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Bayesian Quantile Regression with Mixed
Discrete and Nonignorable Missing Covariates

Zhi-Qiang Wang∗ and Nian-Sheng Tang†

Abstract. Bayesian inference on quantile regression (QR) model with mixed dis-
crete and non-ignorable missing covariates is conducted by reformulating QR
model as a hierarchical structure model. A probit regression model is adopted
to specify missing covariate mechanism. A hybrid algorithm combining the Gibbs
sampler and the Metropolis-Hastings algorithm is developed to simultaneously
produce Bayesian estimates of unknown parameters and latent variables as well
as their corresponding standard errors. Bayesian variable selection method is pro-
posed to recognize significant covariates. A Bayesian local influence procedure is
presented to assess the effect of minor perturbations to the data, priors and sam-
pling distributions on posterior quantities of interest. Several simulation studies
and an example are presented to illustrate the proposed methodologies.
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1 Introduction

Quantile regression (QR) (Hendricks and Koenker, 1992; Hallock and Koenker, 2001;
Chernozhukov, 2005; Gaglianone et al., 2011; Cade and Noon, 2003) has become an
important tool for quantifying the conditional quantile relationship between a response
variable and some covariates, due to its merits, such as, few assumptions on the dis-
tribution of random errors except for requiring that random errors have a zero condi-
tional quantile, and more robustness to outliers and heavy-tailed data than ordinary
least squares regression. QR analysis has received considerable attention over the past
years. For example, see Koenker (2005) for a comprehensive overview, Geraci and Bottai
(2006) for longitudinal data analysis, Wu and Liu (2009) for variable selection, Canay
(2011) for panel data analysis. In particular, Bayesian analysis of QR models has been
widely studied over the past years. For example, Yu and Moye (2001) studied Bayesian
QR by reformulating QR as an asymmetric Laplace distribution; Reich et al. (2009)
investigated Bayesian analysis of QR with independent and clustered data under the
assumption that random errors are distributed as an infinite mixture of normals; Lan-
caster and Sung (2010) developed a Bayesian exponentially tilted empirical likelihood
inference on QR; Yang and He (2012) presented a Bayesian empirical likelihood infer-
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ence on QR; Kottas and Krnjajić (2009) proposed a Bayesian semiparametric method
for QR using Dirichlet process mixtures to approximate the distribution of random er-
rors; Huang and Chen (2016), Zhang et al. (2017) and Huang et al. (2017) discussed
Bayesian QR-based mixed-effects joint models by formulating the asymmetric Laplace
distribution as a mixture of normal and exponential distributions. The aforementioned
works focus on the fully observed data.

However, missing data are commonly encountered in various fields such as clinical
trials, social sciences and economics. QR analysis with missing data has widely been
investigated in recent years. For example, Yi and He (2009), Wei et al. (2012), Wei
and Yang (2014), Chen et al. (2015), Yuan and Yin (2010) and Huang (2016) studied
the parameter estimation problem of QR models under the assumption that continuous
covariates are subject to missingness at random (MAR). However, to our knowledge,
there is little literature on variable selection and local influence analysis in Bayesian QR
models with mixed discrete and continuous and nonignorable missing covariates though
variable selection (Li et al., 2010; Alhamzawi et al., 2012) and local influence analysis
(Cook, 1986; Zhu et al., 2011; Tang et al., 2017; Zhang and Tang, 2017; Ju et al., 2018)
are two important steps in data analysis.

The main contribution of this paper includes that (i) a complicated QR model is
considered by incorporating discrete and continuous and nonignorable missing covari-
ates; (ii) a sequence of one-dimensional exponential family conditional distributions is
adopted to specify the distribution of missing covariates because of discrete and contin-
uous covariates involved; (iii) a sequence of one-dimensional probit regression models is
employed to formulate nonignorable missingness covariates mechanism, which is easier
to draw observations required for statistical inference from their corresponding con-
ditional distributions than the widely used logistic regression models; (iv) a Bayesian
adaptive LASSO procedure is developed to select covariates/explanatory variables in
QR model and missingness covariates mechanism model; (v) Bayesian local influence
analysis of Zhu et al. (2011) is extended to check the plausibility of missingness covari-
ates mechanism in the considered QR model.

The rest of this paper is organized as follows. Section 2 introduces QR model with
mixed discrete and continuous and nonignorable missing covariates. Section 3 investi-
gates Bayesian inference. Section 4 discusses Bayesian variable selection. Bayesian local
influence analysis is studied in Section 5. Simulation studies are conducted to investi-
gate the finite sample performance of the proposed methods in Section 6. An example
is illustrated in Section 7. Some concluding remarks are given in Section 8. Technical
details are presented in the Supplementary Materials (Wang and Tang, 2019).

2 Model and notation

2.1 Quantile regression model

Consider the following quantile regression (QR) model

yi = x�iβτ + εi, i = 1, . . . , n, (2.1)
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where yi is a response variable, xi = (xi1, . . . , xip)
� is a p × 1 vector of explanatory

variables, which may be subject to missingness, βτ is a p-dimensional parameter vector
to be estimated and τ is the quantile level (0 < τ < 1), and εi is a random error. It
is assumed that εi’s are independently but not necessarily identically distributed, and
Pr(εi < 0|xi) = τ for i = 1, . . . , n. Thus, model (2.1) amounts to assuming Qyi(τ |xi) =
x�iβτ , where Qyi(τ |xi) = inf{y : F (y|xi) ≥ τ} is the τth conditional quantile of yi given
xi, and F (y|xi) is the conditional distribution of yi given xi. When xi’s are completely
observed, βτ can be estimated by minimizing the following objective function Ω(βτ ) =∑n

i=1 ρτ (yi − x�iβτ ) over βτ , where ρτ (u) = u{τ − I(u < 0)} is the check function,
and I(·) is an indicator function. Following Yu and Moye (2001), the aforementioned
optimization problem can be formulated as the maximum likelihood estimation problem
by assuming the asymmetric Laplace distribution (ALD) for εi with density

fτ (εi) = στ(1− τ) exp{−σρτ (εi)}, (2.2)

where τ determines the skewness of distribution, and σ is a scale parameter. To wit,
an estimator of βτ can be obtained by maximizing the following objective function:
σnτn(1− τ)n exp{−σ

∑n
i=1 ρτ (yi − x�iβτ )} over βτ .

Following Kozumi and Kobayashi (2011), the asymmetric Laplace distribution (2.2)
can be regarded as a mixture of an exponential distribution and a scaled normal distri-
bution, i.e., εi = κ1vi+

√
σ−1κ2viui, where κ1 = (1−2τ)/{τ(1−τ)}, κ2 = 2/{τ(1−τ)},

vi follows an exponential distribution with parameter σ−1 (i.e., Exp(σ−1)) whose den-
sity is f(vi|σ) = σ exp(−σvi), and ui follows the standard normal distribution (i.e.,
N(0, 1)). Then, the QR model (2.1) can be written as the following hierarchical model⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yi = x�iβτ + κ1vi +
√

κ2vi/σui,

vi|σ ∼ Exp
(
σ−1

)
= σ exp(−σvi),

ui ∼ N(0, 1) =
1√
2π

exp

(
−u2

i

2

)
.

(2.3)

When xi’s are subject to missingness but yi’s are completely observed, without loss
of generality, it is assumed that xi,mis = (xi1, . . . , xisi)

� and xi,obs = (xi,si+1, . . . , xip)
�,

where si may vary across individuals. Thus, xi can be written as xi = {xi,mis,xi,obs}.
Let rij be missing indicator for xij , i.e., rij = 0 if xij is missing, and rij = 1 if xij

is observed for j = 1, . . . , p. Denote ri = (ri1, . . . , rip)
�. Thus, the complete data set

consists of observations {(yi,xi, ri) : i = 1, . . . , n}. Under the above assumptions, the
joint probability density of responses, covariates and missing data indicators is given by

f(y,x, r|θ) = f(y|x,βτ , σ)f(xmis|α)f(r|y,x,γ)
=

n∏
i=1

f(yi|xi,βτ , σ)f(xi,mis|α)f(ri|yi,xi,γ),
(2.4)

where y = (y1, . . . , yn)
�, x = {x1, . . . ,xn}, r = {r1, . . . , rn}, xmis = {x1,mis, . . . ,

xn,mis}, f(yi|xi,βτ , σ) is the marginal probability density function of yi given xi with
unknown parameters βτ and σ, i.e., f(yi|xi,βτ , σ) =

∫
f(yi|xi, vi,βτ , σ)f(vi|σ)dvi,
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f(xi,mis|α) is the density function of missing covariates xi,mis with an unknown pa-
rameter vector α, f(ri|yi,xi,γ) is the conditional function of ri given yi and xi with
an unknown parameter vector γ, and θ = {βτ , σ,α,γ} contains all unknown distinct
parameters. In the presence of nonignorable missing covariates, f(r|y,x,γ) is required
in the complete-data joint probability density function. Our main interest aims at the
posterior inference on θ based on missing data indicator set r and the observed data
Dobs = {y,xobs} in which xobs = {x1,obs, . . . ,xn,obs}. According to the definition of
the model considered above, the joint posterior density of θ given r and Dobs is given
by

f(θ|r,Dobs) ∝
{

n∏
i=1

∫
xi,mis

f(yi|xi,βτ , σ)f(xi,mis|α)f(ri|yi,xi,γ)dxi,mis

}
f(θ),

(2.5)
where f(θ) is the prior distribution of θ. Generally, the integral in Equation (2.5) does
not have a closed form.

2.2 The distribution of missing covariates

Following Ibrahim et al. (1999), we can use a sequence of one-dimensional conditional
distributions to specify the joint density f(xi,mis|α) of xi,mis including discrete and
continuous covariates, which is given by

f(xi,mis|α) = f(xisi |xi1, . . . , xi,si−1,αsi) · · · f(xi2|xi1,α2)f(xi1|α1), (2.6)

where αk is an unknown parameter vector associated with the kth conditional dis-
tribution f(xik|xi1, . . . , xi,k−1,αk) and the αk’s are distinct for k = 1, . . . , si, and
α = {α1, . . . ,αp}. Model (2.6) implies that it is easy to directly specify the distri-
bution of missing covariates regardless of the discrete and continuous covariates. For
example, one can specify the distribution of missing covariate xik via an exponential
family distribution with the form

f(xik|xi1, . . . , xi,k−1,αk) = exp

{
xikϑik − bk(ϑik)

ak(φk)
− hk(xik, φk)

}
, (2.7)

where ak(·) > 0, bk(·) and hk(·) are some appropriate known functions, ϑik is the
canonical parameter, φk is the dispersion parameter which is known or can be esti-
mated separately, and μik

x = E(xik|·) = ḃk(ϑik) and σik
x = var(xik|·) = ak(φk)b̈k(ϑik)

in which ḃk(ϑ) and b̈k(ϑ) represent the first- and second-order derivatives of bk(ϑ) with
respect to ϑ, respectively. The density function of xik defined in Equation (2.7) includes
the normal distribution, Bernoulli distribution, binomial/multinomial distribution, ex-
ponential distribution, Poisson distribution and gamma distribution as its special cases.

The relationship between xik and {xi1, . . . , xi,k−1} can be formulated by

ηik = g(μik
x ) = αk0 + αk1xi1 + . . .+ αk,k−1xi,k−1, (2.8)

where g(·), called the link function, is a known strictly monotone differentiable function,
and αk = (αk0, αk1, . . . , αk,k−1)

�. Although we include covariates {xi1, . . . , xi,k−1} in
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specifying the conditional distribution of xik, only a few covariates may indeed have an
effect on xik. Thus, variable selection procedure should be developed to select significant
covariates. The model defined in Equations (2.7) and (2.8) is typically referred to as
a generalized linear model (GLM), which includes normal linear regression model and
logistic regression model as its special cases.

Note that model (2.6) requires to be specified only for those covariates that are
subject to missingness. Also, one can specify a joint distribution for missing covariate
vector xi,mis via other approaches, for example, multivariate normal distribution for
continuous missing covariates with p small (e.g., xi,mis ∼ N(μxi,Σxi)), and multinomial
distribution for discrete covariates with more than two possible values.

2.3 Models for missingness data mechanism

When covariates are subject to nonignorable missingness, we require setting up a miss-
ingness data mechanism model for Bayesian inference on θ based on the observed data
Dobs. When rij is independent of rik for j �= k, one possible model for f(ri|xi,γ) is

f(ri|xi,γ) =
p∏

j=1

f(rij |xi,γ)

=
p∏

j=1

{Pr(rij = 1|xi,γ)}rij{1− Pr(rij = 1|xi,γ)}1−rij .
(2.9)

Following Ibrahim et al. (1999), one can relax the above assumption by using a sequence
of one-dimensional conditional distributions to specify missingness data mechanism. To
wit, one can write the conditional probability density function f(ri|xi,γ) as

f(ri|xi,γ) = f(rip|ri(p),xi(p),γp)f(ri,p−1|ri(p−1),xi(p−1),γp−1)
× . . .× f(ri2|ri1,xi(2),γ2)f(ri1|xi1,γ1),

(2.10)

where γj is an unknown parameter vector associated with the conditional distribution of
rij given {ri(j),xi(j)}, ri(j) = {ri1, . . . , ri,j−1} and xi(j) = {xi1, . . . , xij} for j = 1, . . . , p,
and γ = {γ1, . . . ,γp}. Since rij is binary variable, thus f(rij |ri(j),xi(j),γj) = {Pr(rij =
1|ri(j),xi(j),γj)}rij{1−Pr(rij = 1|ri(j),xi(j),γj)}1−rij . Similar to Lee and Tang (2006),
Pr(rij = 1|ri(j),xi(j),γj) can be formulated by logit{Pr(rij = 1|ri(j),xi(j),γj)} =

x�zijγj , where logit(a) = log{a/(1− a)}, γj = (γj0, . . . , γj,2j−1)
�, xzij = (1, xi1, . . . , xij ,

ri1, . . . , ri,j−1)
�. In this case, it is rather difficult to draw observations from the condi-

tional distribution f(γj |xi(j), ri(j)) in that f(γj |xi(j), ri(j)) is an unfamiliar distribu-
tion.

To address the issue, Pr(rij = 1|ri(j),xi(j),γj) is here formulated by the following
probit regression model:

Φ−1{Pr(rij = 1|ri(j),xi(j),γj)} = x�zijγj , (2.11)

where Φ−1(·) is the inverse function of the cumulative distribution function of the stan-
dard normal distribution. Thus, the probit model (2.11) can be reformulated as an un-
derlying normal regression structure by introducing latent variables (Albert and Chib,
1993). To wit, introducing latent variables zij (i = 1, . . . , n, j = 1, . . . , p), model (2.11)
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can be rewritten as

rij =

{
1, if zij > 0,

0, if zij ≤ 0,

zij = μij + uij , μij = x�zijγj , uij ∼ N(0, 1).

(2.12)

Thus, conditional probability density function of rij given {ri(j),xi(j)} has the form of
f(rij |ri(j),xi(j),γj) =

∫
f(rij , zij |ri(j),xi(j),γj)dzij =

∫
f(zij |ri(j),xi(j),γj){I(rij =

1)I(zij > 0) + I(rij = 0)I(zij ≤ 0)}dzij , where f(zij |ri(j),xi(j),γj) ∼ N(x�zijγj , 1).

It is easily seen from the above argument that the probit model per se doesn’t make
a lot of difference with the logistic model, at least locally, the advantage of working with
model (2.12) in comparison with logistic regression model is that the former is easier
to draw observations required for Bayesian inference on βτ via the Gibbs sampler than
the latter.

Note that we accommodate almost all the covariates {xi1, . . . , xi,j−1, ri1, . . . , ri,j−1}
in specifying missingness data mechanism of covariate xij , but only a few covariates may
indeed contribute to missingness of covariate xij . To wit, the considered probit regres-
sion model has a sparse structure. In this case, variable selection procedure should be
presented to distinguish important from unimportant covariates in the above considered
probit/logistic regression model.

2.4 Prior distributions

To make Bayesian inference on θ based on the observed data Dobs and missing data
indicator set r, it is necessary to first specify their prior distributions. Similar to Tang
and Zhao (2014), we consider the following prior distributions for βτ , σ, αk (k =
1, . . . , si) and γj (j = 1, . . . , p):

βτ ∼ N(β0
τ ,Σ

0
τβ), σ ∼ Γ(α0

σ, β
0
σ), αk ∼ N(α0

k,Σ
0
αk), γj ∼ N(γ0

j ,Σ
0
γj), (2.13)

where β0
τ , Σ

0
τβ , α

0
σ, β

0
σ, α

0
k, Σ

0
αk, γ

0
j and Σ0

γj are the hyperparameters whose values are
assumed to be given by users or prior information, and Γ(a1, a2) denotes the gamma
distribution with parameters a1 and a2. The associated hyperparameters can be deter-
mined by a data-dependent prior based on auxiliary estimates of parameters. To wit,
one can first evaluate Bayesian estimates of parameters with non-informative priors
based on the training dataset, and then take the resultant Bayesian estimates as their
corresponding hyperparameters in computing Bayesian estimates of parameters based
on the testing dataset. Other kinds of data-dependent priors have been proposed in
Bayesian analysis (Richardson and Green, 1997).

3 Conditional distributions and Bayesian estimation

It is easily seen from Equation (2.5) that it is rather difficult to make Bayesian in-
ference on θ via the posterior density function f(θ|r,Dobs) because of the intractable
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high-dimensional integral involved. Here the data augmentation idea (Tanner and Wong,
1987) is adopted to address the issue. Following Tanner and Wong (1987), we augment
missing data xmis and latent variables {v, z} with the observed data {r,Dobs} in the
posterior analysis, where v = {v1, . . . , vn}, and z = {zij : i = 1, · · · , n, j = 1, · · · , p}.
Thus, the posterior density f(θ|y,x, r,v, z) is easier to handle than f(θ|r,Dobs) be-
cause the intractable multiple integral is not involved. But it is still rather difficult
to sample observations θ from the above presented posterior density because of some
unfamiliar distributions involved. To this end, the Gibbs sampler is adopted to sim-
ulate a sequence of random observations from f(xmis,v, z,θ|y,xobs, r). In this algo-
rithm, observations {xmis,v, z,θ} are iteratively simulated from the following condi-
tional distributions: f(xmis|y,xobs, r,v, z,θ), f(v|y,x, r, z,θ), f(z|y,x, r,v,θ), and
f(θ|y,x, r,v, z). These conditional distributions are summarized in the Supplementary
Materials. Convergence of the algorithm can be monitored by the estimated potential
scale reduction (EPSR) values of parameters, which are computed sequentially as the
runs proceed. If the EPSR values of all unknown parameters are less than 1.2, we claim
that convergence of the Gibbs algorithm is attained (Gelman, 1996). Also, convergence
can be investigated by inspecting several parallel sequences of observations drawn on
the basis of different starting values. In particular, when the support of the distribu-
tion is nonconvex, the approach comparing between and within variances of multiple
chains (Brooks and Andrew, 1998) can be used to monitor the convergence of the Gibbs
algorithm.

Let {(β(t)
τ , σ(t),γ(t),α(t)) : t = 1, . . . , T } be the observations of {βτ , σ,γ,α} sim-

ulated from the joint conditional distribution f(βτ , σ,γ,α|y,x, r,v, z) via the above
proposed Gibbs sampler. Bayesian estimates of parameters βτ , σ,γ and α can be ob-
tained by

β̂τ =
1

T

T∑
t=1

β(t)
τ , σ̂ =

1

T

T∑
t=1

σ(t), γ̂ =
1

T

T∑
t=1

γ(t), α̂ =
1

T

T∑
t=1

α(t).

Similarly, we can use the simulated observations {(β(t)
τ , σ(t),γ(t),α(t)) : t = 1, . . . , T }

to obtain consistent estimates of their corresponding posterior covariance matrices. For
example, the posterior covariance matrix var(β̂τ |y,x,v, σ) can be consistently estimated
by

v̂ar(β̂τ |y,x,v, σ) =
1

T − 1

T∑
t=1

(β(t)
τ − β̂τ )(β

(t)
τ − β̂τ )

�.

Thus, the standard errors of components of β̂τ can be obtained by the diagonal elements
of v̂ar(β̂τ |y,x,v, σ).

4 Bayesian variable selection

Variable selection plays an important role in the statistical model-building process. In
many applications, one usually includes a large number of potential explanatory vari-
ables in an initially posited model. However, it is undesirable to cover some unimportant
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explanatory variables in the final model because only a small number of explanatory
variables indeed contribute to response variable. A popular approach to select significant
explanatory variables is to add a penalty term to the objective function. The widely
used approaches include LASSO (Tibshirani, 1996) and adaptive LASSO (Zou, 2006).
Due to some merits such as the oracle property of the adaptive LASSO, they have been
extended to QR model in recent years. For example, see Koenker (2004), Wu and Liu
(2009) and Alhamzawi et al. (2012). In particular, Park and Casella (2008) pointed
out that Bayesian adaptive LASSO for QR model can be implemented by specifying a
symmetric Laplace prior for each of regression parameters βτj ’s, where βτj is the jth
component of βτ .

Following Park and Casella (2008), if we assume a conditional Laplace prior for βτj

(j = 1, . . . , p), i.e.,

f(βτ |ζ, λ) =
p∏

j=1

ζλ

2
exp(−ζλ|βτj |), (4.1)

thus QR model becomes a LASSO QR model, which has a regularization effect for si-
multaneous parameter estimation and variable selection. Andrews and Mallows (1974)
noted that the Laplace prior can be represented as a scale mixture of a normal distri-
bution with an exponential mixing density, i.e.,

a

2
exp{−a|t|} =

∫ ∞

0

1√
2πν

exp

(
− t2

2ν

)
a2

2
exp

(
−a2ν

2

)
dν.

Let bβ = ζλ. Then, the above proposed Laplace prior on βτj can be rewritten as

f(βτj |bβ) =
bβ
2

exp{−bβ |βτj |} =

∫ ∞

0

1√
2πνj

exp

(
−
β2
τj

2νj

)
b2β
2

exp

(
−
b2βνj

2

)
dνj .

To wit, Bayesian adaptive LASSO QR shows that βτj takes a normal prior (i.e., βτj |νj ∼
N(0, νj)) and parameter νj has an exponential prior (i.e., νj ∼ Exp(b2β/2)). A small bβ
corresponds to a nonzero parameter, while a big bβ corresponds to a zero parameter.
Leng et al. (2014) pointed out that the adaptive LASSO tuning parameter bβ can be
obtained by empirical Bayesian method or hierarchical Bayesian method. Here the latter
is employed to select bβ . In particular, b2β is assumed to follow the gamma distribution

with parameters δ and ψ, i.e., b2β ∼ Γ(δ, ψ), where δ and ψ are the hyperparameters.
Generally, δ and ψ can be fixed at some small values to get a flat prior, or one can first fix
δ and then estimate ψ by empirical Bayesian method. For the latter, similar to Casella
(2001), at the kth iteration, given the current value ψ(k−1), ψ can be updated by ψ(k) =
pδ/

∑p
l=1 E(b2β |ψ(k−1), νl), where E(·) represents the expectation taken with respect

to the posterior distribution of bβ given {ψ(k−1), νl}. According to our experience, as
parameter δ lies in the deeper level of Bayesian hierarchical model, its value has little
effect on statistical inference. Hence, in our simulation studies, we take δ = 0.1 to
get a flat prior. Similarly, we can use the above method to specify the priors of α
and γ.
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Under the above notation, the priors of βτ , α and γ can be written as the following
hierarchical structures:

βτ ∼ N(0,Σβ), Σβ = diag(νβ1 , . . . , ν
β
p ), νβj ∼ Exp(b2βj/2), b2βj ∼ Γ(δβ , ψβ),

α∗
k ∼ N(0,Σk

α), Σk
α = diag(ναk1, . . . , ν

α
k,k−1), ναk,k1

∼ Exp(b2αkk1
/2), b2αkk1

∼ Γ(δα, ψα),

γ∗
j ∼ N(0,Σj

γ), Σj
γ = diag(νγj1, . . . , ν

γ
j,2j−1), νγj,k2

∼ Exp(b2γjk2
/2), b2γjk2

∼ Γ(δγ , ψγ),

for k1 = 1, . . . , k − 1 and k2 = 1, . . . , 2j − 1, where δβ , ψβ , δα, ψα, δγ and ψγ are
the hyperparameters whose values are pregiven by users, α∗

k = (αk1, . . . , αk,k−1)
� for

k = 1, . . . , si and γ∗
j = (γj1, . . . , γj,2j−1)

� for j = 1, . . . , p.

For the above discussed variable selection procedure, the Gibbs sampler introduced
in Section 3 can be employed to sample a series of random observations from the joint
conditional distribution f(xmis,v, z, σ,βτ ,γ,α|y,xobs, r) based on the above specified
priors of βτ , α and γ.

5 Bayesian local influence analysis

In this section, we develop a Bayesian local influence analysis approach to assess the
effect of minor perturbations to the data, priors and sampling distributions on the
posterior quantities of interest in QR.

5.1 Bayesian perturbation model and manifold

Similar to Zhu et al. (2011), we consider a class of perturbation models simultaneously
perturbing to the data, priors and sampling distributions:

f(y, r, z,xmis,v,θ|xobs,ω) = f(θ|ωp)
n∏

i=1

{f(yi, vi|xi,β, σ,ωd,ωs)

f(xi,mis|α,ωd,ωs)f(zi, ri|yi,xi,γ,ωd,ωs)},

which satisfies
∫
f(y, r, z,xmis,v,θ|xobs,ω)dydzdxmisdvdθ = 1, where ωp ∈ Rmp ,

ωd ∈ Rmd and ωs ∈ Rms represent perturbations to the priors, the data and the
sampling distributions, respectively. Let m = mp +md +ms. It is assumed that ω0 =
(ω0

p,ω
0
d,ω

0
s) ∈ Rm represents no perturbation.

Following the argument of Zhu et al. (2011), under some regularity conditions, the
perturbed model M = {f(y, r, z,xmis,v,θ|xobs,ω) : ω ∈ Rm} can be regarded as
a function in ω, and it forms an m-dimensional manifold. Then, the tangent space
Tω of M at ω0 ∈ M is spanned by m functions: ∂ωk

�(ω0) = ∂�(ω)/∂ωk|ω=ω0 for
k = 1, . . . ,m, the m2 quantities gjk(ω) = Eω{∂ωj �(ω)∂ωk

�(ω)} = Eω{−∂2
ωjωk

�(ω)} for
j, k = 1, . . . ,m form a metric tensor of M, where �(ω) = ln f(y, r, z,xmis,v,θ|xobs,ω),
ωk is the kth component of ω, and Eω denotes the expectation taken with respect to the
joint probability density function f(y, z,xmis,v,θ|xobs) and ∂2

ωjωk
= ∂/∂ωj∂ωk. Denote

G(ω) = (gjk(ω)). The jth diagonal element gjj of G(ω0) quantifies the amount of the

jth perturbation introduced by ωj , the quantity ρjk = gjk(ω)/
√

gjj(ω)gkk(ω) measures
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the amount of the association between ωj and ωk. If G(ω0) is a diagonal matrix, thus
all components of ω are orthogonal to each other, and the corresponding perturbation
scheme is referred to as an appropriate perturbation. When G(ω0) is not a diagonal
matrix, we can always select a new perturbation vector ω̃ = ω0 + G(ω0)1/2(ω − ω0)
such that G(ω̃) evaluated at ω0 equals cIm, where c is a positive scalar. We consider
the following perturbation schemes.

Example 1. Consider the perturbation to the priors of βτ , γj , αk and σ by assum-
ing βτ |ωβ ∼ Np(β

0
τ , ω

−1
β Σ0

τβ), γj |ωγ ∼ N(γ0
j , ω

−1
γ Σ0

γj), αk|ωα ∼ N(α0
k, ω

−1
α Σ0

αk), and

σ|ωσ ∼ Γ(α0
σ, ωσβ

0
σ), where ωβ , ωγ , ωα and ωσ are the positive scalars. In this case,

ωp = (ωβ , ωγ , ωα, ωσ)
�, and ω0

p = (ω0
β , ω

0
γ , ω

0
α, ω

0
σ)

� = (1, 1, 1, 1)� represents no pertur-

bation. The perturbed model M = {f(y, r, z,xmis,v,θ|xobs,ωp) : ωp ∈ R4} forms a
Riemannian manifold. The tangent space Tωp of M at ω0

p is spanned by

∂�(ω0
p)

∂ωp
=

(p
2
− 1

2
(βτ − β0

τ )
�(Σ0

τβ)
−1(βτ − β0

τ ),
pγj
2

− 1

2
(γj − γ0

j )
�(Σ0

γj)
−1(γj − γ0

j ),

pαk
2

− 1

2
(αk −α0

k)
�(Σ0

αk)
−1(αk −α0

k), α
0
σ − β0

σσ
)�
,

where pγj = 2j − 1 and pαk = k − 1. It is easily shown that G(ω0
p) = diag(p/2, pγj/2,

pαj/2, α
0
σ). This perturbation scheme can be used to evaluate the effect of slightly

disturbed prior distributions of βτ , γj , αk and σ.

Example 2. For probit missingness data mechanism model: Pr(rij = 1|xi,γj) =
Φ(γj0 + γj1xi1 + . . .+ γjjxij), we consider the following perturbation scheme:

f(rij |xi,γj , ωγj) = {Φ(χω
γij)}rij{1− Φ(χω

γij)}1−rij ,

where χω
γij = γj0+γj1xi1+· · ·+γj,j−1xi,j−1+ωγjxij . In this scheme, ω0

γj
= 0 represents

no perturbation. The tangent space Tωγj of M at ω0
γj is spanned by

∂�(ω0
γj)

∂ωγj
=

n∑
i=1

[{ rij
Φ(�ij)

− 1− rij
1− Φ(�ij)

}
ϕ(�ij)xij

]
,

where �ij = γj0+γj1xi1+ . . .+γj,j−1xi,j−1, and ϕ(·) is the probability density function
of the standard normal distribution. It is easily shown that G(ω0

γj) has the form

G(ω0
γj) = Ex∗

ij ,γ
∗
j ,αj

{(
aj(φj)b̈j(ϑij) + {ḃj(ϑij)}2

) n∑
i=1

ϕ2(�ij)

Φ(�ij)(1− Φ(�ij))

}
,

where g(ḃ(ϑij)) = αj0 + αj1xi1 + . . . + αj,j−1xi,j−1, Ex∗
ij ,γ

∗
j ,αj represents the expec-

tation taken with respect to the joint distribution of (x∗
ij ,γ

∗
j ,αj) in which x∗

ij =

(xi1, . . . , xi,j−1)
� and γ∗

j = (γj0, γj1, . . . , γj,j−1)
�. This perturbation scheme is used to

measure the effect of tinily disturbed missingness data mechanism.
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5.2 Bayesian local influence measures

Let f(ω) : M → Rl be a l-dimensional objective function vector such as φ-divergence,
Bayes factor and posterior mean distance of parameters of interest. For the finite dimen-
sional manifoldM, if ω(t) is a geodesic onM with ω(0) = ω0 and ∂tω(t)|t=0 = h ∈ Rm,
thus it follows from Taylor expansion that f(ω(t)) = f(ω(0)) + f ′

h(0)t + O(t2), where

f ′
h(0) = ∇�

fh in which ∇f = ∂ωf(ω(0)).

If ∇f �= 0, the first-order influence (FI) measure at ω0 in the direction vector
h ∈ Rm of unit length (i.e., the Euclidean norm of vector h is 1) is defined as

FIf ,h = FIf(ω(0)),h =
h�∇fWf∇�

fh

h�Gh
,

where G = G(ω0) and Wf is some user-specified positive semi-definite matrix. In
particular, for an appropriate perturbation ω̃, FIf ,h can be rewritten as

FIf(ω̃),h|ω̃=ω0 = h�G−1/2∇fWf∇�
fG

−1/2h.

Following Poon and Poon (1999), the first-order adjusted influence measure FICf(ω̃0),h

at ω0 in an unit direction vector h can be defined as

FICf(ω̃0),h = h�Bh,

where B = Q/trace(Q) in which Q = G−1/2∇fWf∇�
fG

−1/2.

Similar to Poon and Poon (1999) and Zhu et al. (2014), M(0)j = FICf(ω̃0),ej
= bjj

for j = 1, . . . ,m can be used to assess the effect of various minor perturbations, where
ej is a basic perturbation vector with the jth element 1 and 0 elsewhere, bjj is the jth
diagonal element of matrix B. We can use M(0)+2SM(0) as a benchmark, where M(0)
and SM(0) are the mean and standard error of {M(0)j : j = 1, . . . ,m}, respectively.

Example 3 (Bayes factor). We take f(ω) to be Bayes factor defined by BF (ω) =
ln f(Dobs, r|ω) − ln f(Dobs, r|ω0), where f(Dobs, r|ω) =

∫
f(y,x, z,v, r,θ|ω)dzdv

dxmisdθ. In this case, it is easily shown that∇B = E{∂ω ln f(y,xmis, z,v, r,θ|ω0)|Dobs,
r,ω0}, where E{·|·} represents the expectation taken with respect to the conditional
distribution f(z,xmis,v,θ|y,xobs, r). In this case, ∇B can be approximated by ∇B ≈
S−1
0

∑S0

s=1 ∂ω ln f(y,x
(s)
mis, z

(s),v(s), r,θ(s)|ω0), where {(x(s)
mis, z

(s),v(s),θ(s)) : s = 1, . . .,
S0} are generated from the joint posterior distribution f(xmis, z,v,θ|y, xobs, r) via the
above introduced Gibbs sampler.

When ∇f = 0, it follows from Taylor expansion f(ω(t)) at t = 0 that f(ω(t)) =
f(ω(0)) + 0.5f ′′

h (0)t
2 +O(t3), where f ′′

h (0) = h�Hfh with Hf = ∂2f(ω)/∂ω∂ω�|ω=ω0 .
Similar to Zhu et al. (2011), we define the second-order influence measure (SI) at ω0 in
the unit direction vector h ∈ Rm as

SIf,h = SIf(ω(0)),h =
h�Hfh

h�Gh
.
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Thus, for an appropriate perturbation ω̃, SIf,h reduces to

SIf(ω̃),h|ω̃=ω0 = h�G−1/2HfG
−1/2h.

Again, we define the second-order adjusted influence measure at ω0 in the unit direc-
tion vector h as SICf(ω̃0),h = h�BSh, where BS = QS/trace(QS) in which QS =

G−1/2HfG
−1/2. The diagonal elements of matrix BS can be used to identify the po-

tential influential observations, misspecified priors and inappropriate modeling assump-
tions.

Example 4 (�-divergence). We take the objective function f(ω) to be the �-divergence
between two posterior probability density functions before and after introducing per-
turbation ω, which is defined by

D�(ω) =

∫
�(R(xmis, z,v,θ|Dobs, r,ω))f(xmis, z,v,θ|Dobs, r)dxmisdzdvdθ,

where R(xmis, z,v,θ|Dobs, r,ω) = f(xmis, z,v,θ|Dobs, r,ω)/f(xmis, z,v,θ|Dobs, r),
and �(·) is a convex function with �(1) = 0 such as the Kullback-Leibler divergence or
the χ2-divergence. Thus, we have ∇� = 0 and

H� = �̈(1)
[
Eω0{�̇�(ω0)|Dobs, r}⊗2 − {Eω0(�̇�(ω

0)|Dobs, r)}⊗2
]
,

where �̇�(ω
0) = ∂ω log f(y, r,xmis, z,v,θ|xobs,ω)|ω=ω0 , a⊗2 = aa� and Eω0(·|·) is the

expectation taken with respect to the joint posterior density function f(xmis, z,v,θ|
Dobs, r). Again, H� can be approximated by

H� ≈ �̈(1)

[
1

S0

S0∑
s=1

{∂ω log f(y, r,x
(s)
mis, z

(s),v(s),θ(s)|xobs,ω
0)}⊗2

−
(

1

S0

S0∑
s=1

∂ω log f(y, r,x
(s)
mis, z

(s),v(s),θ(s)|xobs,ω
0)

)⊗2 ]
,

where observations {(x(s)
mis, z

(s),v(s),θ(s)) : s = 1, . . . , S0} are generated from the joint
posterior distribution f(xmis, z,v,θ|Dobs, r) via the above presented Gibbs sampler.

Example 5 (Posterior Mean Distance). Let Md(ω
0) =

∫
d(θ)f(xmis, z,v,θ|Dobs,

r)dxmisdzdvdθ and Md(ω) =
∫
d(θ)f(xmis, z,v,θ|Dobs, r,ω)dxmisdzdvdθ be the pos-

terior means of d(θ) before and after introducing ω, respectively, where d(θ) is some
known function of θ of interest. Cook’s distance of posterior mean of d(θ) for charac-
terizing the effect of ω is defined as

CMd(ω) = {Md(ω)−Md(ω
0)}�Gd{Md(ω)−Md(ω

0)},

where Gd = [var{d(θ)|Dobs, r}]−1. If we take f(ω) = CMd(ω), it is easily shown
that ∇d = 0 and Hd = M∗

d
�GdM

∗
d , where M∗

d = covω0{d(θ), �̇�(ω0)|Dobs, r}, and
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covω0(ς1, ς2) is the covariance of random variables ς1 and ς2 taken with respect to the
joint posterior density f(xmis, z,v,θ|Dobs, r). Again, M∗

d can be approximated by

M∗
d ≈ 1

S0

S0∑
s=1

{
d(θ(s))∂ω log f(y, r,x

(s)
mis, z

(s),v(s),θ(s)|xobs,ω
0)
}

−
{

1

S0

S0∑
s=1

d(θ(s))

}{
1

S0

S0∑
s=1

∂ω log f(y, r,x
(s)
mis, z

(s),v(s),θ(s)|xobs,ω
0)

}
,

where observations {(x(s)
mis, z

(s),v(s),θ(s)) : s = 1, . . . , S0} are generated from the joint
posterior distribution f(xmis,v, z,θ|Dobs, r) via the above presented Gibbs sampler.

6 Simulation studies

In this section, several simulations are conducted to investigate the finite sample per-
formance of the above proposed Bayesian methodologies.

Simulation 1. In this simulation, we consider a quantile regression model with mixed
discrete and continuous covariates: yi = x�iβ + εi, where β = (β0, β1, β2)

�, xi =
(1, xi1, xi2)

� and εi is the random error for i = 1, · · · , n. Here, xi1 is simulated from
a binomial distribution B(1, exp(α1)/(1 + exp(α1))), and xi2 is simulated from a nor-
mal distribution N(α20 + α21xi1, α22). The true values of parameters β, α1 and α2 =
(α20, α21, α22)

� are taken as β = (0.5, 0.5, 0.5)�, α1 = 1, α2 = (0.5, 0.5, 1)�, respectively.
To investigate the effect of random error distribution on parameter estimation, we con-
sider the following four distributions for εi: (C1) εi is distributed as the standard normal
distribution N(0, 1), (C2) εi follows a mixture of two normals 0.9N(0, 1) + 0.1N(0, 5),
(C3) εi follows the t-distribution with three degrees of freedom (i.e., εi ∼ t(3)), and (C4)
εi = 0.5εi, where εi is distributed as the chi-squared distribution with three degrees of
freedom (i.e., εi ∼ χ2(3)). Thus, the τth conditional quantile of yi is Qyi(τ |xi) = x�iβτ ,
where βτ = (βτ0, βτ1, βτ2)

� in which βτ0 = β0 + Q1(τ), βτ1 = β1 and βτ2 = β2. For
the error distributions (C1)–(C4), Q1(τ) is the τth quantile of N(0, 1), the mixture of
normals 0.9N(0, 1) + 0.1N(0, 5), t(3), and 0.5χ2(3), respectively.

Here we assume that yi’s are completely observed, whilst xi1 and xi2 are subject
to nonignorable missingness. The missing indicators ri1 and ri2 are created from the
following probit regression models

Φ−1{Pr(ri1 = 1)|xi1, γ1} = γ1xi1,
Φ−1{Pr(ri2 = 1)|xi1, xi2, ri1,γ2} = γ21xi1 + γ22xi2 + γ23ri1,

respectively, where γ2 = (γ21, γ22, γ23)
�. The true values of parameters γ1 and γ2 are

taken as γ1 = 0.7 and γ2 = (0.5, 0.1, 0.1)�, respectively. The average proportions of
missing data for xi1 and xi2 for n = 500 together with 200 replications are about 31%
and 30%, respectively.

To investigate the sensitivity of Bayesian estimation to prior inputs, we consider the
following three types of hyperparameters.
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Figure 1: Performance of parameters βτ in Experiment 1.

Type I: The hyperparameters β0
τ , α

0
1, α

0
2, γ

0
1 and γ0

2 are taken to be their corre-
sponding true values; Σ0

τβ = 0.25I, Σ0
αk = 0.25I and Σ0

γj = 0.25I; α0
σ = 1 and β0

σ = 1.
This can be treated as a case with good prior distribution.

Type II: The hyperparameters β0
τ , α

0
1, α

0
2, γ

0
1 and γ0

2 are taken to be 2 times their
corresponding true values; while other hyperparameters are taken to be those given in
Type I. This can be regarded as a case with misspecified prior information.

Type III: The hyperparameters for β0
τ , α

0
1, α

0
2, γ

0
1 and γ0

2 are taken to be 10 times
their corresponding true values; while Σ0

τβ = 10I, Σ0
αk = 10I and Σ0

γj = 10I. This can
be treated as a case with noninformative prior information.

For each of 200 datasets generated above together with each of three hyperparame-
ters, the preceding introduced Gibbs sampler is adopted to evaluate Bayesian estimates
of unknown parameters βτ , α1, α2, γ1 and γ1. To investigate convergence of Gibbs
sampler algorithm, we calculate the EPSR values of parameters based on three paral-
lel series of observations simulated from three different starting values of parameters.
For several runs tested, we observe that the EPSR values of parameters are less than
1.2 after about 1500 iterations. Thus, T = 7000 observations are collected after 3000
burn-in iterations to evaluate Bayesian estimates for each of 200 replications. To save
space, only results of βτ for three quantiles (i.e., τ = 0.25, τ = 0.5 and τ = 0.75) are
reported in Figure 1. Results for αk and γj are given in Table S1 in Supplementary
Materials. Examination of Figure 1 and Table S1 shows that (i) Bayesian estimates
evaluated with Type I prior are better than those obtained with Type II and Type III
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priors but their differences are quite small; (ii) Bayesian estimates obtained with Type
I and Type II priors are better than those obtained with Type III prior; (iii) “ReB”(i.e.,
“Relative Bias”) values are less than 0.4, and “SD” and “RMS” values are less than
0.3, and “SD” values are quite close to those of “RMS” regardless of any priors and
error distributions and quantiles. These findings evidence that the proposed Bayesian
estimates are quite accurate, and not sensitive to prior inputs and error distributions
and quantiles. In particular, these empirical results indicate that the proposed Bayesian
estimation approach is valid in the case of a regression model with light tail distribution
errors. Also, we calculate the corresponding results for n = 200. To save space, we omit
them. Comparing the results for n = 200 and 500, we observe that “SD” and “RMS”
values decrease as the sample size increases.

Simulation 2. In this simulation, the preceding proposed Bayesian variable selection
procedure is employed to simultaneously select explanatory variables in response model,
covariate model and missingness data mechanism model. To this end, response vari-
ables yi’s are generated by yi = β0 + x�iβ + ηx3iεi, where β0 = 1 is a fixed value, β =
(β1, . . . , β10)

�, xi = (xi1, . . . , xi,10)
� for i = 1, . . . , n with n = 500, η is some fixed value

(e.g., η = 0.5) and εi’s follow the standard normal distribution. Here xi1 and xi2 are
simulated from the following normal distributions: N(α10+α11xi3+ . . .+α18xi,10, α19)
and N(α20 + α21xi1 + α22xi3 + . . . + α29xi,10, α2,10), respectively, where α10 = −0.5
and α20 = 1.0 are regarded as fixed parameters for identification; xi3 is simulated from
U(1, 5); and xi4, . . . , xi,10 are independently simulated from N(0, 1). The true values of
parameters α19, α2,10, β, α1 = (α11, α11, . . . , α18)

� and α2 = (α21, α21, . . . , α29)
� are

taken to be α19 = 1.0, α2,10 = 1.0, β = (−1, 1,−1, 1, 0, . . . , 0)�, α1 = (0.5, 0, . . . , 0)�,
and α2 = (0.5,−0.5, 0, . . . , 0)�, respectively, which show that there are 4 nonzero coeffi-
cients in β, 1 nonzero coefficient in α1, and 2 nonzero coefficients in α2. Similarly, the
τth conditional quantile of yi is Qyi(τ |xi) = β0 + x�iβτ , where βτ = (βτ1, . . . , βτ,10)

�

with βτ3 = β3 + Q1(τ) in which Q1(τ) is η times the τth quantile of N(0, 1), and
βτj = βj for j = 1, 2, 4, . . . , 10. It is assumed that yi and xi3, . . . , xi,10 are completely
observed, while xi1 and xi2 are subject to missingness. The missing indicators for xi1

and xi2 are created by (2.12) with μi1 = γ10 + γ11xi1 + γ12xi3 + . . . + γ19xi,10 and
μi2 = γ20 + γ21xi1 + . . . + γ2,10xi,10, respectively, where γ10 = −1.5 and γ20 = 1.5
are treated as fixed parameters for identification. The true values of parameters γ1 =
(γ11, . . . , γ1,9)

� and γ2 = (γ21, . . . , γ2,10)
� are taken to be γ1 = (0.5, 0.5, 0, . . . , 0)� and

γ2 = (0.5,−0.5,−0.5, 0, . . . , 0)�, respectively, which indicate that there are 2 nonzero
coefficients in γ1 and 3 nonzero coefficients in γ2. The preceding introduced Bayesian
variable selection procedure together with the hyperparameters δβ = 0.1, δα = 0.1 and
δγ = 0.1 are used to identify nonzero components in βτ , αk and γj for k, j = 1, 2
based on 10000 observations collected after 10000 burn-in iterations for each of 100
replications. Also, to investigate the performance of the proposed Bayesian variable se-
lection procedure, we calculate the L2 norm between the estimate and its true value
(e.g., L2 = (β̂τ − βτ )

�(β̂τ − βτ )), and the mean square error (e.g., MSE = (β̂τ −
βτ )

�X�X(β̂τ −βτ )/n) of parameter vector of interest (e.g., βτ ) for each of 100 replica-

tions, where β̂τ is Bayesian estimate of βτ . At the same time, we evaluate the average
numbers of zero components correctly detected as zero (denoted as “C”), and nonzero
components incorrectly identified as zero (denoted as “IC”). For comparison, we com-
pute the corresponding results for Bayesian LASSO. Results for three quantiles (i.e.,
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τ = 0.25 τ = 0.5 τ = 0.75
Meth. Para. L2 MSE C IC L2 MSE C IC L2 MSE C IC
BaL βτ 0.002 0.067 5.95 0.00 0.004 0.066 5.97 0.00 0.005 0.067 5.96 0.00

α1 0.000 0.002 7.00 0.00 0.000 0.002 7.00 0.00 0.001 0.003 7.00 0.00
α2 0.000 0.009 7.00 0.00 0.001 0.010 6.98 0.00 0.010 0.012 6.99 0.01
γ1 0.005 0.021 6.97 0.22 0.000 0.022 6.99 0.09 0.006 0.021 6.99 0.03
γ2 0.009 0.026 6.99 0.30 0.000 0.030 7.00 0.23 0.004 0.030 7.00 0.07

BL βτ 0.003 0.106 5.57 0.00 0.015 0.085 5.77 0.00 0.009 0.119 5.52 0.00
α1 0.000 0.016 6.78 0.00 0.000 0.015 6.86 0.00 0.001 0.019 6.69 0.00
α2 0.000 0.025 6.74 0.00 0.004 0.027 6.81 0.00 0.014 0.028 6.78 0.00
γ1 0.004 0.040 6.78 0.01 0.002 0.049 6.79 0.00 0.008 0.048 6.82 0.00
γ2 0.015 0.055 6.80 0.14 0.005 0.052 6.77 0.04 0.005 0.055 6.86 0.00

Note: ‘BaL’ represents the Bayesian adaptive LASSO, that is our proposed method,
‘BL’ represents the Bayesian LASSO, the compared method, ‘C’ represents the average
number of zero components correctly identified as zero, and ‘IC’ is the average number
of nonzero components incorrectly identified as zero.

Table 1: Performance of Bayesian variable selection in Experiment 2.

τ = 0.25, 0.5 and 0.75) are reported in Table 1. Inspection of Table 1 shows that (i) the
values of IC’s are quite close to zero, and the values of C’s are rather close to the true
numbers of zero elements for all the parameters as expected; (ii) the values of L2 for
all the parameters are less than 0.02, which is quite close to zero, regardless of the
considered three quantiles; (iii) the values of MSE’s for all the parameters are less than
0.12 regardless of the considered three quantiles; (iv) the proposed variable selection
procedure has smaller L2 norms and MSE values than Bayesian LASSO. These findings
indicate that the proposed Bayesian variable selection procedure performs well and has
better performance than Bayesian LASSO.

Simulation 3. To illustrate the above introduced Bayesian local influence measures
in detecting influential observations and incorrectly specified missingness data mecha-
nism, we consider a linear regression model: yi = x�iβ+ εi, where xi = (1, xi1, xi2, xi3)

�,
β = (β0, β1, β2, β3)

�, and εi follows the standard normal distribution N(0, 1) for i =
1, . . . , n. Here, xi1, xi2 and xi3 are independently generated from the following normal
distributions N(α10, α11), N(α20 + α21xi1, α22) and N(α30 + α31xi1 + α32xi2, α33), re-
spectively. The true values of parameters β, α1 = (α10, α11)

�, α2 = (α20, α21, α22)
�

and α3 = (α30, α31, α32, α33)
� are taken as β = (0.5, 0.5, 0.5, 0.5)�, α1 = (0.5, 1.0)�,

α2 = (0.5, 0.05, 1.0)� and α3 = (0.5, 0.05, 0.05, 1.0)�, respectively. Again, the τth con-
ditional quantile of yi is Qyi(τ |xi) = x�iβτ , where βτ = (βτ0, βτ1, βτ2, βτ3)

� with
βτ0 = β0 +Q1(τ) in which Q1(τ) is the τth quantile of N(0, 1), βτj = βj for j = 1, 2, 3.
Here we assume that yi’s are completely observed, while xi1, xi2 and xi3 are subject to
nonignorable missingness. The missing indicators ri1, ri2 and ri3 for covariates xi1, xi2

and xi3 are created from the following probit regression models

Φ−1{Pr(ri1 = 1|xi1,γ1)} = γ10 + γ11xi1,
Φ−1{Pr(ri2 = 1|xi1, xi2,γ2)} = γ20 + γ21xi1 + γ22xi2,
Φ−1{Pr(ri3 = 1|xi1, xi2, xi3,γ3)} = γ30 + γ31xi1 + γ32xi2,
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respectively, where γ1 = (γ10, γ11)
�, γ2 = (γ20, γ21, γ22)

�, and γ3 = (γ30, γ31, γ32)
�. The

true values of parameters γ1, γ2 and γ3 are taken as γ1 = (0.5, 0.5)�, γ2 = (0.5, 0.1, 0.3)�

and γ3 = (0.5, 0.1, 0.1)�, respectively. Missingness data mechanisms for xi1 and xi2 are
nonignorable, while xi3 is subject to MAR. Five influential cases are created by changing
yi as yi + 6 for i = 50, 139, 301, 313 and 437, respectively.

We consider simultaneous perturbation to the above generated data (e.g., case-
weight perturbation), priors (e.g., see Example 3), missingness data mechanism (e.g.,
see Example 5). The log-likelihood function of the perturbed model is given by

�(ω) =
∑n

i=1[−0.5ωi ln(2πκ2vi/σ) + 0.5 lnωi − ωiσ(yi − x�iβ − κ1vi)
2/(2κ2vi)

+ri3 ln{Φ(χωx
γi3)}+ (1− ri3) ln{1− Φ(χωx

γi3)}] + �(ωβ , ωσ,ωγ)

in which �(ωβ , ωσ,ωγ) has the form of

�(ωβ , ωσ,ωγ) =
p

2
lnωβ + ln |Σ0

τβ | −
ωβ

2
(βτ − β0

τ )
�Σ0

τβ
−1

(βτ − β0
τ )

+
pγ1

2
lnωγ1 + ln |Σ0

γ1
| − ωγ1

2
(γ1 − γ0

1)
�Σ0

γ1

−1
(γ1 − γ0

1)

+
pγ2

2
lnωγ2 + ln |Σ0

γ2
| − ωγ2

2
(γ1 − γ0

2)
�Σ0

γ2

−1
(γ1 − γ0

2)

+
pγ3

2
lnωγ3 + log |Σ0

γ3
| − ωγ3

2
(γ1 − γ0

3)
�Σ0

γ3

−1
(γ1 − γ0

3)

+α0
σ ln(ωσβ

0
σ)− ln Γ(α0

σ) + (α0
σ − 1) lnσ − ωσβ

0
σσ,

(6.1)

where χωx
γi3 = γ30 + γ31xi1 + γ32xi2 + ωxxi3, and ω = (ω1, . . . , ωn, ωx, ωβ , ωσ, ωγ1 , ωγ2 ,

ωγ3)
�. In this case, ω0 = (1.0, · · · , 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0)� represents no perturba-

tion. Again, the aforementioned Gibbs sampler together with Type III prior for param-
eters β, α and γ is adopted to estimate parameters, and calculate G(ω0) and Bayesian
local influence measures corresponding to Bayes factor (i.e., FICB,ej ), Kullback-Leibler
divergence (i.e., SICD�,ej ) and posterior mean distance (i.e., SICMh,ej ) of d(θ) = θ
based on S0 = 7000 observations collected after 3000 burn-in iterations. Results for
τ = 0.5 are presented in Figure 2. Examination of Figure 2 indicates that cases 50, 139,
301, 313 and 437 are detected to be influential, and the incorrectly specified missingness
data mechanism is identified to have a large effect as expected.

7 An example

To illustrate the above proposed methodologies, we consider the US News College data,
which are from the 1995 US News report on American colleges and universities. The
dataset is available at the website http://lib.stat.cmu.edu/datasets/colleges. The main
interest is to investigate the relationship between the population quantile of the ra-
tio of graduating seniors to number enrolling four years earlier (GRADRAT, y) and
some factors, for example, Average Combined SAT score (ACS, x1), Average ACT
score (AAS, x2), natural logarithm of number of applications received (LNR, x3), nat-
ural logarithm of number of applicants accepted (LNA, x4), natural logarithm of num-

http://lib.stat.cmu.edu/datasets/colleges
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Figure 2: Index plots of (a) FICB,ej , (b) SICD�,ej and (c) SICMh,ej under incorrect
missing mechanism in Experiment 3.

ber of new students enrolled (LNE, x5), room and board costs (RBC, x6), natural
logarithm of instructional expenditure per student (LIE, x7), ratio of student to fac-
ulty (RSF, x8). The dataset includes 1203 observations except for a false case whose
GRADRAT bigger than 100%, and variables y and x8 are completely observed, while
covariates x1, . . . , x7 are subject to missingness and their corresponding missing pro-
portions are 39.2%, 45.2%, 0.50%, 0.42%, 0.17%, 4.90%, and 2.08%, respectively. To
roughly unify the scales, the raw data are standardized on the basis of the fully ob-
served data.

As an illustration of the preceding introduced methodologies, we consider the fol-
lowing conditional QR model: Qτ (yi|xi,βτ ) = x�iβτ for i = 1, . . . , 1203, where xi =
(xi1, . . . , xi8)

�, and βτ = (βτ1, . . . , βτ8)
�. It is assumed that xik|αk ∼ N(αk1xi1 + . . .+

αk,k−1xi,k−1 + αkkxi8, αk,k+1), where αk = (αk1, . . . , αk,k+1)
� for k = 1, . . . , 7, and its

corresponding missingness data mechanism is specified by the Probit model defined in
(2.12) with xzij = (xi1, . . . , xij , xi8)

� and γj = (γj1, . . . , γj,j+1)
� for j = 1, . . . , 7.

The considered dataset is equally divided into two parts, i.e., the training dataset
used to select important variables, and the testing dataset adopted to estimate pa-
rameters and make Bayesian local influence analysis for the selected model. The afore-
mentioned Bayesian variable selection procedure together with noninformative prior
specification of parameters (e.g., σ ∼ Γ(1, 1), δβ = 0.1, δα = 0.1 and δγ = 0.1) is
used to estimate parameters in βτ , select significant covariates in QR model, explana-
tory variables associated with the distribution of missing covariates and missingness
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data mechanism model. To monitor convergence of the Gibbs sampler, we calculate the
EPSR values of all unknown parameters based on three different starting values of pa-
rameters. To save space, the EPSR values of parameters against iterations for training
dataset are shown in Figure S1 in Supplementary Materials. Inspection of Figure S1
shows that the algorithm attains convergence after about 13,000 iterations. To this end,
we collect 15,000 observations after 15,000 burn-in iterations to evaluate Bayesian esti-
mates and select significant explanatory variables for τ = 0.5. Bayesian estimates and
95% confidence intervals (CI) of unknown parameters for training dataset are presented
in Table S4. Inspection of Tables S4 indicates that (i) x3, x4, x5 and x7 have little effect
on y yielding Q0.5(y|x) = 0.151x1 + 0.336x2 + 0.144x6 − 0.077x8; (ii) missingness data
mechanisms for x1 and x2 are nonignorable, while missingness data mechanisms for x3,
x4, x5, x6 and x7 are missing at random.

To illustrate Bayesian local influence measures introduced above, we consider si-
multaneous perturbation to the testing data, priors and missingness data mechanisms,
whose log-likelihood function is given by

�(ω) =
n∑

i=1

[
− ωi

2
ln(2πκ2vi/σ) +

1

2
lnωi −

ωiσ(yi − βτ0 − x�iβτ − κ1vi)
2

2κ2vi
+ri1 ln{Φ(χωx

γi1)}+ (1− ri1) ln{1− Φ(χωx

γi1)}+ ri2 ln{Φ(χωx

γi2)}

+(1− ri2) ln{1− Φ(χωx
γi2)}

]
+ �(ωβ , ωσ,ωγ),

where �(ωβ , ωσ,ωγ) is defined in (6.1), and χωx
γi1 = ωx1γ11xi1, χ

ωx
γi2 = ωx2γ22xi2, Σ

0
τβ =

diag(νβ1 , . . . , ν
β
p ), Σ

0
γj = diag(νγj1, . . . , ν

γ
j,j+1) in which νβj and νγjl for l = 1, 2, 3 are

parameters for variable selection. Here missingness data mechanisms for x1 and x2 are
defined in (2.12) with xzij = xij and γj = γjj for j = 1, 2, and xzij = (xi1, xi2)

� and

γj = (γj1, γj2)
� for j = 3, . . . , 7. We take the hyperparameters β0

τ , α
0
k and γ0

j as their

corresponding Bayesian estimates given in Table S4, and set α0
σ = 1.0, β0

σ = 1.0, Σ0
αk =

diag(ναk1, . . . , ν
α
k,k) for k = 1, · · · , 7, and ω = (ω1, . . . , ωn, ωx1, ωx2, ωβ , ωγ1 , ωγ2 , ωγ3 ,

ωσ)
�. In this case, ω0 = (1.0, . . . , 1.0)� represents no perturbation.

Again, the aforementioned Gibbs sampler algorithm is used to calculate G(ω0)
and Bayesian local influence measures corresponding to Bayes factor (i.e., FICB,ej ),
Kullback-Leibler divergence (i.e., SICD�,ej ) and posterior mean distance (i.e., SICMh,ej )
of d(θ) = θ for the testing dataset based on S0 = 15, 000 observations collected after
15,000 burn-in iterations. Results are given in Figure 3. Examination of Figure 3 in-
dicates that cases 212, 590 and 595 are identified as influential by FICB,ei , SICDφ,ei

and SICMd,ei , while case 544 is detected as influential by FICB,ei and SICDφ,ei , and
the priors of βτ and γk for k = 1, 2, 3 are not detected as inappropriate. In particular,
missingness data mechanisms for x1 and x2 (i.e., cases 603 and 604) are detected to
have little effect, which indicates that missingness data mechanism for x1 and x2 are
missing not at random (MNAR). These results are consistent with those with Bayesian
variable selection approach, which show that Bayesian local influence analysis method
can be used to detect the misspecification of the posited missingness data mechanism
model.
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Figure 3: Index plots of (a) FICB,ej , (b) SICD�,ej and (c) SICMh,ej in real example.

With Without
Par. Est CI Est CI
βτ1 0.289 (0.206,0.372) 0.297 (0.214,0.379)
βτ2 0.233 (0.169,0.298) 0.233 (0.170,0.295)
βτ6 0.074 (-0.001,0.164) 0.072 (-0.001,0.161)
βτ8 -0.125 (-0.202,-0.048) -0.118 (-0.194,-0.040)
γ11 0.278 (0.210,0.347) 0.283 (0.217,0.349)
γ22 -0.469 (-0.535,-0.407) -0.469 (-0.534,-0.405)

Table 2: Bayesian estimates (Est) and 95% confidence intervals (CI) of parameters βτ

with τ = 0.5, γ1 and γ2 with and without cases 212, 544, 590 and 595 for testing dataset
in real example.

To investigate the effect of individuals 212, 544, 590 and 595, we recalculated Bayes-

ian estimates of parameters with these individuals deleted from the testing dataset.

Bayesian estimates and 95% confidence intervals (CI) of parameters βτ , γ1 = γ11 and

γ2 = γ22 with and without cases 212, 544, 590 and 595 are presented in Table 2. While

results for parameters αk (k = 1, . . . , 7) and γj (j = 3, . . . , 7) are given in Table S5.

Inspection of Tables 2 and S5 indicates that individuals 212, 544, 590 and 595 have a

relatively large effect on Bayesian estimates of parameters.
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8 Conclusion

This paper considers Bayesian inference on a quantile regression model in the presence
of nonignorable missing covariates. To accommodate a general case of covariates includ-
ing discrete and continuous variables, we use a sequence of one-dimensional exponential
family distributions to specify the joint distribution of missing covariates. In a Bayesian
framework, to develop an effective and feasible sampling algorithm, we reformulate the
considered quantile regression model as a hierarchical model by regarding an asymmet-
ric Laplace distribution of response variable as a mixture of exponential and normal
distributions. A probit regression model is adopted to specify missingness data mecha-
nism, and a truncated normal latent variable is employed to generate missing indicator
for covariate. Similar to the logistic regression model, maximum likelihood estimators of
parameters in the considered probit model are not robust to outliers or influential obser-
vations (Pregibon, 1982), a robust robit regression model (Liu, 2004) may be adopted
to specify missingness data mechanism by replacing the normal distribution in the pro-
bit regression model with a t-distribution with known or unknown degrees of freedom.
A Gibbs sampler is developed to sample observations, required in evaluating Bayesian
results, from the posterior distributions of parameters, missing covariates and latent
variables. Empirical results evidence that the proposed Bayesian estimates are reason-
ably accurate, and are not sensitive to prior inputs, error distribution assumptions and
quantiles with probabilities in the considered region. For the quantiles with probabilities
over 0.9 or close to zero, the proposed Gibbs sampler suffers from the slow convergence
and poor mixing issues, and the precision of parameter estimation gets poorer in that
no data are available. In this case, one possible solution is to select an appropriate prior
for σ. The Dirichlet process prior may be a good option.

A Bayesian variable selection procedure is proposed by imposing a conditional
Laplace prior on unknown parameters associated with covariates in the considered
quantile regression model and missingness data mechanism model. Two Bayesian local
influence measures (i.e., the first- and second-order influence measures) are developed
to assess the effect of minor perturbation to the data, the priors and missingness data
mechanism model for any objective functions such as φ-divergence, posterior mean dis-
tance and Bayes factor. Empirical results evidence that the proposed Bayesian variable
selection procedure and Bayesian local influence measures perform well.

Although we only consider a parametric probit regression model for missingness data
mechanism, the above presented approach can be extended to a nonparametric model
such as generalized additive model. For example, for pij = Pr(rij = 1|ri(j),xi(j)), we
consider the following generalized additive model: h(pij) = ϕ0+ϕ1(xi1)+ . . .+ϕj(xij)+
ϕj+1(ri1) + . . . + ϕ2j−1(ri,j−1), where h(·) is some known link function, ϕl(·)’s are
unknown smooth functions for l = 1, . . . , 2j − 1. The backfitting algorithm (Hastie and
Tibshirani, 1990) or boosting approach (Schmid and Hothorn, 2008) or rank reduced
approach may be employed to estimate ϕl(·) for l = 1, . . . , 2j − 1. In this paper, we
only consider the case that covariates are subject to missingness, but response is fully
observed. In fact, the preceding proposed methods are still available for the case that
response and/or covariates are subject to missingness.
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We investigate Bayesian local influence analysis via the approach proposed by Zhu
et al. (2011). But, as the Associated Editor pointed out, the approach of Zhu et al.
(2011) is strong but really quite complicated for routine usage. To address this issue, it
is interesting to extend the relative entropy of Clarke and Gustafson (1998) and Fréchet
derivative of the posterior density with respect to the prior distribution (Gustafson and
Wasserman, 1995) to our considered QR model. We are working on this topic.

As the Associated Editor pointed out, it is interesting to consider the posterior
variance distance of d(θ), i.e., f(ω) = {V (ω) − V (ω0)}�Gv{V (ω) − V (ω0)}, where
V (ω) is the posterior variance of d(θ) (Gustafson and Clarke, 2004), and Gv is some
positive definite matrix.

Supplementary Material

Supplementary Material of “Bayesian Quantile regression with mixed discrete and non-
ignorable missing covariates” (DOI: 10.1214/19-BA1165SUPP; .pdf).
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