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Consistent Group Selection with
Bayesian High Dimensional Modeling

Xinming Yang∗ and Naveen N. Narisetty†

Abstract. In many applications with high dimensional covariates, the covari-
ates are naturally structured into different groups which can be used to perform
efficient statistical inference. We propose a Bayesian hierarchical model with a
spike and slab prior specification to perform group selection in high dimensional
linear regression models. While several penalization methods and more recently,
some Bayesian approaches are proposed for group selection, theoretical proper-
ties of Bayesian approaches have not been studied extensively. In this paper, we
provide novel theoretical results for group selection consistency under spike and
slab priors which demonstrate that the proposed Bayesian approach has advan-
tages compared to penalization approaches. Our theoretical results accommodate
flexible conditions on the design matrix and can be applied to commonly used
statistical models such as nonparametric additive models for which very limited
theoretical results are available for the Bayesian methods. A shotgun stochastic
search algorithm is adopted for the implementation of our proposed approach.
We illustrate through simulation studies that the proposed method has better
performance for group selection compared to a variety of existing methods.

Keywords: group selection, spike and slab priors, Bayesian variable selection,
shotgun stochastic search.

1 Introduction

Variable selection is a crucial statistical tool especially in high dimensional data settings
as it provides interpretability of the learned model and also often helps to improve
prediction power by removing irrelevant predictors. Several variable selection methods
from frequentist and Bayesian viewpoints have been proposed in the literature. Some
of the popular choices of penalty based methods include least absolute shrinkage and
selection operator (Lasso) (Tibshirani, 1996), bridge penalization (Frank and Friedman,
1993), smoothly clipped absolute deviation (SCAD) estimator (Fan and Li, 2001), and
minimax concave penalty (MCP) estimator (Zhang, 2010). Several Bayesian variable
selection methods have been developed in the literature with a variety of prior structures
(George and McCulloch, 1993, 1997; Ishwaran and Rao, 2005; Johnson and Rossell, 2012;
Narisetty and He, 2014; Ročková and George, 2014, 2018; Spitzner, 2019).

In many applications, the predictors under consideration naturally exhibit a group-
ing structure due to their inherent similarities. For example, in gene expression data,
genes can be classified into different groups based on the phenotypic traits they con-
trol; in stock market data, stocks from the same sector form a group. Group structure
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also arises naturally in many statistical models. In multiple factor analysis of variance
(ANOVA) models, dummy variables encoding the same factor form a group; in poly-
nomial regressions or nonparametric additive models, the basis functions involving the
same predictor become a group. Variable selection is thus translated to group selection
in these problems as we desire to perform selection at the group level. Under these
scenarios, traditional variable selection methods which do not incorporate the group in-
formation would not be efficient (Breheny and Huang, 2009). Incorporating the grouping
structure naturally available in the predictors or implied by the statistical model helps
in performing more precise variable selection. Therefore, it is important to develop vari-
able selection methods accounting for group structure. While there are several existing
frequentist methods and studies of their theoretical properties available for group se-
lection (Yuan and Lin, 2006; Bach, 2008; Wang and Leng, 2008; Nardi and Rinaldo,
2008; Wang et al., 2008), the Bayesian approaches and their theoretical properties have
been much less explored. Given the recent insights about the advantages of Bayesian
approaches for variable selection and their model selection consistency properties under
weaker conditions compared to penalization approaches (Johnson and Rossell, 2012;
Narisetty and He, 2014), it is important to investigate them for group selection.

Let us consider the linear regression model with G groups:

Y =

G∑
g=1

Xgβg + ε, (1.1)

where Y is an n× 1 vector, ε ∼ Nn(0, σ
2I), and Xg and βg are respectively the n×mg

design matrix and the mg × 1 coefficient vector corresponding to the g’th group. The
group Lasso estimator (Yuan and Lin, 2006) was proposed to perform group selection
and is defined as the minimizer of the following objective function:

GL(β) :=
1

2

∥∥∥∥∥Y −
G∑

g=1

Xgβg

∥∥∥∥∥
2

2

+ λ

G∑
g=1

√
mg‖βg‖2.

This is a natural extension of the Lasso (Tibshirani, 1996) by applying the L1 penalty
to the L2 norms of the group coefficients. The theoretical properties of the group Lasso
estimator were studied in Bach (2008) and Nardi and Rinaldo (2008). Group selection
consistency is only guaranteed under restrictive correlation conditions which extend
the irrepresentable condition (Zhao and Yu, 2006) of Lasso. To improve that, Wang and
Leng (2008) and Nardi and Rinaldo (2008) studied an adaptive group Lasso method that
generalizes the adaptive Lasso (Zou, 2006) in the group setting. With adaptive weights
of penalty on each group, the adaptive group Lasso achieves group selection consistency
under more flexible conditions. Non-convex group penalized methods like group SCAD
and group MCP can be formulated similarly by applying the corresponding penalty
to the L2 norms of the group coefficients. Various penalized methods have also been
proposed to perform sparse group selection. We mention group bridge (Huang et al.,
2009), sparse-group Lasso (Simon et al., 2013), and group exponential Lasso (Breheny,
2015), among others. An extensive review of penalized group selection approaches is
provided in Huang et al. (2012).



X. Yang and N. N. Narisetty 911

To formulate the group selection problem in the Bayesian framework, multivariate-
Laplacian priors over each group of coefficients were considered by Raman et al. (2009)
and Kyung et al. (2010). This approach is often referred to as Bayesian group Lasso.
The maximum a posteriori (MAP) estimator of Bayesian group Lasso is equivalent to
the group Lasso estimator, however, Bayesian group Lasso provides the entire posterior
distribution on the parameter space as opposed to a single point estimator provided by
group Lasso. The posterior distribution of Bayesian group Lasso has the flexibility to in-
corporate prior knowledge and can also be used in a more general way (such as posterior
mean, uncertainty estimation) as opposed to one summary statistic in the form of the
MAP estimator. However, model selection consistency results for the Bayesian group
Lasso procedure are not extensively studied. Hernández-Lobato et al. (2013) introduced
generalized spike-and-slab priors for group selection problems and used expectation
propagation to perform approximate inference. Xu and Ghosh (2015) considered adopt-
ing the prior of Bayesian group Lasso as the slab prior and introduced Bayesian group
Lasso with spike and slab priors (BGL-SS). Under the orthogonal design, the posterior
median estimator of BGL-SS was shown to have the oracle property (Fan and Li, 2001).
However, there are no theoretical results established under general designs beyond the
orthogonal design.

In this paper, we propose spike and slab priors to perform model selection at the
group level in the Bayesian framework. Spike and slab priors would be imposed on
the group coefficients rather than individual coefficients. Meanwhile, a binary latent
variable would be explicitly introduced for every group to indicate whether the corre-
sponding group is active or not. We establish strong selection consistency (Johnson and
Rossell, 2012) of our method under a general setup allowing both the number of groups
and the size of the true model to go to infinity. With the proposed method, we con-
sider the application of it in some special cases of group selection problems including
nonparametric additive models and seemingly unrelated regressions and demonstrate
that strong selection consistency continues to hold for these models. To the best of our
knowledge, Shang and Li (2014) provide the only existing result for model selection
consistency of Bayesian nonparametric additive model in high dimensions. However,
they established strong selection consistency of their method when the sparsity level is
correctly specified through the model hyperparameter, which is usually not available in
reality.

We place a point mass at zero as the spike prior and a multivariate normal with
diagonal covariance matrix as the slab prior. Though this prior is similar to generalized
spike-and-slab priors and BGL-SS, our method differs from them in two aspects. First,
following the same idea of Narisetty and He (2014), we suggest that the slab prior should
be sample size dependent to achieve appropriate shrinkage. With this specification, our
proposed method is shown to have strong selection consistency under more general
designs. Second, we perform group selection based on the inference on the latent binary
variables rather than the group coefficients. We propose a shotgun stochastic search
algorithm similar to the one by Hans et al. (2007) to search for the MAP estimator
in the model space rather than generating samples from the posterior. Our algorithm
includes a deterministic searching layer on top of the algorithm of Hans et al. (2007) to
make it explore a larger model space and to converge in fewer iterations.
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In the theoretical analysis, we consider a quite flexible setup to accommodate both
realistic design situations as well as commonly used statistical models such as the non-
parametric additive models. Our method is shown to be able to asymptotically select
all the groups containing any active individual predictors. Our theoretical results are
stronger than any of the existing Bayesian group selection consistency results (Shang
and Li, 2014; Xu and Ghosh, 2015) in terms of the weakness of assumptions and the
generality of the results. Compared with traditional variable selection methods ignoring
the group structure, our proposed group selection method achieves consistency under
weaker conditions on the signal strength as it makes use of the group information. When
there exists a large within-group correlation, it is likely that traditional variable selec-
tion methods will select only some of the individual predictors in the group and ignore
the others. In contrast, our theoretical results show that our proposed method will not
suffer from a large within-group correlation and performs well under this scenario.

The rest of the paper is organized as follows. We introduce the proposed method
and theoretical results in Section 2. The application of our proposed method in some
special cases is discussed in Section 3. Algorithms for the implementation of the method
are discussed in Section 4. Simulation and real data studies are conducted in Section 5
and Section 6, respectively. Finally, we draw the conclusion in Section 7.

2 Bayesian Group Selection

Consider the regression model (1.1) and let m = (m1, . . . ,mG) denote the numbers of
individual variables within each group and p =

∑
mg is the total number of individual

variables. For the purpose of simplicity, we assume the design matrix of every group Xg,
g = 1, . . . , G, to be full-ranked. Furthermore, we center Y and normalize every column
of the design matrix X = (X1, . . . , XG). We introduce a latent binary random vector
Z = (Z1, . . . , ZG) with entries equal to either 1 (active) or 0 (not) to indicate selection
of groups.

2.1 Model

Our Bayesian hierarchical model is given by:

Y | (X,β, σ2) ∼ N(Xβ, σ2In),

βg | (Zg, σ
2) ∼ (1− Zg) δ0(βg) + Zg N(0mg , σ

2τ2Img ),

Zg ∼ Bernoulli(q),

σ2 ∼ Inv-Gamma(γ1, γ2),

(2.1)

where g = 1, . . . , G and τ2, q are the prior parameters which depend on n. In the model,
we use δ0(βg), a point mass at zero, as the spike prior and N(0mg , σ

2τ2Img ) as the slab
prior. We treat τ2 and q as tuning parameters and let them go to infinity and zero,
respectively, along with n to achieve appropriate sparsity at the group level. We shall
perform group selection based on the MAP estimator of the posterior distribution of Z.

We work with Model (2.1) for its simplicity and convenience in studying the theoret-
ical properties. However, several alternative priors and further hierarchies on the hyper-
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parameters of the Model (2.1) can be considered in practice. For instance, a Beta prior
on q and a Gamma prior on τ2 can be specified. For the slab prior, one can alternatively
adopt an objective Zellner’s g-prior (Zellner, 1986), that is, N

(
0mg , σ

2τ2(X ′
gXg)

−1
)
.

This formulation is actually equivalent to first transform Xg, the design matrix of the
g’th group, to Xg(X

′
gXg)

−1/2, and then place the original slab prior described in (2.1)

on the new group coefficients corresponding to Xg(X
′
gXg)

−1/2. By this procedure, the
design matrix for each group is orthonormalized, so which slab prior to choose is a mat-
ter of whether orthonormalization within the group is needed. The distinction between
the two different choices of the slab prior will be discussed further later.

In our implementation, we need the sample size for selecting our hyperparameters
of the Model (2.1), which is not completely a subjective Bayesian approach as the prior
may not be interpreted entirely as a representation of prior knowledge. The subjective
aspect of our prior comes from the form of the prior specification that induces group
sparsity while the specific values for the hyperparameters are not chosen in a subjective
manner. Motivated by the difficulty in high dimensions for having prior belief about
the distribution of a high dimensional parameter in its entirety, several authors (George
and Foster, 2000; Park and Casella, 2008; Scott and Berger, 2010; Xu and Ghosh, 2015;
Ročková and George, 2014, 2016; Gan et al., 2018) take this approach for selecting
hyperparameters while incorporating prior belief through the prior structures. These
approaches as well as our proposal can be considered under the broad umbrella of ob-
jective priors that include a wide range of priors that could be data-dependent implicitly
or explicitly such as Jeffreys’ prior (Jeffreys, 1961), reference prior (Bernardo, 1979),
and Zellner’s g-prior (Zellner, 1986).

Our approach of specifying hyperparameters that depend on the sample size is quite
similar to empirical Bayes strategies, which specify hyperparameters based on the data
and can therefore also be sample size dependent. Empirical Bayes strategies use more
specific information from the data compared to our approach as they often employ
a likelihood maximization strategy. For instance, George and Foster (2000) estimated
both the hyperparameter in their g-prior and prior inclusion probability based on a
marginal or conditional maximum likelihood criterion; Scott and Berger (2010) speci-
fied the prior inclusion probability by marginal maximum likelihood; Park and Casella
(2008), Kyung et al. (2010), and Xu and Ghosh (2015) specified the parameters of
their hyperpriors within a Monte Carlo expectation-maximization (EM) algorithm. In
all these approaches, hyperparameters are chosen by maximizing certain form of likeli-
hood that requires access to the full data while our specification of the hyperparameters
depends only on the sample size.

These objective approaches are in contrast with fully subjective Bayesian approaches
such as Spitzner (2019) where prior distributions are entirely characterized based on
prior knowledge before the data are collected. If a specific prior knowledge on the prior
distribution is available that allows fixing the prior hyperparameters at specific values,
this can certainly be done in our framework and the approach would be fully Bayesian.
Another alternative is to place a prior on the hyperparameters but selection of its
hyperparameters is also crucial since the procedures can be sensitive to those parameters
in high dimensions.
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We now introduce some of the notations to be used in this paper.

Model indices: Let k, a binary vector of lengthG with entries equal to either 1 or 0, be
the index of the active groups present in a regression model. For instance, the regression
model Y = X2β2 +X3β3 + ε will be indexed by the binary vector (0, 1, 1, 0, · · · , 0)G×1.
Let t denote the index of the true model which has 1’s for all the groups containing
active individual variables. For example, if we have 6 variables divided into three groups
with m1 = m2 = m3 = 2 and the active variables are the first 3 variables which are in
groups 1 and 2, then t = (1, 1, 0).

Model symbols: For a regression model indexed by k, denoteX(k), rk, P (k), β(k), and
m(k) as the corresponding design matrix, rank ofX(k), projection matrix corresponding
to X(k), regression coefficients, and the vector of group sizes, respectively. For a vector,
the operator | · | outputs the L1 norm of the vector. For example, |k| =

∑
kg is the

number of active groups in the model indexed by k; |m(k)| =
∑

[m(k)]g is the number
of active individual variables in the model indexed by k.

2.2 Posterior Distribution of Z

We now proceed to derive the marginal posterior distribution of Z as group selection
will be performed based on the corresponding MAP estimator. As will be seen later,
this marginalization would be helpful not only in our theoretical analysis but also for
computation.

The posterior probability of the model indexed by k can be computed by summing
and integrating out β from the joint posterior distribution of β and Z which is given by

P (Z = k | Y, σ2) ∝ Qk

(
q

1− q

)|k|
exp

{
− 1

2σ2
R̃k

}
, (2.2)

where

Qk =
∣∣Dk +X(k)′X(k)

∣∣−1/2∣∣Dk

∣∣1/2,
R̃k = Y ′

{
I −X(k)

[
Dk +X(k)′X(k)

]−1
X(k)′

}
Y, and Dk = τ−2I|m(k)|.

In the posterior probability (2.2), R̃k can be interpreted as regularized residual sum
of squares; [q/(1 − q)]|k| deals with the number of active groups in the model indexed
by k; Qk represents the variation within the design matrix X(k). To see the last point,
rewrite Qk as |I + τ2X(k)X(k)′|−1/2 by Sylvester’s determinant theorem. Recall from
principal components analysis that |X(k)′X(k)| is the product of the variances of the
principal components ofX(k). Including more groups in the model would introduce more
variation within the design matrix X(k). Similar expression of the posterior probability
(2.2) without a group structure is obtained by imposing Bayesian shrinking and diffusing
priors (Narisetty and He, 2014) on the regression coefficients.

Remark. Looking for the model that maximizes the posterior probability (2.2) becomes
the familiar problem of the trade-off between the residual sum of squares and the model
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Figure 1: Qk(ρ) versus ρ given n = 50 and τ2 = 0.01.

size as seen in many traditional model selection criteria like the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC).

We now illustrate the philosophy of whether the orthonormalization within the group
is needed or not. If no orthonormalization is performed, the within-group correlation
would be favored in the sense that given the regularized residual sum of squares and
model size, the posterior probability (2.2) would be larger with a larger within-group
correlation. To see this, suppose k is the index of an one-group model, that is, |k| = 1
and the correlation between every pair of two individual variables is equal to ρ:

X(k)′X(k)

n
→ (1− ρ)I|m(k)| + ρJ|m(k)|,

where J|m(k)| denotes the all-ones matrix. We have

Qk(ρ) =
∣∣I|m(k)| + τ2X(k)X ′(k)

∣∣−1/2

→
∣∣[nτ2(1− ρ) + 1

]
I|m(k)| + nτ2ρJ|m(k)|

∣∣−1/2

=

{(
1 +

|m(k)|ρ
1− ρ+ 1/nτ2

)[
1 + nτ2(1− ρ)

]|m(k)|
}−1/2

,

which increases and therefore so does the posterior probability (2.2) when ρ goes up as
can be seen in Figure 1. Alternatively, if orthonormalization within the group is done, or
equivalently, a g prior is adopted as the slab prior, this feature of favoring the within-
group correlation would be discarded. We believe that the within-group correlation
should be favored, so we stick to our original slab prior in Model (2.1).

2.3 Theoretical Results

We shall now provide the strong selection consistency of our Bayesian hierarchical model
(2.1) in the sense that the posterior probability (2.2) of the true model goes to one as the



916 Consistent Group Selection with Bayesian High Dimensional Modeling

sample size goes to infinity. We consider a general design allowing both the number of
groups G and the size of the true model |t| to go to infinity and assume σ2 to be fixed for
simplicity. We first introduce the following notations to be used in our theoretical results:

Operations of model indices: For a regression model indexed by k, we use kc =
1G − k as the index of its complementary model. For two models indexed by k and w
respectively, the set operations k ∪w and k ∩w index the models corresponding to the
union and intersection of the covariates indexed by k and w, respectively. In addition,
k ⊂ w (or w ⊃ k) denotes that the model indexed by k is a submodel of the model
indexed by w, and k � w (or w � k) denotes strict inclusion. The submodel of the
model indexed by k that only includes (or excludes) its i’th active group by k(i) (or
k(−i)) for i = 1, . . . , |k|.

Rates: For sequences an and bn, an ∼ bn means an/bn → c for some constant c > 0;
an � bn (or bn � an) means an = O(bn); an ≺ bn (or bn � an) means an = o(bn).

Next, we describe the conditions used to achieve strong selection consistency.

Define
Δ1 = inf

{i=1,...,|t|}

∥∥[I − P (t(−i))
]
X(t(i))β(t(i))

∥∥2
2
,

where P (t(−i)) is the projection matrix corresponding to the model indexed by t(−i)

which is the submodel of the true model that only excludes the i’th active group, and

λmin = inf
{k: k⊃t, rk≤(K+1)rt}

φmin

(
X(k)′X(k)

n

)
,

λ̄ = inf
{k: |k∩tc|>0}

φ̄

(
X(k)′[I − P (k ∩ t)]X(k)

n

)
,

where φmin outputs the minimum nonzero eigenvalue of the input matrix and φ̄ outputs
the geometric mean of the nonzero eigenvalues of the input matrix.

For a fixed K, define

Δ2 = inf
{k:rk≤Krt,k �⊃t}

∥∥[I − P (k)
]
X(t)β(t)

∥∥2
2
.

We assume the following regularity conditions:

(A.1) On the number of groups: G → ∞ and G = eo(n).

(A.2) On the marginal prior probability: q ∼ G−1.

(A.3) On the variance of the slab prior: nτ2 ∼ G2+η(λ̄)−η and nτ2 � λ−1
min, for some

η > 0.

(A.4) Sensitivity condition: Δ1 > (1+ε1)σ
2rt

[
(4+η) logG−η log λ̄

]
, for some ε1 > 0.

(A.5) Specificity condition: Δ2 > (1 + ε2)σ
2rt

[
(4 + η) logG − η log λ̄

]
, for some

K > max{8/η + 1, η/(η − 1)} and ε2 > 0.

Here, conditions (A.1)–(A.3) are primarily related to the rates of the prior param-
eters and conditions (A.4) and (A.5) are concerned with the identifiability of the true
model.
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Condition (A.1) allows the number of groups G to grow near-exponentially along
with the sample size n. This is the strongest result available in the group selection
literature. Under a similar near-exponential rate for the number of groups, Wei and
Huang (2010) established the selection consistency of adaptive group Lasso and Shang
and Li (2014) achieved the selection consistency for nonparametric additive models.

Condition (A.4) deals with the identifiability of the active groups and condition (A.5)
is about preventing the selection of the inactive groups. Both the conditions essentially
require that for any false model of moderate size that misses some active group, it cannot
fit the mean response X(t)β(t) well enough and its residual sum of squares would be
lower bounded at a certain rate. It is worth noting that our conditions depend on the
number of groups G instead of the number of variables p which can be much larger than
G. Otherwise, the conditions would be more restrictive if they have p in place of G. This
illustrates an advantage of incorporating the group information. Under the orthogonal
design matrix, that is, X ′X = nI, conditions (A.4) and (A.5) could be further simplified
as

inf
{i=1,...,|t|}

‖β(t(i))‖2 >

(
crt

logG

n

)1/2

,

for some c > 0. Therefore, the infimum group signal strength is allowed to shrink to
zero with the sample size at a fast rate.

When the correlations between the covariates are high, conditions (A.4) and (A.5)
can still be satisfied as long as the active coefficients are strong enough. To see this,
consider the simple case of having one active group with design matrix X1 and one
inactive group with design matrix X2. Here, we assume X1 and X2 are orthonormalized
and the correlation matrix between the two groups X ′

2X1 = ρJ for simplicity. Thus,

‖(I − P2)X1β1‖22 = ‖X1β1 −X2X
′
2X1β1‖22

= ‖β1‖22 − ‖X ′
2X1β1‖22

= ‖β1‖22 − ρ2 ‖Jβ1‖22 .
The difference between ‖β1‖22 and ρ2‖Jβ1‖22 could be lower bounded even when ρ is
large as long as the active coefficients β1 are large enough. In contrast, Bach (2008)
derived the sufficient and necessary conditions for selection consistency of group Lasso
as an extension of the irrepresentable condition (Zhao and Yu, 2006) of Lasso. For the
selection consistency of group Lasso, the strength of the signals within the active groups
does not play a role in Conditions (4) and (5) of Bach (2008). Due to this, once the
correlation structure fails to satisfy Conditions (4) and (5) of Bach (2008), no matter
how large the active signals are, selection consistency would not be achieved by group
Lasso, which is quite restrictive and can be easily violated.

Theorem 2.1. Under conditions (A.1)–(A.5), our proposed Bayesian hierarchical model
(2.1) has strong model selection consistency property. That is,

P (Z = t | Y )
P−→ 1 as n → ∞.

A proof of Theorem 2.1 is provided in the Supplementary Material (Yang and
Narisetty, 2019).
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3 Applications to Specific Statistical Models

So far, we have introduced our Bayesian hierarchical model under general regression
models with group structures present. We now discuss how our proposed method can
be applied to some special statistical models which can be formulated as group selection
problems. Group selection methods have a lot of applications in statistical problems as
well as in real data analysis, as discussed in Huang et al. (2012). Here, we consider the
application of our proposed method in nonparametric additive models and seemingly
unrelated regressions and illustrate that our established strong selection consistency
continues to hold under these special cases.

3.1 Nonparametric Additive Models

One natural application of group selection methods is the nonparametric additive model:

Y =

p∑
j=1

fj(Xj) + ε,

where fj ’s are some unknown smooth univariate functions and fj(Xj)’s are usually
referred to as nonparametric components. A class of polynomial spline functions is
used to approximate the unknown functions fj ’s. Every continuous function can be
approximated arbitrarily well by polynomial splines using a sufficient number of knots
with a fixed order. The class of polynomial spline functions evaluated for the same
individual feature are grouped naturally and thus the selection of the nonparametric
components becomes a group selection problem.

Suppose only the first α nonparametric components are active so that the true
model is indexed by t = (1, . . . , 1︸ ︷︷ ︸

α

, 0, . . . , 0︸ ︷︷ ︸
p−α

). Use S(K) to denote the function space of

polynomial splines of order l with simple knots K = {ξ1, . . . , ξN} where a < ξ1 < · · · <
ξN < b. The dimension of S(K) would be d = N + l. Denote a set of basis functions
of S(K) as {φ1(x), . . . , φd(x)} and every Xj is expanded as a group of d predictors,
{φ1(Xj), . . . , φd(Xj)}, to approximate the corresponding fj(Xj).

To ensure that the nonparametric components can be approximated well enough,
we make the following assumptions:

(B.1)
∑n

i=1 fj(Xij) = 0, j = 1, . . . , α.

(B.2) Every Xj is bounded with Xj ∈ [aj , bj ], j = 1, . . . , α.

(B.3) fj ∈ Ll
∞[aj , bj ], j = 1, . . . , α, where Ll

∞[aj , bj ] = {f : Dl−1f ∈ AC[aj , bj ],
Dlf ∈ L∞[aj , bj ]} with D to be the differential operator and AC standing for absolute
continuity.

(B.4) N � n1/(2l) and the knots are equally spaced.

(B.5) α � log p.
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Here, assumption (B.1) deals with the model identifiability and (B.2)–(B.4) are
standard assumptions to ensure the approximation power of polynomial splines. We
assume the absolute continuity for the smoothness of fj ’s in (B.3). In contrast, Huang
et al. (2010) assumed fj ’s are Hölder continuous for nonparametric additive models
under a random design.

Now, we provide the strong selection consistency of our method under nonparametric
additive models. We still consider a general design allowing both the number of groups
p and the size of the true model α to go to infinity.

Theorem 3.1. Under assumptions (B.1)–(B.5) and conditions (A.1)–(A.5), our pro-
posed Bayesian hierarchical model (2.1) has strong model selection consistency when the
data-generating model is a nonparametric additive model:

P (Z = t | Y )
P−→ 1 as n → ∞.

The proof of Theorem 3.1 follows the lines of Theorem 2.1 except that there is an
additional approximation error in the linear model which needs to be controlled by
the increasing approximation power of polynomial splines. A proof of Theorem 3.1 is
provided in the Supplementary Material (Yang and Narisetty, 2019).

Bach (2008) applied group Lasso to nonparametric additive models and established
model selection consistency under conditions originating from the irrepresentable con-
dition (Zhao and Yu, 2006). Ravikumar et al. (2009) proposed sparse additive models
(SpAM) for nonparametric additive models and assumed conditions similar to the ir-
representable condition for model selection consistency. Therefore, similar to the earlier
discussion, our results hold under weaker conditions on the covariates. Shang and Li
(2014) proposed a Bayesian nonparametric size-control model which involves a size-
control prior that restricts the scope of the target models. Their method has strong
selection consistency only when the hyperparameter associated with the size-control
prior is correctly specified. This can be violated easily as the sparsity information is
usually not available.

3.2 Seemingly Unrelated Regressions

We will now discuss the generality of our results with the seemingly unrelated regressions
(SUR) model (Zellner, 1962; Lounici et al., 2011; Obozinski et al., 2011; Huang et al.,
2012) as an example. The SUR model consists of a set of regression equations:

y(i) = X(i)β(i) + ε(i), i = 1, . . . , T,

where y(i), X(i), β(i), and ε(i) are respectively the ni × 1 response vector, the ni × p
design matrix, the p× 1 coefficient vector, and the ni × 1 error vector corresponding to
the i’th regression. Equivalently, the equations can be written as⎛

⎜⎜⎜⎝
y(1)

y(2)

...
y(T )

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

X(1) 0 · · · 0

0 X(2)
...

...
. . . 0

0 · · · 0 X(T )

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
β(1)

β(2)

...
β(T )

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝
ε(1)

ε(2)

...
ε(T )

⎞
⎟⎟⎟⎠ . (3.1)
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Denote the whole design matrix and coefficient vector in (3.1) as X and β, respec-
tively. The seemingly unrelated regressions become related when the j’th predictors,
j = 1, . . . , p, of the regression models describe similar features. Thus, we can reasonably
assume that the j’th predictors in the regression equations are more likely to be either
included or excluded together, that is, the active set of each individual regression would
be the same. Under this formulation, the coefficient vector β of length Tp is divided
into p groups and the columns with the same remainder after their indices being divided
by p stay in the same group. Now due to this group structure, it can be formulated as
a group selection problem.

When our proposed method is applied to the seemingly unrelated regressions, we can
retain group selection consistency without any further effort and the conditions can be
directly translated and further simplified. Denote the design matrix, projection matrix,
and coefficient vector of the model indexed by k within the i’th regression as X(i)(k),
P (i)(k), and β(i)(k), respectively. Then, in the sensitivity condition (A.4),

Δ1 = inf
{j=1,...,|t|}

∥∥[I − P (t(−j))
]
X(t(j))β(t(j))

∥∥2
2

= inf
{j=1,...,|t|}

T∑
i=1

∥∥∥[I − P (i)(t(−j))
]
X(i)(t(j))β

(i)(t(j))
∥∥∥2
2
.

This implies that an active feature would be selected even when its coefficients are small
in some individual regressions as long as the overall signal across the T regressions is
strong enough. Similarly, the specificity condition (A.5) would tell that the inactive
features would not be selected even when the correlations between the active features
and the inactive features are large within some individual regressions as long as they
are not large across all regressions.

4 Computation

We shall use the MAP estimator of P (Z | Y ) to perform group selection, so the imple-
mentation of the proposed method can be viewed as an optimization problem of finding
the model with the maximum posterior probability among all possible models, which is
a computationally challenging problem. The discreteness of the parameter space of Z
facilitates the use of shotgun stochastic search algorithm (hereafter referred to as SSS)
(Hans et al., 2007). Alternatively, Markov chain Monte Carlo (MCMC) methods like
the Gibbs sampler can be adopted and inference can be performed with the samples
drawn from P (Z | Y ). To deal with the unknown σ2, we let the inverse Gamma prior
be flat with both shape and scale parameters equal to 0.01 and integrate it out from
the posterior distribution (2.2).

4.1 Shotgun Stochastic Search Algorithm

Shotgun stochastic search algorithm attempts to find models having high posterior
probabilities by systematically searching the high posterior density regions of the model
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space as opposed to MCMC methods which attempt to approximate the posterior dis-
tribution on the whole model space. Following the same notations and definitions as
in Hans et al. (2007), we let Γ denote the set that will contain the models with large
posterior probabilities and nbd(k) = γ+(k) ∪ γ−(k) ∪ γ◦(k) denote the neighborhood
of k where γ+(k), γ−(k), and γ◦(k) are “addition” neighbors, “deletion” neighbors and
“replacement” neighbors, respectively. More specifically,

γ+(k) = {w : |w| = |k|+ 1 and w ⊃ k},
γ−(k) = {w : |w| = |k| − 1 and w ⊂ k},
γ◦(k) = {w : |w| = |k| and |w ∩ k| = |k| − 1}.

Given a starting model indexed by k(0), set Γ(0) = {k(0)} and choose a constant B
as the maximum number of models we would like to keep in Γ and a constant C for
stopping criteria. Then iterate for t = 0, . . . , T :

Step 1. Update Γ(t+1) to be Γ(t) ∪ nbd(k(t)) and keep the top B models in Γ(t+1)

having the largest P (Z | Y ).

Step 2. For every newly enrolled model indexed by w in Γ(t+1) that is not in Γ(t),
update Γ(t+1) to be Γ(t+1) ∪ nbd(w) and keep the top B models in Γ(t+1) having the
largest P (Z | Y ).

Step 3. Sample k+, k−, k◦ from γ+(k(t)), γ−(k(t)), and γ◦(k(t)) respectively with
probabilities proportional to the posterior probabilities normalized within each set of
neighbors.

Step 4. Sample k(t+1) from {k+, k−, k◦} with probabilities proportional to the nor-
malized posterior probability.

Step 5. Stop if Γ(t+1) remains unchanged during the past C iterations.

The top model in the Γ after running SSS would be our MAP estimator of the
posterior distribution P (Z | Y ).

Here, step 2 is the only difference from the original SSS algorithm (Hans et al.,
2007). We add this deterministic step to ensure that the model space around the local
maximums of P (Z | Y ) would be explored more exhaustively at each iteration. Step 2
does not involve k(t), so it would not interfere with the stochastic steps. Compared with
the original SSS algorithm, our modified algorithm can converge in fewer iterations and
explore a broader region of the model space as the neighborhood of the current top
models can be fully explored at each iteration. The dominant part of the computational
complexity at each iteration comes from the inversion of Dk +X(k)′X(k). The inverse
can be efficiently computed using the Woodbury matrix identity which gives the compu-
tational complexity to be O(n|m(k)|2), where |m(k)| is the number of active individual
variables in the model indexed by k. A stochastic approximation Monte Carlo (SAMC)
algorithm (Liang et al., 2007, 2013) can also be used for posterior computation but it
is a posterior sampling algorithm that generates samples from P (Z | Y ) as opposed to
the SSS algorithm that aims to find the MAP model.
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4.2 Gibbs Sampling

Alternatively, we can use a standard Gibbs sampling method to generate samples from
P (Z | Y ). As Z is a binary vector, the full conditional distributions are all Bernoulli
distributions:

P (Zg = 1 | Z−g = k−g, Y ) =
P (Zg = 1, Z−g = k−g | Y )

P (Zg = 1, Z−g = k−g | Y ) + P (Zg = 0, Z−g = k−g | Y )
,

where Z−g = (Z1, . . . , Zg−1, Zg+1, . . . , ZG).

If the posterior samples of the coefficients β are desired, they could be generated
along with Z and σ2 from the joint posterior distribution P (Z, β, σ2 | Y ) by Gibbs sam-
pling. The full conditional distributions would still be standard distribution due to the
use of conjugate priors. The crucial point is that β and Z need to be blocked together
to make Gibbs sampling work. Otherwise, the Markov chain would not be irreducible
because of the use of a point mass as the spike prior. A Gibbs sampler to draw samples
from P (Z, β, σ2 | Y ) is provided in the Supplementary Material (Yang and Narisetty,
2019). We prefer to sample Z | Y directly due to the fact that the analytical integration
over β would be beneficial as it results in fast mixing and thus speeds up convergence
(George and McCulloch, 1997).

Remark on bi-level selection. When within-group selection of variables is also im-
portant, many bi-level selection methods such as the hierarchical structured variable
selection (HSVS) method (Zhang et al., 2014) and Bayesian sparse group selection with
spike and slab priors (BSGS-SS) (Xu and Ghosh, 2015) have been proposed. It is possi-
ble to extend our proposed model (2.1) to induce within-group sparsity by introducing
another set of binary variables Sg = (Sg1, . . . , Sgmg ) for every group of coefficients
βg = (βg1, . . . , βgmg) to indicate individual level selection. By allowing some of the Sgi’s
to be inactive when Zg is active would then result in within-group sparsity. However, the
introduction of Sg’s would increase the computational burden because the dimension of
the model space would be 2p which can be much larger than 2G. Therefore, we focus
on group selection in this paper and the computational aspects of the model for bi-level
selection are deferred for future research.

5 Simulation Results

We will refer to our proposed method as Group Spike and Diffusing prior (GSD) and the
estimates computed from SSS and Gibbs sampling algorithms as GSD-SSS and GSD-
Gibbs, respectively. To test the performance of our method, we compare it with existing
methods including adaptive group Lasso (agLasso), group Lasso (gLasso), group SCAD
(gSCAD), group MCP (gMCP), and BGL-SS under different settings. Additionally,
for our last simulation setting where there is bi-level sparsity, we also implement the
sparse-group Lasso (SGL) method as a bi-level selection approach for comparison.

For good model selection performance, choice of the hyperparameters τ2 and q are
important as the conditions for our theoretical results have demonstrated. In Figure 2,
we plot the number of active groups in the MAP estimator under different choices of τ2
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Figure 2: Sparsity level of the MAP estimator under different choices of τ2.

and a fixed q based on a simulation dataset generated as described in Case 2. As can
be seen, the sparsity level does not change rapidly so a very fine tuning of τ2 may not
be needed. In the following simulation studies, we take q = 1/G and tune τ2 for five
different values equal to G2.5/(10in) with i = 0, 1, 2, 3, and 4. We choose the optimal
τ2 by the mean squared prediction error produced by 5-fold cross-validation using ridge
regression. From our simulation studies, this coarse grid of tuning parameters is already
able to yield quite promising results. Note that this implies that our hyperparameters
are data-dependent and the resultant procedure is similar to an empirical-Bayesian
approach which is a common practice in the high dimensional Bayesian literature due
to sparse prior knowledge about the hyperparameters. In our model formulation, both
q and τ2 could be tuned if desired. However, the shrinkage effects of q and τ2 are related
to each other and several authors in prior research have observed that it is sufficient to
tune one of them by setting the other at a reasonable value (Narisetty and He, 2014;
Ročková and George, 2014, 2016; Gan et al., 2018). For this reason, in our empirical
studies, we fix q and tune only τ2. Another possible alternative would be to tune q by
fixing τ2 which we do not pursue in the paper. The choice of 1/G for q is motivated by
our condition (A.2). From our empirical work, this procedure is already able to yield
quite promising results. Otherwise, one may also consider tuning q but it does not seem
necessary in most practical contexts.

When implementing our method using SSS, we set B, T and C as 10, 100 and
10, respectively, where B is the number of top models we record, T is the number of
iterations, and C is related to the stopping criterion. In the Gibbs sampler, we take a
burn-in period of 1000 iterations followed by 1000 iterations to compute the posterior.

We consider 6 simulation designs under the linear regression model (1.1), each with
the same sample size of 100. Depending on the context, the number of groups would
be either 50 or 100. Group size is taken to be one of 4, 5, 6, 7, or 8 randomly with
equal probability on all the designs. The X covariates are generated independently
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from a multivariate normal distribution with zero mean, unit variance, and different
correlation matrices on different designs. Coefficients of inactive covariates are set to be
0. The errors at each observation are i.i.d. standard normal. In each design, we consider
two subcases of weak and strong signal strength with active coefficients to be 0.3 and
1, respectively, unless otherwise specified. Here are the different cases considered:

Case 1 (Baseline design). The number of groups G = 50 and the first 3 groups are
active. The correlations at both the group and within-group levels are equally 0.5.

Case 2 (Dense model design). The first 7 groups are active with the number of
groups and correlation structure same as in Case 1.

Case 3 (High dimensional design). The number of groups G = 100 with the first 3
groups to be active. The correlation structure is the same as in Case 1.

Case 4 (Confounding group design). There are G = 50 groups with the first 3
groups to be active. The correlations within the first 3 groups and the fourth group
(confounding group) are 0.3 and 0.8, respectively. The correlation between a variable
from the first 3 groups and a variable from the fourth group is 0.5. All the other entries
of the correlation matrix are equal to 0.1.

Case 5 (Bi-level sparsity design). The number of groups G = 50 with the same
correlation structure as in Case 1. The first 5 groups are active but there are 2 inactive
covariates within each of the 5 groups. Active coefficients are equal to 1 under the strong
signal strength setting and 0.5 under the weak signal strength setting.

Case 6 (Bi-level high sparsity design). The number of groups G = 50 with the same
correlation structure as in Case 1. The first 5 groups are active with 1 active covariate in
the first 3 groups and 2 active covariates in the other 2 active groups. Active coefficients
are equal to 1 under the strong signal strength setting and 0.8 under the weak signal
strength setting.

Each simulation design is repeated for 500 times and the results are summarized in
Tables 1–6 where four measures are reported: Z = t is the proportion that the selected
model is the true model; Z ⊃ t is the proportion that the selected model contains the
true models; the area under the curve (AUC) is the average area under the receiver
operating characteristic (ROC) curve; t ∈ Path is the proportion that the true model is
a candidate model in the solution path.

Comparing different implementations of our method using SSS and Gibbs sampling,
overall the two algorithms give similar results but SSS has a slightly better performance
in most cases. The computational times for GSD-SSS and GSD-Gibbs using a MacBook
Pro with 2.9 GHz Intel Core i5 processor, 8.00 GB memory, and macOS Sierra are
reported in Table 7 which show that GSD-SSS is much faster than GSD-Gibbs.

Comparing our method with the competitors, we have the following observations:

• Generally speaking, when signal strength is weak, our method can outperform the
competitors except for agLasso in terms of the measure Z = t. As signal strength
gets stronger, the consistency conditions of our method are easier to satisfy so that
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Z = t Z ⊃ t AUC t ∈ Path
Active coefficients = 1

agLasso 0.948 1.000 1.000 1.000
gLasso 0.014 1.000 0.981 0.416
gMCP 0.552 0.560 0.869 0.624
gSCAD 0.468 0.760 0.873 0.534
BGL-SS 0.846 0.986 0.997 0.986
GSD-Gibbs 0.978 1.000 1.000 1.000
GSD-SSS 0.984 1.000 1.000 1.000

Active coefficients = 0.3
agLasso 0.514 0.974 0.998 0.910
gLasso 0.004 0.996 0.972 0.288
gMCP 0.008 0.080 0.726 0.050
gSCAD 0.000 0.398 0.778 0.046
BGL-SS 0.436 0.778 0.953 0.606
GSD-Gibbs 0.342 0.872 0.977 0.738
GSD-SSS 0.348 0.880 0.978 0.746

Table 1: Performance of group selection methods in Case 1 (Baseline design).

Z = t Z ⊃ t AUC t ∈ Path
Active coefficients = 1

agLasso 0.930 0.930 0.994 0.930
gLasso 0.002 1.000 0.915 0.008
gMCP 0.000 0.000 0.623 0.000
gSCAD 0.000 0.024 0.666 0.000
BGL-SS 0.008 0.900 0.977 0.548
GSD-Gibbs 0.998 1.000 0.996 1.000
GSD-SSS 0.998 1.000 0.999 1.000

Active coefficients = 0.3
agLasso 0.384 0.548 0.949 0.542
gLasso 0.000 0.996 0.910 0.004
gMCP 0.000 0.000 0.615 0.000
gSCAD 0.000 0.016 0.653 0.000
BGL-SS 0.024 0.584 0.929 0.134
GSD-Gibbs 0.360 0.474 0.924 0.448
GSD-SSS 0.422 0.526 0.948 0.512

Table 2: Performance of group selection methods in Case 2 (Dense model design).

our method has much better performance and can outperform all the competitors
including agLasso.

• Cases 2 and 3 are modifications of Case 1 in terms of sparsity and dimensional-
ity, respectively. In either case, our method works the best in all the measures
under strong signal design. When signal strength is weak, agLasso is the most
competitive method and our method is still comparable.
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Z = t Z ⊃ t AUC t ∈ Path
Active coefficients = 1

agLasso 0.944 1.000 1.000 1.000
gLasso 0.002 1.000 0.986 0.288
gMCP 0.398 0.402 0.813 0.478
gSCAD 0.352 0.588 0.865 0.418
BGL-SS 0.254 0.944 0.989 0.944
GSD-Gibbs 1.000 1.000 1.000 1.000
GSD-SSS 1.000 1.000 1.000 1.000

Active coefficients = 0.3
agLasso 0.502 0.932 0.992 0.876
gLasso 0.000 0.998 0.980 0.160
gMCP 0.002 0.028 0.674 0.022
gSCAD 0.000 0.216 0.748 0.024
BGL-SS 0.300 0.396 0.888 0.360
GSD-Gibbs 0.686 0.774 0.960 0.722
GSD-SSS 0.696 0.778 0.962 0.736

Table 3: Performance of group selection methods in Case 3 (High dimensional design).

Z = t Z ⊃ t AUC t ∈ Path
Active coefficients = 1

agLasso 0.504 1.000 0.993 0.660
gLasso 0.000 1.000 0.979 0.000
gMCP 0.712 0.726 0.875 0.772
gSCAD 0.660 0.728 0.839 0.692
BGL-SS 0.932 1.000 1.000 1.000
GSD-Gibbs 0.996 1.000 0.999 1.000
GSD-SSS 0.996 1.000 1.000 1.000

Active coefficients = 0.3
agLasso 0.188 0.960 0.985 0.362
gLasso 0.000 1.000 0.977 0.000
gMCP 0.070 0.408 0.817 0.374
gSCAD 0.004 0.566 0.812 0.542
BGL-SS 0.650 0.838 0.953 0.790
GSD-Gibbs 0.698 0.894 0.961 0.874
GSD-SSS 0.700 0.896 0.959 0.872

Table 4: Performance of group selection methods in Case 4 (Confounding group design).

• Case 4 is a more challenging scenario with the presence of the fourth group as
a confounding group. The correlations between the fourth group and the active
groups are even larger than those within the active groups. Thus, the fourth group
alone could explain a large proportion of the variation of the response variable.
In this case, gLasso has a bad performance because it includes the confounding
group along with the active groups at most times. Without a good initial estimator,
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Z = t Z ⊃ t AUC t ∈ Path
Active coefficients = 1

agLasso 0.720 0.982 0.998 0.978
gLasso 0.008 1.000 0.942 0.046
gMCP 0.202 0.216 0.808 0.260
gSCAD 0.092 0.406 0.805 0.152
BGL-SS 0.482 0.966 0.994 0.914
GSD-Gibbs 0.944 1.000 0.991 1.000
GSD-SSS 0.954 1.000 0.994 1.000
SGL 0.032 1.000 0.934 0.320

Active coefficients = 0.5
agLasso 0.460 0.888 0.989 0.780
gLasso 0.000 0.980 0.936 0.038
gMCP 0.034 0.104 0.773 0.088
gSCAD 0.006 0.276 0.778 0.038
BGL-SS 0.398 0.862 0.981 0.700
GSD-Gibbs 0.602 0.766 0.950 0.758
GSD-SSS 0.600 0.772 0.958 0.764
SGL 0.004 0.998 0.926 0.108

Table 5: Performance of group selection methods in Case 5 (Bi-level sparsity design).

Z = t Z ⊃ t AUC t ∈ Path
Active coefficients = 1

agLasso 0.206 0.866 0.983 0.632
gLasso 0.008 0.922 0.927 0.036
gMCP 0.310 0.836 0.976 0.714
gSCAD 0.024 0.930 0.936 0.376
BGL-SS 0.588 0.922 0.991 0.876
GSD-Gibbs 0.798 0.858 0.932 0.844
GSD-SSS 0.798 0.856 0.934 0.846
SGL 0.006 1.000 0.975 0.328

Active coefficients = 0.8
agLasso 0.114 0.726 0.971 0.436
gLasso 0.000 0.874 0.918 0.026
gMCP 0.084 0.560 0.947 0.372
gSCAD 0.002 0.804 0.919 0.176
BGL-SS 0.300 0.706 0.955 0.570
GSD-Gibbs 0.472 0.496 0.882 0.502
GSD-SSS 0.470 0.498 0.887 0.502
SGL 0.006 1.000 0.970 0.188

Table 6: Performance of group selection methods in Case 6 (Bi-level high sparsity de-
sign).
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GSD-SSS GSD-Gibbs
Case 1 0.346 11.303
Case 2 0.996 25.069
Case 3 0.476 18.904
Case 4 0.277 13.618
Case 5 0.599 19.253
Case 6 0.385 11.069

Table 7: Average computational times (in min) for GSD-SSS and GSD-Gibbs under
different simulation designs based on 10 replications.

agLasso also works poorly. On the contrary, our proposed method can still perform
well demonstrating that it is more flexible with different correlation structures.

• Cases 5 and 6 have sparsity at both the group and within-group levels. For every
active group in Case 5, 25% to 50% of the predictors are inactive. The within-
group sparsity is even higher in Case 6 with only 1 or 2 active covariates within
each active group. From Tables 5–6, we see that the penalized group selection
methods suffer from the within-group sparsity and the bi-level selection method
SGL tends to select more groups than the true model. In contrast, our method is
able to accommodate this bi-level sparsity situation as our consistency conditions
only rely on the overall signal strength of the whole group.

• Overall, our simulation studies indicate that our proposed method can perform
well under a variety of configurations with different dimensionalities, model com-
plexities, sparsity levels, and correlation structures.

6 Application to Gene Expression Data

We use the real dataset from Keller et al. (2018b) to evaluate the performance of our
proposed Bayesian group selection method. The dataset contains 21771 expression levels
of the islet gene and diabetes-related phenotypes of 378 mice to study the expression
quantitative trait loci for pancreatic islet function. The data are available on Dryad
Digital Repository (Keller et al., 2018a).

The nonparametric additive model is applied to study the relationship between
the gene expression data and two phenotype variables, homeostatic model assessment
(HOMA) of insulin resistance (IR) and pancreatic islet function (B). The two pheno-
type responses are highly correlated with a correlation of 0.819. We adopt the seemingly
unrelated regressions (SUR) model to fit the two phenotype responses together to select
a common set of covariates relevant for both the phenotypes.

As this is a high dimensional problem with 21771 predictors, we first screen out
500 genes for each of the responses by quantile-adaptive nonlinear variable screening
(He et al., 2013) and take the 258 common genes plus the gender predictor to fit a
SUR model. He et al. (2013) is a more flexible generalization of the sure independent
screening approach of Fan and Lv (2008) and incorporates the information at multiple
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Figure 3: MSPE of SUR model versus number of active groups.

quantile levels. We approximate the nonparametric additive components using cubic
splines with 10 knots. Thus, we have 259 groups in total and the final model used is
given by

Y =

259∑
g=1

Xgβg + ε,

where Y is the concatenation of the two phenotype responses HOMA-IR and HOMA-B
and

Xg =

(
Xg 0
0 Xg

)
,

with Xg being the g’th predictor evaluated at the basis functions of cubic splines.

To perform group selection for the above model, we use GSD-SSS along with gLasso,
gMCP, and gSCAD. For evaluating performance of the models selected by different
methods, we randomly split the data into a training set with 80 percent of the obser-
vations and a test set with the remaining 20 percent. We only use the training set for
model fitting as well as tuning parameter selection and the test set is used to calculate
the prediction error for the purpose of performance evaluation. This process is replicated
in parallel on a cluster machine with 24 cores resulting in 24 replications.

In Figure 3, we plot the average mean squared prediction errors (MSPE) at different
model sizes by GSD-SSS along with gLasso, gMCP, and gSCAD. For the SSS algorithm,
we set B to be 50 and to accelerate computation, we abandon the deterministic step 2
of the algorithm and set C for stopping criterion to be 5. We follow the same tuning
parameter selection procedure as in Section 5 and the only difference is that the tuning
is finer with more values considered for the prior variance parameter τ2. More specifi-
cally, we choose τ2 from the set of values {G2.5/(10in) : i = 0, · · · , b}, where b = 4 for
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Gene ID Proportion Gene ID Proportion
ENSMUSG00000020102 0.792 ENSMUSG00000021708 0.250
ENSMUSG00000027188 0.750 ENSMUSG00000020953 0.250
ENSMUSG00000024563 0.625 ENSMUSG00000005566 0.250
ENSMUSG00000059187 0.625 ENSMUSG00000017615 0.250
ENSMUSG00000029168 0.500 ENSMUSG00000061032 0.208
ENSMUSG00000020653 0.458 ENSMUSG00000003355 0.167
ENSMUSG00000030659 0.458 ENSMUSG00000003660 0.167
ENSMUSG00000017264 0.417 ENSMUSG00000038150 0.125
ENSMUSG00000049823 0.417 ENSMUSG00000059921 0.125
ENSMUSG00000023110 0.417 ENSMUSG00000038007 0.125
ENSMUSG00000027642 0.375 ENSMUSG00000053091 0.125
ENSMUSG00000040972 0.292

Table 8: Selected Genes under the SUR model along with the proportion of times they
were selected in 24 replications.

simulation studies and b = 10 for real data analysis. We perform the ridge regression
with 5-fold cross-validation on the training set to get coefficients estimates for GSD-SSS
and use the test set to calculate MSPE. We can discover that GSD-SSS has the best
performance in terms of the average MSPE across different model sizes. This indicates
that compared to the competitors, our method selects more powerful groups for predic-
tion at different sparsity levels. In Table 8, we report the genes selected at least twice
by GSD-SSS in the 24 replications along with the corresponding proportion of times
they were selected.

7 Conclusion

In this paper, we propose a Bayesian hierarchical model with a spike and slab prior
specification to perform group selection in high dimensional linear regression models.
The group selection consistency of our method is established under mild conditions and
we show that this consistency result can be retained for important statistical models
including nonparametric additive models and seemingly unrelated regressions. Shotgun
stochastic search and Gibbs sampling algorithms can be used for the implementation
of our proposed approach. We notice that our proposed shotgun stochastic search algo-
rithm exhibits more computational efficiency due to its fast computation and also has
better empirical performance compared to a standard Gibbs sampling algorithm. Our
simulation and real data studies indicate that the proposed method has better perfor-
mance for group selection compared to a variety of state-of-the-art competing methods.

The focus of our paper is to provide a general framework for group selection problems
and can certainly be generalized to special cases such as the multivariate response model
similar to Greenlaw et al. (2017); Liquet et al. (2017) by considering special covariance
matrix structures for the errors. Other generalizations such as auto-regressive models
can also be potentially studied within our framework by considering a general structure
for the error covariance matrix.
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Supplementary Material

Consistent Group Selection with Bayesian High Dimensional Modeling: Supplemen-
tary Material (DOI: 10.1214/19-BA1178SUPP; .pdf). Proofs of Theorem 2.1 and The-
orem 3.1 and a Gibbs sampler for drawing samples from P (Z, β, σ2 | Y ) are provided
in the Supplementary Material.
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