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In this paper we characterize all the r-parameter families of count distributions (satisfying mild conditions)
that are closed under addition and under binomial subsampling. Surprisingly, few families satisfy both
properties and the resulting models consist of the rth-order univariate Hermite distributions. Among these,
we find the Poisson (r = 1) and the ordinary Hermite distributions (r = 2).
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1. Introduction

An important problem in data analysis is how to choose an adequate family of distributions or
statistical model to describe the values observed in any study. For this purpose the characteriza-
tion theorems can be useful because, under general reasonable suppositions related to the nature
of the experiment or the data, they allow us to reduce the possible set of distributions that can
be used. One of these reasonable assumptions is that the model is closed under addition, that is,
closed under convolutions. This means that the distribution of the sum of independent random
variables with distributions belonging to the model also belongs to the same model. The prop-
erty of closure under addition has widely been used to characterize families of distributions, the
papers of Teicher [16] and Godambe and Patil [4] being particularly noteworthy. Other proper-
ties that can be utilized in characterization theorems jointly with additivity involve assumptions
about the maximum likelihood estimators of the parameters. Puig [13] and Puig and Valero [14]
characterize count families of distributions using several notions of additivity and assuming that
the maximum likelihood estimator of the population mean is the sample mean.

In this paper we characterize count models using the additional notion of closure under
binomial subsampling or under independent p-thinning. This property, studied in Wiuf and
Stumpf [18], is properly defined in Section 2. The notion of binomial subsampling is quite nat-
ural in practice. Examples from mathematical biology can be found in Wiuf and Stumpf [18].
Roughly speaking, the property of closure under binomial subsampling means that if a count
experiment is governed by a model with this property, the same family of distributions can be
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used to fit the data sets independently of the degree of loss of information due to the subsampling
action.

From a result of Wiuf and Stumpf [18] one can directly establish the structure of the proba-
bility generating function of any count statistical model, with finite moments of all orders, that
is closed under binomial subsampling. Corollary 1 in Section 2 extends this result to the first r

finite moments. Proposition 2 in Section 2 establishes that these models are constituted by mixed
Poisson distributions and distributions of independent p-thinnings of random variables that do
not come from any particular variable by independent p-thinning. Following Thedéen [17], these
random variables that cannot be generated from an independent p-thinning of any random vari-
able will be called top inverses. In order to illustrate all these results, three examples are given in
Section 2.

The main result of this paper is stated in Theorem 1 in Section 3: all the r-parameter families
of count distributions (satisfying mild conditions) that are closed under addition and under bino-
mial subsampling are found. These are the r th-order univariate Hermite distributions of Milne
and Westcott [11]. The case r = 1 corresponds to the Poisson model, and r = 2 is the ordinary
Hermite family of distributions.

2. Count data models closed under binomial subsampling

We begin with a definition that can be found in Grandell [5], page 25.

Definition 1. Let X be a count random variable, let ξ1, ξ2, . . . be independent and identically
distributed Bernoulli variables with probability of success p, for some p ∈ (0,1], and let X be
independent of the ξi . The count random variable

Xp = ξ1 + ξ2 + · · · + ξX (Xp = 0 if X = 0)

is called an independent p-thinning of X.

The concept of p-thinning is widely used in point process theory, and it is also useful to
describe count random variables coming from practical scenarios where a certain loss of infor-
mation occurs. The random variable Xp can be understood as a binomial subsampling of X. For
instance, suppose that X is the random variable which counts the number of seeds falling in a
plot. Assume that each seed has the same probability p of germinating and becoming a plant,
and that for all seeds these actions are mutually independent and independent of the total number
of seeds. Then the number of plants in the plot is Xp , a binomial subsampling of the number of
seeds. The concept of p-thinning can be naturally generalized for multidimensional count ran-
dom variables by a componentwise action. For instance, given a bivariate count random variable
X = (Y,Z), an independent p-thinning (p = (r, s) ∈ (0,1]2) can be defined as Xp = (Yr ,Zs),
where Yr and Zs are independent r- and s-thinnings. It is interesting to remark that if ρ is the
correlation coefficient of the two components of X and ρp the correlation coefficient of the com-
ponents of its p-thinning, then ρ2

p ≤ ρ2, and equality holds in the trivial case when r = 1, s = 1.
Consequently, the p-thinning action diminishes the linear association of the components.
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Let �X(t) be the probability generating function (pgf) of a one-dimensional count random
variable X. Recall that any pgf is a real analytic function, at least in t ∈ (−1,1). Moreover, if X

has finite moments of all orders, then �X(t) is C∞ at t = 1 and �
(k)
X (1) = E(X(X − 1) · · · (X −

k + 1)) = µ(k), that is, its kth factorial moment. When X has finite moments of all orders, the
kth derivative of log(�X(t)) at t = 1 is known as the kth factorial cumulant of X, namely κ(k),
and they are also quantities of interest for our purposes.

The pgf of an independent p-thinning or binomial subsampling of X is (Grandell [5], page 25):

�Xp(t) = �X

(
1 − p(1 − t)

)
. (1)

The following lemma shows some elementary properties of an independent p-thinning that will
be useful later on. The lemma follows immediately from (1).

Lemma 1. Let X be a count random variable with finite moments of all orders, and let µ(k)

and κ(k) be its kth factorial moment and cumulant, respectively. Its population mean µ(1) = κ(1)

will be denoted by µ. Let µ∗
(k) or κ∗

(k) denote the kth factorial moment or cumulant for Xp ,

a binomial subsampling of X. Then µ∗
(k) = pkµ(k) and κ∗

(k) = pkκ(k). Moreover, the quantities

µ(k)/µ
k and κ(k)/µ

k are invariant under binomial subsampling, that is, µ(k)/µ
k = µ∗

(k)/(µ
∗)k

and κ(k)/µ
k = κ∗

(k)/(µ
∗)k for any binomial subsampling.

Using the notation ηi = κ(i+1)/µ
i+1 and the well-known relationships between the factorial

cumulants and the ordinary cumulants (for instance, see Appendix 7 of Douglas [1]) the expres-
sions below follow immediately:

η1 = σ 2 − µ

µ2
, η2 = κ3 − 3σ 2 + 2µ

µ3
, η3 = κ4 − 6κ3 + 11σ 2 − 6µ

µ4
, (2)

where σ 2, κ3 and κ4 denote the variance and the third and fourth cumulants, respectively. Using
the same technique we could find other quantities which are invariant under binomial subsam-
pling involving higher-order cumulants. However, the cumulants of order more than 4 are not
very useful from the statistical point of view.

Consider now a count statistical model, that is, a set of probability functions F of count ran-
dom variables indexed by the parameter θ ∈ � ⊆ R

k . Suppose that the model satisfies some
minimum regularity conditions with respect to the parameters, that is, the model can be identi-
fied by a continuous function from (0,1) × � ⊂ R

k+1 into R, namely �(t; θ), where, for each
fixed value of θ0 ∈ �, �(t; θ0) is a pgf. Moreover, we also assume that the parameter domain �

is the widest possible. That is, if �∗(t; θ) is any continuous function from (0,1) × �∗ ⊂ R
k+1

into R, � ⊂ �∗, such that �∗(t; θ) = �(t; θ) for all θ ∈ �, then for each θ0 ∈ �∗ \ �, �∗(t; θ0)

is not a pgf. The following definition, given in Wiuf and Stumpf [18], will be essential for our
purposes.

Definition 2. Let F be a count statistical model. It will be called closed under binomial subsam-
pling or under independent p-thinning if, for any random variable X with distribution belonging
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to the model, all its independent p-thinnings, for any p ∈ (0,1], have distributions that also
belong to the model.

The Poisson distribution, the most frequently used statistical model to analyse count data, is
closed under binomial subsampling. By way of explanation, for any Poisson random variable X,
any independent p-thinning is also a Poisson random variable. However, the zero truncated Pois-
son distribution is not closed under independent p-thinning for any p ∈ (0,1] except for the
trivial case p = 1. Following Thedéen [17], a random variable Y that is not an independent
p-thinning of any random variable is called a top inverse. It is obvious that Y is a top inverse if
its distribution has at least one zero-gap, that is, if there exists 0 ≤ k < n such that P(Y = k) = 0
while P(Y = n) > 0.

Models closed under binomial subsampling are very significant in practice. If a count experi-
ment is ruled by one of these models, it means that the same family of distributions can be used
to fit the data sets independently of the degree of the loss of information. The following result
describes their pgfs:

Proposition 1. Let F be a statistical model parameterized by the population mean µ and de-
scribed by the set of pgfs �(t;µ). Then it is closed under binomial subsampling if and only if
�(t;µ) = g(µ(t − 1)), for a certain real analytic function g(x) and � = (0,µM ], µM < ∞ or
� = (0,∞).

Proof. We first prove sufficiency. Let X be a random variable having a pgf of the form
g(µ0(t − 1)), where E(X) = µ0, µ0 ∈ �. Direct calculations from (1) show that the pgf of
any p-thinning of X is precisely g(pµ0(t − 1)). Consequently, pµ0 ∈ (0,µM ] and the model
is closed under binomial subsampling.

Turning to necessity, consider a fixed µ0 ∈ �̇ (here �̇ means the interior of �), where µ0 > 0
because it represents the population mean of a count random variable. Any 0 < µ < µ0 belongs
to � because F is closed under p-thinning and µ is the expectation of an independent p-thinning
(p = µ/µ0) of a random variable whose pgf is �(t;µ0). In terms of their pgfs, by (1) this is
equivalent to the identity

�(t;µ) = �

(
1 − µ

µ0
(1 − t);µ0

)
. (3)

We define gµ0(x) = �(1 + x/µ0;µ0), which is real analytic for |1 + x/µ0| < 1 or, equivalently,
for −2µ0 < x < 0. Then (3) can be rewritten as

�(t;µ) = gµ0

(
µ(t − 1)

)
,

and this is valid for any 0 < µ < µ0.
Consider now a fixed µ1 ∈ �̇, µ1 > µ0. Repeating the preceding argument, defining gµ1(x) =

�(1+x/µ1;µ1), we conclude that �(t;µ) = gµ1(µ(t −1)), for any 0 < µ < µ1. Consequently
gµ0(µ(t − 1)) = gµ1(µ(t − 1)), for 0 < µ < µ0. Since gµ0(x) and gµ1(x) are real analytic and
they overlap in the open set −2µ0 < x < 0, we obtain gµ0(x) = gµ1(x) = g(x) and therefore the
function g(·) does not depend on the initial values of µ0 or µ1. It follows directly that �(t;µ) =
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g(µ(t − 1)), for any µ ∈ �̇, and �̇ must be of the form (0,µM) where µM can be ∞. In order
to conclude that � = (0,µM ], it is enough to prove that if g(µ(t − 1)) is a pgf, for any 0 < µ <

µM < ∞, then g(µM(t − 1)) is also a pgf. This is immediate because g(x) is real analytic in
−2µM < x < 0. Then it can be expanded in a power series around −µM as

g(x) =
∞∑

k=0

g(k)(−µM)

k! (x + µM)k,

being convergent for −µM < x < 0. Making x = µM(t − 1), we obtain

g
(
µM(t − 1)

) =
∞∑

k=0

g(k)(−µM)

k! µk
Mtk,

which is real analytic for −2 < t < 1. On the other hand, we know that g(µ(t − 1)) =∑∞
k=0 g(k)(−µ)µktk/k! is a pgf for any 0 < µ < µM . Consequently,

∑∞
k=0 g(k)(−µ)µk/k! = 1

and g(k)(−µ)µk/k! ≥ 0 for k = 0,1,2, . . . , for any 0 < µ < µM . By continuity we conclude
that

∑∞
k=0 g(k)(−µM)µk

M/k! = 1 and g(k)(−µM)µk
M/k! ≥ 0 for k = 0,1,2, . . . , which com-

pletes the proof. �

The result of this proposition can easily be extended to count models with more than one pa-
rameter, such that their vector of parameters has the form θ = (µ, ξ1, ξ2, . . . , ξr ), where any ξi ,
i = 1, . . . , r , is invariant under independent p-thinning. These ξi could, for instance, be the quan-
tities µ(i)/µ

i or κ(i)/µ
i specified in Lemma 1 or the quantities in (2). This extension is specified

in the following corollary:

Corollary 1. Let F be a statistical model parameterized by θ = (µ, ξ) ∈ � ⊂ R
r , where µ is the

population mean and ξ = (ξ2, ξ3, . . . , ξr ) is invariant under binomial subsampling. Let �(t; θ)

be the set of pgfs that describes the model. Then it is closed under binomial subsampling if and
only if �(t; θ) = g(µ(t − 1), ξ), for certain real analytic functions g(x, ξ). Moreover, fixing
ξ = ξ0, the domain of µ is of the form (0,µξ0], µξ0 < ∞, or (0,∞).

Remark. Proposition 1 can also be proved by using Theorems 2.4 and 2.6 of Wiuf and Stumpf
[18]. Theorem 3.1 of these authors is equivalent to our Corollary 1 when it is assumed that the
distributions of the model have finite moments of all orders and these moments determine the
distribution. Notice that Corollary 1 is more general.

In order to have a better understanding of the structure of the models which are closed un-
der binomial subsampling, we state the following result that is an extension of Theorem 2.3 of
Grandell [5].

Proposition 2. Let F be a statistical model, closed under binomial subsampling, parameterized
by θ = (µ, ξ) ∈ � ⊂ R

r , where the parameter ξ is also invariant under independent p-thinning.
Consider a random variable X whose distribution belongs to F ; then it satisfies one of the
following two assertions:
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(i) X is mixed Poisson distributed.
(ii) X is an independent p-thinning of a random variable, say Y , whose distribution belongs

to F such that Y is a top inverse.

Proof. By Corollary 1, fixing ξ = ξ0, the domain of µ is of the form (0,∞) or (0,µξ0], µξ0 < ∞.
The two assertions depend on whether the right extreme of the domain of µ is included or not.
Let X be a random variable whose distribution belongs to F and E(X) = µ0:

(i) Consider that the domain of µ is of the form (0,∞). Then X can be obtained by indepen-
dent p-thinnings of random variables whose distributions belong to F , having parameter
θ ′ = (µ0/p, ξ0) for any p ∈ (0,1]. Then, by Theorem 2.3 of Grandell [5], X is mixed
Poisson distributed.

(ii) If the domain of µ is of the form (0,µξ0], µ0 < µξ0 , X is an independent p-thinning of
Y whose distribution has parameter (µξ0, ξ0), for p = µ0/µξ0 . Notice that Y is not an
independent p-thinning of any random variable in F except itself. Moreover, this is not
an independent p-thinning of any random variable because, as the domain � is the widest
possible, such a random variable would belong to F .

�

What distributions characterize the class of top inverse random variables? The existence of
a zero gap is a sufficient but not a necessary condition for a random variable Y to be a top
inverse. However, if the distribution of Y has compact support this condition is also necessary
(Corollary 3.1 in Thedéen [17]). Example 3 below shows how to construct top inverses without
zero-gaps. As a referee has pointed out, further research on characterizations of the class of top
inverses would be very interesting. Yannaros [19] has some results related to inverses of thinned
renewal processes.

We conclude this section with some examples of models closed under binomial subsampling
and show how Propositions 1 and 2 and Corollary 1 can be used.

Example 1. This example constitutes an interesting application of Corollary 1. Consider the
Hermite distribution introduced by Kemp and Kemp [7,8]. A convenient parametrization is by
means of its population mean and variance. Its pgf has the form

�(t;µ,σ 2) = exp

{
σ 2 − µ

2
(t2 − 1) + (2µ − σ 2)(t − 1)

}
.

The domain of parameters is � = {(µ,σ 2) :µ > 0,µ ≤ σ 2 ≤ 2µ}. Changing the parameters to
(µ,η1) by using (2), we obtain

�(t;µ,η1) = exp

{
µ2η1

2
(t − 1)2 + µ(t − 1)

}
,

where the domain of parameters is now �′ = {(µ,η1) :η1 ≥ 0,0 < µ ≤ 1/η1}. Notice that
�(t;µ,η1) = g(µ(t − 1), η1), where g(x;η1) = exp(η1x

2/2 + x). Consequently the Hermite
family is closed under binomial subsampling. It is known that the Hermite distribution is not a
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mixed Poisson model (Kemp and Kemp [7]). It can easily be shown that any Hermite random
variable with fixed µ0 and η10 can be obtained by independent p-thinning from another random
variable with pgf

�∗(t) = exp

{
1

2η1
(t2 − 1)

}
with p = µη1. This pgf corresponds to a random variable of the form 2X, where X is Poisson
distributed, and this is a top inverse random variable because P(2X = k) = 0 for k = 1,3,5, . . . .

It is in concordance with Proposition 2.

Example 2. Consider now the negative binomial family of distributions parameterized by its
population mean and variance. Its pgf has the form

�(t;µ,σ 2) = exp

(
−µ2 log(1 − (σ 2/µ − 1)(t − 1))

σ 2 − µ

)
.

The domain of parameters is � = {(µ,σ 2) :µ > 0,µ ≤ σ 2}. Changing the parameters to (µ,η1)

as in Example 1, we obtain

�(t;µ,η1) = (
1 − µη1(t − 1)

)−1/η1,

where the domain of parameters is now �′ = {(µ,η1) :µ > 0, η1 ≥ 0}. Notice that �(t;µ,η1) =
g(µ(t − 1), η1), where g(x;η1) = (1 − η1x)−1/η1 . Corollary 1 again shows that the negative
binomial family of distributions is closed under binomial subsampling.

This family is a mixed Poisson model. Notice that any negative binomial random variable with
parameters (µ0, η10) is an independent p-thinning of a negative binomial random variable with
parameters (µ0/p,η10), for any p ∈ (0,1].

Example 3. Consider a count random variable X such that pk = P(X = k) > 0 for k =
0,1,2, . . . and p2k+1/p2k (or p2k/p2k−1) tends to infinity when k → ∞. Our aim is to prove
that X is a top inverse. Suppose that there exist a random variable Y such that X can be ob-
tained as an independent p-thinning of Y ; we will arrive at a contradiction. According to (1),
the pgf of Y is �Y (t) = �X(1 + (t − 1)/p). Consequently, the probabilities p∗

k = P(Y = k),
k = 0,1,2, . . . , satisfy

p∗
k = k!�(k)

Y (0) = k!
pk

�
(k)
X

(
1 − 1

p

)
= 1

pk

∞∑
i=0

(
i + k

k

)(
1 − 1

p

)i

pk+i .

Adding each pair of consecutive terms, we arrive at the expression

p∗
k = (1 + ε)k

∞∑
i=0

(
2i + k

k

)
ε2ip2i+k

(
1 − ε

2i + k + 1

2i + 1

p2i+k+1

p2i+k

)
,

where ε = −1 + 1/p. Therefore, for any ε > 0, there exists a r such that, for all i ≥ 0,
p2i+r+1/p2i+r > 1/ε. Consequently p∗

r < 0, which is a contradiction.
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Now many examples of top inverses without zero gaps can be constructed by alternating
two series of positive terms. For instance, this is the case for the top inverse random vari-
able X defined by the probability function p2k = c(1/3)k , p2k+1 = c(1/2)k , k = 0,1,2, . . . ,

where c = 2/7 is the normalizing constant. Its pgf is �X(t) = 6/(21 − 7t2) + 4t/(14 − 7t2).
According to (1), the statistical model constructed by binomial subsampling of X is described
by the pgfs �(t;p) = 6/(21 − 7(1 − p(1 − t))2) + 4(1 − p(1 − t))/(14 − 7(1 − p(1 − t))2),
where p ∈ (0,1]. It is immediately evident that the population mean is µ = 15p/7 and, conse-
quently, the model parametrized by µ is described by the pgfs �(t;µ) = g(µ(t − 1)), where
g(x) = (900 + 420x)/(3150 − 7(15 + 7x)2)+ 1350/(4725 − 7(15 + 7x)2). Proposition 1 shows
that this model is closed under binomial subsampling. Notice that the domain of parameters is
µ ∈ (0,15/7] and cannot be extended. This is again in concordance with Proposition 2.

3. Characterization

In many applications it is reasonable to use count models which have the property of conservation
under addition of independent effects, that is, their distributions are closed under convolutions.

Definition 3. Let F be a statistical model. It is said to be closed under addition if, for any two
independent random variables X, Y with distributions belonging to F , the distribution of X + Y

also belongs to F .

For instance, this property is satisfied by the Poisson model or by the Hermite family of dis-
tributions (see Puig [13]). A quite natural parameterization of a model closed under addition is
by means of its cumulants. This is due to the fact that the ith cumulant of the sum of two in-
dependent random variables is the sum of the corresponding ith cumulants. It also occurs with
factorial cumulants, which therefore provide another reasonable parameterization of a model
closed under addition which is convenient for our purposes. The following proposition can be
proved immediately using a methodology similar to that of Teicher [16] concerning the structure
of the characteristic function of a model closed under addition.

Proposition 3. Let F be a count statistical model parameterized by its r first factorial cumu-
lants θ = (κ(1), κ(2), . . . , κ(r)), with a pgf continuous in θ ∈ � ⊂ R

r . The model is closed under
addition if and only if its pgf can be expressed as

�(t; θ) = exp

{
r∑

i=1

αi(t)κ(i)

}
, (4)

where αi(t) are functions not depending on the parameters.

Proof. It can immediately be seen that the form of the pgf (4) implies that the model is closed
under addition.

Suppose now that the model is closed under addition. This means that, for any pair of values
θ1, θ2 ∈ �, we have

�(t; θ1 + θ2) = �(t; θ1)�(t; θ2).
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Taking logarithms and fixing t , we obtain

f (θ1 + θ2) = f (θ1) + f (θ2), (5)

where f (θ) = log(�(t; θ)). But (5) is the multidimensional Cauchy functional equation. It is
known that its solution has the form, f (θ) = ∑r

i=1 αiθi , where the αi do not depend on θ .
However, they can depend on t , and this leads to the solution log(�(t; θ)) = ∑r

i=1 αi(t)θi , thus
concluding the proof. �

Proposition 1 and Corollary 1, together with Proposition 3, allow us to find all the count sta-
tistical models satisfying mild conditions, such that they are closed under addition and binomial
subsampling. Surprisingly there do not exist many types of models satisfying both properties.

Theorem 1. Let F be a count statistical model parameterized by its r first factorial cumulants
θ = (κ(1), κ(2), . . . , κ(r)). Assume that the model has a pgf continuous in θ ∈ � ⊂ R

r . The model
is closed under addition and under binomial subsampling if and only if it has a pgf of the form

�(t; θ) = exp

{
r∑

i=1

κ(i)

i! (t − 1)i

}
. (6)

Proof. We first prove sufficiency. The form of the pgf (6) implies, by Proposition 3, that the
model is closed under addition. Notice that this pgf can also be reparameterized as

�(t;µ,ξ) = exp

{
µ(t − 1) +

r∑
i=2

ξiµ
i (t − 1)i

i!

}
,

where ξ = (ξ2, . . . , ξr ) and ξi = κ(i)/µ
i . Then the pgf can be written as �(t;µ,ξ) =

g(µ(t − 1); ξ), where g(x; ξ) = exp(x + ∑r
i=2 ξix

i/i!). Using Corollary 1, we conclude that
the model is closed under binomial subsampling.

Turning to necessity, suppose that the model is closed under addition and under binomial
subsampling. Again using the parameterization (µ, ξ), where ξi = κ(i)/µ

i , by Proposition 3 and
Corollary 1 we obtain the identity

exp

{
α1(t)µ +

r∑
i=2

αi(t)µ
iξi

}
= g

(
µ(t − 1); ξ)

.

Fixing ξ = ξ0 and t = t0 and taking x = µ(t0 − 1), we obtain

log(g(x; ξ0)) = α1(t0)

t0 − 1
x +

r∑
i=2

αi(t0)

(t0 − 1)i
ξ0i

xi ,

that is, a polynomial of degree r in x. Since it must not depend on the choice of t0, we obtain
that the functions αi(t) in (4) have the form αi(t) = ci(t − 1)i , for i = 1, . . . , r , where the ci are
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constants. But these constants are ci = 1/i!, because the Taylor series coefficients of log(�(t; θ))

at t = 1 must be exactly κ(i)/i!, i = 1, . . . , r . This concludes the proof. �

The preceding theorem shows that, under mild conditions, the only statistical model closed un-
der addition and under binomial subsampling, such that it can be parameterized by its population
mean (r = 1), is the Poisson model.

Kemp and Kemp [8] present an elementary proof showing that the only count distribution such
that its pgf has the form (6), having a second-degree polynomial in the exponent, is the Hermite
distribution. Consequently, the two-parameter case (r = 2) described by Theorem 1 corresponds
to the Hermite family of distributions.

Notice that the polynomial of degree r that appears in the exponent of (6) can always be
expressed as

∑r
i=1 ai(t

i − 1). This leads to an alternative parameterization that allows us to
represent the pgf of the count models characterized by Theorem 1 in the form

�(t;a) = exp

{
r∑

i=1

ai(t
i − 1)

}
. (7)

This representation is interesting because, if the ai are non-negative, any count random variable
with a pgf as in (7) can be understood as a linear combination of independent Poisson random
variables (Feller [2], pages 291–292). Specifically, it can easily be shown that any count ran-
dom variable X = ∑r

i=1 iXi , where Xi are independent Poissons with mean ai , has a pgf of the
form (7). However, it is possible for �(t;a) to be a pgf even when some of the ai in (7) are neg-
ative, but in this case these pgfs are not infinitely divisible (see Lévy [9]; Lukacs [10], page 251;
Milne and Westcott [11]).

Milne and Westcott [11] designate these distributions as generalized Hermite or r th-order
univariate Hermite. We prefer the second name because of Gupta and Jain’s [6] use of the name
‘generalized Hermite distribution’, related to the specific case in (7) where only a1 and ar are
non-zero.

3.1. The rth-order univariate Hermite distribution

Let X be a count random variable with a pgf as in (7). Consider its probabilities, pk = P(X = k),
k = 0,1, . . . . Notice that �(t;a) = ∑∞

k=0 pkt
k = exp{∑r

i=1 ai(t
i − 1)}. Then, taking logarithms

and differentiating with respect to t , we obtain the identity

p1 + 2p2t + 3p3t
2 + · · · = (p0 + p1t + p2t

2 + · · ·)
r∑

i=1

iai t
i−1.

Equating the terms with the same degree in t in both parts of the identity, we obtain the following
lemma:

Lemma 2. Let X be a count random variable with a pgf as in (7). Then its probabilities can
be calculated from the recurrence relation pk = (

∑r
i=1 ipk−iai)/k, k = 1,2, . . . , with p0 =

exp{−∑r
i=1 ai} and p−1 = p−2 = · · · = p1−r = 0.
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For the case r = 2 (Hermite distribution), this particular recurrence relation was found by
Kemp and Kemp [7]. Notice that Lemma 2 is a version of the Panjer recursion formula (Pan-
jer [12]).

The parameterization in terms of the ai is particularly worthwhile in order to calculate the
probabilities. Moreover, it can be easily shown that the cumulants can be directly calculated
from the ai by means of the expression, κs = ∑r

i=1 isai . When all the ai are non-zero, it is
known (see Remark 1 in Milne and Westcott [11]) that if at least a1, ar−1 and ar are non-zero,
then a1 > 0, ar−1 > 0 and ar > 0 are necessary conditions for (7) to be a pgf. Consequently,
the full domain of parameters for r = 2 and r = 3 does not include negative values for any ai

but, for r ≥ 4, some of these coefficients could be negative. The domain of the parameters that
will be considered subsequently for practical applications is � = {a = (a1, . . . , ar ) :ai ≥ 0}. This
ensures that the distributions are infinitely divisible. Moreover, when all the ai are non-negative,
it can easily be checked that the distribution is overdispersed, that is, the variance of the count
variable exceeds its mean. Consequently, these models can be used in practice to analyse data
sets when we encounter the phenomenon of overdispersion.

In order to choose the appropriate order r of the model, a hierarchical approach based on the
likelihood ratio test can be used. In our context this means testing the hypothesis H0 :ar = 0. It
is important to take into account that, under the null hypothesis, the likelihood ratio test statistic
does not have an asymptotic χ2

1 distribution as usually happens, because ar = 0 belongs to the
boundary of the domain of parameters. It can be established that in this situation the asymptotic
distribution of the likelihood ratio test statistic is a 50:50 mixture of the constant zero and the χ2

1
distribution (Self and Liang [15]; Geyer [3]). The α upper tail percentage points for this mixture
are the same as the 2α upper tail percentage points for a χ2

1 distribution.
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