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Bayes Factors for Partially Observed Stochastic
Epidemic Models

Muteb Alharthi§∗, Theodore Kypraios†, and Philip D. O’Neill‡

Abstract. We consider the problem of model choice for stochastic epidemic mod-
els given partial observation of a disease outbreak through time. Our main focus is
on the use of Bayes factors. Although Bayes factors have appeared in the epidemic
modelling literature before, they can be hard to compute and little attention has
been given to fundamental questions concerning their utility. In this paper we
derive analytic expressions for Bayes factors given complete observation through
time, which suggest practical guidelines for model choice problems. We adapt the
power posterior method for computing Bayes factors so as to account for missing
data and apply this approach to partially observed epidemics. For comparison, we
also explore the use of a deviance information criterion for missing data scenarios.
The methods are illustrated via examples involving both simulated and real data.
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1 Introduction

This paper is concerned with the problem of choosing between a small number of com-
peting infectious disease transmission models, given partial observation of an epidemic
outbreak through time. A key reason to consider such a problem is that the models rep-
resent different hypotheses about disease spread, such as the infection mechanism, the
nature of the contact structure between individuals in the population, or other disease
characteristics. A secondary reason to compare models is that they are often used to
simulate potential future outbreaks, perhaps with a view to designing control strategies,
in which case it is computationally more efficient to employ the simplest possible model
which can represent observed data reasonably well. Note that it is typically the case
that we only have a few models under consideration, in contrast to variable-selection
problems that occur in regression modelling. Also, our focus here is not on the assess-
ment of model fit, itself concerned with whether or not a single specific epidemic model
adequately describes the data to hand.

Within the epidemic modelling literature, there is to date no definitively preferred
method for model choice. In the Bayesian setting, approaches include the use of Bayes
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factors, (e.g. Neal and Roberts, 2004; O’Neill and Marks, 2005), criteria such as the
Deviance Information Criterion (DIC) (e.g. Worby, 2013; Lau et al., 2014; Deeth et al.,
2015), and methods based on the predictive distribution of future outbreaks (Zhang,
2014). Here we focus on the use of Bayes factors. The most common approach to calcu-
lating Bayes factors for epidemics has been to use reversible jump Markov chain Monte
Carlo (MCMC) methods (Neal and Roberts, 2004; O’Neill and Marks, 2005), although
these are often problematic in practice due to the challenge of designing efficient algo-
rithms. Touloupou et al. (2018) used a combination of MCMC methods and importance
sampling to estimate marginal likelihoods, from which Bayes factors can be calculated.
Knock and O’Neill (2014) used a path-sampling method (Gelman and Meng, 1998)
to compare epidemic models given data on the final outcome of the epidemic. This is
somewhat related to the methods we develop, albeit for different kinds of data.

In this paper we adapt the power posterior method for calculating Bayes factors
(Friel and Pettitt, 2008; Friel et al., 2014) to a missing-data situation that commonly
occurs in epidemic modelling. In addition to this computational method, we also de-
rive analytic expressions for Bayes factors in the setting where an epidemic outbreak is
completely observed. Although such detailed observation is not that common in prac-
tice, our results are of theoretical interest and also provide practical insight into the
choice and influence of prior distributions for parameters of the competing models. For
comparison, we also consider a form of DIC suitable for missing data.

Throughout the paper we focus on the Susceptible-Infective-Removed (SIR) epi-
demic model, the most widely-studied stochastic epidemic model. However, the compu-
tational methods we develop could be applied to more complex models. For illustration
we consider two specific kinds of model choice question: one in which models with differ-
ent infectious period distributions are compared, and one in which models with different
infection mechanisms are compared. Again, other comparisons are possible using our
methods.

The paper is arranged as follows. Section 2 recalls preliminary information on epi-
demic models, Bayes factors, DIC methods and power posterior methods, adapting the
latter to a missing-data situation. In Section 3 we derive analytical expressions for Bayes
factors given completely observed outbreaks, and in Section 4 we describe computational
methods for partially observed outbreaks. Section 5 contains illustrative examples of the
methods, and concluding comments are found in Section 6.

2 Preliminaries

2.1 The stochastic SIR epidemic model

The stochastic SIR epidemic model is defined as follows (see e.g. Andersson and Brit-
ton, 2000). Consider a closed population of N individuals. At any time, each individual
is either susceptible, infective or removed. Susceptible individuals have not contracted
the disease but are able to do so. Infective individuals have the disease and can pass
it on to others. Removed individuals are no longer infective and play no further part
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in disease spread. In applications, the removed state is context-specific and could cor-
respond to immunity, isolation, death, or similar outcomes. The population initially
consists of n susceptible individuals and a infectives who have just become infective.
Each infective individual remains so for a period of time, called the infectious period,
which is drawn from a specified non-negative probability distribution TI . At the end
of its infectious period an individual is immediately removed. All infectious periods are
independent.

Every pair of individuals in the population has contacts at times given by the points
of a Poisson process of rate βn−1. The Poisson processes for different pairs are mutually
independent. If a contact occurs when one member of a pair is infective and the other
susceptible, then the susceptible immediately becomes infective. All other contacts (e.g.
between two infectives, two susceptibles, etc.) have no effect on the states of the indi-
viduals concerned. The epidemic ends as soon as there are no more infectives remaining
in the population.

For any time t, denote by X(t) and Y (t) respectively the numbers of susceptible
and infective individuals currently in the population. It follows that infections occur
in the population at rate βn−1X(t)Y (t), meaning that the probability of an infection
occurring in (t, t + δt) is βn−1X(t)Y (t)δt + o(δt). We will also consider a variant of
the SIR model in which the overall infection rate is βn−1X(t)Y p(t) for p ∈ (0, 1).
Such models were first introduced by Severo (1969) and relax the assumption that
the overall infection rate increases linearly with Y (t) (see also O’Neill and Wen, 2012,
and references therein). We will focus on two particular choices of infectious period
distribution, namely exponential and gamma, both of which frequently appear in the
epidemic modelling literature. Finally, we will assume throughout that there is one
initial infective, although this constraint can easily be relaxed.

2.2 Bayes factors

Suppose we have two competing epidemic models, m1 and m2, with parameters θ1 and
θ2, respectively, and that we have observed data y. The Bayes factor for m1 relative to
m2 is defined by

BF12 =
π(y|m1)

π(y|m2)
=

∫
π(y|θ1)π(θ1)dθ1∫
π(y|θ2)π(θ2)dθ2

,

where here and throughout the paper, π denotes a probability mass or density function,
as appropriate. For partially observed epidemic models, the likelihood term π(y|θ) is
typically intractable, and a common approach is to introduce auxiliary variables, x say,
such that the augmented likelihood π(y,x|θ) is available in closed form and can be com-
puted efficiently. Estimation of the posterior distribution of θ can then be achieved via
Markov chain Monte Carlo methods (Gibson and Renshaw, 1998; O’Neill and Roberts,
1999). In most situations, x will describe the infection process, since this is usually
unobserved.

The computation of Bayes factors is, in general, a challenging problem. Many ap-
proaches exist, but here we focus specifically on the power posterior method. One at-
tractive aspect of this approach is that it is relatively prescriptive, meaning that the
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user does not have that many implementation choices which could seriously affect the
performance of the resulting algorithm. Also, as we now explain, the method can be
adapted to cover the kind of missing data problem that usually arises in the context of
epidemic modelling.

2.3 The power posterior method for models incorporating missing
data

We now adapt the power posterior approach (Lartillot et al., 2006; Friel and Pettitt,
2008; Friel et al., 2014) to models incorporating missing data. The method itself provides
a way of calculating the marginal density π(y|mi), i = 1, 2, from which the Bayes factor
can be obtained.

Let y and x denote the observed and the missing data respectively with θ repre-
senting the model parameters. We refer to (y,x) as the complete data. Note that in
the epidemic settings that we will consider, neither π(y|θ) nor π(y|x,θ) are typically
tractable but we can compute the augmented likelihood function π(y,x|θ). Specifically,
(i) π(y|θ) could be obtained by integrating π(y,x|θ) with respect to x, but this inte-
gral is typically analytically and numerically intractable,; (ii) π(y|x,θ) is proportional
to π(y,x|θ), but the normalising constant π(x|θ) is the typically-intractable integral of
π(y,x|θ) with respect to y.

For t ∈ [0, 1], we define the power posterior for the missing data scenario as

πt(θ,x|y) ∝ π(y,x|θ)tπ(θ),

with the normalizing constant

zt(y) =

∫
x

∫
θ

π(y,x|θ)tπ(θ)dθ dx.

Thus, noting that zt=1(y) = π(y) and zt=0(y) = 1,

log(π(y)) = log

[
zt=1(y)

zt=0(y)

]
=

∫ 1

0

Eθ,x|y,t log [π(y,x|θ)] dt, (1)

where the second equality in (1) can be derived by adapting the arguments of Lartillot
et al. (2006), as follows:

d

dt
log(zt(y)) =

1

zt(y)

d

dt
zt(y)

=
1

zt(y)

∫
x

∫
θ

d

dt
π(y,x|θ)tπ(θ)dθ dx

=
1

zt(y)

∫
x

∫
θ

π(y,x|θ)t log [π(y,x|θ)]π(θ)dθ dx

=

∫
x

∫
θ

π(y,x|θ)tπ(θ)
zt(y)

log [π(y,x|θ)] dθ dx
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=

∫
x

∫
θ

log [π(y,x|θ)]πt(θ,x|y)dθ dx

= Eθ,x|y,t log [π(y,x|θ)] .

Note that the above argument requires a regularity condition, specifically permitting
the exchange of order of integration and differentiation.

By integrating with respect to t ∈ [0, 1], we have

log(π(y)) = log(zt=1(y))− log(zt=0(y))

= log(zt=1(y))

=

∫ 1

0

Eθ,x|y,t log [π(y,x|θ)] dt.

We shall evaluate the final integral numerically, by evaluating it at a finite number
of t values, namely 0 = t0 < t1 < . . . < tr = 1. To reduce the resulting approximation
error, we follow Friel et al. (2014) and make use of the fact that the gradient of the
expected log-likelihood curve equals its variance. Specifically,

d

dt
Eθ,x|y,t log [π(y,x|θ)] =

d

dt

∫
x

∫
θ

log [π(y,x|θ)]πt(θ,x|y)dθ dx

=

∫
x

∫
θ

log [π(y,x|θ)] d
dt

πt(θ,x|y)dθ dx,

where

d

dt
πt(θ,x|y) =

d

dt

[
π(y,x|θ)tπ(θ)

zt(y)

]

=
zt(y)π(y,x|θ)tπ(θ) log [π(y,x|θ)]− π(y,x|θ)tπ(θ) d

dtzt(y)

z2t (y)

=
π(y,x|θ)tπ(θ)

zt(y)

[
log [π(y,x|θ)]− 1

zt(y)

d

dt
zt(y)

]

= πt(θ,x|y)
[
log [π(y,x|θ)]− d

dt
log(zt(y))

]
.

Hence,

d

dt
Eθ,x|y,t log [π(y,x|θ)] =

∫
x

∫
θ

(log [π(y,x|θ)])2 πt(θ,x|y)dθ dx

− d

dt
log(zt(y))

∫
x

∫
θ

log [π(y,x|θ)]πt(θ,x|y)dθ dx

= Eθ,x|y,t (log [π(y,x|θ)])2 −
(
Eθ,x|y,t log [π(y,x|θ)]

)2
= Vθ,x|y,t log [π(y,x|θ)] .

Using the corrected trapezoidal rule form (Atkinson and Han, 2004), namely∫ b

a

f(y)dy ≈ (b− a)

2
[f(a) + f(b)]− (b− a)2

12
[f ′(b)− f ′(a)] ,
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we have the following adapted power posterior estimate of log(π(y)):

log(π(y)) ≈
r∑

j=1

1

2
(tj − tj−1)

×
{
Eθ,x|y,tj log [π(y,x|θ)] + Eθ,x|y,tj−1

log [π(y,x|θ)]
}

−
r∑

j=1

1

12
(tj − tj−1)

2

×
{
Vθ,x|y,tj log [π(y,x|θ)]− Vθ,x|y,tj−1

log [π(y,x|θ)]
}
. (2)

Algorithm 1 can be used to implement the adapted power posterior method for
missing data models. We follow the recommendation of Friel and Pettitt (2008) for the
choice of tj values in (2). This choice ensures that many of the tj values are close to
zero, where the expected log-likelihood curve often changes rapidly in practice. The tj
values are often called temperatures, and the collection of values called a temperature
ladder, this terminology arising because the power posterior method is a form of so-
called thermodynamic integration.

Algorithm 1 MCMC algorithm for estimating the marginal likelihood via the missing-
data power posterior approach.

1. Initialise algorithm with x0 and θ0.

2. For j = 0, . . . , r:

a. Set tj = (j/r)c, where c > 1 is a constant.

b. Generate a sample {(θ(1)
j ,x

(1)
j ), . . . , (θ

(M)
j ,x

(M)
j )} from πtj (θ,x|y) via an MCMC

sampling scheme.

c. Estimate Eθ,x|y,tj log [π(y,x|θ)] and Vθ,x|y,tj log [π(y,x|θ)] using the sample
from b.

d. While j < r, initialise the next chain at the previous posterior mean of πtj (θ|y,x).
3. Estimate log(π(y)) using (2).

2.4 DIC for models with missing data

Although Bayes factors are our primary focus, for comparison we will also compute a
form of DIC suitable for missing data situations. Celeux et al. (2006) propose various
options; the one best-suited to our setting, in the sense that it is suitable for situations
where the missing data are not our main focus, and we can compute it, is

DIC6 = −4Eθ,x|y[log(π(y,x|θ))] + 2Ex|y,θ̂[log(π(y,x|θ̂))]. (3)

Calculation of this quantity requires two runs of an MCMC algorithm. The first is
to derive Eθ,x|y[log(π(y,x|θ))] and Eθ|y(θ|y) = θ̂, and the second run is to obtain

Ex|y,θ̂[log(π(y,x|θ̂))] setting θ = θ̂ and allowing x to vary. In our epidemic setting, θ̂



M. Alharthi, T. Kypraios, and P. D. O’Neill 913

contains posterior point estimates of the model parameters, the identity of the initial
infective and the initial infection time. The preferred model from those under consider-
ation is the one with the lowest DIC6 value.

3 Model selection given complete outbreak data

In this section we show that Bayes factors for the epidemic models of interest can be
computed explicitly if complete data are available. This situation is rare in practice,
although it can arise when outbreaks are being closely monitored (e.g. in the early
stages of a suspected major epidemic, or in experimental settings for animal diseases).
Nevertheless, we gain some insight into the value of Bayes factors as a tool for model
choice, particularly with respect to the choice of within-model prior distribution.

3.1 The SIR model with different infectious periods

Suppose we observe an epidemic among a population of N individuals of whom initially
n are susceptible and one is infective. Denote by nR the total number of individuals
ever infected, including the initial infective, and label these nR individuals 1, . . . , nR.
The remaining individuals are labelled nR + 1, . . . , N . For j = 1, . . . , N let Ij and Rj

denote, respectively, the infection and removal time of individual j, with Ij = Rj = ∞
for j > nR. Let z denote the label of the initial infective, so that Iz < Ij , for all
j �= z. Finally let I = (I1, . . . , Iz−1, Iz+1, . . . , InR

) denote the vector of infection times
of infected individuals other than the initial infective, and let R = (R1, . . . , RnR

) denote
the vector of removal times of all infected individuals.

We consider two competing SIR models with identical infection mechanisms but
different choices of infectious period distribution TI . Specifically, model m1 has TI ∼
Exp(γ) and model m2 has TI ∼ Gamma(α, δ) with shape parameter α assumed known.
The likelihoods of (I,R) under the two models are

π(I,R|β, γ, Iz, z,m1) = βnR−1
nR∏

j=1,j �=z

n−1Y (Ij−)× e−βn−1A × γnR e−γB

and

π(I,R|α, β, δ, Iz, z,m2) = βnR−1
nR∏

j=1,j �=z

n−1Y (Ij−)× e−βn−1A

× Γ−nR(α)×
nR∏
j=1

(Rj − Ij)
α−1 × δαnR e−δB,

where

A =

∫ RnR

Iz

X(t)Y (t)dt =

nR∑
j=1

N∑
k=1

(Rj ∧ Ik − Ik ∧ Ij),
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B =

∫ RnR

Iz

Y (t)dt =

nR∑
j=1

(Rj − Ij),

Γ−nR(α) denotes (Γ(α))−nR and Y (t−) = lims↑t Y (s), see e.g. Kypraios (2007).

By assigning an independent gamma prior distribution for each of the model pa-
rameters, namely Gamma(λζ , νζ), where ζ = β, γ, δ, the Bayes factor can be derived
explicitly in this case as follows:

BF12 =
π(I,R|m1)

π(I,R|m2)
=

∫
γ

∫
β
π(I,R|β, γ)π(β)π(γ)dβ dγ∫

δ

∫
β
π(I,R|β, α, δ)π(β)π(δ)dβ dδ

=
ν
λβ

β ν
λγ
γ Γ(λβ) Γ(λδ)

ν
λβ

β νλδ

δ Γ(λβ) Γ(λγ)
×

ΓnR(α)×
∏nR

j=1,j �=z n
−1Y (Ij−)∏nR

j=1,j �=z n
−1Y (Ij−)×

∏nR

j=1(Rj − Ij)α−1

×
∫
β
βnR−1 × e−βn−1A × βλβ−1e−νββdβ∫

β
βnR−1 × e−βn−1A × βλβ−1e−νββdβ

×
∫
γ
γnR e−γ

∑nR
j=1(Rj−Ij) × γλγ−1e−νγγdγ∫

δ
δαnR e−δ

∑nR
j=1(Rj−Ij) × δλδ−1e−νδδdδ

=
ν
λγ
γ Γ(λδ)× ΓnR(α)

νλδ

δ Γ(λγ)×
∏nR

j=1(Rj − Ij)α−1

×
(νδ +

∑nR

j=1(Rj − Ij))
αnR+λδ × Γ(nR + λγ)

(νγ +
∑nR

j=1(Rj − Ij))nR+λγ × Γ(αnR + λδ)
. (4)

The resulting Bayes factor is independent of the infection rate prior parameters. This
is a consequence of the fact that the likelihood expressions can be factorized into parts
corresponding to the infection and removal processes, and the former are the same in
both models. Note also that the Bayes factor is identical to that obtained by comparing
exponential and gamma distributions for a sequence of independent and identically
distributed observations R1 − I1, . . . , RnR

− InR
, although in our setting things are

slightly different because the observations and nR are not independent.

In the epidemic modelling literature, it is often the case that prior parameters for
positive quantities such as rate parameters are assigned the same vague prior distribu-
tions. Here, this assumption gives λγ = λδ = λ and νγ = νδ = ν, where λ ≥ 1 and ν is
a small positive number. The Bayes factor in (4) then becomes

BF12 =
Γ(nR + λ) ΓnR(α)

Γ(αnR + λ)
∏nR

j=1(Rj − Ij)α−1
×

⎛
⎝ν +

nR∑
j=1

(Rj − Ij)

⎞
⎠

nR(α−1)

. (5)

Reformulating (5) in terms of the mean and variance of the prior distribution yields

BF12 =
Γ
(
nR + μ2

σ2

)
ΓnR(α)

Γ
(
αnR + μ2

σ2

) ∏nR

j=1(Rj − Ij)α−1
×

⎛
⎝ μ

σ2
+

nR∑
j=1

(Rj − Ij)

⎞
⎠

nR(α−1)

,
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True E[logBF12] P (BF12 > 1)
model α β N = 30 N = 50 N = 30 N = 50
m1 10 1.5 42.6 69.5 0.92 0.92
m1 5 1.5 15.8 23.3 0.84 0.87
m1 2 1.5 1.8 3.2 0.65 0.67
m1 10 2.0 62.6 107.2 0.92 0.94
m1 5 2.0 22.5 39.3 0.91 0.91
m1 2 2.0 2.9 4.9 0.75 0.83
m2 10 1.5 -9.4 -14.6 0.02 0.02
m2 5 1.5 -5.7 -8.9 0.04 0.04
m2 2 1.5 -1.5 -2.3 0.15 0.12
m2 10 2.0 -15.0 -25.3 0.01 0.01
m2 5 2.0 -8.4 -14.8 0.02 0.02
m2 2 2.0 -2.1 -3.7 0.09 0.07

Table 1: Expected log Bayes factors for models with different infection periods, assuming
diffuse prior distributions as in equation (6). Model m1 is an SIR model with TI ∼
Exp(1) while m2 has TI ∼ Gamma(α, α), so that both models have the same mean
infectious period. Each row gives parameter values and results from 1000 simulated
epidemics from the true model in which at least one new infection occurred.

where μ = λ/ν and σ2 = λ/ν2. Thus as σ2 → ∞, the prior becomes increasingly diffuse
and BF12 converges to its lower limit, that is

BF12 → Γ(nR) ΓnR(α)

Γ(αnR)
∏nR

j=1(Rj − Ij)α−1
×

⎛
⎝ nR∑

j=1

(Rj − Ij)

⎞
⎠

nR(α−1)

. (6)

However, as σ2 → 0 the prior gets increasingly concentrated at μ, and the Bayes factor
becomes more decisive in supporting m1, that is BF12 → ∞.

These results suggest that diffuse priors are more appropriate. Table 1 shows the
results of a simulation exercise in which data sets were simulated under either m1 or
m2, and in each case BF12 was calculated using (6). The resulting mean values, and
the proportion of times that m1 was favoured, are presented. It can be seen that the
Bayes factor discriminates effectively between the two models, even in the relatively
small population sizes of N = 30 and N = 50. As expected, increasing β increases the
outbreak size which in turn makes the comparison more decisive.

3.2 The SIR model with different infection mechanisms

Consider now the situation where we have two competing SIR models with different
infection mechanisms but the same infectious period distribution, the latter being essen-
tially arbitrary. Specifically, m1 is the standard SIR model in which infections occur at
rate βn−1X(t)Y (t), and m2 the model in which infections occur at rate βn−1X(t)Y p(t).
We assume p ∈ (0, 0.5), so that m1 and m2 are clearly distinct, and that p is known. We
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assume, a priori, that (i) β ∼ Gamma(λβ , νβ), and (ii) the parameters of the infectious
period distribution are independent of β.

Adopting the notation and arguments of the previous section leads to

BF12 =

nR∏
j=1,j �=z

Y 1−p(Ij−)×
(
νβ + n−1Ap

νβ + n−1A

)nR+λβ−1

, (7)

where A =
∫ RnR

Iz
X(t)Y (t) dt, Ap =

∫ RnR

Iz
X(t)Y p(t) dt. As expected, the Bayes factor

only involves the infection process part of the likelihoods since the removal processes in
the two models are assumed to be the same. Rewriting the prior distribution for β in
terms of its mean and variance, σ2 say, we find that

BF12 → (Ap/A)
nR−1

nR∏
j=1,j �=z

Y 1−p(Ij−) as σ2 → ∞ (8)

and

BF12 →
nR∏

j=1,j �=z

Y 1−p(Ij−) as σ2 → 0.

It is natural to suppose that the diffuse prior setting is a natural candidate for consider-
ation. It is evident from (8) that larger Y (Ij−) values in the product term will improve
model discrimination; conversely, if all these values equal 1 then the product term is
independent of p. This in turn suggests that we require either larger or faster-growing
epidemics to effectively discriminate between m1 and m2. This is illustrated by the
results in Table 2, which shows that we require larger values of N than the infectious
period distribution comparison of the previous section in order to obtain clear evidence
in favour of the true model, and that increasing β also improves discrimination. Also,
as expected, as p decreases then m1 and m2 become less similar, which also makes
discrimination easier.

4 Model selection given incomplete outbreak data

We now consider the situation in which we observe removal times but not infection
times, which in turn means that the Bayes factors of interest are no longer analytically
tractable. In this section we describe how to apply the adapted power posterior meth-
ods in section 2.3 to the model comparison scenarios in sections 3.1 and 3.2. In both
cases, Algorithm 1 requires an MCMC scheme that provides samples from the power
posterior distribution for any given value of tj . Since the infection times are unobserved,
these are included as additional components of the posterior distribution. Thus the re-
quired MCMC algorithm may be specified by defining the updates for each of the model
parameters, the details of which are given below.

We also briefly explore the performance of the power posterior methods and DIC6,
via simulation studies. It should be noted that such simulations are highly computa-
tionally expensive and time-consuming, since we require separate runs of an MCMC
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True E[logBF12] P (BF12 > 1)
model p β N = 50 N = 200 N = 50 N = 200
m1 0.5 2.0 0.5 6.6 0.48 0.72
m1 0.3 2.0 1.7 15.7 0.58 0.77
m1 0.0 2.0 4.4 39.7 0.67 0.77
m1 0.5 4.0 2.9 18.5 0.77 0.92
m1 0.3 4.0 6.1 41.5 0.85 0.94
m1 0.0 4.0 15.0 98.2 0.92 0.94
m2 0.5 2.0 -0.8 -1.3 0.09 0.06
m2 0.3 2.0 -1.2 -1.4 0.07 0.05
m2 0.0 2.0 -1.2 -1.5 0.06 0.05
m2 0.5 4.0 -1.9 -4.9 0.06 0.02
m2 0.3 4.0 -2.4 -5.4 0.06 0.02
m2 0.0 4.0 -3.2 -5.2 0.03 0.02

Table 2: Expected log Bayes factors for models with different infection mechanisms,
assuming diffuse prior distributions as in equation (8). Model m1 is a standard SIR
model while m2 has a modified infection mechanism of the form βn−1X(t)Y p(t). Both
models have TI ∼ Exp(1). Each row gives parameter values and results from 1000
simulated epidemics from the true model in which at least one new infection occurred.

algorithm for every single tj value in the temperature ladder. Throughout we set c = 5
so that tj = (j/r)5. In all cases, including calculation of DIC6, the results are based on
MCMC runs of 27,000 iterations of which the first 2,000 were discarded as burn-in, and
then thinned by taking every 5th value. Convergence and mixing were assessed visually,
and found to be satisfactory.

4.1 The SIR model with different infectious periods

Recall the models and notation from section 3.1. The parameters β, γ and δ are assigned
independent exponential prior distributions Exp(λζ), where ζ = β, γ, δ. We assume a
priori that the initial infection time satisfies Iz = Rmin − Y , where Y ∼ Exp(ψ) and
Rmin = min {R1, . . . , RnR

}, and that the initial infective z is equally likely to be any of
the nR infected individuals.

At temperature t, the full conditional power posterior distributions for β, γ and δ
are

β|t, γ, z, Iz, I,R ∼ Gamma
(
1 + t(nR − 1), λβ + tn−1A

)
,

γ|t, β, z, Iz, I,R ∼ Gamma

⎛
⎝1 + nRt, λγ + t

nR∑
j=1

(Rj − Ij)

⎞
⎠ ,

δ|t, β, z, Iz, I,R ∼ Gamma

⎛
⎝1 + tαnR, λδ + t

nR∑
j=1

(Rj − Ij)

⎞
⎠ ,
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and the full conditional power posterior density for (I, z, Iz) under model m2 is given
by

π(I, z, Iz|t, α, β, δ,R) ∝

⎧⎨
⎩

nR∏
j=1,j �=z

n−1Y (Ij−)× e−βn−1A

⎫⎬
⎭

t

×

⎧⎨
⎩

nR∏
j=1

(Rj − Ij)
α−1 × e−δ

∑nR
j=1(Rj−Ij)

⎫⎬
⎭

t

× eψIz ,

while the corresponding expression for model m1 is obtained by setting α = 1 and
δ = γ. An MCMC algorithm to update the model parameters and infection times then
consists of (i) updating β, γ and δ according to their full conditional distributions, and
(ii) updating infection times using a suitable Metropolis-Hastings step as in O’Neill and
Roberts (1999); full details can be found in Alharthi (2016).

The DIC6 calculation involves two steps. An initial MCMC run provides point es-
timates of the model parameters, the identity of the initial infective and the initial
infection time. The model parameters and initial infective conditions are fixed for a sec-
ond MCMC run in which the remaining infection times are allowed to vary. From each
run we also obtain an estimate of the posterior mean of the augmented log-likelihood,
from which DIC6 can be computed according to (3).

Simulation study

First, we briefly verify that our proposed algorithm is capable of recovering the correct
results when the latter are known, which is possible when the infection times are ob-
served. Following this we revert to the situation where infection times are unobserved,
and assess the impact of the temperature ladder (i.e. the set of tj values in Algorithm 1),
the within-model prior distribution, and the size of the observed epidemic on the cal-
culation of Bayes factors. We set ψ = 1 in the prior distribution of Iz.

• Algorithm verification when infection times are observed

If both infection and removal times are observed then the results of section 3 give
explicit formulae for the Bayes factors of interest. This enables us to test the power
posterior approach in this scenario. Specifically, samples from the posterior distribution
of (β, γ, δ) can be obtained directly from their full conditional distributions given in
the first part of section 4.1 without the need for MCMC, replacing step b in Algo-
rithm 1.

We simulated 100 data sets from model m1 with N = 50, β = 2 and γ = 1. For
model m2 we set α = 2. Model parameters were assigned independent Exp(1) prior
distributions. For each data set we calculated BF12 using (5) and estimated it using
Algorithm 1 with temperature ladder defined by tj = (j/20)5, j = 0, . . . , 20. The
estimates were extremely close to the true values, as illustrated in Figure 1.
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Figure 1: Comparison of 100 pairs of true and estimated log Bayes factors given data
generated under the SIR model (m1) with TI ∼ Exp(1), N = 50 and β = 2, where
model m2 has TI ∼ Gamma(2, δ). Model parameters were assigned independent Exp(1)
prior distributions. The co-ordinates of each circle give the two log Bayes factor values.
The dashed line shows equality of the co-ordinates.

r log(π(R|m1)) log(π(R|m2)) log(BF12)
β, γ, δ ∼ Exp(1)

10 −129.86 −152.25 22.39
20 −130.01 −150.87 20.86
40 −130.05 −151.15 21.11
100 −130.04 −150.24 20.19

β, γ, δ ∼ Exp(0.01)
10 −131.97 −150.71 18.74
20 −137.07 −151.98 14.91
40 −137.49 −153.04 15.56
100 −137.39 −152.36 14.98

Table 3: Estimates of log(π(R|m1)), log(π(R|m2)) and log(BF12) using data simulated
from the standard SIR model with TI ∼ Exp(γ) (m1), while model m2 has TI ∼
Gamma(α, δ). Parameter values were N = 30, β = 1 and γ = 0.5, and nR = 22
individuals were infected. The parameters β, γ and δ were assigned Exp(1) (top table)
and Exp(0.01) (bottom table) prior distributions.

• Length of temperature ladder

Table 3 shows the impact of the number of tj values, r, on the marginal likelihoods and
corresponding Bayes factor BF12. The results are based on a single, but fairly typical,
data set simulated from model m1 with N = 30, β = 1, γ = 0.5 and in which nR = 22
individuals were infected in total. In modelm2, α = 10. Two choices of prior distribution
are illustrated. The results show that the estimates are relatively insensitive to the value
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of r, although as expected more tj values are required as the prior distribution becomes
more diffuse. Figure 2 shows typical expected log-likelihood curves, and illustrates the
sharp change near t = 0 which motivates the choice of temperature ladder tj = (j/r)c.
Further details regarding Figure 2 are given below.

Figure 2: Expected log-likelihood curves given data generated under the SIR model with
TI ∼ Exp(γ) (m1, top plot) and under the SIR model with TI ∼ Gamma(α = 10, δ)
(m2, bottom plot). In both cases β, γ and δ were assigned independent Exp(1) prior
distributions.

• Choice of prior distribution

It is well known that Bayes factors can exhibit strong dependence on the model param-
eter prior distributions. Here, we explore this issue via two simulated data sets from the
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two models under consideration. In both cases the data set itself was fairly typical of
epidemics that did not die out quickly. For model m1 we set β = 2, γ = 1 and N = 50
and obtained nR = 41 infected individuals. For model m2 we set β = 2, α = 10, δ = 10
and N = 30, and obtained nR = 22. Prior distributions for β, γ and δ were set to be
Exp(1),Exp(0.1) and Exp(0.01), for which we used r values of 20, 20 and 40 respectively,
inspired by our previous findings regarding the length of temperature ladder.

Results of the simulation study are summarised in Table 4. The expected log-
likelihood curves for both SIR models are shown in Figure 2 in the case when the
prior distributions are Exp(1).

Model Prior log(BF12)
DIC6

m1 m2

m1 Exp(1) 22.48 276.21 291.01
m1 Exp(0.1) 10.00 261.25 248.04
m1 Exp(0.01) 9.27 261.30 247.73
m2 Exp(1) 14.53 123.60 127.76
m2 Exp(0.1) −0.03 115.02 105.07
m2 Exp(0.01) −0.89 114.63 102.71

Table 4: Estimates of log(BF12) and DIC6 using data simulated from the SIR model
with TI ∼ Exp(γ) (m1; N = 50, β = 2, γ = 1 and nR = 41 infections) and the SIR
model with TI ∼ Gamma(α, δ) (m2; N = 30, β = 2, α = δ = 10, and nR = 22).
Bold values for DIC6 indicate the preferred model. In all cases β, γ and δ were assigned
identical independent prior distributions as indicated.

When model m1 is the true model, the results in Table 4 indicate, in general, that
log(BF12) values support the true model for all prior distributions with a noticeable
decrease as the prior distribution becomes more diffuse. These findings are in harmony
with the behaviour of the Bayes factor for complete data case described in section 3.1.
When model m2 is the true model, the value of log(BF12) varies quite dramatically
with different prior distributions. As the latter become more diffuse then m2 is iden-
tified correctly, whereas using an Exp(1) prior gives the opposite conclusion. There is
some intuition to explain this conflict, as follows. The true value of the parameter δ
used in the simulation is 10, so an Exp(1) prior is a strong prior distribution which
is in conflict with the data and in turn results in poor posterior mean estimates for
both β and δ, namely β̂ = 1.286 and δ̂ = 6.629. This may in turn yield lower val-
ues of log(π(R|m2)) and thus m2 is not identified correctly. However, with Exp(0.1)

and Exp(0.01) priors, the estimation was improved giving β̂ = 2.053, δ̂ = 11.490 and

β̂ = 2.184, δ̂ = 12.133, respectively, and consequently the correct identification of model
m2 was obtained. These results highlight the sensitivity of Bayes factors to prior dis-
tributions, but also suggest that in this situation diffuse priors are likely to be more
appropriate.

The values of DIC6 are also prior-dependent. More seriously, modelm2 is preferred as
the prior distributions become more diffuse, which suggests that DIC6 is not a suitable
tool for model discrimination in this setting.
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• Size of outbreak

It is natural to suppose that, given a small epidemic outbreak, it is hard to effectively
distinguish between competing models. Here we show that even small outbreaks can be
informative in the setting where we compare infectious period distributions.

We simulated, under model m1 with N = 50, β = 1.15 and γ = 1, 20 datasets of
size nR = 5 removals each. For each data set we calculated log(BF12) for the complete
data (infection and removal times), and for incomplete data (removal times), the latter
using r = 20, assuming that α = 10 in model m2. Two different prior distributions
were used for β, γ and δ, namely Exp(1) and Exp(0.01). The results are summarised
Figure 3.

Figure 3: Boxplots of log(BF12) values calculated using 20 simulated data sets of nR = 5
removals each simulated under the SIR model with TI ∼ Exp(γ) (m1), while m2 has
TI ∼ Gamma(α = 10, δ). The log(BF12) values were computed using (5) and the
missing-data power posterior method for complete and incomplete data respectively.
The parameters β, γ and δ were assigned two choices of prior distribution, namely
Exp(1) and Exp(0.01).

Interestingly, the results are not as one might expect with a small outbreak data
set, giving decisive support to the true model m1 under both complete and incomplete
data. These findings suggest that, in this particular epidemic setting, a few infectious
periods of infected individuals might be enough for the Bayes factor criterion to favour
the SIR model with exponential infectious period over the SIR model with gamma
infectious period. The impact of the parameter prior distributions is also evident which
is in agreement with our previous findings. Note also that there is more variance in the
20 Bayes factors for complete than incomplete data. This is likely to be a consequence of
the fact that calculating the marginal likelihoods of the removal times in the incomplete
data setting inherently involves averaging over the unobserved infection times, and so
the variation one obtains when observing the infection times is removed. This in turn
impacts the variability of the resulting Bayes factors.
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4.2 The SIR model with different infection mechanisms

We now consider the models in section 3.2, so that m1 is the standard SIR model and
m2 has infection rate βn−1X(t)Y p(t). Prior distributions are assigned as in section 4.1,
and we also set p ∼ U(0, 0.5) a priori.

For model m2 at temperature t, we have

β|t, γ, p, Iz, z, I,R ∼ Gamma

(
1 + t(nR − 1), λβ + tn−1

∫ RnR

Iz

X(t)Y p(t)dt

)
,

γ|t, β, p, Iz, z, I,R ∼ Gamma

(
1 + nRt, λγ + t

∫ RnR

Iz

Y (t)dt

)
.

Conditional densities for p and I are given by

π(p|t, β, γ, Iz, z, I,R) ∝

⎧⎨
⎩
⎛
⎝ nR∏

j=1,j �=z

Y p(Ij−)

⎞
⎠× exp

(
−βn−1

∫ RnR

Iz

X(t)Y p(t)dt

)⎫⎬
⎭

t

,

π(I, Iz, z|t, β, γ, p,R) ∝

⎧⎨
⎩

nR∏
j=1,j �=z

Y p(Ij−)

⎫⎬
⎭

t

×
{
exp

(
−
∫ RnR

Iz

(
βn−1X(t)Y p(t) + γY (t)

)
dt

)}t

× eψIz .

The corresponding expressions for model m1 can be obtained by setting p = 1.

Simulation study

We consider the factors described in section 4.1, and again set ψ = 1.

• Algorithm verification when infection times are observed

If both infection and removal times are observed, then posterior samples for β, γ and
p can be obtained using the MCMC algorithm described in section 4.2, omitting the
step in which infection times are updated. We simulated 100 data sets from model m1

with N = 50, β = 2 and γ = 1. Model parameters β and γ were assigned independent
Exp(1) prior distributions and p assigned an independent U(0, 0.5) prior distribution.
For each data set we calculated

BF12 =

∫
γ

∫
β
π(I,R|β, γ)π(β)π(γ)dβ dγ∫

p

∫
γ

∫
β
π(I,R|β, γ, p)π(β)π(γ)π(p)dβ dγ dp

by finding the numerator analytically in a similar fashion to the arguments leading to
(4), and evaluating the denominator by analytically integrating with respect to β and
γ and then numerically integrating with respect to p over the range p = 0 to p = 0.5,
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with π(p) = 2. We estimated BF12 using Algorithm 1 with temperature ladder defined
by tj = (j/20)5, j = 0, . . . , 20. Figure 4 shows excellent agreement between the true
and estimated values.

Figure 4: Comparison of 100 pairs of true and estimated log Bayes factors given data
generated under the SIR model (m1) with TI ∼ Exp(1), N = 50 and β = 2, where model
m2 has infection rate βn−1X(t)Y p(t). Model parameters were assigned independent
prior distributions: β, γ ∼ Exp(1) and p ∼ U(0, 0.5). The co-ordinates of each circle
give the two log Bayes factor values. The dashed line shows equality of the co-ordinates.

• Length of the temperature ladder

Table 5 shows how estimates of marginal likelihoods and Bayes factors vary with r. The
results are based on a simulation from model m2 in which N = 100, β = 2, γ = 0.2
and p = 0.3 which resulted in nR = 87 infections in total. Our findings are the same
as those described in section 4.1, namely that as the prior distributions become more
diffuse, more temperatures are required to provide accurate estimates.

• Choice of prior distribution

We simulated one data set from each model, in both cases fairly typical. For model m1

we set N = 100, β = 0.5, γ = 0.2 and obtained nR = 83 infections. For model m2 we set
N = 100, β = 2.5, γ = 0.2 and p = 0.3 and obtained nR = 88. Table 6 shows estimates
of log(BF12) and DIC6 under three choices of prior distribution, where we used r values
of 20, 40 and 40 for the Exp(1),Exp(0.1) and Exp(0.01) prior distributions, respectively.

Results of simulations are displayed in Table 6. Again there is evidence of sensitivity
of BF12 to the choice of prior, although the results themselves show that the correct
model is identified in all cases. Furthermore DIC6 also performs well in this setting.

Figure 5 shows plots of the expected log-likelihoods against the temperature t for
the two simulated data sets. In contrast to Figure 2, here the curves for m1 and m2
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r log(π(R|m1)) log(π(R|m2)) log(BF12)
β, γ ∼ Exp(1)

10 −113.35 −104.29 −9.06
20 −114.05 −106.07 −7.99
40 −114.09 −105.76 −8.33
100 −113.80 −105.87 −7.93

β, γ ∼ Exp(0.01)
10 −81.087 −85.72 4.63
20 −120.70 −111.03 −9.67
40 −122.22 −111.59 −10.63
100 −122.28 −112.11 −10.17

Table 5: Estimates of log(π(R|m1)), log(π(R|m2)) and log(BF12) using data simulated
from the SIR model with modified infection rate (m2; N = 100, β = 2, γ = 0.2, p = 0.3
and nR = 87 infections), while m1 is the standard SIR model. The parameters β and γ
were assigned Exp(1) (top table) and Exp(0.01) (bottom table) prior distributions.

Model Prior log(BF12)
DIC6

m1 m2

m1 Exp(1) 3.49 51.49 68.89
m1 Exp(0.1) 1.94 52.08 68.09
m1 Exp(0.01) 2.10 51.74 68.66
m2 Exp(1) −8.03 76.57 68.57
m2 Exp(0.1) −9.79 76.98 69.94
m2 Exp(0.01) −10.70 77.37 69.60

Table 6: Estimates of log(BF12) and DIC6 using data simulated from the standard SIR
model (m1;N = 100, β = 0.5, γ = 0.2 and nR = 83) and the SIR model with modified
infection rate (m2; N = 100, β = 2.5, γ = 0.2, p = 0.3 and nR = 88). Bold values
for DIC6 indicate the preferred model. In all cases β, γ and δ were assigned identical
independent prior distributions as indicated.

are much closer together, indicating that it is harder to effectively discriminate between
models with different infection mechanisms than with different infectious period, at least
for the settings we have considered.

• Size of outbreak

We consider two scenarios for model m1, corresponding to small and large epidemics.
We simulated 20 epidemics for each, with the same number of removals nR. In the first
scenario N = 50, β = 1.15, γ = 1 and nR = 7. In the second N = 50, β = 2, γ = 1 and
nR = 42. We set p = 0.3 in model m2. Bayes factor calculations were carried out using
r = 20, and under two different prior distribution assumptions for β and γ.

Figures 6 and 7 illustrate the results. In contrast to the comparison of infectious
period distributions, here we see that small outbreaks may not be sufficient to differ-
entiate between models, which again agrees with our earlier findings that this is an
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Figure 5: Expected log-likelihood curves given data generated under the standard SIR
model (m1, top plot) and under the SIR model with modified infection rate (m2, bottom
plot). In both cases β and γ are assigned independent Exp(1) prior distributions.

inherently harder problem requiring more data. However, even larger outbreaks appear
problematic. The most likely reason for this is that the key to differentiating between
m1 and m2 is the number of infected individuals present in the population at the time
of each infection, as discussed in section 3.2, as opposed to the outbreak size itself. This
suggests that data from epidemics that grow quickly would be required to distinguish
the competing models, at least for moderate population sizes.

To explore this further, we simulated 20 outbreaks of size nR = 47 from model m1

with N = 50, β = 5 and γ = 1. Thus β/γ = 5, in contrast to the value of 2 shown in
Figure 7. Figure 8 shows the resulting histogram of log(BF12) values from which we see
that the evidence in favour of the true model m1 is much clearer.
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Figure 6: Boxplots of log(BF12) values calculated using 20 simulated data sets of nR = 7
removals each simulated under the standard SIR model (m1), while m2 has modified
infection rate βn−1X(t)Y p(t), p = 0.3. The log(BF12) values were computed using
(7) and the missing-data power posterior method for complete and incomplete data
respectively. The parameters β, γ and δ were assigned two choices of prior distribution,
namely Exp(1) and Exp(0.01).

Figure 7: Boxplots of log(BF12) values calculated using 20 simulated data sets of nR =
42 removals each simulated under the standard SIR model (m1), while m2 has modified
infection rate βn−1X(t)Y p(t), p = 0.3. The log(BF12) values were computed using
(7) and the missing-data power posterior method for complete and incomplete data
respectively. The parameters β, γ and δ were assigned two choices of prior distribution,
namely Exp(1) and Exp(0.01).
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Figure 8: Histogram of the estimated log(BF12) values obtained via the missing-data
power posterior approach using 20 simulated data sets of nR = 47 removal times each
simulated under the standard SIR model (m1), while m2 has modified infection rate
βn−1X(t)Y p(t), p = 0.3. The parameters β and γ were assigned independent Exp(1)
prior distributions.

4.3 Abakaliki smallpox data

We now briefly consider a widely-studied temporal data set obtained from a smallpox
outbreak that took place in the Nigerian town of Abakaliki in 1967. The outbreak
resulted in 32 cases, 30 of whom were members of a religious organisation whose 120
members refused vaccination. Numerous authors have considered these data by focussing
solely on the 30 cases among the population of 120, and the time series of symptom-
appearance times which in our notation is given by

Robs = (0, 13, 20, 22, 25, 25, 25, 26, 30, 35, 38, 40, 40, 42, 42, 47, 50, 51, 55, 55, 56,

57, 58, 60, 60, 61, 66, 66, 71, 76),

where to set a time scale we set R1 = 0. In fact, the original data set includes far
more information, particularly on the locations of the homes of the cases and the other
members of their households. Analyses of this full data set can be found in Eichner and
Dietz (2003) and Stockdale et al. (2017).

Here our purpose is to illustrate our model comparison methods, and so we only
consider the partial data set, specifically assuming that the 30 symptom-appearance
times correspond to removals in an SIR model. Several authors have previously con-
sidered departures from the standard SIR model for these data, and in particular both
Becker and Yip (1989) and Xu (2015) considered models in which the infection rate was
allowed to vary through time. Here we address this issue by comparing the standard
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SIR model, m1, with a model (m2) in which the infection rate parameter β is replaced
by β(t) = βn−1e−bt, with b > 0 a model parameter to be estimated from the data. It is

straightforward to modify our methods to this situation.

Results are presented in Table 7 for different prior distributions for β and γ for both

SIR models, where b and R1 − I1 are assigned Exp(1) prior distributions throughout.
Figure 9 shows plots of the expected log-likelihoods against the temperature t when the

prior distribution is Exp(1), using a temperature ladder with tj = (j/r)5, j = 0, . . . , 20

and r = 20.

Prior log(BF12)
DIC6

m1 m2

Exp(1) −0.51 −105.8 −105.9
Exp(0.01) −0.86 −105.8 −105.8

Table 7: Results of log(BF12) and DIC6 for smallpox data based on the standard SIR
model (m1) and the modified SIR model (m2). For each case, the parameters β and γ
were assigned prior distributions as indicated.

Figure 9: Smallpox data: expected log-likelihood curves calculated using the adapted
power posterior approach when β, γ ∼ Exp(1) a priori.

From Table 7, there is clearly little to choose between the two models. This com-
parison is borne out from parameter estimation from model m2, specifically Figure 10

which shows that b is close to zero. These findings are in keeping with those in Xu et al.

(2016), in which a Bayesian nonparametric time-varying estimate of the infection rate
parameter was found to be fairly close to constant over time.
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Figure 10: Smallpox data: posterior density of b, when β, γ ∼ Exp(1) a priori.

4.4 Hagelloch measles data

Our second data set describes an historical outbreak of measles in 1861 in the Ger-
man village of Hagelloch, as described in Pfeilsticker (1861). The outbreak was very
severe, as every one of 188 individuals deemed to be susceptible became infected, these
individuals all being children. These data have been considered by a number of au-
thors (see e.g Britton et al., 2011, and references therein), and were specifically anal-
ysed in a model choice context in Neal and Roberts (2004), where the authors used
reversible-jump MCMC methods to evaluate Bayes factors for a number of competing
models. In view of our earlier discussion on the possible sensitivity of Bayes factors to
within-model prior distributions, it is natural to explore this further for the Hagelloch
data.

The data themselves are unusually detailed, consisting for each case of the name,
age, sex, date of symptom onset, date of rash onset, class of child in the village school,
date of death if this occurred, location of the child’s home and several other covariates.
We shall adopt the transmission models described in Neal and Roberts (2004), defined
as follows.

Each individual belongs to a household and the community at large, and either
attends school or is of pre-school age. If an individual becomes infected, they first
undergo a symptom-free infectious period TS which is assumed to be one of two models:
either (i) a fixed length of one day, so TS = 1, or (ii) TS ∼ Gamma(30, δ). At the end
of this period, the individual displays symptoms and subsequently develops a rash. The
dates of both symptom and rash appearance are given by the data and so we do not
model the time between these events. Following the rash appearance, the individual is
assumed to be removed three days later, unless they die first (as indicated in the data).
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The infectious period is assumed to start upon initial infection, and finish at either
removal or death.

While infectious, individual i has infectious contacts with susceptible individual j
at rate αij where αij depends on the relationship of i and j. Neal and Roberts (2004)
first considered a model in which

αij = βH 1{ρ(i,j)=0} + β1
C 1{Li=Lj=1} + β2

C 1{Li=Lj=2} + βG exp{−θρ(i, j)},

where (i) 1A denotes the indicator function of the event A, (ii) ρ(i, j) denotes the Eu-
clidean distance between the households of individuals i and j, (iii) Li denotes the
school classroom (either 1 or 2) which individual i belongs to, and (iv) Li = 0 if in-
dividual i is of pre-school age. The non-negative parameters βH , β1

C and β2
C denote

the within-household, within-classroom 1 and within-classroom 2 infection rates respec-
tively. Finally, βG denotes a global infection rate while θ governs the extent to which
distance between individuals reduces this infection rate. Neal and Roberts (2004) called
the model described above the full model, denoted by M .

In order to investigate the relative importance of different transmission routes, Neal
and Roberts (2004) considered four other models, each of which is a simplified version
of the full model. Specficially, they set each of the parameters θ, βH , β1

C and β2
C to zero

in turn in M , yielding models M [θ], M [βH ], M [β1
C ] and M [β2

C ], say, respectively. Thus
for example, M [βH ] assumes that

αij = β1
C 1{Li=Lj=1} + β2

C 1{Li=Lj=2} + βG exp{−θρ(i, j)}.

Finally, for each parameter ψ define BF [ψ] = BFM,M [ψ], so for example BF [θ] =
BFM,M [θ] is the Bayes factor for the full model relative to the model in which θ = 0.

We employed an MCMC algorithm which targets the joint power posterior distribu-
tion of the parameters (θ, βH , β1

C , β
2
C and βG when TS = 1, and additionally δ and the

unknown infection times when TS ∼ Gamma(30, δ)) given the observed data. None of
the full conditional power posterior distributions for the model parameters are standard,
and so parameters were updated using Metropolis-Hastings steps. The variances were
tuned manually to achieve an acceptance rate approximately between 25% and 40%.
To estimate the marginal likelihood via the power posterior method we used a temper-
ature ladder such that tj = (j/r)5, where j = 0, . . . , 100 and r = 100. Convergence and
mixing was assessed visually, and found to be satisfactory.

Results are given in Table 8 for different prior distributions for the model parameters.
In Neal and Roberts (2004), an Exp(0.1) prior distribution is assigned to the parameter
θ and an Exp(10) to the parameters βH , β1

C , β
2
C and βG. We also consider two alternative

sets of prior distributions, specifically assigning an Exp(1) or an Exp(0.1) distribution
to all the parameters in each model.

The results illustrate a certain amount of sensitivity to both the TS model and the
chosen prior distributions. Regarding the former, the posterior mean of δ was found to
be around 4, so that when infection times are not assumed to be known the length of
the symptom-free period was estimated to be around 7 days. This is in stark contrast
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to the assumption that TS is one day, and goes some way to explaining the differences
between the Bayes factors for the two model scenarios. Note also that our estimate of
δ is almost certainly connected to the fact that measles actually has a latent period of
around 7–10 days, a feature missing from the SIR model we consider; roughly speaking,
increasing the infectious period length is one way to account for the time taken for the
whole outbreak. We also briefly investigated what happens if TS was set equal to integer
values from 2 to 7 days, and found that the average posterior log-likelihood increased
accordingly, which also supports the view that the TS = 1 model is less appropriate for
these data than TS ∼ Gamma(30, δ).

Regarding the Bayes factors in Table 8, the only robust conclusion appears to be that
there is strong evidence that β1

C > 0, itself a key finding from Neal and Roberts (2004).
For the TS ∼ Gamma(30, δ) model there is also strong support for the hypotheses that
β2
C > 0 and that θ = 0. These findings make sense, since as illustrated in Britton et al.

(2011) it is clear from the raw data that the epidemic moves through the two school
classes in turn, suggesting that classroom transmission is important, while there is no
apparent evidence of purely spatial transmission.

TS = 1 Priors log(BF [θ]) log(BF [βH ]) log(BF [β1
C ]) log(BF [β2

C ])
NR -0.03 5.77 33.46 6.72

Exp(1) 0.78 9.50 30.87 3.82
Exp(0.1) -0.64 0.99 28.62 1.89

TS ∼ Gamma(30, δ) Priors log(BF [θ]) log(BF [βH ]) log(BF [β1
C ]) log(BF [β2

C ])
NR -2.72 1.73 70.97 12.71

Exp(1) -10.56 18.05 89.77 12.79
Exp(0.1) -28.34 -8.23 56.77 20.93

Table 8: Estimates of log Bayes Factors for the Hagelloch data for different models for
the symptom-free period TS and different within-model prior assumptions. NR refers
to the priors used in Neal and Roberts (2004).

5 Conclusions

5.1 Advantages and limitations of the methods

We have described a method for computing Bayes factors for epidemic models, specif-
ically by utilising an adaption of the power posterior method to accommodate missing
data of a certain kind. The methods appear to work reasonably well in practice. Al-
though we have focussed on single population SIR models, the methods can be applied
to more complex epidemic models, as illustrated by our examples featuring the Abaka-
liki smallpox data and the Hagelloch measles data. In principle at least, the methods
could be applied to a wide range of epidemic models and scenarios, including network
epidemic models, multi-type models, and models with different levels of mixing such as
household models. The procedures are relatively easy to implement, and lend themselves
to parallel computation.
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In common with the original power posterior method itself, the main limitation
with our methods is one of computational efficiency, specifically that it can be quite
time-consuming to perform the numerous MCMC runs required for the method. In
addition to this, it is likely that the methods would struggle to analyse data on large
outbreaks where thousands of individuals are infected. This is because even the basic
problem of inferring the model parameters is hard in this setting when using MCMC
methods, due to the strong correlations between the model parameters and the missing
data (Kypraios, 2007), and matters will be made worse by the need to carry out many
MCMC runs. An additional setting in which our methods may struggle is when very
diffuse prior distributions are used for the underlying model parameters. This is because
such settings typically require a greater number of temperatures in the temperature
ladder, with corresponding reductions in the overall computation speed.

5.2 Practical considerations

For typical choices of the prior distribution of the model parameters, such as exponential
distributions with low rates, the power posterior becomes flatter as the temperature t
decreases towards zero. This in turn means that the MCMC chains for temperatures
near zero may exhibit worse mixing properties than those with higher temperatures,
simply because the target distribution is more spread out. It is therefore of particular
benefit to monitor the mixing of low temperature chains, for example by looking at
trace plots for the log-likelihood. It can also be useful to tune any Metropolis-Hastings
proposal distributions in the algorithms according to the temperature.

The particular choice of epidemic model, and the nature of the data, can also impact
MCMC mixing and the length of chain that is required. For example, reducing the
variability of the infectious period in the epidemic model will typically lead to better
mixing because there is less inherent uncertainty in the distribution of the unknown
infection times. Similarly, larger data settings can also be problematic, as mentioned
above.

We have restricted attention to temperature ladders of the form tj = (j/r)c, but
other possibilities exist. For example, Friel et al. (2014) describe a method for sequen-
tially choosing tj+2 given tj and tj+1 and the associated estimates of the log-likelihood
curve and its variance.

5.3 Analytical results

We have also demonstrated that Bayes factors can be obtained analytically for situations
where infection times are known. This in turn enables us to explore the impact of
different prior assumptions analytically. Although the infection process is not usually
observed in real-life settings, if the infectious period does not exhibit that much variation
then we can approximate it by a fixed value. Under this assumption the infection times
would be known, which could enable explicit evaluation of Bayes factors for comparing
different possible infection mechanisms or routes of infection, depending on the problem
in question.
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5.4 Future directions

Finally, the power posterior methods that we have adapted are not the only approach
to estimating marginal likelihoods. Another related approach that may prove fruitful is
the use of stepping-stone algorithms (Xie et al., 2011; Fan et al., 2011), as may other
variants of path-sampling algorithms.
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