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We propose to approximate the conditional expectation of a spatial random variable given its nearest-
neighbour observations by an additive function. The setting is meaningful in practice and requires no uni-
lateral ordering. It is capable of catching nonlinear features in spatial data and exploring local dependence
structures. Our approach is different from both Markov field methods and disjunctive kriging. The asymp-
totic properties of the additive estimators have been established for α-mixing spatial processes by extending
the theory of the backfitting procedure to the spatial case. This facilitates the confidence intervals for the
component functions, although the asymptotic biases have to be estimated via (wild) bootstrap. Simulation
results are reported. Applications to real data illustrate that the improvement in describing the data over the
auto-normal scheme is significant when nonlinearity or non-Gaussianity is pronounced.
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1. Introduction

Markov random fields and kriging are two important tools for investigating continuous spatial
data. The former, including the auto-normal scheme of Besag [1] and the framework for ex-
ponential distribution families of Cressie ([5], Chapters 6 and 7), is for data on a lattice (or a
graph). The latter is for irregularly positioned data; see Rivoirard [23] and Chiles and Delfiner
([4], Chapter 6). They both rely on parametric assumptions on the underlying processes. In con-
trast, nonparametric techniques have only found limited use in spatial modelling. This is largely
due to the difficulties associated with the ‘curse of dimensionality’. For example, a purely non-
parametric estimation of the conditional mean at one location, given its (regularly spaced) four
nearest-neighbour observations, involves four-dimensional smoothing. Although semiparamet-
ric and nonparametric autoregressive models with additive noise have proved to be successful
in modelling time series, such a structure has not been available for spatial processes simply
because there exists no natural unilateral order over a plane. On the other hand, the Markov as-
sumption is more restrictive for spatial processes; for instance, a conditional Gaussian Markov
model essentially implies linearity (Gao et al. [10]).
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In this paper, we propose to approximate the conditional expectation of Y(s), the value of a
spatial process at location s, given its d nearest-neighbour observations, by an additive function,
and we estimate this additive approximation by adapting the backfitting algorithm of Mammen
et al. [15] which involves up to two-dimensional smoothing only, regardless of the value of d .
Our approach is linked to a lattice setting. Note that data on a regular grid and measured on
a continuous scale are becoming more and more common with the increasing use of computer
technology. We refer to Section 5 for some tentative ideas on extending the approach to handle
irregularly spaced data.

Our additive approximation may be viewed as a projection of the conditional expectation into
the Hilbert space spanned by additive functions. In fact the projection principle itself does not
require a lattice framework. In the context of spatial modelling, it has been used in the form
of disjunctive kriging (Matheron [18,19]; Rivoirard [23]; Chiles and Delfiner [4], Chapter 6).
Disjunctive kriging projects Y(s) into an additive space spanned by Y(si ) for all si �= s. Very
often what is of interest is a functional of Y(s) rather than Y(s) itself. Nevertheless the projec-
tion principle still applies with Y(s) replaced by f (Y (s)) for some function f . For non-regularly
spaced sites it is difficult to use nonparametric estimation because of the lack of repeatability of
the spatial pattern of neighbours as one moves from one site to another. Instead, disjunctive krig-
ing introduces parametric assumptions on the bivariate distributions for all pairs (Y (si ), Y (sj )),
which then, building on appropriate isofactorial models, implies a parametric form for the pro-
jection of interest; see Chiles and Delfiner ([4], Chapter 6) and Rivoirard [23].

Our approach is nonparametric and pragmatic; we do not impose any explicit form on the un-
derlying process. Instead we seek the best additive approximation to the unknown conditional ex-
pectation, which itself may not be additive. This enables us to describe local spatial dependence
structure with a potential application to texture analysis. For example, the nonlinear structure
demonstrated in the additive approximation for the straw data in Section 4.2 is beyond the ca-
pacity of an auto-normal fitting and would be difficult to describe using disjunctive kriging. Our
approach also provides a vehicle for testing isotropy and/or linearity; see the bootstrap test in
Example 2 in Section 4.1. This may serve as a guide for choosing a parametric model. Of course,
those advantages come at some cost. For example, abandoning the Markov framework implies
that Markov chain Monte Carlo and other important analytical tools are not at our disposal. This
may be a severe obstacle when dealing with non-stationary spatial processes.

Another way of circumventing the curse of dimensionality is to use semiparametric (partially
linear) additive approximation if some components are found to be linear; this is explored by
Gao et al. [10] with the marginal integration technique (Linton and Nielsen [14]; Newey [20];
Tjøstheim and Auestad [24]). The marginal integration method is less efficient in practice than
back-fitting when d is large, in spite of its good asymptotic properties (Fan et al. [9]). Both
methods require density estimation. It should be noted that nonparametric density estimation for
spatial processes can be traced back at least to Diggle [7] and Diggle and Marron [8]. For more
recent developments, see Carbon et al. [3], Hallin et al. [11–13] and Yao [26].

The rest of the paper is organized as follows. The methodology is laid out in Section 2. As-
ymptotic properties are stated in Section 3. The asymptotic distributions of the estimators are
used to construct pointwise confidence intervals for component functions in the additive approx-
imation, although the asymptotic biases are estimated via wild bootstrap. Numerical illustrations
with both simulated and real data sets are reported in Section 4. A brief discussion on possible
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extension to handling irregularly spaced data is presented in Section 5. All technical proofs are
relegated to the Appendix.

2. Methodology

2.1. Least-squares additive approximation

Suppose {Y(s)} is a strictly stationary process defined on a two-dimensional lattice, that is, s ≡
(u, v) ∈ Z

2, where Z denotes the set consisting of all integers. Let i1, . . . , id be d fixed neighbour
points of (0,0) in Z

2, and x = (x1, . . . , xd)� ∈ R
d . It is of interest to approximate the conditional

expectation

m(x) ≡ E{Y(s)|Y(s − i�) = x�, � = 1, . . . , d} (2.1)

by an additive form

m0 + m1(x1) + · · · + md(xd). (2.2)

We seek the optimal approximation in a least-squares sense; see (2.4) below. To make the terms
in (2.2) identifiable, we require

∫
mj(y)f0(y)dy = 0, j = 1, . . . , d , where f0(·) denotes the

marginal density function of Y(s). If m(·) itself is of the form (2.2), it is easy to see that

mj(xj ) = E{Y(s)|Y(s − ij ) = xj } − m0 −
∑

1≤�≤d

� �=j

E[m�{Y(s − i�)}|Y(s − ij ) = xj ]. (2.3)

In general, we obtain an optimum additive approximation by minimizing

E

[
Y(s) − m0 −

d∑
�=1

m�{Y(s − i�)}
]2

, (2.4)

or equivalently,

E

[
m{X(s)} − m0 −

d∑
�=1

m�{Y(s − i�)}
]2

, (2.5)

over m0 +∑d
�=1 m�(·) ∈Fadd, where X(s) = {Y(s − i1), . . . , Y (s − id)}� and

Fadd =
{

m0 +
d∑

�=1

m�(x�)

∣∣∣∣m0 ∈ R,

∫
m�(y)f0(y)dy = 0 for 1 ≤ � ≤ d

}
. (2.6)

2.2. Estimators

We now spell out how to estimate the best additive approximation for the conditional expecta-
tion (2.1). To simplify notation, we assume that observations {(Y (s�),X(s�)),1 ≤ � ≤ N} are
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available. Furthermore, we assume that those data are taken from a rectangle in Z
2, for exam-

ple,

{s1, . . . , sN } = {(u, v) :u = 1, . . . ,N1, v = 1, . . . ,N2}, (2.7)

where N1N2 = N . Other sampling schemes are possible; see the remark at the end of Section 3.1
below.

In practice we replace (2.5) by

∫ {
m̂(x) − m0 −

d∑
�=1

m�(x�)

}2

f̂ (x)dx, (2.8)

where x = (x1, . . . , xd)�, and

f̂ (x) = 1

N

N∑
�=1

Kh{x − X(s�)}, Kh(x) =
d∏

j=1

Kh(xj ),

m̂(x) = r̂(x)

f̂ (x)
, r̂(x) = 1

N

N∑
�=1

Y(s�)Kh{x − X(s�)}. (2.9)

In the above expression, Kh(x) = h−1K(x/h), K(·) is a density function on R, and h > 0 is the
bandwidth. We also define

f̂j (xj ) = 1

N

N∑
�=1

Kh{xj − Y(s� − ij )}, m̂j (xj ) = 1

Nf̂j (xj )

N∑
�=1

Y(s�)Kh{xj − Y(s� − ij )},

f̂jk(xj , xk) = 1

N

N∑
�=1

Kh{xj − Y(s� − ij )}Kh{xk − Y(s� − ik)}.

Note that f̂j and f̂jk are the marginal density functions from the joint density f̂ .
Let {m̃l} ∈ F̂add be a minimizer of (2.8), where

F̂add =
{

m0 +
d∑

�=1

m�(x�)

∣∣∣∣m0 ∈ R,

∫
m�(y)f̂�(y)dy = 0 for 1 ≤ � ≤ d

}
.

Then the least-squares property implies that

∫ {
m̂(x) − m̃0 −

d∑
�=1

m̃�(x�)

}
{m̃j (xj ) − mj(xj )}f̂ (x)dx = 0

for any mj(·), j = 0,1, . . . , d . (We write m0(·) ≡ m0.)
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This leads to

m̃0 =
∫ {

m̂(x) −
d∑

�=1

m̃�(x�)

}
f̂ (x)dx =

∫
m̂(x)f̂ (x)dx = 1

N

N∑
�=1

Y(s�) ≡ Ȳ , (2.10)

and for j = 1, . . . , d ,

m̃j (xj ) = m̂j (xj ) − m̃0 −
∑
� �=j

∫
m̃�(x�)

f̂j�(xj , x�)

f̂j (xj )
dx�. (2.11)

We always follow the convention that x/y equals 0 if y = 0. It is easy to see that (2.11) intimately
resembles (2.3). It also naturally leads to the following backfitting algorithm: in the j th step of
the r th iteration cycle we define

m̃
(r)
j (xj ) = m̂j (xj ) − Ȳ −

∑
�<j

∫
m̃

(r)
� (x�)

f̂j�(xj , x�)

f̂j (xj )
dx�

−
∑
�>j

∫
m̃

(r−1)
� (x�)

f̂j�(xj , x�)

f̂j (xj )
dx�. (2.12)

We choose Nadaraya–Watson (i.e. local constant) estimation to keep our exposition as simple
as possible. For general discussion of smoothing backfitting algorithms, including the one based
on more efficient local linear estimation, we refer to Mammen et al. [15] and Nielsen and Sper-
lich [21]. More recently, Mammen and Park [17] showed that if in (2.12) m̂j is replaced by a
marginal local linear estimator, and f̂j�/f̂j is replaced by a more sophisticated functional con-
structed using a convolution kernel, the resulting backfitting method is asymptotically as efficient
as the one based on local linear estimation.

Finally, we remark that the minimizer of (2.8) is the same as the minimizer of

1

N

∫ N∑
j=1

{
Y(sj ) − m0 −

d∑
�=1

m�(x�)

}2

Kh{x − X(sj )}dx.

This lends support to the use of a simple leave-one-out cross-validation bandwidth estimator:

ĥ = arg min
h

N∑
j=1

[
Y(sj ) − m̃0,−j −

d∑
�=1

m̃�,−j {Y(sj − i�)}
]2

, (2.13)

where m̃�,−j is the backfitting estimator of m� without the j th observation (Y (sj ),X(sj )).
Nielsen and Sperlich [21] proposed some modifications to make this bandwidth selector com-
putationally more efficient. Three other data-driven bandwidth selectors for additive modelling
based on backfitting were proposed in Mammen and Park [16].
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3. Asymptotic properties

3.1. Regularity conditions

In order to present asymptotic results, we define the α-mixing coefficients for spatial processes
first. For any A ⊂ Z

2, let F(A) denote the σ -algebra generated by {(X(s), Y (s)), s ∈ A}. We
write |A| for the number of elements in A. For any A,B ⊂ Z

2, define

α(A,B) = sup
U∈F(A),V ∈F(B)

|P(UV ) − P(U)P (V )|,

and d(A,B) = min{‖s1 − s2‖|s1 ∈ A, s2 ∈ B}, where ‖ · ‖ denotes the Euclidean norm. We may
define an α-mixing coefficient for the process {(X(s), Y (s))} as

α(k; i, j) = sup
A,B⊂Z2

{α(A,B) | |A| ≤ i, |B| ≤ j, d(A,B) ≥ k}, (3.1)

where i, j, k are positive integers and i, j may be infinite. For further discussions on the mixing
for spatial processes, we refer to Section 1.3.1 of Doukhan [6] and Section 2.1 of Yao [26] and
references within.

Let C denote some positive generic constant which may be different at different places. The
following regularity conditions are imposed.

(C1) The density functions f of Y(s) and fjk of {Y(s − ij ), Y (s − ik)} have continuous
second derivatives, and are bounded from above by a constant independent of ij − ik .
The conditional expectation mj(·) has continuous first derivative. The density functions
of X(s) conditional on Y(s), and {X(i),X(s)} conditional on {Y(i), Y (s)} are bounded
from above. Furthermore, for some λ > 0 and N−λ+3/2h−1/2 → 0,

E{exp(λ|Y(s)|)} < ∞. (3.2)

(C2) The kernel function K(·) is symmetric, compactly supported and Lipschitz continuous.
(C3) As N = N1N2 → ∞, N1/N2 converges to a positive and finite constant, the bandwidth

h → 0 and

Nβ−5hβ+5(logN)−(3β+7) → ∞, (3.3)

where β > 5 is a constant.
(C4) α(k; k′,∞) ≤ Ck−β for any k and k′ = O(k2). Furthermore,

∑∞
k=1 kd−1α(k; j, �) < ∞

for some j +� ≤ 4, α(k;1,∞) = o(k−d) and
∑∞

k=1 kd−1α(k;1,1)(δ−2)/δ < ∞ for some
δ > 2.

Conditions (C1)–(C2) are standard in kernel estimation. Both the assumption of the existence of
the moment generating function of |Y(s)| and (3.3), which imply the optimum uniform conver-
gence rates (A.1) and (A.2), can be relaxed at the cost of lengthy arguments. On the other hand,
for causal and invertible (under the half-plane order) spatial ARMA processes satisfying some
mild conditions, α(k; k′,∞) decays at an exponential rate as k → ∞ (Remark 2.1 of Yao [26]).
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Therefore, condition (C4) is fulfilled. For optimum bandwidth h = O(N−1/5), (3.3) is fulfilled
for β > 7.5. Condition (C3) requires two sides of the sampling rectangle to increase to infinity.
In fact this assumption can be relaxed. For example, our theoretical results will still hold if the
observations were taken over a connected region in Z

2, and the ratio of the minimal side length
of the squares containing the region to the maximal side length of the squares contained in the
region converges to a constant in the interval (0,∞). For a general discussion on the condition
of sampling sets, we refer to Perera [22].

3.2. Convergence of backfitting

Backfitting techniques have proved effective in handling complex model fitting. However, its
convergence is typically difficult to handle. We apply Theorem 1 of Mammen et al. [15] to show
that a modified version of backfitting (2.12) converges. The modification is in line with Section 5
of Mammen et al. [15] in order to fulfil certain regularity conditions which simplify technical
arguments substantially.

Let A ⊂ R
d be a compact set on which the density function f1,...,d (·) of X(s) is positive.

Define

p(x) ≡ p1,...,d (x) = f1,...,d (x)I (x ∈ A)

P {X(s) ∈ A} .

Then p(·) is a density function on R
d . As an illustration, Mammen et al. [15] chose A = [0,1]d .

Since the components of X(s) are dependent, sets of cylinder type are not always relevant. (For
example, the support of (Xt ,Xt−1) for linear AR(1) time series would be around a line seg-
ment with non-zero slope.) Denote by pj (xj ) and pjk(xj , xk) respectively the j th univariate and
the (j, k)th bivariate marginal density functions of p(x). We require the following consistency
condition on the set A.

(C5) There exist compact sets Aj ⊂ {f (xj ) > 0} and Ajk ⊂ {fjk(xj , xk) > 0} such that for
1 ≤ j, k ≤ d and j �= k,

pj (xj ) = f (xj )I (xj ∈ Aj)

P {Y(s) ∈ Aj } , pjk(xj , xk) = fjk(xj , xk)I {(xj , xk) ∈ Ajk}
P [{Y(s − ij ), Y (s − ik)} ∈ Ajk] .

Due to stationarity, a relevant set A often exhibits certain symmetries. For example, we may
observe Ai = Aj and pi(·) = pj (·) for all i and j .

Differently from Section 5 of Mammen et al. [15], we define estimators for pj and pjk as
follows:

p̂j (xj ) = I (xj ∈ Aj)

∑N
�=1 Kh{xj − Y(s� − ij )}∑N
�=1 I {Y(s� − ij ) ∈ Aj }

, (3.4)

p̂jk(xj , xk) = I {(xj , xk) ∈ Ajk}
∑N

�=1 Kh{xj − Y(s� − ij )}Kh{xk − Y(s� − ik)}∑N
�=1 I [{Y(s� − ij ), Y (s� − ik)} ∈ Ajk]

. (3.5)

Obviously p̂j and p̂jk are consistent estimators for pj and pjk , respectively. Note that K(·) is
compactly supported. For xj ∈ Aj , Kh{xj −Y(s� − ij )} may be non-zero for sufficiently large N
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only if Y(s� − ij ) ∈ A′
j , where A′

j is a compact set sandwiched between Aj and {f (xj ) > 0}.
Therefore, similarly to Mammen et al. [15], we effectively only use the observations in a compact
set when estimating p̂j . It is possible now that

∫
p̂jk(xj , xk)dxk �= p̂j (xj ). Similarly to Mammen

et al. [15], we modify the backfitting procedure (2.11) and (2.12) accordingly:

m̃j (xj ) = m̂j (xj ) − m̃0,j −
∑
� �=j

∫
m̃�(x�)

{
p̂j�(xj , x�)

p̂j (xj )
−

∫
p̂j�(u, x�)du∫

p̂j (u)du

}
dx�, (3.6)

m̃
(r)
j (xj ) = m̂j (xj ) − m̃0,j −

∑
�<j

∫
m̃

(r)
� (x�)

{
p̂j�(xj , x�)

p̂j (xj )
−

∫
p̂j�(u, x�)du∫

p̂j (u)du

}
dx�

+
∑
�>j

∫
m̃

(r−1)
� (x�)

{
p̂j�(xj , x�)

p̂j (xj )
−

∫
p̂j�(u, x�)du∫

p̂j (u)du

}
dx�, (3.7)

where m̃0,j = ∫
m̂j (x)p̂j (x)dx/

∫
p̂j (y)dy. Note that, for xj ∈ Aj , m̂j (xj ) defined in (2.9) may

be written as

m̂j (xj ) = I (xj ∈ Aj)

∑N
�=1 Y(s�)Kh{xj − Y(s� − ij )}

p̂j (xj )
∑N

�=1 I {Y(s� − ij ) ∈ Aj }
.

The following theorem indicates that this backfitting procedure converges exponentially fast.

Theorem 1. Under conditions (C1)–(C5), with probability tending to 1, there exists a unique
solution {m̃j } of (3.6), and further, for r ≥ 1 and x = (x1, . . . , xd)� being an inner point of A,

d∑
j=1

∫ {
m̃

(r)
j (xj ) − m̃j (xj )

}2
pj (xj )dxj ≤ Cρ2r

(
1 +

d∑
j=1

∫ {
m̃

(0)
j (xj )

}2
pj (xj )dxj

)
,

where ρ ∈ (0,1),C > 0 are constants, m̃
(r)
j (xj ) is defined by (3.7), and {m̃(0)

j (xj )} are the initial
values of the backfitting algorithm.

3.3. Asymptotic normality

Henceforth, we assume that x = (x1, . . . , xd)� is an inner point of A. Let ε(s) = Y(s)−m{X(s)},
and mo(x) = mo

0 +∑d
j=1 mo

j (xj ) be the minimizer of (2.5) over

F ′
add =

{
m(x) = m0 +

d∑
j=1

mj(xj )

∣∣∣∣m0 ∈ R,

∫
mj(y)pj (y)dy = 0 for 1 ≤ j ≤ d

}
.

Then {mo
0,m

o
1(·), . . . ,mo

d(·)} is uniquely determined by the least-squares property. Define

β(x) =
d∑

j=1

{
ṁo

j (xj )
∂

∂xj

logp(x) + 1

2
m̈o

j (xj )

}∫
u2K(u)du, (3.8)
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µ̂j (xj ) = mo
j (xj ) +

∑
k �=j

∫
mo

k(xk)
p̂jk(xj , xk)

p̂j (xj )
dxk + h2

∫
β(x)

p(x)

pj (xj )

∏
k �=j

dxk.

Let β0 +∑d
j=1 βj (xj ) be the minimizer of

∫ {
β(x) − β0 −

d∑
j=1

βj (xj )

}2

p(x)dx (3.9)

over F ′
add.

Theorem 2. Let conditions (C1)–(C5) hold, and h = CN−1/5. Then

√
Nh

 m̃1(x1) − mo
1(x1) − h2β1(x1)

...

m̃d(xd) − mo
d(xd) − h2βd(xd)

 D−→ N(0,�(x)),

where �(x) is a diagonal matrix with

σj (xj )
2 ≡ var[Y(s) − mo{X(s)}|Y(s − ij ) = xj ]

∫
K(u)2 du/fj (xj ) (3.10)

as its j th main diagonal element.

Remark 1. (i) Although we do not assume the true conditional expectation m(x) defined in (2.1)
to be of additive form, the estimators do not have extra biases due to the discrepancy be-
tween m(x) and its best additive approximation mo(x). This is due to the ‘orthogonality’∫

{m(x) − mo(x)}p(x)
∏
k �=j

dxk = 0, 1 ≤ j ≤ d, (3.11)

which is guaranteed by the least-squares property that mo(·) is the minimizer of (2.5) over Fadd.
On the other hand, the variance in (3.10) is equal to(

var[Y(s) − m{X(s)}|Y(s − ij ) = xj ]

+ var
[
m{X(s)} − mo{X(s)}|Y(s − ij ) = xj

]) ∫
K(u)2 du

/
pj (xj ).

The second term in the above expression disappears when m(x) itself is an additive function.
(ii) The proof of Theorem 2 entails that

m̃j (xj ) − mo
j (xj ) − h2βj (xj ) + op(h2)

= 1

Np̂j (xj )

N∑
�=1

[Y(s�) − mo{X(s�)}]Kh{xj − Y(s� − ij )}. (3.12)
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By Theorem 2, an approximate 95% pointwise confidence interval for mo
j (xj ) would be of

the form m̃j (xj )−h2βj (xj )± 1.96σj (xj )/
√

nh. However, the quantities βj (xj ) and σj (xj ) are
unknown in practice. Furthermore, it is rather difficult to estimate βj (·); see (3.9) and (3.8). We
now outline a heuristic method based on wild bootstrapping to estimate the bias βj (xj ) and the
variance σj (xj )

2.
Let {ε(s)} be independent and identically distributed random variables with mean 0 and vari-

ance 1. Draw a bootstrap sample Y(s1)
∗, . . . , Y (sN)∗ from the model

Y(s)∗ = m̃{X(s)} + ε(s)[Y(s) − m̃{X(s)}], (3.13)

where m̃(x) = m̃0 + ∑d
j=1 m̃j (xj ). Then E∗{Y(s)∗|X(s) = x} = m̃(x). Let {m∗

j } be the es-
timators obtained in the same way as {m̃j } but with sample {Y(sj ),X(sj )} replaced by
{Y(sj )

∗,X(sj )}. It may be shown that m∗
j (xj ) − m̃j (xj ) shares the same asymptotic distribu-

tion as m̃j (xj ) − mo
j (xj ); see Theorem 2 above. Hence, we may use the sample mean and the

sample variance of m∗
j (xj ) − m̃j (xj ) obtained in a repeated bootstrap sampling (with a large

number of replications) as the estimates for the mean and the variance of m̃j (xj ) − mo
j (xj ).

Combining with Theorem 2, this leads to an approximate 95% pointwise confidence interval for
mo

j (xj ) (1 ≤ j ≤ d):

2m̃j (xj ) − m̄∗
j (xj ) ± 1.96s∗

j (xj ), (3.14)

where m̄∗
j (xj ) is the sample mean of m∗

j (xj ) in the repeated bootstrap sampling, and s∗
j (xj ) is

the sample standard deviation of m∗
j (xj ) − m̃j (xj ).

Remark 2. Note that the conditional expectation E∗{Y(s)∗|X(s) = x} = m̃(x) is an additive func-
tion, while E{Y(s)|X(s) = x} = m(x) may not be. This makes it difficult to construct confidence
intervals directly based on bootstrapping. The confidence interval (3.14) is based on the asymp-
totic normality of the estimator m̃j (xj ). Bootstrapping was merely employed to estimate the
unknown asymptotic bias βj (xj ) and variance σj (xj )

2, which relied on the fact that βj (xj ) is
determined by the best additive approximation mo(x) of m(x) instead of m(x) itself; see (3.9)
and (3.8). On the other hand, it may be shown that

m∗
j (xj ) − m̃j (xj ) − h2βj (xj ) + op(h2)

= 1

Np̂j (xj )

N∑
�=1

[Y(s�)
∗ − m̃{X(s�)}]Kh{xj − Y(s� − ij )}

= 1

Np̂j (xj )

N∑
�=1

ε(s)[Y(s�) − m̃{X(s�)}]Kh{xj − Y(s� − ij )}

= 1

Np̂j (xj )

N∑
�=1

ε(s)[Y(s�) − mo{X(s�)}]Kh{xj − Y(s� − ij )}{1 + op(1)};

see (3.12). This would ensure that the bootstrap estimator admits the same asymptotic variance.
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4. Numerical properties

4.1. Simulation

In this section, we illustrate the proposed backfitting procedure with two examples: a unilateral
additive model under the half-plane order (Whittle [25]), and a (bilateral) auto-normal model
(Besag [1]). The bandwidth selection procedure (2.13) is implemented in Example 1. In Exam-
ple 2 we apply a parametric bootstrap test to test the null hypothesis of an auto-normal model. In
the numerical examples let K be a Gaussian kernel.

Example 1 Unilateral additive model. Consider the model

Y(u, v) = sin{Y(u − 1, v)} + cos{Y(u, v − 1)} + e(u, v), (4.1)

where e(u, v) are independent N(0,1) random variables. Hence

E{Y(u, v)|Y(u − 1, v), Y (u, v − 1), Y (u − 1, v − 1)}
= m0 + m1{Y(u − 1, v)} + m2{Y(u, v − 1)} + m3{Y(u − 1, v − 1)} (4.2)

with m0 = E{Y(u, v)}, m3(·) ≡ 0, and

m1(x) = sin(x) − E[sin{Y(u, v)}], m2(x) = cos(x) − E[cos{Y(u, v)}].
We drew 100 samples from model (4.1) on the rectangle {(u, v) : 1 ≤ u ≤ 24,1 ≤ v ≤ 28}. For
each sample we estimated the component functions mj(·) for j = 1,2,3 with the bandwidths h

chosen automatically by the leave-one-out procedure (2.13). The boxplots of the estimated curves
over 13 regular grid points are presented in Figure 1. While the estimation is accurate overall,
the variation of the estimation is larger at the both ends due to boundary effects. The mean and
variance of the selected bandwidths over 100 replications are 0.416 and 0.064, respectively.

Example 2 Besag’s first-order auto-normal scheme. Let the conditional distribution of Y(u, v)

given {Y(i, j), (i, j) �= (u, v)} be normal with mean

E{Y(u, v)|Y(i, j), (i, j) �= (u, v)}
= θ1{Y(u − 1, v) + Y(u + 1, v)} + θ2{Y(u, v − 1) + Y(u, v + 1)} (4.3)

and variance var{Y(u, v)|Y(i, j), (i, j) �= (u, v)} = 1, where θ1 = 0.2 and θ2 = 0.25. Now the
{Y(u, v)} are jointly normal with common mean 0, and

E{Y(u, v)|Y(u − 1, v) = x1, Y (u, v − 1) = x2, Y (u + 1, v) = x3, Y (u, v + 1) = x4}
= m1(x1) + m2(x2) + m3(x3) + m4(x4)

with m1(x) = m3(x) = θ1x, m2(x) = m4(x) = θ2x; see Besag [1].
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Figure 1. Boxplots of the estimators for (a) m1(x) = sin(x) − E[sin{Y (u, v)}], (b) m2(x) =
cos(x) − E[cos{Y (u, v)}], and (c) m3(x) ≡ 0 in Example 1.

We conducted a simulation with 500 replications. For each sample taken on the rectangle
{(u, v) : 1 ≤ u,v ≤ 20}, we applied the backfitting algorithm to estimate mj(·). The boxplots of
the estimated curves over 11 grid points are presented in Figure 2. To speed up the computation,
we used a fixed bandwidth h = 0.4. The linearity of mj(·) is evident in Figure 2. In fact a simple
linear least-squares fitting for the estimated values of mj(·) led to the estimated slopes 0.2013,
0.2425, 0.2049 and 0.2552, for j = 1,2,3 and 4, respectively, very close to the true values.

We also applied a parametric bootstrap method to test the null hypothesis of the auto-normal
scheme (4.3): the bootstrap samples were generated from the auto-normal process with θ1 and
θ2 in (4.3) estimated by the coding method (Besag [1]). Note that under the auto-normal scheme,
E[ε(s)I {X(s) ∈ B}] = 0 for any measurable B ⊂ R

4, where ε(s) is defined as the difference be-
tween Y(s) and the right-hand side of (4.3), and X(s) consists of the four nearest neighbourhoods.
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Figure 2. Boxplots of the estimators for (a) m1(x) = 0.2x, (b) m2(x) = 0.25x, (c) m3(x) = 0.2x, and
(d) m4(x) = 0.25x in Example 2.

This leads to the test statistic

T = 1

N
sup

1≤k≤N

∣∣∣∣∣
N∑

j=1

ε̂(sj )I {X(sj ) ≤ X(sk)}
∣∣∣∣∣, (4.4)
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Figure 3. Boxplots of the relative frequencies of the event {T ∗ > tα} for (a) α = 0.1, and (b) α = 0.05 in
Example 2.

where X(sj ) ≤ X(sk) is defined under the unilateral half-plane order (Whittle [25]), and

ε̂(sj ) = Y(sj ) − θ̂1{Y(uj − 1, vj ) + Y(uj + 1, vj )} − θ̂2{Y(uj , vj − 1) + Y(uj , vj + 1)}.

Among the 500 replications, the proportions rejecting the linear null hypothesis are 10.8% at the
level α = 10%, and 4.4% at the level α = 5%. To further assess the accuracy of the bootstrap
approximation, we took the upper 10th and 5th percentiles for the empirical distribution of the
500 simulated values T as the true critical values tα for the test at the level α = 10% and 5%,
where Figure 3 displays the boxplots of the relative frequencies of the event T ∗ > tα in the 200
bootstrap replications. This shows that most frequencies are clustered around α for both α = 10%
and 5%, indicating that the bootstrap approximation to the null distribution of T is reasonably
accurate.

4.2. A real data example

Figure 4 displays a magnetic resonance (MR) image of two test tubes filled with plastic straws
of two different diameters embedded in gadolinium-doped agarose gel with tissue equivalent
relaxation times. The straws test object was imaged with a T1-weighted SE pulse sequence on
a Siemens Vision 1.5 T MR scanner using slice thickness of 4 mm and in-plane resolution of
0.6 mm × 0.6 mm. In the MR images of Figure 4, the more white a voxel is, the stronger the
signal intensity. The black background region with very low intensity is air surrounding the two
cylinders.
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Figure 4. Modelling the straw data: MR images from the straws test object (a) depicting a longitudinal
section with indication of the trans-axial slices, and (b) showing the upper trans-axial slice.

For our analysis, we chose two stationary-like subsets of image Figure 4(b), each of size
61×61. The subset images are plotted respectively in Figures 5(a)(i) and 6(a)(i). For each subset,
we approximated the conditional expectation

E{Y(u, v)|Y(u − 1, v) = x1, Y (u, v − 1) = x2, Y (u + 1, v) = x3, Y (u, v + 1) = x4} (4.5)

by an additive form

m0 + m1(x1) + m2(x2) + m3(x3) + m4(x4),

where m1(x1), m2(x2), m3(x3) and m4(x4) represent the contributions from the nearest neigh-
bourhood in the north, west, south and east direction, respectively. For comparison purposes, we
also fitted the data using Besag’s ([1]) first-order auto-normal scheme, assuming the conditional
variances over different locations were the same. This leads to the assumption that the conditional
expectation (4.5) is of the form

α + β1(x1 − α) + β2(x2 − α) + β1(x3 − α) + β2(x4 − α). (4.6)

The coefficients βj and α were estimated using Besag’s coding method. The estimated additive
functions m̃j (x), together with the fitted straight lines β̂j (x − α̂), are plotted in Figure 5 for the
large-diameter straws and in Figure 6 for the small-diameter straws. As in Example 2 above,
we also applied the parametric bootstrap based on statistic (4.4) for testing the auto-normal
null hypothesis for those two subsets (with 200 bootstrap replications), leading to p-values less
than 0.005. This indicates that the first order auto-normal scheme is inadequate for both the data
sets. The histograms presented in Figures 5(a)(ii) and 6(a)(ii) indicate bimodal marginal density
functions; the lower-intensity mode corresponds to voxels at the boundary between straws, and
the higher-intensity mode to voxels in the interior of the straws. The pointwise confidence inter-
vals for mj(·) were obtained using the standard normal ε(s) in (3.13) with 100 wild bootstrap
replications; see (3.14).

The plots of the mj(·) functions as a rough approximation suggest isotropy, which is natural
given the set-up of the straws. Both the plots and bootstrap test point to nonlinearity. Note that
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(a)

(b)

Figure 5. Modelling subset I of straw data. (a) (i) A subregion of interest (61 × 61 window, of which a
31 × 31 detail is shown) from the bundle of large diameter straws in Figure 4(b); (ii) the corresponding
signal intensity histogram. Pixel signal intensity in a.u. (12-bit range). (b) Additive estimators (solid lines),
the boundaries of pointwise confidence intervals (dotted lines), and auto-normal scheme estimators (dashed
lines) for (i) m1(x), (ii) m2(x), (iii) m3(x) and (iv) m4(x) and m0 = 2278.615.
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(a)

(b)

Figure 6. Modelling subset II of straw data. (a) (i) A subregion of interest (61 × 61 window, of which a
31 × 31 detail is shown) from the bundle of small diameter straws in Figure 4(b); (ii) the corresponding
signal intensity histogram. Pixel signal intensity in a.u. (12-bit range). (b) Additive estimators (solid lines),
boundaries of pointwise confidence intervals (dotted lines) and auto-normal scheme estimators (dashed
lines) for (i) m1(x), (ii) m2(x), (iii) m3(x) and (iv) m4(x) and m0 = 2089.465.
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the bends at the ends of the curves cannot be attributed to boundary effects, as substantial number
of voxels fall in the end regions; see the histograms in Figures 5 and 6.

A possible explanation for the bends is as follows: for both the large- and small-diameter
straws there is a positive correlation among intensity values in the middle (the mj(·) curve has a
positive slope). These intensity values correspond to voxels in the center of the straws, for which
it is seen (from Figures 5(a)(i) and 6(a)(i)) that there is a positive spatial autocorrelation. For
the small-diameter straws there is local negative correlation at both ends of the curves. Looking
at the image (Figure 6(a)(i)) it is seen that the lowest-intensity values (darkest) voxels are at
the boundaries as expected. But it is also seen that there are voxels of very high intensity (very
white) close to the boundary. Similarly, the voxels of highest intensity are often found close to the
boundary and have low-intensity voxels in their neighbourhood, resulting in the local negative
correlation for extreme intensity values. For large-diameter straws with low-intensity voxels at
the boundary, the same pattern occurs but not to the same extent; see Figure 5(a)(i). The picture
for voxels of high intensity is less clear, as some of these are located close to the boundary
surrounded by low-intensity voxels, others close to the centre with high-intensity neighbours.
There is no clear dependence pattern for high values, which is echoed by the flatness of the mj(·)
plots for high intensities.

Overall the nonparametric additive approximations for conditional means describe the local
correlation structure of the straws quite well, whereas the auto-normal models fail to do so since
they only reproduce the dominating positive spatial autocorrelation in the interior of the straws.

5. Discussion

Observations taken on irregular grids often occur in practical spatial problems. We outline be-
low some tentative ideas to extend the method proposed in this paper to handle irregularly
spaced data. Our basic assumption is that the observations {Y(sj ), j = 1, . . . ,N} (after detrend-
ing appropriately) are taken over an irregular grid from a strictly stationary process Y(s) with
index s varying continuously on R

2. Our goal is to estimate the best additive approximation,
in the sense of (2.4) and (2.5), for the conditional expectation at a fixed location given its d

neighbourhood observations, for small d such as 3 or 4. Without loss of generality, we may as-
sume that the location is at 0 = (0,0)�, and the d neighbourhood locations are i1, . . . , id . Put
X(0) = {Y(i1), . . . , Y (id)}�. Our task is now to estimate the best additive approximation for

m(x) = E{Y(0)|X(0) = x}.
First, for each location sk at which we have an observation Y(sk), we define its d neighbour-

hoods selected among the other N − 1 observations by minimizing

d∑
j=1

‖ij − (sj − sk)‖,

where the minimization is taken over sj ∈ {s1, . . . , sN }, sj �= sk , and s1, . . . , sd are all different
from each other. Let (sk1, . . . , skd) be the minimizer. Then X(sk) = {Y(sk1), . . . , Y (skd)}� are
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the d neighbourhood observations of Y(sk) as far as our task is concerned. Put

λk =
d∑

j=1

‖ij − (sjk − sk)‖,

which measures the discrepancy between the pattern of (s1k, . . . , sdk) in relation to sk and that of
(i1, . . . , id) in relation to 0. It is easy to see that λk = 0 if and only if (sk, s1k, . . . , sdk) is merely
a shift (without rotating) of (0, i1, . . . , id) in R

2. The larger λk is, the larger the discrepancy is
between the two patterns. As far as the estimation for m(x) is concerned, we should not treat all
{Y(sk),X(sk)} equally, as we did for regularly spaced data. Instead we give more weight to the
observations {Y(sk),X(sk)} with smaller values of λk . By taking this into account, an argument
similar to that in Section 2.2 leads to the backfitting estimation (2.12) in which, however, now

f̂j (xj ) =
N∑

k=1

wkKh{xj − Y(sjk)}, m̂j (xj ) = 1

f̂j (xj )

N∑
k=1

wkY (sk)Kh{xj − Y(sjk)},

f̂j�(xj , x�) =
N∑

k=1

wkKh{xj − Y(sjk)}Kh{x� − Y(s�k)},

where the weight function wk = W(λk/b)/
∑N

j=1 W(λj/b), W(·) is a kernel function, and b > 0
is a bandwidth. The associated issues on inference, computation and asymptotic properties are
subject to further investigation. An alternative that could be explored is to replace i1, . . . , id by an
average set of d neighbourhood points i′1, . . . , i′d , where i′j = N−1 ∑N

k=1(s
′
kj − sk), j = 1, . . . , d ,

in which s′
kj is the j th nearest neighbour of sk .

Finally, we note that for observations taken irregularly over space and regularly over time,
the method proposed in Section 2.2 may be applied directly if we only use the data taken at the
fixed location but over different times in the estimation. Technically this reduces to a problem of
multivariate time series modelling. However, there is an added advantage: the inference does not
rely on the assumption of the stationarity over space.

Appendix

A.1. Proof of Theorem 1

We only need to justify conditions (A1)–(A3) in Mammen et al. [15]. The required result follows
from their Theorem 1 immediately.

Condition (A1) requires that for j �= k,∫
p2

jk(xj , xk)

pk(xk)pj (xj )
dxj dxk =

∫
Aij

p2
jk(xj , xk)

pk(xk)pj (xj )
dxj dxk < ∞,
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which is guaranteed by (C5). By Theorem 2 of Yao [26],

sup
xj ∈Aj

|p̂j (xj ) − pj (xj )| = Op

{
h2 +

(
logN

Nh

)1/2}
. (A.1)

Similarly, we may show that

sup
(xj ,xk)∈Ajk

|p̂jk(xj , xk) − pjk(xj , xk)| = Op

{
h2 +

(
logN

Nh2

)1/2}
. (A.2)

Furthermore, it is easy to see from Theorem 3 below that

sup
xj ∈Aj

|m̂j (xj ) − Em̂j (xj )| = Op(1), sup
xj ∈Aj

|Em̂j (xj )| ≤ C. (A.3)

Note that fjk(xj , xk) = fkj (xk, xj ). Condition (C5) implies that (xj , xk) ∈ Ajk if and only if
(xk, xj ) ∈ Akj for any j �= k. This, together with (A.1)–(A.3), entails conditions (A2) and (A3)
of Mammen et al. [15].

A.2. Proof of Theorem 2

Let e(s) = Y(s) − m{X(s)}, and

m̂a
j (xj ) = I (xj ∈ Aj)

p̂(xj )
∑N

�=1 I {Y(s� − ij ) ∈ Aj }

×
N∑

�=1

[e(s�) + m{X(s�)} − mo{X(s�)}]Kh{xj − Y(s� − ij )}, (A.4)

m̂b
j (xj ) = I (xj ∈ Aj)

p̂(xj )
∑N

�=1 I {Y(s� − ij ) ∈ Aj }
N∑

�=1

mo{X(s�)}Kh{xj − Y(s� − ij )}.

Then m̂j (xj ) = m̂a
j (xj ) + m̂b

j (xj ). Let m̃a
j (xj ) and m̃b

j (xj ) be defined by (3.6) with m̂j (xj )

replaced by m̂a
j (xj ) and m̂b

j (xj ), respectively. We first introduce two lemmas.

Lemma 1. Under conditions (C1)–(C5), for any j �= k,∑
xk∈Ak

∣∣∣∣∫ p̂jk(xj , xk)

p̂k(xk)
m̂a

j (xj )dxj

∣∣∣∣= op(h2)

and ∫
pk(xk)dxk

{∫
p̂jk(xj , xk)

p̂k(xk)
m̂a

j (xj )dxj

}2

= op(h4).



Exploring spatial nonlinearity using additive approximation 467

Lemma 2. Under conditions (C1)–(C5),
∫

mo
j (xj )p̂j (xj )dxj = op(h2), and

sup
xk∈Ak

|m̂b
j (xj ) − µ̂j (xj )| = op(h2),

∫
|m̂b

j (xj ) − µ̂j (xj )|2pj (xj )dxj = op(h4).

Based on (3.11), Lemma 1 may be proved in the same manner as (A6) in Appendix A of
Mammen et al. [15]. The proof of Lemma 2 is similar to the proofs of (114), (112) and (113) in
Mammen et al. [15].

We now sketch the proof of Theorem 2. Note that x = (x1, . . . , xd)� is an inner point of A.
Lemma 1 implies condition (A6) of Mammen et al. [15] with �N = h2. By Theorem 3 below,
condition (A9) of Mammen et al. [15] also holds. By Theorem 3 of Mammen et al. [15], condi-
tion (A7) in their paper also holds. It may be proved that∫

m̂a
j (x)p̂j (x)dx

/∫
p̂j (y)dy = Op(N−1/2) = op(h2).

Now it follows from Theorems 2 and 3 of Mammen et al. [15] that

m̃j (xj ) = m̂a
j (xj ) + h2βj (xj ) + op(h2). (A.5)

Note that

E[e(s�)Kh{xj − Y(s� − ij )}] = E
[
E{e(s�)|X(s�)}Kh{xj − Y(s� − ij )}

]= 0

and

E[{m{X(s�)} − mo{X(s�)}}Kh{z − Y(s� − ij )}]

=
∫

Kh(z − xj )

[∫
{m(x) − mo(x)}p(x)

∏
k �=j

dxk

]
dxj = 0. (A.6)

The last equality in the above expression follows from (3.11). Now the required central limit
theorem follows from (A.5), (A.4), (A.6) and the theorem in Bolthausen [2].

A.3. Uniform convergence rates for regression estimation

First, we introduce some notation. Let {(Y (sj ),X(sj )),1 ≤ j ≤ N} be observations from a two-
dimensional strictly stationary spatial process with {s1, . . . , sN } given as in (2.7). Let f (·) be
the density function of X(s) and m(x) = E{Y(s)|X(s) = x}. We define the Nadaraya–Watson
estimator m̂(x) = r̂(x)/f̂ (x) with

f̂ (x) = 1

N

N∑
j=1

Kh{x − X(sj )}, r̂(x) = 1

N

N∑
j=1

Y(sj )Kh{x − X(sj )}.

We introduce some regularity conditions.
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(C1′) m(·) has continuous first derivative, f (·) has continuous second derivative, and the joint
density function of X(s) and X(s + i) is bounded by a constant independent of i. Fur-
thermore, (3.2) holds.

(C4′) α(k; k′, j) ≤ Ck−β for any k, j and k′ = O(k2), where α is defined as in (3.1) with
X(s) replaced by X(s).

Theorem 3. Let A be a compact set contained in the support of f (·). Under conditions (C1′),
(C2), (C3) and (C4′),

sup
x∈A

|m̂(x) − m(x)| = Op

{(
logN

Nh

)1/2

+ h2
}

(A.7)

and

sup
x∈A

|m̂(x) − Em̂(x)| = Op

{(
logN

Nh2

)1/2

+ h2
}
. (A.8)

Proof. We first prove (A.7). Let r(x) = m(x)f (x). For any aN > 0 and ε > 0,

P

{
sup
x∈A

aN |m̂(x) − m(x)| > ε

}
≤ P

{
aN

infy∈A f̂ (y)

(
sup
x∈A

|̂r(x) − r(x)| + max
z∈A

m(z) sup
x∈A

|f̂ (x) − f (x)|
)

> ε

}
≤ P

{
C1aN sup

x∈A

|̂r(x) − r(x)| + C2aN sup
x∈A

|f̂ (x) − f (x)| > ε

}
+ P

{
inf
x∈A

|f̂ (x) − f (x)| > τ

}
,

where C1,C2, τ > 0 are constants. It follows from Theorem 2 of Yao [26] that the second term of
the right-hand side of the above expression may be arbitrarily small for all sufficiently large N .
Then (A.7) follows from Theorem 2 of Yao [26] and

sup
x∈A

|̂r(x) − r(x)| = Op

{(
logN

Nh

)1/2

+ h2
}
, (A.9)

which will now be established.
Partition A into L subintervals {Ij } of equal length. Let xj be the centre of Ij . Since

|̂r(x) − r̂(x′)| ≤ 1

N

N∑
j=1

|Y(sj )|
∣∣Kh{X(sj ) − x} − Kh{X(sj ) − x′}∣∣≤ 1

N

N∑
j=1

|Y(sj )|C
h

|x − x′|,
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we have that |Êr(x) − Êr(x′)| ≤ Ch−1|x − x′|. Hence

sup
x∈A

|̂r(x) − Êr(x)| ≤ max
1≤j≤L

|̂r(xj ) − Êr(xj )| + Op

(
1

Lh

)
. (A.10)

For large M > 0, define

r̂1(x) = 1

N

N∑
j=1

Y(sj )I {|Y(sj )| ≤ M}Kh{X(sj ) − x},

r̂2(x) = 1

N

N∑
j=1

Y(sj )I {|Y(sj )| > M}Kh{X(sj ) − x}

and

r1(x) = E[Y(sj )I {|Y(sj )| ≤ M}|X(sj ) = x], r2(x) = E[Y(sj )I {|Y(sj )| > M}|X(sj ) = x].

Then r̂(x) = r̂1(x) + r̂2(x) and r(x) = r1(x) + r2(x). Since |Kh(·)| ≤ Ch−1, it follows from the
second inequality in Theorem 1 of Yao [26] that

P {|̂r1(x)− Êr1(x)| > ε} ≤ 8 exp

{
− ε2q2

8ν(q)2

}
+ 44

(
1 + 4CM

εh

)1/2

q2α([p1] ∧ [p2]; [p1p2],N),

where q = [(εM)1/2(N1 ∧ N2)], pi = Ni/(2q) and

ν(q)2 ≤ 32q4

N2

Cp1p2

h
+ CMε

h
= C1

p1p2h
+ CMε

h
≤ C2Mε

h
,

where C,C1,C2 > 0 are constant. The first inequality in the above expression can be verified
similarly to the variance expression in Proposition 1 of Yao [26], and the second inequality is
obvious by setting M = logN and ε2 = 8aC logN/(N1 ∧ N2)

2h for some constant a > 0. Now

exp

{
− ε2q2

8ν(q)2

}
≤ exp

{
−ε2(N1 ∧ N2)

2h

8C

}
= N−a.

On the other hand, condition (C4′) entails that(
M

εh

)1/2

q2α(p1 ∧ p2; [p1p2],N) ≤ C

(
M

εh

)1/2

εMN(εM)β/2

= CM(β+3)/2Nh−1/2ε(β+1)/2

= O{N−β/4+3/4h−β/4−3/4(logN)3β/4+7/4}.
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Let L = [(N/h)1/2]. Hence,

P

{
max

1≤j≤L
|̂r1(xj ) − Êr1(xj )| > ε

}
≤ L{N−a + N−β/4+3/4h−β/4−3/4(logN)3β/4+7/4} → 0, (A.11)

see condition (3.3). On the other hand,

P {|̂r2(x) − Êr2(x)| > ε} ≤ NP {|Y(s)| > M} ≤ Ne−λME
{
eλ|Y(s)|}= O(N−λ+1),

where λ > 0 is a constant. Hence

P

{
max

1≤j≤L
|̂r2(x) − Êr2(x)| > ε

}
≤ O(LN−λ+1) → 0;

see (3.2). Combining this with (A.11) and (A.10), we have

P

{
sup
x∈A

|̂r(x) − Êr(x)| > ε

}
= Op

{(
logN

Nh

)1/2}
.

Now (A.9) follows from this and the fact that supx∈A |Êr(x) − r(x)| = O(h2), which may be
established via simple algebraic manipulation.

To prove (A.8), it follows from (A.7) and Theorem 2 of Yao [26] that for any ε > 0 there exists
a τ > 0 such that

sup
x∈A

∣∣Em̂(x) − E
{
m̂(x)I

(|f̂ (x) − f (x)| < h2τ
)}∣∣< ε.

Now, for x ∈ A,

sup
x∈A

∣∣E{m̂(x)I
(|f̂ (x) − f (x)| < h2τ

)}− m(x)
∣∣

≤ sup
x∈A

∣∣E{̂r(x)/f (x)I
(|f̂ (x) − f (x)| < h2τ

)}− m(x)
∣∣+ Ch2

≤ sup
x∈A

|E{̂r(x)/f (x)} − m(x)| + ε + C1h
2 ≤ ε + C2h

2.

holds uniformly. Hence (A.8) follows from (A.7). �
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