM̂i(t), M̂(t) =
n∑

i=1

M̂i(t), M(t) = EM̂(t).

Since ξi and f�i
(W − ξi) are independent for 1 ≤ i ≤ n and Eξi = 0, we have

E{Wf�(W)} =
∑

1≤i≤n

E
{
ξi

(
f�(W) − f�(W − ξi)

)}

+
∑

1≤i≤n

E
{
ξi

(
f�(W − ξi) − f�i

(W − ξi)
)}

:= H1 + H2. (5.5)

Using the fact that M̂(t) ≥ 0 and f ′
�(w) ≥ 0, we have

H1 =
∑

1≤i≤n

E

{
ξi

∫ 0

−ξi

f ′
�(W + t)dt

}

=
∑

1≤i≤n

E

{∫ ∞

−∞
f ′

�(W + t)M̂i(t)dt

}

= E

{∫ ∞

−∞
f ′

�(W + t)M̂(t)dt

}

≥ E

{∫
|t |≤δ

f ′
�(W + t)M̂(t)dt

}

≥ E

{
I (z ≤ W ≤ z + |�|)

∫
|t |≤δ

M̂(t)dt

}

=
∑

1≤i≤n

E{I (z ≤ W ≤ z + |�|)|ξi |min(δ, |ξi |)}

≥ H1,1 − H1,2, (5.6)

where

H1,1 = P(z ≤ W ≤ z + |�|)
∑

1≤i≤n

Eηi,

H1,2 = E

∣∣∣∣ ∑
1≤i≤n

ηi − Eηi

∣∣∣∣, ηi = |ξi |min(δ, |ξi |).
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By (2.2), ∑
1≤i≤n

Eηi ≥ 1/2.

Hence

H1,1 ≥ (1/2)P (z ≤ W ≤ z + |�|). (5.7)

By the Cauchy–Schwarz inequality,

H1,2 ≤
(

E

( ∑
1≤i≤n

ηi − Eηi

)2)1/2

≤
( ∑

1≤i≤n

Eη2
i

)1/2

≤ δ. (5.8)

As to H2, it is easy to see that

|f�(w) − f�i
(w)| ≤ ||�| − |�i ||/2 ≤ |� − �i |/2.

Hence

|H2| ≤ (1/2)

n∑
i=1

E|ξi(� − �i)|. (5.9)

Combining (5.5), (5.7), (5.8) and (5.9) yields

P(z ≤ W ≤ z + |�|) ≤ 2

{
E|Wf�(W)| + δ + (1/2)

n∑
i=1

E|ξi(� − �i)|
}

≤ E|W�| + 2δE|W | + 2δ +
n∑

i=1

E|ξi(� − �i)|

≤ 4δ + E|W�| +
n∑

i=1

E|ξi(� − �i)|.

This proves (5.2). Similarly, one can prove (5.3) and hence Theorem 2.1. �

Proof of Theorem 2.2. First, we prove (2.9). For |z| ≤ 4, (2.9) holds by (2.5). For |z| > 4,
consider two cases.

Case 1:
∑n

i=1 E|gi(Xi)|p > 1/2. By the Rosenthal [20] inequality, we have

P
(|W | > (|z| − 2)/3

) ≤ P(|W | > |z|/6) ≤ (|z|/6)−pE|W |p

≤ C(|z| + 1)−p

{(
n∑

i=1

Eg2
i (Xi)

)p/2

+
n∑

i=1

E|gi(Xi)|p
}
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≤ C(|z| + 1)−p
n∑

i=1

E|gi(Xi)|p. (5.10)

Hence

|P(T ≤ z) − �(z)| ≤ P
(|�| > (|z| + 1)/3

) + P
(|W | > (|z| − 2)/3

) + P
(|N(0,1)| > |z|)

≤ P
(|�| > (|z| + 1)/3

) + C(|z| + 1)−p
n∑

i=1

E|gi(Xi)|p,

which shows that (2.9) holds.
Case 2:

∑n
i=1 E|gi(Xi)|p ≤ 1/2. Similar to (5.10), we have

P
(|W − gi(Xi)| > (|z| − 2)/3

) ≤ C(|z| + 1)−p

{(
n∑

j=1

Eg2
j (Xj )

)p/2

+
n∑

j=1

E|gj (Xj )|p
}

≤ C(|z| + 1)−p

and hence

γz ≤ P
(|�| > (|z| + 1)/3

) +
n∑

i=1

(
(|z| + 1)/3

)−pE|gi(Xi)|p +
n∑

i=1

C(|z| + 1)−pE|gi(Xi)|p

≤ P
(|�| > (|z| + 1)/3

) + C(|z| + 1)−p
n∑

i=1

E|gi(Xi)|p.

By Remark 2.1, we can choose

δ =
(

2(p − 2)p−2

(p − 1)p−1

n∑
i=1

E|gi(Xi)|p
)1/(p−2)

≤ 2(p − 2)p−2

(p − 1)p−1

n∑
i=1

E|gi(Xi)|p.

Combining the above inequalities with (2.6) and the non-uniform Berry–Esseen bound for inde-
pendent random variables yields (2.9).

Next we prove (2.6). The main idea of the proof is first to truncate gi(Xi) and then adopt the
proof of Theorem 2.1 to the truncated sum. Without loss of generality, assume z ≥ 0, because we
can simply apply the result to −T . By (5.1), it suffices to show that

P(z − |�| ≤ W ≤ z) ≤ γz + e−z/3τ (5.11)

and

P(z ≤ W ≤ z + |�|) ≤ γz + e−z/3τ. (5.12)
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Since the proof of (5.12) is similar to that of (5.11), we prove only (5.11). It is easy to see that

P(z − |�| ≤ W ≤ z) ≤ P
(|�| > (z + 1)/3

) + P
(
z − |�| ≤ W ≤ z, |�| ≤ (z + 1)/3

)
.

Now (5.11) follows directly by Lemmas 5.1 and 5.2 below. This completes the proof of Theo-
rem 2.2. �

Lemma 5.1. Let

ξi = gi(Xi), ξ̄i = ξiI (ξi ≤ 1), W̄ =
n∑

i=1

ξ̄i .

Then

P
(
z − |�| ≤ W ≤ z, |�| ≤ (z + 1)/3

)
≤ P

(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)
+

n∑
i=1

P
(
ξi > (z + 1)/3

) +
n∑

i=1

P
(
W − ξi > (z − 2)/3

)
P(|ξi | > 1). (5.13)

Proof. We have

P
(
z − |�| ≤ W ≤ z, |�| ≤ (z + 1)/3

)
≤ P

(
z − |�| ≤ W ≤ z, |�| ≤ (z + 1)/3, max

1≤i≤n
|ξi | ≤ 1

)

+ P

(
z − |�| ≤ W ≤ z, |�| ≤ (z + 1)/3, max

1≤i≤n
|ξi | > 1

)

≤ P
(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

) +
n∑

i=1

P
(
W > (2z − 1)/3, |ξi | > 1

)

and

n∑
i=1

P
(
W > (2z − 1)/3, |ξi | > 1

)

≤
n∑

i=1

P
(
ξi > (z + 1)/3

) +
n∑

i=1

P
(
W > (2z − 1)/3, ξi ≤ (z + 1)/3, |ξi | > 1

)

≤
n∑

i=1

P
(
ξi > (z + 1)/3

) +
n∑

i=1

P
(
W − ξi > (z − 2)/3, |ξi | > 1

)

=
n∑

i=1

P
(
ξi > (z + 1)/3

) +
n∑

i=1

P
(
W − ξi > (z − 2)/3

)
P(|ξi | > 1),
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as desired. �

Lemma 5.2. We have

P
(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

) ≤ e−z/3τ. (5.14)

Proof. Noting that Eξ̄i ≤ 0, that es ≤ 1 + s + s2(ea − 1 − a)a−2 for s ≤ a and a > 0 and that
aξ̄i ≤ a, we have for a > 0,

EeaW̄ =
n∏

i=1

Eeaξ̄i

≤
n∏

i=1

(
1 + aEξ̄i + (ea − 1 − a)Eξ̄2

i

)

≤ exp

(
(ea − 1 − a)

n∑
i=1

Eξ̄2
i

)

≤ exp

(
(ea − 1 − a)

n∑
i=1

Eξ2
i

)

= exp(ea − 1 − a). (5.15)

In particular, we have EeW̄/2 ≤ exp(e1/2 − 1.5). If δ ≥ 0.07, then

P
(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)
≤ P

(
W̄ > (2z − 1)/3

) ≤ e−z/3+1/6EeW̄/2

≤ e−z/3 exp(e0.5 − 4/3) ≤ 1.38e−z/3 ≤ 20δe−z/3.

This proves (5.14) when δ ≥ 0.07.
For δ < 0.07, let

f�(w) =
{0, for w ≤ z − |�| − δ,

ew/2(w − z + |�| + δ), for z − |�| − δ ≤ w ≤ z + δ,
ew/2(|�| + 2δ), for w > z + δ.

(5.16)

Put

M̄i(t) = ξi{I (−ξ̄i ≤ t ≤ 0) − I (0 < t ≤ −ξ̄i )}, M̄(t) =
n∑

i=1

M̄i(t).
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By (5.5) and similar to (5.6), we have

E{Wf�(W̄)} = E

{∫ ∞

−∞
f ′

�(W̄ + t)M̄(t)dt

}

+
n∑

i=1

E
{
ξi

(
f�(W̄ − ξ̄i ) − f�i

(W̄ − ξ̄i )
)}

:= G1 + G2. (5.17)

It follows from the fact that M̄(t) ≥ 0, f ′
�(w) ≥ ew/2 for z−|�|− δ ≤ w ≤ z+ δ and f ′

�(w) ≥ 0
for all w that

G1 ≥ E

{∫
|t |≤δ

f ′
�(W̄ + t)M̄(t)dt

}

≥ E

{
e(W̄−δ)/2I

(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)∫
|t |≤δ

M̄(t)dt

}

= E
{
e(W̄−δ)/2I

(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)}∫
|t |≤δ

EM̄(t)dt

+ E

{
e(W̄−δ)/2I

(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)∫
|t |≤δ

(
M̄(t) − EM̄(t)

)
dt

}

≥ G1,1 − G1,2, (5.18)

where

G1,1 = ez/3−1/6−0.035P
(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)∫
|t |≤δ

EM̄(t)dt,

G1,2 = E

{∫
|t |≤δ

eW̄/2|M̄(t) − EM̄(t)|dt

}
.

By (2.2) and the assumption that δ ≤ 0.07,

∫
|t |≤δ

EM̄(t)dt =
n∑

i=1

E|ξi |min(δ, |ξ̄i |)

=
n∑

i=1

E|ξi |min(δ, |ξi |) ≥ 1/2.

Hence

G1,1 ≥ (1/2)ez/3−1/6−0.035P
(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)
. (5.19)
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By (5.15), we have EeW̄ ≤ exp(e − 2) < 2.06. It follows from the Cauchy–Schwarz inequality
that

G1,2 ≤ 0.5
∫

|t |≤δ

(
0.5EeW̄ + 2E|M̄(t) − EM̄(t)|2)dt

≤ 0.5

{
2.06δ + 2

n∑
i=1

∫
|t |≤δ

Eξ2
i

(
I (−ξ̄i ≤ t ≤ 0) + I (0 < t ≤ −ξ̄i )

)
dt

}

= 0.5

{
2.06δ + 2

n∑
i=1

Eξ2
i min(δ, |ξ̄i |)

}

≤ 0.5

{
2.06δ + 2δ

n∑
i=1

Eξ2
i

}
≤ 2.03δ. (5.20)

With regard to G2, it is easy to see that

|f�(w) − f�i
(w)| ≤ ew/2

∣∣|�| − |�i |
∣∣ ≤ ew/2|� − �i |.

Hence, by the Hölder inequality, (5.15) and the assumption that ξi and W̄ − ξ̄i are independent,

|G2| ≤
n∑

i=1

E
∣∣ξie

(W̄−ξ̄i )/2(� − �i)
∣∣

≤
n∑

i=1

(Eξ2
i eW̄−ξ̄i )1/2(E(� − �i)

2)1/2

=
n∑

i=1

(Eξ2
i EeW̄−ξ̄i )1/2‖� − �i‖2

≤ 1.44
n∑

i=1

‖ξi‖2‖� − �i‖2. (5.21)

Following the proof of (5.15) and by using |es − 1| ≤ |s|(ea − 1)/a for s ≤ a and a > 0, we have

EW 2eW̄ =
n∑

i=1

Eξ2
i eξ̄i EeW̄−ξ̄i +

∑
1≤i �=j≤n

Eξi(e
ξ̄i − 1)Eξj (e

ξ̄j − 1)EeW̄−ξ̄i−ξ̄j

≤ 2.06e

n∑
i=1

Eξ2
i + 2.06(e − 1)2

∑
1≤i �=j≤n

Eξ2
i Eξ2

j

≤ 2.06e + 2.06(e − 1)2 < 3.422.
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Thus, we obtain

E{Wf�(W̄)} ≤ E|W |eW̄/2(|�| + 2δ)

≤ {‖�‖2 + 2δ}(E(W 2eW̄ )
)1/2

≤ 3.42(‖�‖2 + 2δ). (5.22)

Combining (5.17), (5.19), (5.20), (5.21) and (5.22) yields

P
(
z − |�| ≤ W̄ ≤ z, |�| ≤ (z + 1)/3

)
≤ 2e−z/3+1/6+0.035

{
3.42(‖�‖2 + 2δ) + 2.03δ + 1.44

n∑
i=1

‖ξi‖2 ‖� − �i‖2

}

≤ e−z/3

{
22δ + 8.5‖�‖2 + 3.6

n∑
i=1

‖ξi‖2‖� − �i‖2

}

= e−z/3τ.

This proves (5.14). �
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