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We consider a density estimation problem arising in nuclear physics. Gamma photons are impinging

on a semiconductor detector, producing pulses of current. The integral of this pulse is equal to the

total amount of charge created by the photon in the detector, which is linearly related to the photon

energy. Because the inter-arrival times of photons can be shorter than the charge collection time,

pulses corresponding to different photons may overlap leading to a phenomenon known as pile-up.

The distortions on the photon energy spectrum estimate due to pile-up become worse when the photon

rate increases, making pile-up correction techniques a must for high counting rate experiments. In this

paper, we present a novel technique to correct pile-up, which extends a method introduced by Hall

and Park for the estimation of the service time from the busy period in M=G=1 models. It is based

on a novel formula linking the joint distribution of the energy and duration of the cluster of pulses

and the distribution of the energy of the photons. We then assess the performance of this estimator by

providing an expression for its integrated square error. A Monte Carlo experiment is presented to

illustrate, with practical examples, the benefits of the pile-up correction.

Keywords: indirect observations; marked Poisson processes; nonlinear inverse problems; nonparametric

density estimation

1. Introduction

We consider a problem occurring in nuclear spectroscopy. A radioactive source (a mixture

of radionuclides) emits photons which impinge on a semiconductor detector. Photons (X-

and gamma rays) interact with the semiconductor crystal to produce electron–hole pairs.

The migration of these pairs in the semiconductor produces a finite-duration pulse of

current. Under appropriate experimental conditions (ultra-pure crystal, low temperature), the

integral over time of this pulse of current corresponds to the total number of electron–hole

pairs created in the detector, which is proportional to the energy deposited in the

semiconductor (see Knoll 1989; Leo 1994). In most classical semiconductor radiation

detectors, the pulse amplitudes are recorded and sorted to produce a histogram which is

used as an estimate of the photon energy distribution (referred to in the nuclear physics

literature as the energy spectrum).

The inter-arrival times of photons are independent of their electrical pulses, and can
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therefore be shorter than the typical duration of the charge collection, thus creating clusters

(see Figure 1). In gamma ray spectrometry, this phenomenon is referred to as pile-up. The

pile-up phenomenon induces a distortion of the acquired energy spectrum which becomes

more severe as the incoming counting rate increases. This problem has been extensively

studied in the field of nuclear instrumentation since the 1960s – see Bristow (1990) for a

detailed review of these early contributions; classical pile-up rejection techniques are

detailed in American National Standards Institute (1999).

In mathematical terms, the problem can be formalized as follows. Denote by fTk , k > 1g
the sequence of arrival times of the photons, assumed to be the ordered points of a

homogeneous Poisson process. The current intensity as a function of time can be modelled

as a shot-noise process

W (t) ¼def
X
k>1

Fk(t � Tk), (1)

where fFk(s), k > 1g are the contributions of each individual photon to the overall intensity.

By analogy with queuing models, we call fW (t), t > 0g the workload process. The current

pulses fFk(s), k > 1g are assumed to be independent copies of a continuous time stochastic

process fF(s), s > 0g. The pulse duration (the duration of the charge collection), defined as

X ¼def supft : F(t) . 0g, is assumed to be finite almost surely and the support of the path of F

is assumed to be of the form [0, X ] almost surely, so that a busy-period arrival corresponds

to a pulse arrival and a pulse cannot belong to several busy periods. The integral of the pulse

Y ¼def
Ð X
0

F(u)du is equal to the total amount of charge collected for a single photon. Under

appropriate experimental condition, this quantity may be shown to be linearly related to the

photon energy; for convenience, Y is referred to as the energy in the following. For the kth

photon, we define the couple (X k , Yk) accordingly with respect to Fk . The restriction of the

Figure 1. Illustration of the pile-up phenomenon: input signal with arrival times T j, lengths X j and

energies Y j, j ¼ n, nþ 1, nþ 2. Here X 9n ¼ X n, Y 9n ¼ Yn, X 9nþ1 ¼ Tnþ2 � Tnþ1 þ X nþ2 and

Y 9nþ1 ¼ Ynþ1 þ Ynþ2.
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workload process to a maximal segment where it is positive is referred to as a busy period,

and where it is 0 as idle. An idle period followed by a busy period is called a cycle.

In our experimental setting, the sequence of pulse duration and energy f(X k , Yk), k > 1g
is not directly observed. Instead, the only available data are the durations of the busy and

idle periods and the total amounts of charge collected on busy periods. Define the on–off

process

St ¼
X
k>1

1T 9k ,T 9kþX 9k
(t), (2)

where fT 9k , k > 1g is the ordered sequence of busy-period arrivals and fX 9k , k > 1g the

corresponding sequence of durations. We further define, for all k > 1,

Y 9k ¼def
ðT 9kþX 9k

T 9k

W (t)dt,

the total amount of charge of the kth busy period. Finally, we denote by Zk the duration of

the kth idle period, Z1 ¼ T1 and, for all k > 2, Zk ¼ T 9k � (T 9k�1 þ X 9k�1). We consider the

problem of estimating the distribution of the photon energy Y with n cycles

f(Zk , X 9k , Y 9k), k ¼ 1, . . . , ng observed. In the terminology introduced by Pyke (1958), this

corresponds to a type II counter.

The problem shares some similarity with service-time distribution from busy and idle

measurements in a M=G=1 model (see Baccelli and Brémaud 2003). Note, indeed, that the

M=G=1 model is a particular instance of the above setting, as it corresponds to F ¼ 1[0,X ),

so that X ¼ Y . There exists a vast literature for this particular case. Takács (1962) (see also

Hall 1988) has derived a closed-form relation linking the cumulative distribution functions

(cdfs) of the service time X and the busy period X 9. Bingham and Pitts (1999) derived

from this formula an estimator of the service-time distribution X , which they apply to the

study of biological signals. An alternative estimator was recently introduced in Hall and

Park (2004), in which a kernel estimator of the probability density function (pdf) of X is

derived in a nonparametric framework, together with a bound on the pointwise error.

Although our estimator can be applied to the M=G=1 framework – thus allowing a

comparison with Hall and Park (2004) in this special case – we stress the fact that we are

dealing here simultaneously with durations and energies, without assuming any particular

dependence structure between them. Secondly, the main emphasis in the photon problem is

on estimating the distribution of the photon energy and not the distribution of the duration,

in sharp contrast to the M=G=1 problem.

The paper is organized as follows. In Section 2 we give the notation and main

assumptions, and list the basic properties of the model. In Section 3 we present an inversion

formula relating the Laplace transform of the cluster duration/energy to the Laplace

transform of the density function of interest. We also derive an estimator of this function,

which is based on an empirical version of the inversion formula and kernel smoothing. Our

main result is presented in Section 4, showing that this estimator achieves standard minimax

rates in the sense of the integrated squared error when the pulse duration is almost surely

upper-bounded. The study of this error is detailed is Section 5. Some applications and
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examples are presented in Section 6. Since the present paper is directed towards establishing

a theory, practical aspects are not discussed in much detail and we refer to Trigano et al.

(2006) for a thorough discussion of the implementation and applications to real data. Proofs

of the various propositions are presented in Appendices A–C.

2. Notation and main assumptions

Throughout the paper, we make the following assumptions:

(H1) fTk , k > 1g is the ordered sequence of points of a homogeneous Poisson process

on the positive half-line with intensity º.
(H2) f(X , Y ), (X k , Yk), k > 1g is a sequence of independent and identically

distributed (0, 1)2-valued random variables, independent of fTk , k > 1g. In

addition, E[X ] and E[Y ] are finite.

In other words, f(Tk , X k , Yk), k > 1g is a Poisson point process with control measure

ºLeb� P, where Leb denotes the Lebesgue measure on the positive half-line and P denotes

the probability distribution of (X , Y ). Let us recall a few basic properties satisfied under this

assumption by the sequence f(Zk , X 9k , Y 9k), k > 1g defined in the Introduction. By the

memorylessness property of the exponential distribution, the idle periods are independent and

identically distributed with common exponential distribution with parameter º. Moreover,

they are independent of the busy periods, which also are independent and identically

distributed. We denote by (X 9, Y 9) a couple having the same distribution as the variables of

the sequence f(X 9k , Y 9k), k > 1g and by P9 its probability measure. Given that E[X ] and E[Y ]

are finite, it is easily shown that

E[X 9] ¼ fexp(ºE[X ])� 1g=º

E[Y 9] ¼ E[Y ]exp(ºE[X ]):

Our goal is the nonparametric estimation of the distribution of Y ; hence we assume that:

(H3) Y admits a probability density function denoted by m, that is,ð
x.0

P(dx, dy) ¼ m(y)Leb(dy):

As mentioned in Section 1, the marks f(X k , Yk), k > 1g are not directly observed but,

instead, we observe the sequence f(T 9k , X 9k , Y 9k), k ¼ 1, . . . , ng – the arrival times,

duration and integrated energy of the successive busy periods. These quantities are

recursively defined as follows. Let T 91 ¼ T1 and, for all k > 2,

T 9k ¼ inf Ti : Ti . T 9k�1 _ max
j>i�1

(T j þ X j)

� �� �
; (3)

for all k > 1,
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X 9k ¼ max
Ti2[T 9k ,T 9kþ1[

fTi þ X ig � T 9k , (4)

Y 9k ¼
X
i>1

Yi1(T 9k < Ti , T 9kþ1):

Equations (3) and (4) are used for simulation procedures.

Remark 2.1. In this paper, it is assumed that the experiment involves collecting a number n

of cycles. Hence, the total duration of the experiment is equal to T 9n þ X 9n and is therefore

random. Using the renewal property and the law of large numbers, as n ! 1, (T 9n þ X 9n)=n
converges almost surely to the mean duration of a cycle, 1=ºþ E[X 9] ¼ º�1 exp(ºE[X ]).
Another approach, which appears more sensible in certain scenarios, is to consider that the

total duration of the experiment is given, say equal to T. In this case, the number of cycles is

random, equal to the renewal process of the busy cycles, NT ¼
P1

k�11fT 9k þ X 9k < Tg.
Given that T lies between T 9NT

þ X 9NT
and T 9NTþ1 þ X 9NTþ1, as T ! 1, we have

NT=T ! º exp(�ºE[X ]), showing that the asymptotic theory in both cases can be easily

related.

3. Inversion formula and estimation

Let ~PP be a probability measure on R3 R equipped with the Borel � -algebra; for all

(s, p) 2 Cþ 3 Cþ, where Cþ ¼ fz 2 C, Re(z) > 0g, we define its Laplace transform (or

moment-generating function) L ~PP as:

L ~PP(s, p) ¼
ð ð

e�su� pv ~PP(du, dv):

The following theorem provides a relation between the joint distribution of the individual

pulse energies and durations P and the moment-generating function of the distribution of the

energies and durations of the busy periods LP9; this key relation will be used to derive an

estimator of m.

Theorem 3.1. Under Assumptions (H1) and (H2), for all (s, p) 2 Cþ 3 Cþ,ðþ1

u¼0

e�(sþº)ufa(u, p)� 1gdu ¼ ºLP9(s, p)

sþ º

1

sþ º� ºLP9(s, p)
, (5)

where

a(u, p) ¼def exp(ºE[e� pY (u� X )þ]): (6)

Proof. See Appendix C for a rigorous proof. Since (5) may not seem very intuitive, we here

give an outline of the demonstration. Denote by Yx the total accumulated energy at time x.

Observe, following Takács (1962), that reliable information on the energy can only be

gathered when being in an idle period. Consequently, the probability P(Sx ¼ 0; Yx < y) is of
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interest. This probability can be computed by considering the idle and busy periods

f(T 9k , X 9k , Y 9k), k > 1g, using renewal properties, thus giving the right-hand side of (5) in the

Laplace space. On the other hand, considering f(Tk , X k , Yk), k > 1g, the same probability

can be computed using standard properties of the homogeneous Poisson process, thus giving

the left-hand side of (5), hence the result. h

Remark 3.1. Observe that the integral in (5) can be replaced by
Ð1
u¼�1 since, in (6),

a(u, p) ¼ 0 for u , 0. Moreover, from (6), we trivially obtain ja(u, p)j < exp(ºu) for

Re( p) > 0; hence this integral is well defined for Re(s) . 0 and Re( p) > 0.

Since we will make extensive use of relation (5), we introduce some auxiliary notation

for the sake of readability, and define

�(s, p; º, LP9) ¼def ºLP9(s, p)

sþ º

1

sþ º� ºLP9(s, p)
:

It is perhaps not immediately obvious how this relation may lead to an estimator of the

distribution of the energy. By logarithmic differentiation with respect to x, (6) implies

@

@x
log a(x, p) ¼ ºE[e� pY1(X < x)]: (7)

We consider a kernel function K that integrates to 1 and denote by K� its Fourier

transform, K�(�) ¼
Ðþ1
�1 K(y)e�i� y dy, so that K�(0) ¼ 1. We further assume that K� is

integrable; hence, for any y 2 R,

K(y) ¼ 1

2�

ð1
�1

K�(�)ei� y d�:

Hence, from (7) and Fubini’s theorem, we have, for any bandwidth parameter h . 0 and all

y 2 R,

1

2�

ð1
�1

1

º

@

@x
log a(x, i�)K�(h�)ei� y d� ¼ E

1

2�

ð1
�1

K�(h�)ei�( y�Y )1(X < x)d�

� �

¼ E
1

h
K

y� Y

h

� �
1(X < x)

� �
: (8)

Taking the limits x ! 1 and h ! 0 in the previous equation leads to the following explicit

inversion formula which will be used to derive our estimator. For any continuity point y of

the density m, we have

m(y) ¼ lim
h!0

lim
x!þ1

1

2�

ðþ1

�1

1

º

@

@x
log a(x, i�)K�(h�)ei� y d�

� �
(9)

We now observe that for any p 2 Cþ, the right-hand side of (5) is integrable on a line

fcþ iø, ø 2 Rg where c is an arbitrary positive number. By inverting the Laplace transform,

(5) implies that, for all p 2 Cþ and x 2 Rþ,
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a(x, p) ¼ 1þ 1

2�

ðþ1

�1
�(cþ iø, p; º, LP9ge(cþºþiø)x dø: (10)

Our estimator of m is based on (9) and (10), but we need first to estimate º, the intensity

of the underlying Poisson process. Since the idle periods are independent and identically

distributed according to an exponential distribution with intensity º, we use the maximum-

likelihood estimator based on the durations of the idle periods fZk , k ¼ 1, . . . , ng, namely,

º̂ºn ¼
def 1

n

Xn
k¼1

Zk

 !�1

: (11)

The function a(x, i�) can be estimated from f(X 9k , Y 9k), k ¼ 1, . . . , ng by plugging into (10)

an estimate of the Laplace transform LP9 of the joint distribution of the busy-period duration

and energy. More precisely, let cP9P9n be the associated empirical measure: for any bivariate

measurable function g, we write

cP9P9n g ¼def
ð ð

g(x, y)cP9P9n(dx, dy) ¼ 1

n

Xn
k¼1

g(X 9k , Y 9k):

We consider the estimator

âan(x, i�) ¼ 1þ 1

2�

ðþ1

�1
�(cþ iø, i�; º̂ºn, LP9n)e

(º̂º nþcþiø)x dø, (12)

where

dLP9LP9n(cþ iø, i�) ¼def LcP9P9n(cþ iø, i�) ¼ 1

n

Xn
k¼1

e�(cþiø)X 9k�i�Y 9k : (13)

In practice, the numerical computation of this integral (and also the one in (20) below) can be

done by using efficient numerical packages – see Gautschi (1996) for an overview of

numerical integration methods. Since the integrand is infinitely differentiable and has a

modulus decaying as jøj�2 when ø ! �1, the errors in computing this integral numerically

can be made arbitrary small. The numerical error will thus not be taken into account here for

the sake of brevity.

In order to estimate º�1@ log a=@x, we also need to estimate the partial derivative @a=@x.
Because the function x 7! a(x, i�) (see (10)) is defined as an inverse Fourier transform of

an integrable function, it is tempting to estimate its partial derivative simply by multiplying

its Fourier transform by a factor ºþ cþ iø prior to inversion. However, this approach is

not directly applicable, because multiplying the integrand by ø in (10) leads to an

absolutely non-convergent integral. As observed by Hall and Park (2004) in a related

problem, it is possible to get rid of this difficulty by finding an explicit expression for the

singular part of this function, which can be computed and estimated. Note first that, for any

s and p with non-negative real parts, jLP9(s, p)j < 1; on the other hand, Re(s) . 0 implies

jº=(sþ º)j , 1. Therefore, for all (ø, �) 2 R3 R,
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1

cþ iøþ º� ºLP9(cþ iø, i�)
¼ 1

cþ iøþ º

X
n>0

ºLP9(cþ iø, i�)

ºþ cþ iø

� �n

:

Using the latter equation, we obtain

�(cþ iø, i�; º, LP9) ¼ A1(ø, i�)þ A2(ø, i�), (14)

where we have defined

A1(ø, i�) ¼def
ºLP9(cþ iø, i�)

(cþ iøþ º)2
,

A2(ø, i�) ¼
def ºLP9(cþ iø, i�)

cþ iøþ º
�(cþ iø, i�; º, LP9):

It is easily seen that the functions ø 7! Ak(ø, i�), k ¼ 1, 2 are integrable. Hence, we may

define, for k ¼ 1, 2, and all real numbers x and �,

ak(x, i�) ¼
def 1

2�º

ð1
ø¼�1

Ak(ø, i�)e
(ºþcþiø)x dø, (15)

and therefore, using (10) and (14),

a(x, i�) ¼ 1þ ºa1(x, i�)þ ºa2(x, i�)

which finally yields

1

º

@

@x
log a(x, i�) ¼ 1

a(x, i�)

@a1
@x

þ @a2
@x

� �
(x, i�): (16)

Recall that the moment-generating function of a gamma distribution with shape parameter 2

and scale parameter º is given by x 7! º2=(º� x)2. It follows that, for all u 2 R,

1

2�

ð1
ø¼�1

e(cþiø)u

(ºþ cþ iø)2
dø ¼ uþe

�ºu:

Using Fubini’s theorem and this equation, we obtain, for all real numbers x and �,

a1(x, i�) ¼
1

2�

ð1
ø¼�1

E[e�((cþiø)X 9þi�Y 9)]e(ºþcþiø)x

(ºþ cþ iø)2
dø

¼ eºxE[e�i�Y 9(x� X 9)þe
�º(x�X 9)] ¼ E[(x� X 9)þe

ºX 9�i�Y 9],

and, differentiating this latter expression with respect to x, we obtain

@a1
@x

(x, i�) ¼ E[1(X 9 < x)eºX 9�i�Y 9]: (17)

On the other hand, since jA2(ø, i�)j ¼ O(jøj�3) as ø ! �1, the derivative of a2 can (and

will) be computed by multiplying the integrand in (15) by ºþ cþ iø:

@a2
@x

(x, i�) ¼ 1

2�

ðþ1

�1
LP9(cþ iø, i�)�(cþ iø, i�; º, LP9)e(ºþcþiø)x dø: (18)
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Equations (18) and (17) then yield the following estimators for @ak=@x, k ¼ 1, 2:

ÎI1,n(x, i�) ¼
1

n

Xn
k¼1

1(X 9k < x)eº̂º n X 9k�i�Y 9k (19)

ÎI2,n(x, i�) ¼
e(cþº̂º n)x

2�

ðþ1

�1
dLP9LP9n(cþ iø, i�)�)cþ iø, i�; º̂ºn, dLP9LP9n)e

iøx dø, (20)

where º̂ºn and dLP9LP9n are given by (11) and (13), respectively. From (9) and (16), we finally

define the following estimator for the energy distribution density function:

m̂mx,h,n(y) ¼
1

2�

ðþ1

�1

ÎI1,n þ ÎI2,n

âan

(x, i�)

� �
K�(h�)ei� y d�, (21)

where âan, ÎI1,n and ÎI2,n are defined in (12), (19) and (20), respectively.

4. Main result

We denote by k � k1 the infinite norm, by k � k2 the L2-norm and by k � kW(�) the Sobolev

norm of exponent �, that is, the norm endowing the Sobolev space

W(�) ¼def g 2 L2(R); kgk2W(�) ¼
def
ð1
�1

(1þ j�j)2�jg�(�)j2 d� , 1
� �

,

where g� denotes the Fourier transform of g. In order to control the error terms, it is

necessary to make a standard assumption on the kernel:

(H4) K� has a compact support, and there exists constants CK . 0 and l > � such

that, for all � 2 R,

j1� K�(�)j < CK

j�j l
(1þ j�j) l :

We may now state the main result of this section, which establishes the rate of

convergence of the integrated square error.

Theorem 4.1. Let �, C and x be positive numbers. Assume (H1)–(H4) and suppose that

X < x almost surely and kmkW(�) < C. Then, for all M . 0,

lim sup
n!1

P(n�=(1þ2�)km̂mx,hn,n � mk2 > M) < C9M�2, (22)

where hn � n�1=(1þ2�) and C9 is a positive constant depending only on K , º, c, �, x and C.

The proof is postponed to Appendix B.

Remark 4.1. In the application we have considered, the condition X < x is always satisfied.

Indeed, the pulse duration corresponds to the duration of the charge collection, and therefore
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to the lifetime of the electron–hole pairs in the semiconductor detector. This lifetime is

always finite and depends primarily on the geometry of the detector. However, the condition

X < x almost surely can actually be circumvented if, for fixed x . 0, we consider m̂mx,hn,n as

an estimator of mx, defined as the density of the measure
Ð x
u¼0

P(du, dy), which is always

defined under assumption (H3).

x

that P(X < x) . 0, we obtain an estimator of m up to a multiplicative constant.

x ¼ m1[0,x]. Hence, since

k(m̂mx,hn,n
� m)1[0,x]k22 < k(m̂mx,hn,n

� m1[0,x])k22,

our results apply to the locally integrated error for estimating m1[0,x]. As a comparison, the

rate of our estimator is given by the smoothness of m1[0,x], whereas the rate of the estimator

proposed in Hall and Park (2004) for estimating the time service density is given by the

smoothness of the pdf of X 9 (see Hall and Park 2004: Eq. (3.8)).

k , X 9k , Y 9k), k ¼ 1, . . . , ng, where n

is the number of observed cycles. For t 2 Rþ, denote by N t the renewal process

corresponding to the arrivals of the photons, N t ¼def
P1

k�11fTk < tg. The number of arrivals

in n cycles is equal to ~nn ¼ N T 9nþX 9n
and is therefore random. As n tends to infinity,

(T 9n þ X 9n)=n converges almost surely to the mean of the cycle duration, exp(ºE[X ])=º and it

can easily be shown that the nth return to an idle period (that is, T 9n þ X 9n) is a stopping time

with respect to the natural history of N t. Therefore, by the Blackwell theorem,

N T 9nþX 9n
=(T 9n þ X 9n) converges to º. Therefore, ~nn=n ¼ N T 9nþX 9n

=n converges almost surely

to exp(ºE[X ]). It is well known that the minimax integrated rate for estimating m from

fYk , k ¼ 1, . . . , ~nng with m in a �-Sobolev ball is ~nn�=(1þ2�) (see Schipper 1996), the only

non-standard feature being that the density estimator is calculated by using a random number

of data, which does not alter the density’s estimator first-order property. Since ~nn=n converges

almost surely to a constant, Theorem 4.1 shows that the rate achieved by our estimator is the

minimax integrated rate.

5. Decomposition of the error

In this section we give theoretical results for the proposed estimators. We first introduce

auxiliary variables which will be used in the proof of the main theorem. For any positive

numbers W , x and ~ºº, define

Remark 4.2. If X and Y are independent, then m (y) ¼ m(y)P(X < x) so that, for all x such

Remark 4.3. In the M=G=1 case, that is, if X ¼ Y almost surely, m

Remark 4.4. The estimators in (22) are functions of f(Z
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^̃̃
n(W ) ¼def sup

(ø,�)2[�W ,W ]2
jLP9(cþ iø, i�)� dLP9LP9n(cþ iø, i�)j,

ÊEn(W ; x, ~ºº) ¼def sup
�2[�W ,W ]

j
ð
1[0,x](u)e

~ºº(u�x)e�i� y(P9�cP9P9n)(du, dy)j:
Proposition 5.1 provides bounds for the random variables ^̃̃

n and ÊEn.

Proposition 5.1. Assume (H1) and (H2). Then M1 ¼
def

E(maxfX 9, Y 9g) is finite and the

following inequalities hold for all � . 0, r . 0 and W . 1:

P(j ^̃̃ n(W )j > �) <
4rM1

�
þ 1þ W

r

� �2

exp � n�2

16

� �
, (23)

sup
x,~ºº.0

P(jÊEn(W ; x, ~ºº)j > �) <
4rM1

�
þ 1þ W

r

� �
exp � n�2

16

� �
: (24)

The proof of Proposition 5.1 is omitted here for brevity, but can be found in Trigano

(2005: Proposition 3.4.2). Since our estimate depends on º̂ºn and dLP9LP9n, we introduce

auxiliary functions to exhibit both dependencies. Define the following functions depending

on h, x, ~ºº and on any probability measure ~PP:

~aa(x, i�; ~ºº, ~PP) ¼def 1þ e(cþ
~ºº)x

2�

ðþ1

�1
�(cþ iø, i�; ~ºº, L ~PP)eiøx dø, (25)

~II1(x, i�; ~ºº, ~PP) ¼def
ð ð

Rþ2

1fu<xge
~ººu�i�v ~PP(du, dv)

~II2(x, i�; ~ºº, ~PP) ¼def e
(~ººþc)x

2�

ðþ1

�1
L ~PP(cþ iø, i�)�(cþ iø, i�; ~ºº, L ~PP)eiøx dø:

Define also

~mm(y; x, h, ~ºº, ~PP) ¼def 1

2�

ðþ1

�1

~II1 þ ~II2
~aa

(x, i�; ~ºº, ~PP)

� �
K�(h�)ei� y d� (26)

whenever the integral is well defined. Hence, by (6), (12), (18), (17), (19) and (20), for

i ¼ 1, 2,

~aa(x, i�; º, P9) ¼ a(x, i�) and ~II i(x, i�; º, P9) ¼
@ai
@x

(x, i�), (27)

~aa(x, i�; º̂ºn, cP9P9n) ¼ âan(x, i�) and ~II i(x, i�; º̂ºn, cP9P9n) ¼ ÎI i,n(x, i�), (28)

and m̂mx,h,n(y) ¼ ~mm(y; x, h, º̂ºn, cP9P9n). Now define
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b1(y) ¼
def

m(y)� E
1

h
K

y� Y

h

� �� �
, (29)

b2(y) ¼
def

E
1

h
K

y� Y

h

� �� �
� ~mm(y; x, h, º, P9), (30)

V1(y) ¼def ~mm(y; x, h, º, P9)� ~mm(y; x, h, º̂ºn, P9), (31)

V2(y) ¼def ~mm(y; x, h, º̂ºn, P9)� m̂mx,h,n(y), (32)

so that, by definition,

m̂mx,h,n � m ¼ b1 þ b2 þ V1 þ V2: (33)

In this decomposition, b1 and b2 are deterministic functions and V1, V2 are random

processes. We now provide bounds for these quantities in the L2 sense.

Theorem 5.1. Let �, x and h be positive numbers and n be a positive integer. Assume (H1)–

(H4). If m 2 W(�), then we have

kb1k22 < C2
K h

2�kmk2W(�), (34)

kb2k22 < kKk22h�1P[X . x]: (35)

Moreover, there exist positive constants M and �, depending only on c and º, such that the

following two assertions hold:

(i) We have

kV1k22 < M2kKk22(1þ x)2h�1e4(cþ2º)x(º̂ºn � º)2 (36)

on the event

E1 ¼
deffjº̂ºn � ºj < �(1þ x)�1e�(cþ2º)xg: (37)

(ii) For all W > 1 such that [�Wh, Wh] contains the support of K�, we have

kV2k22 < M2kKk22h�1e4(cþ2º)x[ ^̃̃ n(W )þ W�1 þ ÊEn(W ; x, º̂ºn)]
2 (38)

on the event E1 intersected with the event

E2 ¼deff ^̃̃ n(W )þ W�1 < �e�(cþ2º)xg: (39)

The proof is given in Appendix A.
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In this result, b1 is the usual bias in kernel nonparametric estimation; b2 is a non-

standard bias term which only vanishes when X is bounded and corresponds to the fact that

the limit x ! 1 is not attained in (9); the fluctuation term V1 accounts for the error in the

estimation of º by º̂ºn and is of order h�1
ffiffiffi
n

p
for fixed x; and V2 accounts for the error in

the estimation of LP9 by dLP9LP9n and, by using Proposition 5.1, can be shown to be ‘almost’

of order h�1
ffiffiffi
n

p
for W chosen to diverge quickly enough with respect to n. The events E1

and E2 have probability tending to 1 as n tends to infinity; they are induced by the fraction

present in the definition (21) of the estimator as they primarily avoid the denominator

approaching zero.

We now give a result on the consistency of our estimator, and also on a rate of

convergence, based on Theorem 5.1 and Proposition 5.1, by imposing a superexponential

tail for X.

Corollary 5.1. Let � . 0 and ª . 1. Assume (H1)–(H4) and suppose that m 2 W(�) and

P[X . x] ¼ O(e�jxjª). Then, for all E . 0, as n ! þ1,

km� m̂mxn,hn,n
k22 ¼ OP(n

E�2�=(1þ2�)), (40)

where hn � n�1=(1þ2�) and xn � (log n)ª9 with ª0 2 (ª�1, 1).

Proof. We set Wn ¼
def

n. By Proposition 5.1, we obtain, by choosing E ¼ C(log(n)=n)1=2 and

r ¼ n�1=2,

P(j ^̃̃ n(Wn)j > C(log(n)=n)1=2) <
4

C
log�1=2(n)þ (1þ

ffiffiffi
n

p
)2n�C=16,

which tends to 0 as n ! 1 for C . 32. Hence,

j ^̃̃ n(Wn)j ¼ OPf(log(n)=n)1=2g:

Similarly, since º̂ºn is independent of f(X 9k , Y 9k), k ¼ 1, . . . , ng, we obtain

jÊEn(Wn; xn, º̂ºn)j ¼ OPflog(n)=n)1=2g. Observe that, for any �1 > 0, �2 . 0 and E . 0,

x�1n exp(�2xn) ¼ o(nE). Since º̂ºn ¼ ºþ OP(n
�1=2) and j ^̃̃ n(Wn)þ W�1

n j ¼ OP((log(n)=n)
1=2),

E1 and E2 have a probability tending to one, so that the bounds of Theorem 5.1 finally give,

for any E . 0,

kVik ¼ OP((hnn)
E�1=2), i ¼ 1, 2:

Now using the superexponential tail assumption for X , we have P(X . xn) ¼
O(expf�logªª9(n)g) ¼ o(nE) for all E . 0, and the result follows. h

As seen from (40), the estimator almost achieves the standard nonparametric minimax

rate n��=(1þ2�) that one would obtain by observing f(X k , Yk), k ¼ 1, . . . , ng directly. If X

is bounded, then the rate can be made more precise as in Theorem 4.1: by taking x equal to

an upper bound for X (so that b2 ¼ 0) and hn � n�1=(1þ2�), one easily obtains from the

above proof that

km� m̂mx,hn,n
k22 ¼ OP(log(n)n

�2�=(1þ2�)), (41)
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thus a loss of log(n) in comparison with the claimed rate. This log(n) can in fact be removed,

as shown in Appendix B.

6. Applications and discussion

The present paper is directed towards the construction of an estimator and deriving elements

of its asymptotic theory. We will therefore content ourselves with providing simple

examples and refer the reader to Trigano et al. (2006) for an in-depth discussion of the

selection of the setting parameters (the kernel bandwidth, the truncation bound, etc.) and the

analysis of various different data sets.

We first consider a simple simulated data set. Samples are drawn according to the

bimodal density

f (x, y) ¼ N 20,3(x)3 (0:6N 100,6(y)þ 0:4N 130,9(y)), (42)

where N a,b denotes the Gaussian distribution with mean a and standard deviation b truncated

to Rþ. The intensity of the Poisson process is set to º ¼ 0:04. Some plots of the results can

be found in Section D.6 of Trigano (2005). Numerical values of the mean integrated squared

error (MISE) are presented in Table 1 for a fixed bandwidth parameter h ¼ 2:0 and different

values of n, c and x. It is evident that c has little influence on the error. This is hardly

surprising, since the Bromwich integral used to compute the inverse Laplace transform does

not theoretically depend on the choice of c (see Doetsch 1974). Concerning the influence of

x, knowing that X has distribution N 20,3, ‘reasonable’ values (displayed in the three first

rows) all give equally good results but the last row shows that the ‘naive’ data-driven choice

x ¼ maxi<nX 9i significantly worsens the estimate. Indeed, in view of the upper bounds of

Theorem 5.1, on the one hand, choosing x too large does not ensure that the variance terms

V1 and V2 are controlled, since in this case conditions (37) and (39) may not be satisfied; on

the other hand, x too small introduces a bias in (21), since the control of the bias term b2 is

not guaranteed in that case.

We now present some results using a more realistic model of the energy distribution of

the caesium 137 radionuclide (including the Compton effect). We draw n ¼ 500 000

samples of (X , Y ) using the adaptive rejection sampling algorithm, according to the density

f (x, y) ¼ m(y)3 f X jY (xjy),

Table 1. Mean integrated square error Monte Carlo estimates as n, c or x varies

n MISE c MISE x MISE

1 000 4.760 3 10�3 0.01 4.002 3 10�4 40 1.905 3 10�4

5 000 1.089 3 10�3 0.001 4.348 3 10�4 60 3.852 3 10�4

10 000 3.852 3 10�4 0.0001 3.853 3 10�4 80 5.100 3 10�4

20 000 2.042 3 10�4 0.00001 4.426 3 10�4 maxi<nX 9i 2.231 3 10�2

(c ¼ 10�4, x ¼ 60) (n ¼ 104, x ¼ 60) (n ¼ 104, c ¼ 10�4)
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where m is represented by the dashed plot of Figure 2(a) and the conditional distribution

f X jY (�jy) is a gamma distribution with unit scale parameter, shape parameter equal to

2þ y=1024 and truncated at T ¼ 4þ y=2048; the number of samples may appear to be

large, but such large numbers are commonly used in nuclear spectrometry, especially when

active sources are measured. Figure 2(a) also shows the pile-up distribution (solid curve),

based on the observations Y 9k , k ¼ 1, . . . , n, to illustrate the difference from m; note that the

Compton continuum (which is the smooth part of the density on the left of the spike) is also

distorted, since electrical pulses generated by Compton photons are also susceptible to

overlap. Figure 2(b) illustrates the behaviour of our estimator. We observe that the pile-up

effect is well corrected.

We now briefly discuss the choice of the bandwidth parameter h. In standard

nonparametric estimation, there are several data-driven ways of choosing a bandwidth

parameter. It is not yet clear how these methods can be adapted to this non-standard density

estimation scenario, except in special cases. For instance, a possible approach would then

involve using an automatic bandwidth selector (such as cross-validation) on the observations

fY 9k , k ¼ 1, . . . , ng, and using the optimal bandwidth obtained for the estimator m̂mx,h,n.

Further insights on the data-driven choices of c, x and h and discussion of the practical

applications can be found in the companion paper, Trigano et al. (2006).

Appendix A. Proof of Theorem 5.1

The following lemma will be used repeatedly:

Lemma A.1. Let c . 0 and �0 . 0. For any complex-valued functions z1 and z2 satisfying

sup
ø2R,i¼1,2

jzi(ø)j < 1, (43)

Figure 2. Energy spectrum of Cs 137: (a) ideal probability density function (dashed curve) and kernel

estimates of pile-up distribution (solid curve); (b) estimate m̂mx,h,n.
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let z ¼ (z1, z2) and denote by �z the function defined on Rþ 3 R by

�z(~ºº, ø) ¼def
z1(ø)

(cþ iøþ ~ºº)(cþ iøþ ~ºº� ~ººz2(ø))
:

Then the following assertions hold:

(i) The function ~ºº 7!
Ðþ1
�1 �z(~ºº, ø)dø is continuously differentiable on Rþ and its

derivative is bounded independently of z over ~ºº 2 [0, �0].
(ii) There exists K . 0, depending only on c and �0, such that, for any W > 1 or

W ¼ 1 and any function ~zz ¼ (~zz1, ~zz2) also satisfying (43) ,

sup
~ºº2[0,�0]

����ðþ1

�1
�z(~ºº, ø)dø�

ðþ1

�1
�~zz(~ºº, ø)dø

���� < K max
i¼1,2

sup
ø2[�W ,W ]

jzi(ø)� ~zzi(ø)j þ
1

W

 !
:

The proof of Lemma A.1 can be found in Trigano (2005: Lemma 3.2.1).

Bound for b1. Observe that b1 is the usual bias in nonparametric kernel estimation. The

bound of the integrated error is classically given, for densities in a Sobolev space, by

kb1k22 ¼
ð1
�1

j1� K�(h�)j2jm�(�)j2 d� < C2
K h

2�kmk2W(�),

which shows (34).

Bound for b2. By (8), (16), (26) and (27), we find that

b2(y) ¼ E
1

h
K

y� Y

h

� �
1(X . x)

� �
:

An application of the Cauchy–Schwarz inequality yields (35).

Bound for V1. We will show below that there exist positive constants M and � such that, on

E1 (as defined in (37)),

sup
�2R

���� @
@ ~ºº

~II1 þ ~II2
~aa

� �
(x, i�; º̂ºn, P9)

���� < M(1þ x)e(2cþ4º)x: (44)

Using (26) and (31), the Parseval theorem and the latter relation imply

kV1k22 <
ð1
�1

jM(1þ x)e(2cþ4º)x(º̂ºn � º)j2jK�(h�)j2d�

on the event E1, which yields (36). Hence, it remains to show (44).

First observe that, by the definition of ~II1, one trivially obtains, for all ~ºº . 0,

j~II1(x, i�; ~ºº, P9)j < e
~ººx and

���� @
@ ~ºº

~II1(x, i�; ~ºº, P9)j < xe
~ººx: (45)

Substituting (6) into (27) gives, for all � 2 R,

j~aa(x, i�; º, P9)j ¼ exp(ºE[cos(�Y )(x� X )þ]) 2 [e�ºx, eºx]: (46)
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Let �0 . 0, to be chosen later. From (25), Lemma A.1 shows that there exists a constant M1

depending only on º, c and �0 such that, for all ~ºº in [0, ºþ �0] and � 2 R,

j(~aa(x, i�; ~ºº, P9)� 1)e�(~ººþc)x � (~aa(x, i�; º, P9)� 1)e�(ºþc)xj < M1j~ºº� ºj: (47)

From (46) and (47) and since, for all real y, j1� e yj < jyjej yj, we obtain, for all ~ºº in

[0, ºþ �0] and � 2 R,

j~aaj(x, i�; ~ºº, P9) > j~aaj(x, i�; º, P9)e(~ºº�º)x � je(~ºº�º)x � 1j � M1j~ºº� ºje(~ººþc)x,

hence

j~aaj(x, i�; ~ºº, P9) > e(
~ºº�2º)x � [M1e

(~ººþc)x þ xej
~ºº�ºjx]j~ºº� ºj:

Note that, taking �0 ¼ c and M91 ¼ M1 _ 1, the term in brackets is at most

M91e
(~ºº�2º)x(1þ x)e(cþ2º)x for ~ºº 2 [º� �0, ºþ �0] so that we obtain, on the event E1 with

� < �1 ¼
deff�0 ^ (M91)

�1=2g,

j~aaj(x, i�; º̂ºn, P9) >
1

2
e(º̂ºn�2º)x: (48)

From (25) and using similar bounds to those in Lemma A.1, one can easily show that, for

some constant M2 depending only on º, c and �1, for all ~ºº 2 R such that jº� ~ººj < �1,

j~aa(x, i�; ~ºº, P9)j < M2e
(~ººþc)x and

���� @ ~aa
@ ~ºº

(x, i�; ~ºº, P9)

���� < M2(1þ x)e(
~ººþc)x: (49)

j~II2(x, i�; ~ºº, P9)j < M2e
(~ººþc)x and

���� @ ~II2
@ ~ºº

(x, i�; ~ºº, P9)

���� < M2(1þ x)e(
~ººþc)x: (50)

Bringing together (45) and (48)–(50) shows that (44) holds on E1, for any � < �1.
Bound for V2. Since the support of K� is included in [�Wh, Wh], by Parseval’s theorem, (26)

and (32), the claimed bound is implied by

sup
j�j<W

���� ~II1 þ ~II2
~aa

(x, i�; º̂ºn, P9)�
~II1 þ ~II2

~aa
(x, i�; º̂ºn, cP9P9n)����

< Me2(cþ2º)x[ ^̃̃ n(W )þ W�1 þ ÊEn(W ; x, º̂ºn)], (51)

which we now show. Using (25), we may write

j~aa(x, i�; ~ºº, ~PP)� ~aa(x, i�; ~ºº, P9)j ¼
���� ~ººe(cþ~ºº)x

2�

ðþ1

�1
[�~zz(~ºº, ø)��z(~ºº, ø)]dø

����, (52)

where � is defined in Lemma A.1, and where the complex functions ~zz and z are defined as

z(ø) ¼def(eiøxLP9(cþ iø, i�); LP9(cþ iø, i�))

and

~zz(ø) ¼def(eiøxL ~PP(cþ iø, i�); L ~PP(cþ iø, i�)):
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Using (52) and assertion (ii) of Lemma A.1, there exists M1 . 0 such that, for all
~ºº < ºþ �1,

sup
j�j<W

j~aa(x, i�; ~ºº, P9)� ~aa(x, i�; ~ºº, cP9P9n)j < M1e
(cþ~ºº)x ^̃̃

n(W )þ 1

W

� �
: (53)

It is also clear that for all ~ºº < ºþ �1,

sup
j�j<W

j~II1(x, i�; ~ºº, cP9P9n)� ~II1(x, i�; ~ºº, P9)j < e
~ººx ÊEn(W ; ~ºº, x) (54)

and

j~II2(x, i�; ~ºº, ~PP)� ~II2(x, i�; ~ºº, P9)j ¼
���� e(cþ~ºº)x

2�

ðþ1

�1
[�~zz(~ºº, ø)��z(~ºº, ø)]dø

����,
with

z(ø) ¼def(eiøx(LP9(cþ iø, i�))2; LP9(cþ iø, i�))

and

~zz(ø) ¼def(eiøx(L ~PP(cþ iø, i�))2; L ~PP(cþ iø, i�)):

Consequently, using assertion (ii) of Lemma A.1, we have for all ~ºº < ºþ �1,

sup
j�j<W

j~II2(x, i�; ~ºº, cP9P9n)� ~II2(x, i�; ~ºº, P9)j < M2e
(~ººþc)x ^̃̃

n(W )þ 1

W

� �
: (55)

We now derive a lower bound for âan(x, i�) ¼ a(x, i�; º̂ºn, cP9P9n). By (53), we obtain

inf
j�j<W

jâaj(x, i�) > inf
j�j<W

j~aaj(x, i�; º̂ºn, P9)� M1e
(cþº̂º n)x ^̃̃

n(W )þ 1

W

� �
:

Recall that E1 and E2 are defined in (37) and (39), respectively. Using (48), which holds on

E1 for any � < �1, we obtain, on E1 \ E2,

inf
j�j<W

j~aa(x, i�; º̂ºn, cP9P9n)âan(x, i�)j >
1

2

1

2
� M1�

� �
e(2º̂º n�4º)x: (56)

Hence we set � ¼def(4M1)
�1 ^ �1, so that the term in brackets is at least 1=4. Finally, using the

fact that, for all complex numbers x, y, z, x9, y9, z9,

xþ y

z
� x9þ y9

z9
¼ (z9� z)(xþ y)þ z(x� x9)þ z(y� y9)

zz9
,

and bringing together (45), (49), (50) and (53)–(56) leads to (51).
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Appendix B. Proof of Theorem 4.1

In this section we denote by �i, Mi and Ci, i ¼ 0, 1, 2, . . ., some positive constants

depending only on kmkW(�), K, º, c and x. We will also use the notation introduced in

Appendix A. As shown in this section, we have kb1k22 < C2
Kkmk

2
W(�)h

2� and, since

P(X . x) ¼ 0, we have b2 ¼ 0.

By (6), because E[X ] , 1, it is easily seen that ja(x, i�)j > e�ºx. This can be used in

the ratio appearing in (21) to lower-bound âan for large n by using the fact that âan(x, i�)
converges to a(x, i�). However, this will not allow bounds of the ratio in the mean square

sense. For obtaining mean square error estimates, we consider the following modified

estimator which (artificially) circumvent this difficulty. Let �0 . º and denote by An the set

An ¼
deffº̂ºn < �0g \ inf

hn�2Supp(K�)
jâanj(x, i�) >

1

5
exp(�º̂ºnx)

( )
,

where Supp(K�) denotes the (compact) support of K�. Define
�mmx,h,n(y) ¼ 1An

m̂mx,h,n(y): (57)

We will show that

sup
n>1

n2�=(1þ2�)Ek �mmx,hn,n
� mk22 < C0, (58)

Let V3 be the random process

V3(y) ¼def ~mm(y; x, hn, º, P9)� m̂mx,hn,n
(y),

so that

k �mmx,h,n � mk22 < kb1k22 þ kmk221Ac
n
þ kV3k221An

: (59)

We will show that there exists C1 . 0 such that, for n large enough,

P(Ac
n) < C1n

�1, (60)

E[kV3k221An
] < C1(hnn)

�1: (61)

Since kb1k22 < C2
Kkmk

2
W(�)h

2� and kmk2 < kmkW(�), (59)–(61) yield the bound (58). The

bound (22) then follows by writing

P(n�=(1þ2�)km̂mx,hn,n
� mk2 > M)

< P(n�=(1þ2�)k �mmx,hn,n
� mk2 > M)þ P(Ac

n) < C0M
�2 þ C1n

�1,

where we have used the Markov inequality, (58) and (60). It now remains to show (60) and

(61).

Proof of bound (60). We set Wn ¼
def

n, so that for n large enough, hn� 2 Supp(K�) implies

j�j < Wn. As in (56), we have, on E1 \ E2,
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inf
j�j<Wn

jâanj(x, i�) >
1

4
e(º̂º n�2º)x:

Hence the intersection of fº̂ºn < �0g, E1, E2 and fexp((º̂ºn � 2º)x)=4 > exp(�º̂ºnx)=5g is

included in An. Since the last inequality and E2 both contain jº̂ºn � ºj < �2 for �2 . 0 small

enough, we obtain

P(Ac
n) < P(º̂ºn . �0)þ P(jº̂ºn � ºj . �2)þ P( ^̃̃ n(n)þ n�1 . �3):

Clearly the first two probabilities on the right-hand side are O(n�1). For n large enough, the

last probability is less than P( ^̃̃ n(n) . �3=2), which is o(n�1) by applying Proposition 5.1,

say with r ¼ n�2. We thus get (60) for n large enough.

Proof of bound (61). By (26)–(28), V3 is defined as the inverse Fourier transform of

V�3 (�) ¼ K�(hn�)
@xa1 þ @xa2

a
�
dI1,nI1,n þdI2,nI2,n

âan

" #
(x, i�),

where @xai is shorthand for @ai=@x. Using the fact that���� @xa1 þ @xa2

a
�
dI1,nI1,n þdI1,nI1,n

âan

���� < 1

jâanj
X
i¼1,2

����@xai � cI i,nI i,n

����þ ���� @xa1 þ @xa2

a

����jâan � aj
" #

,

we obtain that, on the set An defined above, for all � 2 R,

jV�3 (�)j < 5jK�(hn�)j E1,n þ E2,n þ E n

���� @ xa1 þ @xa2

a

����(x, i�)� �
:

where, for i ¼ 1, 2, we define

E i,n ¼
def

eº̂ºn xj@ xai � cI i,nI i,nj(x, i�) and E n ¼
def

eº̂º n xjâan � aj(x, i�):

Multiplying by 1An
, taking the expectation and applying Parseval’s theorem yields

E[kV3k221An
] < C2 h�1

n kKk22
X2
i¼1

sup
�2R

E[1An
E i,n

2]þ M2
1 sup
�2R

E[1An
E n]

" #
, (62)

where, by (8), (16) and Parseval’s theorem,

M2
1 ¼
def
ð1
�1

jK�(hn�)j2
���� @xa1 þ @xa2

a

����2(x, i�)d� < kK�k1kmk22:

By (17) and (19), we have

j@xa1 �dI1,nI1,nj(x, i�) < j@xa1(x, i�)� ~II1(x, i�; º̂ºn, P9)j þ j~II1(x, i�; º̂ºn, P9)� ~II1(x, i�; º̂ºn, cP9P9n)j:
Using this decomposition in E1,n, the independence of º̂ºn, (X 9k , Y 9k), k ¼ 1, . . . , n, the fact

that var(1(X 9 < x)e
~ººX 9�i�Y 9) < 2e2

~ººx and the bound º̂ºn < �0 on An, we obtain

E[1An
E1,n

2] < M2fE[1An
j@xa1(x, i�)� ~II1(x, i�; º̂ºn, P9)j2]þ n�1g:
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Using (45) and the mean value theorem for bounding the first expectation shows that the first

term is O(1=n) and thus

sup
�2R

E[E2
1,n] < C3n

�1: (63)

By (18) and (20), we have

j@xa2 �dI2,nI2,nj(x, i�) < j@xa2(x, i�)� ~II2(x, i�; º̂ºn, P9)j þ j~II2(x, i�; º̂ºn, P9)� ~II2(x, i�; º̂ºn, cP9P9n)j:
Using (27) and (50), by the mean value theorem, we obtain

sup
�2R

E[1An
e2º̂ºn xj@xa2(x, i�)� ~II2(x, i�; º̂ºn, P9)j2] < M3n

�1:

Hence, for all � 2 R, on the set fº̂ºn < �0g,

j~II2(x, i�; º̂ºn, P9)� ~II2(x, i�; º̂ºn, cP9P9n)j < M4

ð1
�1

g(ø)jLP9� dLP9LP9nj(cþ iø, i�)dø,

where g is an integrable function depending only on c and º. Inserting the three last bounds

in the definition of E2,n, we obtain

sup
�2R

E[1An
E2
2,n] < C4n

�1:

Comparing (10) with (18) and (12) with (20), one can easily see that a similar argument

applies for bounding E n on the set An, giving

sup
�2R

E[1An
E2
n] < C5n

�1:

Inserting (63) and the two last displays into (62) shows (61).

Appendix C. Proof of Theorem 3.1

Denote by Yx the integrated workload at time x, that is,

Yx ¼def
ðx
0

W (t) dt, (64)

where fW (x), x > 0g is the workload process given in (1). Recall that fSx, x > 0g denotes

the on–off process equal to 0 in idle periods and equal to 1 in busy periods (see (2)). Define

by r(x, y) the probability

rfx, yg ¼ P(Sx ¼ 0, Yx < y): (65)

In a first step, we calculate the Laplace transform Lr of r using the renewal process of the

idle and busy periods. Note that this renewal process is stationary. Define by fRn, n > 1g the

successive time instants of the end of the busy periods and by fAn, n > 1g the integrated

workload at the end of the busy periods:
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Rn ¼
def

T 9n þ X 9n ¼
Xn
k¼1

(Zk þ X 9k), An ¼
def
Xn
k¼1

Y 9k , n > 1, (66)

where we have set R0 ¼def 0 and A0 ¼def 0.

Proposition C.1. Under assumptions (H1) and (H2), for any (s, p) 2 C2 such that Re(s) . 0

and Re(p) . 0,

Lr(s=p) ¼ 1

sþ º� ºLP9(s, p)
3

ºLP9(s, p)

p(sþ º)
þ 1

p(sþ º)
:

Proof. The proof is based on classical renewal arguments and the fact that for all integers k,

the idle period Zk is distributed according to an exponential distribution with scale parameter

º, Eº. Note that the event fSx ¼ 0, Yx < yg may be decomposed as

fSx ¼ 0, Yx < yg ¼ fx , T 91g [
[
n>1

T 9n þ X 9n < x , T 9nþ1,
Xn
k¼1

Y 9k < y

( ) !

¼ fx , T 91g [
[
n>1

fRn < x , Rn þ Znþ1, An < yg
 !

, (67)

where An and Rn are defined in (66). Since Znþ1 is independent of these variables, we obtain

rfx, yg � e�ºx ¼
X
n>1

ðþ1

0

P(x� u , Rn < x, An < y)ºe�ºu du:

Writing ðþ1

0

P(x� u , Rn < x, An < y)ºe�ºu du

¼ P(Rn < x, An < y)� º

ðþ1

0

P(Rn < u� x, An < y)e�ºu du,

the proof follows from the identityð1
0

ð1
0

P(Rn < x, An < y)e�sxe� p y dx dy ¼ 1

sp

º

sþ º
LP9(s, p)

� �n

:

h

We will now derive another expression for Lr, using standard properties of the Poisson

process.

Proposition C.2. Under assumptions (H1) and (H2), for any (s, p) 2 C2 such that Re(s) . 0

and Re(p) . 0,
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Lr(s=p) ¼ 1

p(sþ º)
þ 1

p

ðþ1

0

e�(sþº)x exp º

ð1
0

e� pvk(x, dv)
� �

� 1

� �
dx:

Proof. Denote by fN t, t > 0g the counting process associated with the homogeneous

Poisson process fTk , k > 0g of the arrivals – more explicitly, N t ¼
P1

n¼11fTn < tg. By
conditioning the event fSx ¼ 0, Yx < yg on the event fN x ¼ ng,

r(x, y) ¼ e�ºx þ
X
n>1

P(N x ¼ n)P fTi þ X i < xgn
i¼1,

Xn
k¼1

Yk < y

����N x ¼ n

 !
: (68)

The conditional distribution of the arrival times (T1, . . . , Tn) given fN x ¼ ng is equal to the

distribution of the order statistics of n independent and identically distributed uniform

random variables on [0, x]; hence, for any n-tuple (x1, . . . , xn) of positive real numbers,

P(T1 < x1, . . . , Tn < xnjN x ¼ n) ¼ P(U(1) < x1, . . . , U(n) < xn), (69)

where fUkgn
k¼1 are independent and identically distributed random variables uniformly

distributed on [0, x] and U(1) <. . .< U(n) are the order statistics. Therefore, (68) and (69)

imply that

A ¼def P fTi þ X i < xgn
i¼1,

Xn
k¼1

Yk < y

����N x ¼ n

 !

¼ 1

xn

ð
� � �
ð Yn

k¼1

1(uk þ xk < xg1
Xn
k¼1

yk < y

( )Yn
k¼1

P(dxk , dyk)duk ,

since the latter integral is invariant by permuting the indices. An application of the Fubini

theorem leads to

A ¼ 1

xn

ð
� � �
ð
1
Xn
k¼1

yk < y

( )Yn
k¼1

k(x, dyk),

where k(x, y) is the probability kernel defined by

k(x, y) ¼def
ð
(x� u)1fu < xgP(du, dy): (70)

We obtain, for any p such that Re( p) . 0,ð1
0

r(x, v)e� pv dv ¼ e�ºx

p
þ 1

p

X
n>1

ºn

n!
e�ºx

ð1
0

k(x, dv)e� pv

� �n

¼ e�ºx

p
þ e�ºx

p
exp º

ð1
0

k(x, dv)e� pv

� �
� 1

� �
,

and hence
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Lr(s, p) ¼ 1

p(sþ º)
þ 1

p

ðþ1

0

e�sue�ºu exp º

ð1
0

e� pvk(u, dv)
� �

� 1

� �
du:

h

The proof of Theorem 3.1 is then a direct consequence of Propositions C.1 and C.2 and

the fact that

a(x, p) ¼ exp º

ð1
0

e� pvk(x, v)
� �

:

The result is extrapolated on the line Re(p) ¼ 0 by continuity in p at fixed s such that

Re(s) . 0.
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