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We prove limit theorems for rescaled occupation time fluctuations of a (d, Æ, �)-branching particle

system (particles moving in Rd according to a spherically symmetric Æ-stable Lévy process, (1þ �)-
branching, 0 , � , 1, uniform Poisson initial state), in the cases of critical dimension,

d ¼ Æ(1þ �)=�, and large dimensions, d . Æ(1þ �)=�. The fluctuation processes are continuous

but their limits are stable processes with independent increments, which have jumps. The convergence

is in the sense of finite-dimensional distributions, and also of space-time random fields (tightness does

not hold in the usual Skorohod topology). The results are in sharp contrast with those for intermediate

dimensions, Æ=� , d , d(1þ �)=�, where the limit process is continuous and has long-range

dependence. The limit process is measure-valued for the critical dimension, and S9(Rd)-valued for

large dimensions. We also raise some questions of interpretation of the different types of dimension-

dependent results obtained in the present and previous papers in terms of properties of the particle

system.

Keywords: branching particle system; critical and large dimensions; limit theorem; occupation time
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1. Introduction

We consider the (d, Æ, �)-branching particle system, which consists of particles evolving

independently in Rd according to a spherically symmetric Æ-stable Lévy process (henceforth

called a standard Æ-stable process) and a (1þ �)-branching law, 0 , � , 1. This law has

generating function

s þ (1� s)1þ�

1þ �
, 0 , s , 1, (1:1)

is critical, and belongs to the domain of attraction of a stable law with exponent 1þ � (the

case � ¼ 1 corresponds to binary branching). The particle lifetime distribution is exponential
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with parameter V – this parameter is not particularly relevant in this paper, but we retain it

for the sake of consistency with our previous papers (Bojdecki et al. 2004, 2006a, 2006b,

2006c), where sometimes it plays a role. We assume that the system starts off at time 0 from

a Poisson random field with intensity measure º (Lebesgue measure).

The (d, Æ, �)-branching particle system and its associated superprocess have been widely

studied (for some of the early results, see Dawson 1993; Dawson et al. 2001; Dawson and

Perkins 1991; Etheridge 2000; Fleischmann and Gärtner 1986; Gorostiza and Wakolbinger

1991; Iscoe 1986; Méléard and Roelly 1992). Although this spatial branching system is

special, the different types of behaviours it exhibits depending on relationships between d, Æ
and � (e.g. the persistence–extinction dichotomy: Gorostiza and Wakolbinger 1991) make it

an interesting test case.

Let N ¼ (Nt) t>0 denote the empirical measure process of the system, that is, N t(A) is

the number of particles in the set A � Rd at time t. The rescaled occupation time

fluctuation process is defined by

X T (t) ¼
1

FT

ðTt

0

(Ns � º)ds ¼ T

FT

ð t

0

(NTs � º)ds, t > 0, (1:2)

where FT is a suitable norming for convergence and T is the scaling parameter which

accelerates time and tends to 1. Note that ENs ¼ º for all s . 0, due to the initial Poisson

condition, the criticality of the branching and the Æ-stable motion.

The process X T exhibits different asymptotic behaviours as T ! 1, depending on

relationships between the parameters d, Æ, �. For intermediate dimensions, Æ=� ,

d , Æ(1þ �)=�, and FT ¼ T (2���(d=Æ)�)=(1þ�), the limit process has the form Kº�, where
K is a constant and � ¼ (� t) t>0 is a continuous, self-similar, stable process which has long-

range dependence (Bojdecki et al. 2006c). In the present paper we consider the cases of

critical dimension, d ¼ Æ(1þ �)=�, and large dimensions, d . Æ(1þ �)=�. We prove limit

theorems for X T described briefly as follows. For the critical dimension and

FT ¼ (T log T )1=(1þ�), the limit has the form Kº�, where K is a constant and � ¼ (� t) t>0

is a real standard (1þ �)-stable Lévy process totally skewed to the right. For large

dimensions and FT ¼ T 1=(1þ�), the limit is an S9(Rd)-valued stable process with stationary

independent increments (S9(Rd) is the space of tempered distributions, dual to the space

S(Rd) of smooth rapidly decreasing functions). These two limit processes have jumps;

recall that a continuous process with independent increments is necessarily Gaussian

(Kallenberg 2002: Theorem 13.4); this is in fact the case for � ¼ 1 (Bojdecki et al. 2006b).

Clearly, since the fluctuation processes are continuous and the limit processes have jumps,

there cannot be convergence in the Skorohod space D([0, 1], S9(Rd)) with the usual J1-

topology. We prove convergence of finite-dimensional distributions and also in the sense of

space-time random fields (Bojdecki et al. 1986). We do not know if tightness holds in a

weaker topology, such as the M1-topology (Skorohod 1956) or the S-topology (Jakubowski

1997).

The main observations regarding the results for critical and large dimensions are the

striking fact that the fluctuation processes X T , which are continuous, develop jumps in the

limit as T ! 1, and that the limit processes have independent increments. These properties
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are in sharp contrast with those for intermediate dimensions (Bojdecki et al. 2006c), where,

moreover, convergence takes place in the space of continuous functions C([0, 1], S9(Rd)).

In Bojdecki et al. (2006a, 2006b) we proved functional limit theorems for the system

with � ¼ 1, which corresponds to finite-variance (binary) branching, for intermediate,

critical and large dimensions. In that case all the limits are continuous. Another relevant

paper is Birkner and Zähle (2005), where functional limit theorems are proved for

fluctuations of the occupation time of the origin for a system of critical binary branching

random walks on the d-dimensional lattice, d > 3, with methods different from ours; the

results for initial Poisson state are parallel to those of Bojdecki et al. (2006a, 2006b) and in

addition the equilibrium case is treated. In contrast to Birkner and Zähle (2005), we have

also investigated the spatial structure in our case. For the (d, Æ, �)-branching particle

system with d ¼ Æ=�, there is a functional ergodic theorem (Talarczyk 2005). The present

paper has partial origins in Iscoe (1986), where the occupation time of the (d, Æ, �)-
superprocess is studied. The occupation times of the (d, Æ, �)-branching particle system and

the (d, Æ, �)-superprocess have analogous properties, but the particle system is technically

more involved.

The methods of proof in this paper are similar to those in Bojdecki et al. (2006a, 2006b,

2006c), with some different technical complexities; the Fourier transform tools previously

used for � ¼ 1 are not applicable with � , 1. We refer to Bojdecki et al. (2006c) for some

technical points. We remark that the critical dimension is more difficult to deal with than

the large dimensions, although the limit process is simpler.

Additive processes in S9(Rd) and other nuclear spaces are an interesting subject in their

own right (e.g. Itô, 1980; Pérez-Abreu et al. 2005; Üstunel, 1984). This paper shows that

processes of this type actually arise in physical models.

Section 2 contains the results and Section 3 the proofs. In Section 4 we make some

comments and raise questions of interpretation of the results for the intermediate, critical

and large dimensions in terms of the particle system; these are questions that require further

research.

2. Results

The following notation will be used. h�, �i denotes the pairing of spaces in duality (e.g.

S9(Rk) and S(Rk)). k � k p stands for the L p-norm, and it will be clear from the context

whether the underlying space is Rd or an interval of R. Constants are written C, C1, . . . ,
with possible dependencies in parentheses. ) denotes convergence in law in appropriate

spaces, and convergence of processes in the sense of finite-dimensional distributions is

denoted )f .

We also need another, less known, notion of convergence, related to space-time random

fields, introduced in Bojdecki et al. (1986). To any stochastic process X ¼ (X (t)) t>0 with

paths in the Skorohod space of cadlag functions D(Rþ, S9(Rd)) and any � . 0, there

corresponds an S9(Rdþ1)-valued random element eXX defined by
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h eXX , �i ¼
ð�
0

hX (t), �(�, t)idt, � 2 S(Rdþ1): (2:1)

Definition 2.1. Let X , X n, n ¼ 1, 2, . . . , be S9(Rd)-valued cadlag processes. We say that the

laws of X n converge to X in the space-time, or integral, sense (denoted X n ) i X ) if, for

each � . 0, eXX n ) eXX as n ! 1:

)i convergence resembles )f convergence but neither implies the other. Each of these

convergences, together with tightness on D([0, �], S9(Rd)), implies convergence in law in

D([0, �], S9(Rd)). Conversely, weak functional convergence implies )i.

Let pt denote the transition density of the standard Æ-stable process on Rd , and T t the

corresponding semigroup, that is, T tj ¼ pt � j. Denote the potential operator

Gj(x) ¼
ð1
0

T tj(x)dt ¼ CÆ,d

ð
Rd

j(y)

jx � yjd�Æ
dy, (2:2)

where

CÆ,d ¼ ˆ
d � Æ

2

� �
2Æ�d=2ˆ

Æ

2

� �� ��1

(we always assume d . Æ).
The main result of this paper is the following theorem for the occupation time fluctuation

process of the (d, Æ, �)-branching particle system defined by (1.2).

Theorem 2.1. Assume 0 , � , 1.

(a) Let

d .
Æ(1þ �)

�
(2:3)

and FT ¼ T 1=(1þ�). Then

X T )i X and X T )f X as T ! 1,

where X is an S9(Rd)-valued (1þ �)-stable process with stationary independent

increments whose distribution is determined by

E expfihX (t), jig ¼ exp �K1þ� t

ð
Rd

jGj(x)j1þ� 1� i(sgnGj(x))tan
�

2
(1þ �))dx

� o
,

�
j 2 S(Rd), t > 0, (2:4)

where

K ¼ � V

1þ �
cos

�

2
(1þ �)

� �1=(1þ�)

:
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(b) Let

d ¼ Æ(1þ �)

�
(2:5)

and FT ¼ (T log T )1=(1þ�). Then

X T )i K1º� and X T )f K1º� as T ! 1,

where � is a real (1þ �)-stable process with stationary independent increments

whose distribution is determined by

E expfiz� tg ¼ exp �tjzj1þ� 1� i(sgn z)tan
�

2
(1þ �)

� �n o
, z 2 R, t > 0, (2:6)

and

K1 ¼ �V cos
�

2
(1þ �)

ð
Rd

ð1
0

pr(x)dr

� ��

p1(x)dx

 !1=(1þ�)

:

Remark 2.1. (i) Existence of a family of finite-dimensional distributions of the process X

described in Theorem 2.1(a) follows, for example, from the proof. Then the existence of the

S9(Rd)-process X itself is a consequence of classical properties of nuclear spaces

(regularization theorem: Itô 1984).

(ii) The process � in Theorem 2.1(b) is the standard (1þ �)-stable Lévy process totally

skewed to the right.

(iii) The weak limit of hX T (t), ji in Theorem 2.1(a) coincides with the result obtained

by Iscoe (1986: Theorem 5.6) for the (d, Æ, �)-superprocess.
(iv) For � ¼ 1 and large dimensions, in Theorem 2.2(a) of Bojdecki et al. (2006b) there

is an additional term in the limit process which comes from the free motion of the particles

(i.e. without branching). The limit is an S9(Rd)-Wiener process, which is the sum of two

independent S9(Rd)-Wiener processes. The additional term does not appear with � , 1

because in this case the branching produces larger fluctuations (of order T 1=(1þ�)) than those

of the free motion (of order T 1=2).

It is clear that weak functional convergence of X T does not hold (with J1-topology).

Nevertheless, it turns out that the family fX TgT posesses a property which is ‘not far’ from

tightness in C([0, �], S9(Rd)). That is to say, we have the following proposition.

Proposition 2.2. Assume d > Æ(1þ �)=� and let FT be as in Theorem 2.1. Then, for any

j 2 S(Rd) and � . 0,

P(jhX T (t2), ji � hX T (t1), jij . �) <
C(j)
�

jt2 � t1j (2:7)

for all t1, t2 2 [0, �], all T > 2 and all 0 , � , 1.
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3. Proofs

Before the proof of Theorem 2.1 we state a simple lemma regarding the operator G given

by (2.2), which will be used frequently (see Iscoe, 1986: Lemma 5.3).

Lemma 3.1. If j is a measurable function on Rd such that

sup
x2Rd

(1þ jxj p)jj(x)j , 1,

for some p . d, then

sup
x2Rd

(1þ jxjd�Æ)jGj(x)j , 1:

Proof of Theorem 2.1. Without loss of generality we assume � ¼ 1.

We need the form of the Laplace transform E expf�h eXX T , �ig for � 2 S(Rdþ1), � > 0,

where eXX T is defined by (2.1).

Write

�(x, t) ¼
ð1

t

�(x, r)dr, �T (x, t) ¼ 1

FT

� x,
t

T

� �
, (3:1)

and define

vT (x, t) ¼ 1� E exp �
ð t

0

hN x
r, �T (�, T � t � r)dr

� �
, (3:2)

where N x
r is the the empirical measure of the branching system starting from a single particle

at x. Identically as in Bojdecki et al. (2006a) (see also Bojdecki et al. 2006c: Lemma 3.1),

using the Feynman–Kac formula and the form of the generating function of the branching

law given by (1.1), it can be shown that vT satisfies

vT (x, t) ¼
ð t

0

T t�r[�T (�, T � r)(1� vT (�, r))� V

1þ �
v
1þ�
T (�, r)](x)dr, 0 < t < T ,

(3:3)

and

E expf�h eXX T , �ig ¼ E exp

ðT

0

hNr, �T (�, r)idr �
ð
Rd

ðT

0

�T (x, r)dr dx

� �

¼ exp

ð
Rd

ðT

0

�T (x, T � r)vT (x, r)dr dx þ V

1þ �

ð
Rd

ðT

0

v
1þ�
T (x, r)dr dx

� �
(3:5)

We will use frequently the following estimates for vT :

0 < vT (x, t) < 1, (3:6)

by (3.2), and
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vT (x, t) <

ð t

0

T t�r�T (�, T � r)(x)dr, (3:7)

since 1� e�x < x, x > 0, and EhN x
t , ji ¼ T tj(x). (Inequality (3.7) also follows from (3.3)

and (3.6).)

For the convergence of finite-dimensional distributions we need also the corresponding

Laplace transform. For j1, j2, . . . , jk 2 S(Rd), all j j > 0, and 0 < t1 < t2 <

. . . < t k < 1, it is easy to see that E expf�
Pk

j¼1hX T (t j), j jig has the form (3.4) with

�(x, t) ¼
Xk

j¼1

j j(x)1[0, t j](t): (3:8)

Moreover, approximating � by smooth functions in (3.3), we obtain that for this Laplace

transform (3.5) also holds with a corresponding vT given by (3.2).

It will be convenient to write the right-hand side of (3.5) in the form

exp I1(T )þ
V

1þ �
(I2(T )� I3(T ))

� �
, (3:9)

where

I1(T ) ¼
ð
Rd

ðT

0

�T (x, T � r)vT (x, r)dr dx, (3:10)

I2(T ) ¼
ð
Rd

ðT

0

ð r

0

T r�u�T (�, T � u)(x)du

� �1þ�

dr dx, (3:11)

I3(T ) ¼
ð
Rd

ðT

0

ð r

0

T r�u�T (�, T � u)(x)du

� �1þ�

� v
1þ�
T (x, r)

" #
dr dx: (3:12)

We now prove convergence in case (a). Firstly, we want to show that

lim
T!1

E exp �h eXX T , �i ¼ exp
V

1þ �

ð
Rd

ð1
0

(G�(�, r)(x))1þ� dr dx

� �
(3:13)

for � 2 S(Rdþ1), � > 0, and � given by (3.1). To simplify notation, we consider � of the

form

�(x, t) ¼ j(x)ł(t), j 2 S(Rd), ł 2 S(R), j, ł > 0: (3:14)

Write

�(t) ¼
ð1

t

ł(r)dr, �T (t) ¼ �
t

T

� �
, jT (x) ¼

1

FT

j(x): (3:15)

Using (3.9)–(3.12), we will show that

f g
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I1(T ) ! 0, (3:16)

I2(T ) !
ð
Rd

ð1
0

(Gj(x)�(r))1þ� dr dx, (3:17)

I3(T ) ! 0, (3:18)

as T ! 1.

By (3.7), (3.15) and the boundedness of � we have

I1(T ) < C
1

F2
T

ð
Rd

ðT

0

j(x)
ð r

0

T uj(x)du dr dx

< C
T

T 2=(1þ�)

ð
Rd

j(x)Gj(x)dx,

by (2.2). Gj is bounded by Lemma 3.1, hence (3.16) follows since � , 1.

Next, we use (3.15) and make obvious substitutions to obtain

I2(T ) ¼
ð
Rd

ð1
0

ðT(1�r)

0

T uj(x)� r þ u

T

� �
du

� �1þ�

dr dx: (3:19)

It is clear that

lim
T!1

ðT (1�r)

0

T uj(x)� r þ u

T

� �
du ¼ Gj(x)�(r),

hence (3.17) follows by the dominated convergence theorem and Lemma 3.1, since

(1þ �)(d � Æ) . d (3:20)

by (2.3).

To prove (3.18) we apply the obvious inequality

a1þ� � b1þ� < (1þ �)a�(a � b) for a > b > 0,

and we obtain, by (3.12) and (3.7),

I3(T ) < (1þ �)

ð
Rd

ðT

0

ð r

0

T r�ujT (x)�T (T � u)du

� ��

3

ð r

0

T r�ujT (x)�T (T � u)du � vT (x, r)

� �
dr dx

¼ (1þ �)

ð
Rd

ðT

0

ð r

0

T r�ujT (x)�T (T � u)du

� ��

3

ð r

0

T r�u jT (�)�T (T � u)vT (�, u)þ V

1þ �
v
1þ�
T (�, u)

� �
(x)du

� �
dr dx,
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by (3.3). We use (3.7) and the boundedness of � to arrive at

I3(T ) < C(J1(T )þ J2(T )),

where

J1(T ) ¼
ð
Rd

ðT

0

ð r

0

T r�ujT (x)du

� �� ð r

0

T r�u jT (�)
ðu

0

T u�u9jT (�)du9

� �
(x)du

� �
dr dx,

J2(T ) ¼
ð
Rd

ðT

0

ð r

0

T r�uj(x)du

� �� ð r

0

T r�u

ðu

0

T u�u9jT (�)du9

� �1þ�

(x)du

 !
dr dx:

By (2.9) and the boundedness of Gj (Lemma 3.1) we have

J1(T ) < CT �(2þ�)=(1þ�)

ð
Rd

ðT

0

(Gj(x))1þ� dr dx < C1T �1=(1þ�),

by (3.20) and Lemma 3.1. Similarly,

J2(T ) < T ��=(1þ�)

ð
Rd

(Gj(x))�G((Gj)1þ�)(x)dx:

Hence J2(T ) ! 0, since the integral above is finite by (3.20) and Lemma 3.1 applied three

times (the function (Gj)1þ� satisfies the assumption of the lemma). This completes the proof

of (3.18), and therefore (3.13) is proved.

It is not difficult to see that for any � 2 S(Rdþ1), the real random variable h eXX , �i
(where X is the process in Theorem 2.1(a)) has a (1þ �)-stable law with characteristic

function

E expfizh eXX , �ig

¼ exp �K1þ�jzj1þ�

ð
Rd

ð1
0

jG�(�, s)(x)j1þ� 1� i(sgn z)(sgn(G�(�, s)(x)))tan
�

2
(1þ �)

� �
dsdx

� �
(3:21)

(recall that � is defined by (3.1)).

Now, (3.13) implies that

h eXX T , �i ) h eXX , �i as T ! 1, (3:22)

for any � 2 S(Rdþ1). This is almost immediate for � > 0, and for general � one employs

weak convergence of two-dimensional random variables. See Bojdecki et al. (2006c: Lemma

3.4 and Corollary 3.5) for more details (see also Iscoe 1986).

By the nuclearity of S(Rdþ1), (3.22) implies eXX T ) eXX as T ! 1, hence X T )i X .

Finally, convergence of finite-dimensional distributions of X T is obtained in exactly the

same way by virtue of the previous remarks, using � of the form (3.8).

Next we prove convergence in case (b). Again, we first prove convergence )i. To this

end we will show that

T. Bojdecki, L.G. Gorostiza and A. Talarczyk28



lim
T!1

E expf�h eXX T , �ig ¼ exp K2

ð1
0

ð
Rd

�(x, r)dx

� �1þ�

dr

( )
, (3:23)

where � is defined by (3.1), and

K2 ¼ V

ð
Rd

ð1
0

pu(x)du

� ��

p1(x)dx:

Analogously as before, we consider � ¼ j� ł, and, using (3.9)–(3.12), we prove (3.16),

(3.18) and

I2(T ) !
1þ �

V
K2

ð
Rd

j(x)dx

� �1þ�ð1
0

�1þ�(r)dr: (3:24)

In spite of the simpler form of the limit, this case requires a more involved argument. Let us

start with I2(T ). Substituting r9 ¼ r=T , then u9 ¼ Tr9� u, and using (3.15), we write

I2(T ) ¼ R1(T )þ R2(T ), (3:25)

where

R1(T ) ¼
1

log T

ð
Rd

ð1
0

ðTr

0

T uj(x)�(1� r)du

� �1þ�

dr dx, (3:26)

R2(T )

¼ 1

log T

ð
Rd

ð1
0

ðTr

0

T uj(x)� 1� r þ u

T

� �
du

� �1þ�

�
ðTr

0

T uj(x)�(1� r)du

� �1þ�
" #

dr dx:

(3:27)

To prove (3.24) we show that R1(T ) converges to the desired limit and R2(T ) ! 0.

Note that, by (2.5), ð
Rd

(Gj(x))1þ� dx ¼ 1

if j 6� 0, hence we can use L’Hôpital’s rule to obtain

lim
T!1

R1(T ) ¼ lim
T!1

T (1þ �)

ð
Rd

ð1
0

�1þ�(1� r)

ðTr

0

T uj(x)du

� ��

T Trj(x)r dr dx: (3:28)

After subsitituting u9 ¼ u=Tr and writing T u in terms of pu, the expression under the

limit on the right-hand side of (3.28) has the form

(1þ �)

ð1
0

ð
Rd

�1þ�(1� r)

ð1
0

ð
Rd

TrpuTr(x � y)j(y)dy du

� ��ð
Rd

TrpTr(x � z)j(z)dz dx dr:

(3:29)

We apply the self-similarity property of the stable density,
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pau(x) ¼ a�d=Æ pu(xa�1=Æ), (3:30)

substitute x9 ¼ x(Tr)�1=Æ and use (2.5) (which implies (1� d=Æ)(1þ �) ¼ �d=Æ). Expres-
sion (3.29) now becomes

(1þ �)

ð1
0

ð
Rd

�1þ�(1� r)

ð1
0

ð
Rd

pu(x � y(Tr)�1=Æ)j(y)dy du

� ��

3

ð
Rd

p1(x � z(Tr)�1=Æ)j(z)dz dx dr

¼ (1þ �)

ð1
0

�1þ�(1� r)

ð
Rd

ð1
0

pu du

� �
� ejjTr(x)

� ��

p1 � ejjTr(x)dx dr,

(3:31)

where

ejj t(y) ¼ td=Æj(yt1=Æ): (3:32)

As
Ð 1
0

pu du 2 L1(Rd), we haveð1
0

pu du

� �
� ejjTr !

ð1
0

pu du

ð
Rd

j(x)dx in L1(Rd),

and the L1-norms are bounded in r 2 (0, 1].

Analogously

p1 � ejjTr ! p1

ð
Rd

j(x)dx in L1=(1��)(Rd),

and the L1=(1��)-norms are bounded. By (3.28) this proves that R1(T ) converges to the

expression in (3.24).

Note that we have also shown that

lim
T!1

1

log T

ð
Rd

ðT

0

T uj(x)du

� �1þ�

dx ¼ 1þ �

V
K2

ð
Rd

j(x)dx

� �1þ�

, (3:33)

which will be used later.

We now turn to R2(T ). Note that, by (3.15), the difference inside [. . .] in (3.27) is

negative; hence, using the elementary inequality

(a þ b)1þ� � a1þ� < b1þ� þ (1þ �)a(1þ�)=2b(1þ�)=2, a, b > 0, 0 , � < 1

(which follows from (a þ b)1þ� � a1þ� � b1þ� ¼ (1þ �)
Ð a

0
((a þ x)� � x�)dx, (a þ x)�

�x� < a� for 0 , � < 1, and symmetry in a, b), applying it to �[. . .], we have
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jR2(T )j <
1

log T

ð
Rd

ð1
0

ðTr

0

T uj(x) �(1� r)� � 1� r þ u

T

� �h i
du

� �1þ�

dr dx

þ 1þ �

log T

ð
Rd

ð1
0

ðTr

0

T uj(x) �(1� r)� � 1� r þ u

T

� �h i
du

� �(1þ�)=2

3

ðTr

0

T uj(x)� 1� r þ u

T

� �
du

� �(1þ�)=2

dr dx:

By the Schwarz inequality applied to the second summand, we obtain

jR2(T )j < W (T )þ (1þ �)
ffiffiffiffiffiffiffiffiffiffiffiffi
W (T )

p ffiffiffiffiffiffiffiffiffiffiffi
I2(T )

p
, (3:34)

where I2(T ) is defined by (3.11) and

W (T ) ¼ 1

log T

ð
Rd

ð1
0

ðTr

0

T uj(x) �(1� r)� � 1� r þ u

T

� �h i
du

� �1þ�

dr dx: (3:35)

Note that

I2(T ) < C
1

log T

ð
Rd

ðT

0

T uj(x)du

� �1þ�

dx,

so, by (3.33), I2(T ) is bounded.

By (3.34), to prove that R2(T ) ! 0 and thus complete the proof of (3.24), it remains to

show that W (T ) ! 0. We use the fact that � is a Lipschitz function and we substitute

u9 ¼ u=T ; then

W (T ) <
C

log T

ð
Rd

ð1
0

ð r

0

ð
Rd

TpTu(x � y)j(y)u dy du

� �1þ�

dr dx: (3:36)

Applying the self-similarity property (3.30), substituting x9 ¼ xT �1=Æ, y9 ¼ yT �1=Æ, using

(2.5) and estimating
Ð r

0
. . . du by

Ð 1
0
. . . du, we obtain

W (T ) <
C

log T

ð
Rd

ð
Rd

ð1
0

pu(x � y)uT d=Æj(yT 1=Æ)dy du

� �1þ�

dx

¼ C

log T
kh � ejjTk1þ�

1þ� <
C

log T
khk1þ�

1þ�k ejjTk1þ�
1 , (3:37)

where h(x) ¼
Ð 1
0

pu(x)u du and ejjT is defined by (3.32). We have k ejjTk1 ¼
Ð
Rd j(x)dx, and it

is not difficult to show that h 2 L1þ�(Rd) using self-similarity of pu, the well-known estimate

p1(x) <
C

1þ jxjdþÆ
,

and (2.5) once again. By (3.37) we obtain W (T ) ! 0 as T ! 1, and (3.24) is proved.

Expression (3.16) follows by the same estimates as in Bojdecki et al. (2006c); see (3.22),

(3.23) therein.
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Finally, (3.18) can be obtained in exactly the same way as in Bojdecki et al. (2006c); see

(3.16) and (3.27)–(3.36) therein. The only difference is that under (2.5), f (x) ¼
Ð 1
0

pu(x)du

belongs to L p(Rd) for any p , 1þ � (and not to L1þ�(Rd)), so the Young inequality should

be applied appropriately, and then the corresponding norms of g1,T , g2,T (see (3.31) in

Bojdecki et al. 2006c) will have the forms C(j)T � for � arbitrarily small. This completes

the proof of (3.23).

Convergence X T )i Y ¼ Kº� now follows as in the previous step. One should only

observe that

E expfizh eYY , �ig

¼ exp �K
1þ�
1 jzj1þ�

ð1
0

����ð
Rd

�(x, s)dx

����1þ�

1� i sgn z

ð
Rd

�(x, s)dx

� �� �
tan

�

2
(1þ �)

� �
ds

( )
:

Also, convergence of finite-dimensional distributions can be derived similarly as before.

The only difference is that now (3.36) does not hold because � is not Lipschitz. We

consider �(r) ¼ 1[0, t](r) for any fixed t 2 [0, 1] (see (3.8)). So, to prove that W (T ) defined

by (3.35) tends to 0 we argue as follows. With this form of � we have

W (T ) ¼ 1

log T

ð
Rd

ð t

0

ð1�r

t�r

ð
Rd

TpTu(x � y)j(y)dy du

� �1þ�

dr dx:

By the self-similarity of pu, substituting x9 ¼ xT �1=Æ, y9 ¼ yT �1=Æ, and using (2.5), we

obtain

W (T ) ¼ 1

log T

ð
Rd

ð t

0

ð
Rd

ð1� tþr

r

pu(x � y) ejjT (y)du dy

� �1þ�

dr dx,

where ejjT is given by (3.32). Hence, by the Young inequality,

W (T ) <
1

log T

ð t

0

					
ð1� tþr

r

pu du

					
1þ�

1þ�

kjk1þ�
1 dr

(remember that k ejjTk1 ¼ kjk1). It suffices to observe thatð t

0

					
ð1� tþr

r

pu du

					
1þ�

1þ�

dr ¼
ð t

0

r�1=(1þ�)

ð
Rd

ð1� tþr

r

rpu(x)du

� �1þ�

dx dr

<

ð t

0

r�1=(1þ�) dr

ð
Rd

ð1
0

upu(x)du

� �1þ�

dx , 1,

by the argument following (3.37). This proves that W (T ) ! 0. Thus the convergence

X T )f K1º� is established. h

Proof of Proposition 2.2. We consider � ¼ 1, 0 , � , 1, 0 < t1 , t2 < 1.
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Arguing as in the proof of Proposition 3.3 of Bojdecki et al. (2006c), it suffices to show

that

P(jh eXX T , j� łij > �) <
C(j)
�

(t2 � t1), (3:38)

for any ł 2 S(R) such that

�(t) ¼
ð1

t

ł(s)ds,

satisfies

0 < � < 1[ t1, t2], (3:39)

and each j 2 S(Rd), j > 0.

Repeating the argument of that proposition (see Bojdecki et al. 2006c: (3.39)–(3.51)), it

is enough to prove that

I < C(j)(t2 � t1) (3:40)

and

II < C(j)(t2 � t1), (3:41)

where

I ¼
ð
Rd

ðT

0

jT (x)�T (T � s)

ð s

0

T s�rjT (x)�T (T � r)dr ds dx, (3:42)

II ¼
ð
Rd

ðT

0

ð s

0

T s�rjT (x)�T (T � r)dr

� �1þ�

ds dx, (3:43)

and jT , �T are given by (3.15).

We have, after obvious substitutions and by (3.39),

I <
T 2

F2
T

ð
Rd

ð1
0

ð s

0

j(x)�(1� s)T rTj(x)dr ds dx

¼ T 2

F2
T

1

(2�)d

ð
Rd

ð1
0

ð s

0

j bjj(x)j2e�rT jxjÆ dr�(1� s)ds dx,

where we have used the Plancherel formula and the well-known fact thatdT ujT uj(x) ¼ e�ujxjÆ ĵj(x) ( b denotes Fourier transform). Hence

I < C
T

F2
T

ð
Rd

j bjj(x)j2 1

jxjÆ dx

ð1
0

�(1� s)ds

< C(j)
T

F2
T

(t2 � t1):

This implies (3.40) for both d ¼ Æ(1þ �)=� and d . Æ(1þ �)=�.
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To prove (3.41), we write

II ¼ T

F
1þ�
T

ð
Rd

ð1
0

ð s

0

TT T(s�r)j(x)�(1� r)dr

� �1þ�

ds dx

<
T

F
1þ�
T

ð
Rd

k f x,T � gk1þ�
1þ� dx,

where

f x,T (r) ¼ TT Trj(x)1[0,1](r), g(r) ¼ �(1� r)1[0,1](r):

By the Young inequality, we obtain

II <
T

F
1þ�
T

ð
Rd

k f x,Tk1þ�
1 dxkgk1þ�

1þ�:

Since kgk1þ�
1þ� < (t2 � t1) by (3.39), it suffices to show that

sup
T>2

T

F
1þ�
T

ð
Rd

k f x,Tk1þ�
1 dx , 1:

This fact follows from Lemma 3.1 in the case d . Æ(1þ �)=� and from (3.33) in the case

d ¼ Æ(1þ �)=�. h

4. Comments and questions of interpretation

In the present and previous papers we have proved limit theorems for occupation time

fluctuations of the (d, Æ, �)-branching particle system and described some properties of the

limit processes. Some of the results raise questions concerning their meaning in terms of

the particle system. The methods we have used are mainly analytic and have technical

advantages, but they do not shed much light on the ‘physical’ meaning of the results. In

this section we outline some questions which require further research.

4.1. Transitions between intermediate and large dimensions

The results in Bojdecki et al. (2006c) and in the present paper show that in the passage

from intermediate to large dimensions the spatial structure of the limit process goes

from simple (º), corresponding to perfect correlation in the case � ¼ 1, to complicated

(truly S9(Rd)-valued), and the temporal structure goes from complicated (long-range

dependence) to simple (independent increments); at the critical dimension both are

simple. We do not have an explanation for the spatial change. On the other hand, the

size of the fluctuations of the occupation time process, measured by FT , which is

typically larger than for the classical central limit theorem in the case of long-range

dependence, does not pass continuously from intermediate to large dimensions (as Æ
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or � varies); at the critical dimension they are larger by a logarithmic factor. This type of

phenomenon is known to occur in some stochastic spatial models.

4.2. Continuity and jumps

The main question concerning the results in this paper is to understand why (1þ �)-
branching with � , 1 causes the occupation time fluctuation process to generate jumps in

the limit as T ! 1 for the critical and large dimensions, but not the intermediate ones.

4.3. Poisson versus equilibrium

The (d, Æ, �)-branching particle system has equilibrium states in dimensions d . Æ=�
(Gorostiza and Wakolbinger 1991), and one may consider the system starting from an

equilibrium state instead of Poisson (º). Birkner and Zähle (2005) gave functional limit

theorems with equilibrium and Poisson initial states for the fluctuations of the occupation

time of the origin of critical binary branching random walks on the d-dimensional lattice,

d > 3. In Bojdecki et al. (2004) we did covariance calculations with intermediate

dimensions for the (d, Æ, 1)-system in equilibrium. Miłoś (2006) extended the results of

Bojdecki et al. (2006a) for general critical finite-variance branching with both equilibrium

and Poisson initial conditions. For critical and large dimensions, d > 2Æ, in equilibrium, we

expect the results to be the same as the corresponding ones with initial Poisson (Bojdecki et

al. 2006b). We think that functional limit theorems can also be proved for the (d, Æ, �)-
system with � , 1 in equilibrium. The normings would be the same as for initial Poisson,

and the limits would have the same forms as in the Poisson case for critical and large

dimensions. For intermediate dimensions the limit is expected to be of the form Kº�, where
� is a continuous, self-similar, (1þ �)-stable process with stationary increments and long-

range dependence, which should be a kind of ‘fractional stable process’.

Going back to � ¼ 1 and intermediate dimensions (covariance calculations in Bojdecki et

al. 2004), in the equilibrium case we obtain, for the temporal part, fractional Brownian

motion (fBm) � with covariance function

1

2
(s h þ t h � js � tjh),

where h ¼ 3� d=Æ, and in the Poisson case we get sub-fractional Brownian motion (sub-

fBm) � with covariance function

s h þ t h � 1

2
[(s þ t)h þ js � tjh],

where h ¼ 3� d=Æ again. � is also defined for t , 0, and the two processes are related by

�¼d 1ffiffiffi
2

p (� t þ �� t)

� �
t>0

: (4:1)

From the functional limit theorem in Bojdecki et al. (2006a), and assuming the one for
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equilibrium, a relationship analogous to (4.1) would hold for the two corresponding measure-

valued limit processes (the constant K is the same in both cases). This raises the question of

interpreting this mysterious result in terms of the particle system. Again going further, we

think that for � , 1 an analogous situation would appear. Fractional Brownian motion would

be replaced by the fractional stable process mentioned above, and sub-fBm by the sub-

fractional stable process obtained in Bojdeki et al. (2006c), and they would be related

analogously as in (4.1). (The sub-fractional stable process with � ¼ 1 is sub-fBm (Bojdecki et

al. 2006c); likewise, the fractional stable process with � ¼ 1 should be fBm.) Then the same

question of interpretation would arise for the relationship between the equilibrium and

Poisson fluctuation limit processes with � , 1 in terms of the particle system.

Regarding the model of branching random walks on the lattice (Birkner and Zähle 2005),

modifying it with the step of the walk in the domain of attraction of a spherically

symmetric Æ-stable law, (1þ �)-branching, � , 1, and initial Poisson, the results are

expected to be analogous to those in Bojdecki et al. (2006c) and the present paper.

4.4. Long-range dependence versus independent increments

Clan recurrence and clan transience have been studied by Stoeckel and Wakolbinger (1994)

for d > 3, Æ ¼ 2, � ¼ 1 (and a partial result for � , 1), in equilibrium. A clan is a family

of infinitely many particles with eventually backwards-coalescing paths, the system having

started at time �1. It is shown that for d ¼ 3 (intermediate dimension) and d ¼ 4 (critical

dimension), almost surely all clans visit every fixed ball in Rd infinitely often and at

arbitrarily large times (this is ‘clan recurrence’), and for d > 5 (large dimensions) almost

surely each clan visits a fixed ball in Rd in a finite random interval of time and never

returns (this is ‘clan transience’). Clan recurrence/transience for super-Brownian motion in

equilibrium is discussed by Dawson and Perkins (1999). Although clan recurrence/transience

has not been studied for the branching particle system out of equilibrium (with Æ ¼ 2,

� ¼ 1), one may think intuitively that the long-range dependence of the occupation time

fluctuation limit for d ¼ 3 is due to something close to clan recurrence: each one of many

very large families of related particles visits a fixed ball many times, each time adding a

random amount to the occupation time of the ball. However, for d ¼ 4 this phenomenon

still occurs but does not cause long-range dependence. On the other hand, for d > 5 the

independence of increments of the occupation time fluctuation limit (and the classical

central limit norming T 1=2) may be attributed intuitively to something close to clan

transience, since the large families independently visit a fixed ball only up to finite random

times. In order to explore these ideas it is necessary to formulate rigorously clan

(d, Æ, �)-branching particle system.

In the case of intermediate dimensions with � , 1 (Bojdecki et al. 2006c), an intriguing

question is why there are two types of long-range dependence regimes, one for

� . d=(d þ Æ) and another for � < d=(d þ Æ).
Another possible source of long-range dependence in occupation times of (d, Æ, �)-

branching particle systems might be lifetimes with heavy-tailed distribution (instead of

recurrence/transience out of equilibrium (at least with initial Poisson) and also for the general
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exponential). The long-time behaviour of such systems has been studied by Vatutin and

Wakolbinger (1999) and Fleischmann et al. (2003), but their occupation times have not

been investigated. Levy and Taqqu (2000) have shown that heavy tails may lead to long-

range dependence in renewal-reward processes.

4.5. Other long-range dependence processes

For intermediate dimensions and � ¼ 1, Poisson initial condition leads to fBm and

equilibrium initial condition leads to sub-fBm. The question here is whether other initial

conditions may lead to other long-range dependence processes, different from fBm and sub-

fBm. As a simple example, putting together two independent (d, Æ, 1)-branching particle

systems, one in equilibrium and the other with initial Poisson (the normings are the same),

the occupation time fluctuation limit would be the process Kº(�þ �), where � is fBm, � is

sub-fBm, and they are independent (by Bojdecki et al. 2004, the constant K is the same in

both cases). Other, more interesting, examples will be considered elsewhere. The same kind

of question arises for � , 1. A large class of initial conditions (which includes Poisson),

under which Nt tends to equilibrium as t ! 1, is considered by Gorostiza and

Wakolbinger (1994).

Other long-range dependence processes may be obtained by incorporating immigration in

the branching particle systems. Some examples are given by Gorostiza et al. (2005) without

functional convergence proofs. In this case the fluctuations of the rescaled empirical process

itself may have a long-range dependence Gaussian limit process in dimension d ¼ 1 with

Æ . 1 (see the covariance (1.5) in Gorostiza et al. 2005; see also Theorem 1.10 in Li and

Shiga 1995 for a superprocess set-up). A surprising feature of this result is that the

fluctuation of the rescaled empirical process is Markovian but its limit is not. The Markov

property is not necessarily preserved under weak limits, but it would be interesting to

understand why it is not preserved in this case.

4.6. Superprocesses and other branching particle systems

Iscoe (1986) studied the occupation time of the (d, Æ, �)-superprocess, which is a measure-

valued limit of the (d, Æ, �)-branching system (for that class of superprocesses, see Dawson

1993; Dawson and Perkins 1991; Etheridge 2000). He proved single time limit theorems for

the occupation time fluctuations in large dimensions, d . Æ(1þ �)=�, and also for the

intermediate dimension d ¼ 3 in the case Æ ¼ 2, � ¼ 1. The limits are S9(Rd)-valued

random variables. For � , 1 and large dimensions the limit is an S9(Rd)-valued (1þ �)-
stable random variable, and a Hilbert subspace of S9(Rd) is found where this random field

lives. (On this point it is relevant to mention that the aim of Pérez-Abreu et al. 2005 is to

determine, for a class of additive processes in the dual of a nuclear Fréchet space, a Hilbert

subspace where such a process lives.) For the intermediate dimension d ¼ 3 (Æ ¼ 2, � ¼ 1)

an occupation time fluctuation limit process is obtained, with fixed j 2 S(Rd), j > 0,

where the covariance function of sub-fBm appears with h ¼ 3=2; that was originally our
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motivation for investigating long-range dependence or its absence in occupation time

fluctuations of branching systems.

Occupation time fluctuations for more general branching particle systems, with one and

two levels of critical branching, have been studied by Dawson et al. (2001). The results are

single time limits. The atypical normings in the occupation time fluctuations for

intermediate and critical dimensions with one branching level and � ¼ 1 arise as follows.

Let Gtj ¼
Ð t

0
T sj ds, j > 0, j 6� 0 (Gtj ! 1 as t ! 1 for transient particle motion). If

G2
tj grows like a function f t as t ! 1, then the norming FT for the occupation time

fluctuation limit has the form (
Ð T

0
f s ds)1=2. For the standard Æ-stable process on Rd , G2

t

grows as t2�d=Æ for Æ , d , 2Æ, and as log t for d ¼ 2Æ. Functional limit theorems for

occupation times of the branching systems in Dawson et al. (2001) have not been

attempted, except in the special cases considered in this paper and its predecessors.
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Pérez-Abreu, V., Rocha-Arteaga, A. and Tudor, C. (2005) Cone-additive processes in duals of nuclear
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