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1. Positive semigroups

A positive semigroup is a semigroup (S, �) which has an identity e, satisfies the left

cancellation law, and has no non-trivial inverses (see Siegrist 1994; Rowell 1995; Rowell

and Siegrist 1998). The associated partial order � is defined by

x � y if and only if y ¼ xu, for some u 2 S:

If x � y then u 2 S satisfying xu ¼ y is unique, and is denoted x�1 y. The partially ordered

set (S, �) has a self-similarity property: u 7! xu is an order-isomorphism from S onto

xS ¼ fy 2 S : x � yg for each x 2 S.

Topologically, we assume that S is a locally compact Hausdorff space with a countable

base. To connect the algebraic and topological structures, we make the usual assumption

that (x, y) 7! xy is a continuous mapping from S 3 S into S. We also assume that

[e, x] ¼ fy 2 S; y � xg is compact for each x, and that if x � y then [e, y] is a

neighbourhood of x and xS is a neighbourhood of y. If S is countable, we give S the

discrete topology, so that the assumption that [e, x] is compact means that the partially

ordered set (S, �) is locally finite.

The term measure on S will refer to a positive Borel measure; that is, a measure º on the

Borel sets B(S) such that º(K) , 1 if K � S is compact. A measure º on S is left-

invariant if (xA) ¼ º(A) for all x 2 S and A 2 B(S). Our final assumption is that

(S, �) has a left-invariant measure that is unique up to multiplication by positive constants.

This assumption is always satisfied if S is discrete; counting measure # is left-invariant

measure and is essentially unique. The assumption is also satisfied if S can be embedded in
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a nice way as the set of positive elements of a left-ordered topological group, since such a

group has a left Haar measure, essentially unique (see Halmos 1974).

Positive semigroups are the natural home for probability distributions with exponential

properties (such as the memorylessness and constant failure rate properties), and for

reliability concepts (such as ageing properties). This paper has two main goals. First, we

study the corresponding ‘gamma’ distributions that govern semigroup products of

independent and identically distributed (i.i.d.) exponential variables, and this in turn leads

to new and interesting characterizations of exponential distributions. Second, we apply the

results to the positive semigroup (Nþ, �) to reinterpret a number of recent results by Lin

and Hu (2001) and by Gut (2006) for the zeta and more general Dirichlet distributions. We

believe that this example, in particular, makes a strong case for the value of positive

semigroups as a unifying model. See Clifford and Preston (1964, 1967) for general

information on semigroups, Högnäs and Mukherjea (1995) and Ruzsa and Székely (1988)

for information on probability measures on semigroups, and Azlarov and Volidin (1986) for

general characterizations of the standard exponential distribution on ([0, 1), þ).

2. Exponential distributions

In this section, we will review some basic facts from Siegrist (1994), and obtain some new

results. Our starting point is a positive semigroup (S, �). We will restrict our attention to

random variables whose distributions are Borel probability measures with support S.

Probability density functions will be relative to a fixed, left-invariant measure º.
A random variable X has an exponential distribution on (S, �) if

P(X 2 xA) ¼ P(X � x)P(X 2 A), x 2 S, A 2 B(S): (1)

Equivalently, the conditional distribution of x�1X given X � x is the same as the distribution

of X for each x 2 S. Next, X has a memoryless distribution if (1) holds for all x 2 S and all

A of the form yS where y 2 S. Equivalently,

P(X � xy) ¼ P(X � x)P(X � y), x 2 S, y 2 S,

so that the conditional tail probability function of x�1X given X � x is the same as the tail

probability function of X . In the language of reliability theory, X has constant failure rate (or

simply constant rate) if X has a probability density function f that is proportional to the tail

probability function:

f (x) ¼ ÆP(X � x), x 2 S,

for some positive constant Æ. In general, for any positive measure � on S,ð
S

P(X � x)d�(x) ¼ E(�[e, X ])

Thus, if X has constant rate, then the rate constant must be

Æ ¼ 1

E(º[e, X ])
(2)
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We will need the following results from Siegrist (1994):

Theorem 1. A probability distribution on S is an exponential distribution if and only if the

distribution is memoryless and has constant rate.

In general, however, a distribution can have one of these properties but not the other.

Corollary 1. Suppose that F : S ! (0, 1] is measurable. Then F is the tail probability

function on an exponential distribution if and only if F(xy) ¼ F(x)F(y) for all x, y 2 S, andð
S

F(x)dº(x) , 1: (3)

Of course, when the conditions in Corollary 1 are met, then the corresponding

proportional density function is f ¼ ÆF, where Æ is the reciprocal of the integral in (3).

The following proposition gives a simple, new characterization of exponential distributions

based on the probability density function.

Proposition 1. Suppose that f is a probability density function on S and that

f (x) f (y) ¼ G(xy), x 2 S, y 2 S

for some measurable function G : S ! (0, 1). Then f is the density of an exponential

distribution.

Proof. First we let y ¼ e to conclude that G(x) ¼ Æ f (x) for x 2 S, where Æ ¼ f (e) . 0. Let

F denote the tail probability function. Then, using a change of variables and the fact that º is

left-invariant, we have

F(x) ¼
ð
xS

f (y)dº(y) ¼
ð
xS

1

Æ
G(y)dº(y) ¼ 1

Æ

ð
S

G(xu)dº(u)

¼ 1

Æ

ð
S

f (x) f (u)dº(u) ¼ 1

Æ
f (x), x 2 S:

Thus, the distribution has constant rate Æ. Finally,

F(xy) ¼ 1

Æ
f (xy) ¼ 1

Æ2
G(xy) ¼ 1

Æ2
f (x) f (y) ¼ F(x)F(y),

so the distribution is memoryless. h

The condition in Proposition 1 is essentially that f (x) f (y) depends only on the product

xy. Clearly it suffices to have this condition hold for all x, y 2 S with xy 6¼ e, since e has

only the trivial factoring.
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3. Gamma distributions

Suppose that X and Y are independent random variables taking values in S, with

probability density functions f and g, respectively. Then XY has probability density

function f � g, the convolution of f with g, given by

( f � g)(y) ¼
ð
[e, y]

f (x)g(x�1 y)dº(x):

More generally, the convolution operation makes sense for functions f , g : S ! R, assuming

that the integral exists. With our algebraic assumptions, convolution is associative, but not

commutative in general.

If (X1, X 2, . . .) is a sequence of independent random variables on S, with a common

exponential distribution, then for n 2 Nþ we will say that

Yn ¼ X1X2 � � � X n

has the corresponding gamma distribution on S of order n.

We will need a special sequence of functions. Let 1 denote the constant function 1 on S,

and, for n 2 Nþ, let 1
n denote the convolution power of 1 of order n. Thus, 11 ¼ 1, and, for

n 2 Nþ,

1nþ1(x) ¼
ð
[e,x]

1n(t)dº(t), x 2 S:

The following proposition gives some alternative interpretations.

Proposition 2. For n 2 Nþ, let ºn denote the n-fold product measure on S n corresponding to

º. For n 2 f2, 3, . . .g,
1n(x) ¼ ºn�1f(u1, . . . , un�1) 2 Sn�1 : u1 � . . . � un�1 � xg, (4)

¼ ºn�1f(v1, . . . , vn�1) 2 Sn�1 : v1 . . . vn�1 � xg: (5)

In particular, 12(x) ¼ º[e, x]. If (S, �) is discrete, then 1n(x) is the number of (ordered) n-

factorings of x:

1n(x) ¼ #f(v1, v2, . . . , vn) 2 Sn : v1v2 . . . vn ¼ xg: (6)

Proof. By definition,

12(x) ¼
ð
[e,x]

1 dº(t) ¼ º[e, x],

so (4) and (5) hold for n ¼ 2. Suppose that (4) holds for a given n . 2. Let

An(x) ¼ f(u1, . . . , un) 2 Sn : u1 � . . . � un � xg, x 2 S, n 2 Nþ:

Then
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ºn(An(x)) ¼
ð
S

ºn�1fu 2 Sn�1 : (u, t) 2 An(x)gdº(t):

But (u, t) 2 An(x) if and only if t 2 [e, x] and u 2 An�1(t). Hence

ºn(An(x)) ¼
ð
[e,x]

ºn�1 An�1(t)ð Þdº(t) ¼
ð
[e,x]

1n(t)dº(t) ¼ 1nþ1(x):

Similarly, suppose that (5) holds for a given n . 2. Let

Bn(x) ¼ f(v1, . . . , vn) 2 Sn : v1 . . . vn � xg, x 2 S, n 2 Nþ:

Then

ºn Bn(x)ð Þ ¼
ð
S

ºn�1fv 2 Sn�1 : (t, v) 2 Bn(x)gdº(t):

But (t, v) 2 Bn(x) if and only if tv1 � � � vn�1 � x if and only if t 2 [e, x] and

v 2 Bn�1(t
�1x). Hence

ºn Bn(x)ð Þ ¼
ð
[e,x]

ºn�1 Bn�1(t
�1x)

� �
dº(t) ¼

ð
[e,x]

1n(t�1x)dº(t) ¼ 1nþ1(x):

Finally, in the discrete case, (6) holds since there is one-to-one correspondence between

Bn�1(x) and the set

f(v1, . . . , vn) 2 Sn : v1 . . . vn ¼ xg:

h

Lemma 1. Suppose that F is the tail probability function of a memoryless distribution on S.

Then (1nF) � F ¼ 1nþ1F.

Proof. Let x 2 S. From the memorylessness property,

[(1nF) � F](x) ¼
ð
[e,x]

1n(t)F(t)F(t�1x)dº(t)

¼ F(x)

ð
[e,x]

1n(t)dº(t) ¼ F(x)1nþ1(x):

h

The gamma densities have a simple and elegant formulation in terms of the underlying

exponential tail probability function F, the rate parameter Æ, and the convolution powers of

1. A preliminary version of the following theorem appeared in Rowell (1995).

Theorem 2. Consider an exponential distribution on S with tail probability function F and

rate parameter Æ . 0. Then the probability density function f n of the corresponding gamma

distribution of order n is given by
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f n ¼ Æn1nF: (7)

Proof. The proof is by induction on n. First, f 1 is the probability density function of the

given exponential distribution, and hence by the constant rate property, f1 ¼ ÆF. Thus the

result if true for n ¼ 1. Assume that the result is true for a given n. Then

f nþ1 ¼ f n � f ¼ (Æn1nF) � (ÆF) ¼ Ænþ1[(1nF) � F] ¼ Ænþ11nþ1F

by Lemma 1. Therefore the result holds for nþ 1. h

Theorem 3. Suppose that F is the tail probability function of a probability distribution on S

with constant rate Æ. Then f n given in (7) is a probability density function for each n 2 Nþ.

Proof. The proof is by induction on n. First, f1 ¼ ÆF is a probability density function, by

definition of the constant rate property. Suppose that f n is a probability density function for

some n. Then ð
S

f nþ1(x)dº(x) ¼
ð
S

Ænþ11nþ1(x)F(x)dº(x)

¼
ð
S

Ænþ1

ð
[e,x]

1n(y)dº(y)F(x)dº(x)

¼
ð
S

ð
yS

Ænþ11n(y)F(x)dº(x)dº(y)

¼
ð
S

Æn1n(y)

ð
yS

ÆF(x)dº(x)

� �
dº(y)

¼
ð
S

Æn1n(y)F(y)dº(y)

¼
ð
S

f n(y)dº(y) ¼ 1:

h

Of course, if the distribution only has constant rate, we cannot conclude that the density

f n is the n-fold convolution power of f ; equivalently, we cannot conclude that f n is the

density of the product of n i.i.d. variables.

Proposition 3. Suppose that X has constant rate Æ and that g : S ! R is a measurable

function with E(jg(X )j) , 1. For n 2 Nþ, let gn ¼ g � 1n. Then

E(gn(X )) ¼
1

Æn
E(g(X )):
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Proof. The following computations hold by the standard change of variables formula and

Fubini’s theorem:

E gnþ1(X )ð Þ ¼
ð
S

gnþ1(y) f (y)dº(y) ¼
ð
S

ð
[e, y]

gn(x)dº(x) f (y)dº(y)

¼
ð
S

ð
xS

gn(x) f (y)dº(y)dº(x) ¼
ð
S

gn(x)F(x)dº(x)

¼ 1

Æ

ð
S

gn(x) f (x)dº(x) ¼
1

Æ
E gn(X )ð Þ:

h

Corollary 2. Suppose that X has constant rate Æ. Then

E 1n(X )ð Þ ¼ 1

Æn�1
, n 2 Nþ:

Note that this result generalizes (2), which corresponds to n ¼ 2. The following theorem

gives a basic characterization of exponential distributions.

Theorem 4. Suppose that X and Y are i.i.d. random variables taking values in S. Then the

common distribution is exponential if and only if the conditional distribution of X given

XY ¼ z is uniform on [e, z] for every z � e.

Proof. Suppose first that X and Y have a common exponential distribution with tail

probability function F and constant rate Æ . 0. Thus f ¼ ÆF is a density function for X and

for Y. Hence, (X , XY ) has probability density function h given by

h(x, z) ¼ f (x) f (x�1z) ¼ Æ2F(x)F(x�1z) ¼ Æ2F(z), x � z,

using the constant rate and memorylessness properties. On the other hand, by Theorem 2, the

probability density function of XY is

f2(z) ¼ Æ212(z)F(z) ¼ Æ2º[e, z]F(z), z 2 S:

Therefore, the conditional density function of X given XY ¼ z � e is

x 7! h(x, z)

f2(z)
¼ 1

º[e, z]
, x � z,

which is the probability density function of the uniform distribution on [e, z].

Conversely, suppose that X and Y are i.i.d. variables on S and that the conditional

distribution of X given XY ¼ z is uniform on [e, z] for each z � e. If A � S is measurable,

then

P(X 2 A) ¼ E(P(X 2 AjXY )) ¼ E
º(A \ [e, XY ]

º[e, XY ]

� �
,
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and therefore X is absolutely continuous with respect to º. Let f denote a density of X , so

that f 2 ¼ f � f , a density function of XY . Then, with an appropriate choice of f ,

f (x) f (x�1z)

f 2(z)
¼ 1

º[e, z]
, x � z,

for each x � e. Equivalently,

f (x) f (y) ¼ f 2(xy)

º[e, xy]
, x 2 S, y 2 S, xy � e:

It now follows from the characterization in Proposition 1 that f is the density of an

exponential distribution. h

The restriction

case. The first part of the theorem has a simple extension to any number of i.i.d.

exponential variables, and this shows that the gamma distributions, in a sense, govern the

most random way to place points in S. Although the proofs are simple, it is still a little

surprising that so many of the basic characterizations and properties of the exponential

distribution are valid with the minimal algebraic assumptions of a positive semigroup.

Corollary 3. Suppose that (X1, X 2, . . .) is a sequence of independent random variables on S,

each with a common exponential distribution. For n 2 Nþ, let Yn ¼ X 1 � � � X n. For n > 2,

the conditional distribution of (Y1, Y2, . . . , Yn�1) given Yn ¼ z is uniform on

An�1(z) ¼ f(u1, . . . , un�1) 2 Sn�1 : u1 � � � � � un�1 � zg

That is, the conditional density is the constant 1=1n(z) on An�1(z).

4. Brief examples

In this section we briefly consider several examples. In some cases, the exponential

distribution were studied in Siegrist (1994), so our main goal is to identify the gamma

distributions and the convolution powers of 1.

4.1. The positive semigroup ([0, 1), þ)

Of course, ([0, 1), þ) is a positive semigroup and is the motivation for this theory. The

associated partial order is the ordinary order <, Lebesgue measure º is invariant, and the

exponential distributions are the ordinary exponential distributions. The convolution power

of 1 of order n 2 Nþ is given by

1n(x) ¼ xn�1

(n� 1)!
, x 2 [0, 1):

z � e in Theorem 4 is necessary to avoid division by 0 in  the continuous
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The gamma distribution with rate Æ 2 (0, 1) and order n 2 Nþ is the ordinary gamma

distribution, with density function

f n(x) ¼ Æn xn�1

(n� 1)!
e�Æx, x 2 [0, 1):

4.2. The positive semigroup (N, þ)

The pair (N, þ) is a positive semigroup. The associated partial order is the ordinary order

<, and of course counting measure # is invariant. The exponential distributions for this

semigroup are the ordinary geometric distributions. The convolution power of 1 of order

n 2 Nþ is given by

1n(x) ¼ nþ x� 1

x

� �
, x 2 N,

which, in light of Proposition 2, we recognize as the number of ordered partitions of length n

for the integer x. The gamma distribution with rate 1� p 2 (0, 1) and order n 2 Nþ is the

ordinary negative binomial distribution, with density function

f n(x) ¼ (1� p)n
nþ x� 1

x

� �
px, x 2 N:

4.3. The free semigroup on a finite set

Let A be a finite set, thought of as an alphabet, and let S ¼ A� be the set of all finite

strings of letters from A, thought of as words. Then (S, �) is a positive semigroup, where �
is the concatenation operation (the ‘empty word’ is the identity). For the associated partial

order, x � y if and only if x is prefix of y. Let N (x) denote the number of letters in x. If

Yn is a gamma variable of order n, then N (Yn) has a gamma distribution of order n for the

positive semigroup (N, þ) (that is, a negative binomial distribution), and given N (Yn) ¼ k,

the k letters of Yn are i.i.d. on the alphabet A. The convolution power of 1 of order n is

given by

1n(x) ¼ N (x)þ n� 1

N (x)

� �
, x 2 S:

4.4. Finite subsets of Nþ

Let S denote the collection of all finite subsets of Nþ. Clearly the partially ordered set

(S, �) has the self-similar property noted in Section 1. In fact, the operation � defined by

xy ¼ x [ fith smallest element of xc : i 2 yg
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makes S into a discrete positive semigroup with ˘ as the identity and set inclusion as the

associated partial order. Aside from the inherent mathematical interest of choosing a finite

subset of Nþ in the most random way, this example is interesting because only the minimal

algebraic assumptions are satisfied. In particular, the operation is non-commutative and the

right cancellation law does not hold, so (S, �) cannot be embedded in a group.

This positive semigroup is studied in detail in Siegrist (2007). Here we simply note that

the convolution power of 1 of order n for the semigroup (S, �) is given by 1n(x) ¼ n#(x).

This result follows from a simple induction argument, and of course when n ¼ 2, we obtain

the usual formula for the cardinality of a power set.

4.5. Other self-similar structures

A positive semigroup S is self-similar in a special way: for each x 2 S,

xS ¼ fy 2 S : x � yg looks like the entire space S, both in an algebraic sense (the

operator � and the partial order �) and in a measure-theoretic sense (the left-invariant

measure º). Conversely, every partially ordered set (S, �) with the property that

fy 2 S : x � yg is order-isomorphic to S for each x 2 S essentially corresponds to a

positive semigroup.

Of course, there are a variety of other self-similar structures in probability that do not fit

our model, even though there may be semigroups lurking in the background. In fact, the

term self-similar usually refers to random structures with distributions that are invariant

under certain types of scaling. See Pitman (2006) for a variety of examples involving

random partitions, fragmentation trees, and other combinatorial structures.

To give a brief illustration, consider the set S of partitions of Nþ. An element of S can

be thought of as a function x : Nþ 3Nþ ! f0, 1g: i and j are in the same partition block

if and only if x(i, j) ¼ 1 (x must have the obvious reflexive, symmetric and transitive

properties). The product (or minimum) operation makes S into a commutative semigroup

with the idempotent property x2 ¼ x for x 2 S. (Thus, the left-cancellation law fails rather

completely.) The relation x � y if and only if xy ¼ x is the natural partial order associated

with this type of semigroup, and in fact corresponds in this example to partition refinement.

The space S is the home of the Ewens partition process, which is exchangeable and self-

similar (although the semigroup formulation may not be helpful).

5. The positive semigroup (Nþ, �)
The pair (Nþ, �) is a positive semigroup, where � is ordinary multiplication. The

corresponding partial order is the division partial order

x � y , x divides y:

The exponential distributions for this semigroup were noted briefly in Siegrist (1994). The

purpose of this section is to study the semigroup in more depth and, in particular, to identify
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the gamma distributions and note connections with the recent work of Lin and Hu (2001) and

Gut (2006).

For i 2 Nþ, let � i denote the ith prime number (in the usual order); these are the

irreducible elements of the semigroup. Each x 2 Nþ has the canonical prime factorization

x ¼
Y1
i¼1

� ni
i ,

where ni 2 N for each i 2 Nþ and ni ¼ 0 for all but finitely many i. Thus, (Nþ , �) is

isomorphic to the positive semigroup (M , þ), where

M ¼ f(n1, n2, . . .) : ni 2 N for each i and ni ¼ 0 for all but finitely many ig

and where þ is pointwise addition.

Note that the convolution power 12(x) is the number of divisors of x 2 Nþ (or

equivalently, the number of ordered 2-factorings of x). This is an important function in

number theory, and is usually denoted �(x). In particular, � is multiplicative:

�(xy) ¼ �(x)�(y) if x, y 2 Nþ are relatively prime;

hence 1k is multiplicative for each k 2 Nþ. By Proposition 2, 1k(x) is the number of ordered

k-factorings of x. In terms of the canonical factorization,

1k
Y1
i¼1

� ni
i

 !
¼
Y1
i¼1

k þ ni � 1

ni

� �
, (n1, n2, . . .) 2 M :

5.1. Exponential distributions

Proposition 4. F : Nþ ! (0, 1) is the tail probability function of an exponential

distribution on (Nþ, �) if and only if

F
Y1
i¼1

� ni
i

 !
¼
Y1
i¼1

p
ni
i , (n1, n2, . . .) 2 M , (8)

where pi 2 (0, 1) for each i and
Q1

i¼1 (1� pi) . 0. This infinite product is the rate constant

of the distribution.

Proof. The memorylessness property for a tail probability function F is

F(xy) ¼ F(x)F(y), for x, y 2 Nþ:

That is, F is completely multiplicative. It follows that F has the form given in (8), where

pi ¼ F(� i) for each i 2 Nþ. Next note that
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X
x2Nþ

F(x) ¼
X

(n1,n2,...)2M

F
Y1
i¼1

� ni
i

 !
¼

X
(n1,n2,...)2M

Y1
i¼1

p
ni
i

¼
Y1
i¼1

X1
n¼0

pn
i ¼

Y1
i¼1

1

1� pi
:

Thus, the result follows from Corollary 1. h

The density function of the exponential distribution in Proposition 4 is

f
Y1
i¼1

� ni
i

 !
¼
Y1
i¼1

p
ni
i (1� pi), (n1, n2, . . .) 2 M :

If X is a random variable with the distribution then

X ¼
Y1
i¼1

� Ni

i , (9)

where (Ni : i 2 Nþ) are independent random variables and Ni has the geometric distribution

with rate parameter 1� pi. This characterization of the exponential distributions could also

be obtained from the identification of (Nþ, �) with the positive semigroup (M , þ) given

above, and the results in Section 4.2. The memorylessness property has the following

interpretation: the conditional probability that y divides X=x given that x divides X is the

same as the probability that y divides X . Thus, knowledge of one divisor of X does not help

in finding other divisors of X . This property might have some practical applications.

Recall now that a (non-negative) Dirichlet series is a series of the form

A(s) ¼
X1
x¼1

a(x)

xs
,

where a : Nþ ! [0, 1); the series converges absolutely for s in an interval of the form

(s0, 1). If the coefficient function a is completely multiplicative, then the function A also

has a product expansion:

A(s) ¼
Y1
i¼1

1

1� ai��s
i

, s . s0,

where ai ¼ a(� i) for i 2 Nþ. There is a one-to-one correspondence between the coefficient

function a and the series function A.

Given the coefficient function a, we can define a one-parameter family of probability

distributions on Nþ, parameterized by s . s0. This family is called the Dirichlet family of

probability distributions corresponding to a. Specifically, X has the Dirichlet distribution

corresponding to a with parameter s if

P(X ¼ x) ¼ a(x)x�s

A(s)
, x 2 Nþ:
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The most famous special case occurs when a(x) ¼ 1 for all x 2 Nþ (note that a is completely

multiplicative); then the Dirichlet series gives the Riemann zeta function,

�(s) ¼
X1
x¼1

1

xs
¼
Y1
i¼1

1

1� ��s
i

, s . 1:

The corresponding one-parameter family of probability distributions on Nþ is the zeta family

of distributions,

P(X ¼ x) ¼ x�s

�(s)
, x 2 Nþ:

Theorem 5. Suppose that a is positive and completely multiplicative. Then the Dirichlet

distributions corresponding to a are exponential distributions on (Nþ, �). Conversely, every
exponential distribution (Nþ, �) is a member of a Dirichlet family of distributions

corresponding to a positive, completely multiplicative coefficient function.

Proof. Suppose that a is positive and completely multiplicative and that X has the Dirichlet

distribution corresponding to a with parameter s. It follows immediately from Proposition 1

that X has an exponential distribution. The tail probability function is

P(X � x) ¼ a(x)x�s, x 2 Nþ,

so the rate constant is 1=A(s). In a sense, the converse is trivially true. Suppose that X has an

exponential distribution with tail probability function F. For fixed t . 0, let a(x) ¼ x tF(x)

for x 2 Nþ, and let A(s) ¼
P1

x¼1 a(x)x
�s. Then a is completely multiplicative and A is the

corresponding series function. Moreover, t is in the interval of convergence. The probability

density function of X is

P(X ¼ x) ¼ a(x)x� t

A(t)
, x 2 Nþ,

and so X has the Dirichlet distribution corresponding to a with parameter t. h

In particular, the zeta family of probability distributions are exponential distributions on

the positive semigroup (Nþ, �). Suppose that X has a Dirichlet distribution with completely

multiplicative coefficient function a and parameter s as above, Then of course X has the

representation in (9). The geometric parameters for the random prime exponents of X are

given by

pi ¼ P(X � � i) ¼
ai

� s
i

:

This representation was obtained by Lin and Hu (2001), who referred to the result as

‘striking’. However, from our point of view, the result is very simple and natural. From (2),

the expected number of divisors of X is

A(s) ¼ E[�(X )]:
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This result was also in Lin and Hu (2001), but our point again is to show that the result is a

special case of a much more general theorem. In fact, from Corollary 2,

Ak(s) ¼ E[1kþ1(X )], k 2 N;

that is, Ak(s) is the expected number of k þ 1 factorings of X . We give an alternate proof of

the following result, also from Lin and Hu (2001), to reinforce the point.

Proposition 5. Suppose that a : Nþ ! [0, 1) is non-negative and not identically zero. Let A

be the corresponding Dirichlet function, which we assume converges for s . s0, and let

a1(x) ¼
P

y�x a(y) for x 2 Nþ. Suppose that X has the zeta distribution with parameter

s . maxfs0, 1g. Then
E[a1(X )] ¼ A(s):

Proof. It follows immediately from Proposition 3 that

E[a1(X )] ¼ �(s)E[a(X )],

since 1=�(s) is the rate constant of the exponential distribution of X . But

�(s)E[a(X )] ¼ �(s)
X1
x¼1

a(x)

xs�(s)
¼
X1
x¼1

a(x)

xs
¼ A(s):

h

Exponential distributions on a positive semigroup usually maximize entropy subject to

some natural moment conditions.

Proposition 6. Suppose that X has the Dirichlet distribution with completely multiplicative

coefficient function a and parameter s. Then X maximizes entropy over all random variables Y

on Nþ with

E[ln(Y )] ¼ E[ln(X )], E[ln(a(Y ))] ¼ E[ln(a(X ))]:

Proof. We use the usual inequality for entropy: if f and g are probability density functions of

random variables X and Y, respectively, taking values in Nþ, then

H(Y ) ¼ �
X1
x¼1

g(x)ln[g(x)] < �
X1
x¼1

g(x)ln[ f (x)]: (10)

If X has the given Dirichlet distribution then an upper bound for the entropy of Y is

H(Y ) < �ln
1

A(s)

� �
� E ln a(Y )Y�sð Þ½ 	

¼ ln[A(s)]þ sE[ln(Y )]� E[ln(a(Y ))]:

h
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5.2. Gamma distributions

Now suppose that X n, n 2 Nþ, are i.i.d. variables, each with the exponential distribution

with parameter vector ( p1, p2, . . .), as in 4. Let Yn ¼ X 1 � � � X n be the

corresponding gamma variable of order n 2 Nþ. It follows immediately that

Yn ¼
Y1
i¼1

� Uni

i ,

where Uni has the negative binomial distribution with rate parameter 1� pi and order n, and

where (Uni; i 2 Nþ) are independent. Hence

P Yn ¼
Y1
i¼1

� k i
i

 !
¼
Y1
i¼1

nþ ki � 1

ki

� �
p
ki
i (1� pi)

n, (k1, k2, . . .) 2 M :

We can reformulate the result in terms of Dirichlet distributions. Thus, suppose that X has

the Dirichlet distribution corresponding to the positive, completely multiplicative coefficient

function a and with parameter s. Then from Theorems 2 and 5,

P(Yn ¼ x) ¼ 1n(x)a(x)x�s

An(s)
, x 2 Nþ:

Thus, Yn also has a Dirichlet distribution, but corresponding to the multiplicative coefficient

function x 7! 1n(x)a(x), which in general is not completely multiplicative.

5.3. Compound Poisson distributions

Not all results on Dirichlet distributions have simple interpretations in terms of exponential

distributions on positive semigroups. Suppose that X has a Dirichlet distribution with

completely multiplicative coefficient function a (and thus X has an exponential distribution

on (Nþ, �)). Gut (2006) showed that X has a compound Poisson distribution. In our

notation,

X ¼ V1V2 � � � VN ,

where (V1, V2, . . .) are i.i.d. on the set of prime powers f� n
i : i, n 2 Nþg, with common

probability density function

P(V ¼ � n
i ) ¼

pn
i

n ln(E(�(X )))
, i, n 2 Nþ:

The random index N is independent of (V1, V2, . . .) and has the Poisson distribution with

parameter ln(E(�(X ))). In particular, it follows that X is infinitely divisible. The infinite

divisibility of X was also shown by Lin and Hu (2001). In our setting, we can also conclude

that gamma variables are compound Poisson and infinitely divisible. The method of proof in

Gut (2006) and in Lin and Hu (2001) is via characteristic functions, and thus the method

does not have a clear generalizationto the setting of positive semigroups.

This result, however, leads to an interesting question: for a general positive semigroup

Proposition 
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(S, �), under what conditions are exponential distributions (and hence also gamma

distributions) always compound Poisson? It is well known that the ordinary exponential

distribution (corresponding to the positive semigroup in Section 4.1) is compound Poisson,

as is the ordinary geometric distribution (corresponding to the positive semigroup in Section

4.2). The compound Poisson property of the geometric distribution in turn leads to the same

property for exponential distributions on the free semigroup in Section 4.3. These results,

along with the result in Gut (2006), suggest a possibly general answer. Another curious

connection (which may be superficial) is that the study of infinitely divisible distributions

on R leads to semigroups of operators (see Feller 1971).
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