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Post-Processing Posteriors Over Precision
Matrices to Produce Sparse Graph Estimates

Amir Bashir∗, Carlos M. Carvalho†, P. Richard Hahn‡, and M. Beatrix Jones§

Abstract. A variety of computationally efficient Bayesian models for the covari-
ance matrix of a multivariate Gaussian distribution are available. However, all
produce a relatively dense estimate of the precision matrix, and are therefore
unsatisfactory when one wishes to use the precision matrix to consider the con-
ditional independence structure of the data. This paper considers the posterior
predictive distribution of model fit for these covariance models. We then undertake
post-processing of the Bayes point estimate for the precision matrix to produce a
sparse model whose expected fit lies within the upper 95% of the posterior predic-
tive distribution of fit. The impact of the method for selecting the zero elements of
the precision matrix is evaluated. Good results were obtained using models that
encouraged a sparse posterior (G-Wishart, Bayesian adaptive graphical lasso) and
selection using credible intervals. We also find that this approach is easily extended
to the problem of finding a sparse set of elements that differ across a set of pre-
cision matrices, a natural summary when a common set of variables is observed
under multiple conditions. We illustrate our findings with moderate dimensional
data examples from finance and metabolomics.

Keywords: covariance selection, decoupling shrinkage and selection, Gaussian
graphical models, posterior summary, shrinkage prior.

1 Introduction

Covariance selection modelling (Dempster, 1973) performs model selection on the in-
verse covariance (precision) matrix. The model selected ought to fit well enough to be of
use in predicting the future behaviour of the system. However, a sparse matrix is of par-
ticular interest because of its potential interpretability. For multivariate normal data,
the precision matrix represents the conditional independence structure of the distribu-
tion, with a zero in the i, j position corresponding to independence between variables
i and j, conditional on the rest of the variables in the system. Non-zero elements in
the matrix therefore correspond to direct relationships that persist after accounting
for other variables. This is often conceptualized as a graph, with nodes representing
variables, and edges between them corresponding to non-zero elements of the preci-
sion matrix. These ideas can be extended to non-normal but continuous data using the
nonparanormal approach of Liu et al. (2009).
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Generating a posterior over graphs involves searching a large discrete space and
remains computationally challenging, despite recent advances (Mohammadi and Wit,
2015). However, even for a posterior over sparse models, the Bayes estimate with respect
to posterior predictive loss (the inverse of the average sampled covariance matrix) is
not sparse. When we do not restrict ourselves to sampling from sparse graphs, other
families of covariance models are possible: for example, the familiar conjugate inverse
Wishart prior, the regularized inverse Wishart (Kundu et al., 2018), factor analysis
models (West, 2003), or the Bayesian adaptive graphical lasso (Wang, 2012; Peterson
et al., 2013).

In this paper we discuss how sparse estimates of the precision matrix Ω can be
produced for any posterior over precision matrices. These procedures consist of three
phases. First, a sample is generated from a posterior over precision matrices. Second,
a series of progressively sparser estimates is created, typically indexed by some scalar
criteria. Finally, a rule is applied to select a final estimate from among those generated.
Several previous methods can be placed in this framework. In Kundu et al. (2018),
the regularized inverse Wishart is used to generate posterior samples. Progressively
stronger shrinkage of the implied regression coefficients is then used to generate increas-
ingly sparse estimates and a local false discovery rate criteria is used to settle on the
final estimate. In Wang (2012), the Bayesian adaptive graphical lasso (BAGL) posterior
is used. Progressively sparser models are produced by considering the posterior mean
of the elements of Ω (ωij) divided by their mean under an inverse Wishart distribution.
Elements with small values are then set to zero. This is dubbed “ratio selection”, and
0.5 is suggested as a suitable threshold for selection. Peterson et al. (2013) considers
the BAGL posterior with two additional strategies for sparsification: setting to zero ele-
ments where the posterior mean has a small absolute partial correlation |ρ|, and setting
to zero elements where a confidence interval for ωij includes zero. Suggested selection
criteria are |ρ| = 0.1 and a 90% confidence interval respectively. We can also view tradi-
tional selection of graphical models in this framework, with posterior probability of edge
inclusion as the sparsification criteria, and thresholds like 0.5 (the median probability
model) as typical selection rules.

Hahn and Carvalho (2015) proposed a novel strategy for the final phase—selecting
the sparse estimate—in the context of regression. The key element of the approach,
called decoupled shrinkage and selection (DSS), is a selection rule based on the pos-
terior predictive distribution of the fit to future data. This distribution provides the
relevant scale on which to consider whether sparsified versions of a model provide ade-
quate fit, and makes explicit the tradeoff between fit and sparsity. Hahn and Carvalho
(2015) contains only preliminary suggestions about the use of DSS in the context of pre-
cision matrices. In this paper, we explore the procedure in detail, and extend it to the
modelling of sparse differences across a set of precision matrices on the same variables,
observed under different conditions (for example, case-control differences). The next
section provides an initial example to illustrate the procedure. We then evaluate how
the DSS selection rule interacts with a range of sparsification strategies, and explore its
use with different posteriors over Ω. The extension to the multi-condition case follows.
We evaluate the performance of the DSS algorithm for this task and illustrate it with a
moderate dimensional example (174 variables).
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2 Decoupled shrinkage and selection for graphs

Let Γ be our choice as an estimate of Ω = Σ−1. Predictive accuracy, which we will call
fit, is typically measured by the log likelihood of n∗ future observations X̃. The expected
value of X̃T X̃/n∗ is the posterior mean of the covariance matrix, Σ̄. The expected fit
then becomes:

E [fit(Γ)] = E

[
log det(Γ)− tr

(
X̃T X̃Γ

n∗

)]

= log det(Γ)− tr(Σ̄Γ).

The expected fit is naturally maximised at Γ = Σ̄−1.

Crucial to our approach is recognising that this is an expected fit, and fit(Γ) =
log det(Γ))− tr(X̃T X̃Γ/n∗)) is a random variable governed by the posterior predictive
distribution of X̃. We can examine a sample of realisations of this random variable. To
avoid considering n∗ we imagine it to be very, very large. Samples of X̃T X̃/n∗ are then
equivalent to posterior samples Σk of the covariance matrix. Σk thus plays the role of
future data in the expression below. A sample from the distribution of fit(Σ̄−1) can be
generated as

fit(Σ̄−1|Σk) = log(det(Σ̄−1))− tr(ΣkΣ̄
−1), (1)

for k ∈ 1, 2 . . . ,m. A histogram of these samples provides an estimate of the distribution
of fit(Σ̄−1). We believe the scale of this distribution is relevant for judging acceptable fit.
If the estimate with the best expected fit will have actual fit below F , say, 5% of the time,
a sparsified choice for Γ with expected fit F should be considered adequate. We will use
the (arbitrary) criteria of 5%, but this remains a decision of the user. Because this is the
quantile of a distribution, the choice is relatively intuitive and interpretable. Finding the
globally sparsest Γ that satisfies this criteria remains a challenging optimization prob-
lem. In the subsequent sections, we examine several heuristic approaches to this task.
However, we first work through a simple example to illustrate how the procedure works.

We consider a multivariate dataset where measurements of 174 volatile compounds
were obtained using mass spectrometry for fecal samples from 49 subjects (Jayan, 2016).
We generate our sample of Σk from the BAGL posterior, using the Matlab code of Wang
(2012). The name “Bayesian (adaptive) graphical lasso” arises from the fact that poste-
rior mode under a fixed Laplace(λ) prior on all off diagonal elements of Ω corresponds to
the graphical lasso estimate. However, in the Bayesian treatment, a hyper prior is placed
on λ leading to a generalised Pareto prior. In the adaptive version, independent λij from
this hyper prior are used for each off-diagonal element. The distribution of the ωij is
then constrained to the space of positive definite matrices. The posterior samples of Ω
produced with this algorithm are not sparse. For this example, we will create a sparse
model by constraining to zero all ωij whose P% credible interval includes zero. Increas-
ing P then generates a sequence of increasingly sparse models. Once the set of posterior
samples Σk (and corresponding {Ωk = Σ−1

k }) is in hand, the procedure is as follows:

1. Compute the mean of the Σk, the posterior mean of the covariance, denoted Σ̄.
The inverse of this matrix, Σ̄−1 is the estimate of Ω that maximizes the expected
fit to future data, and is not sparse.
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2. Now let the sampled Σk play the role of future data, and compute the fit of Σ̄−1

for each future dataset, (fit(Σ̄−1|Σk) from equation (1). Find the 5% quantile of
these fits.

3. Compute P% credible intervals for the ωij using their estimated distribution based
on the sampled Ωk.

4. For elements where this interval includes zero, constrain ΓP to be zero in this
location.

5. Find the ΓP that maximizes log det(ΓP )− tr(Σ̄ΓP ).

6. If fit(Γ|Σ̄) = log det(ΓP )− tr(Σ̄ΓP ) is larger than the 5% quantile of fit(Σ̄−1|Σk),
and P < 100%, increase P and return to step 3.

We then use the penultimate Γ generated, the sparsest estimate with adequate fit. The
fit and sparsity of the sequence of Γ generated for the fecal volatilome data are shown
in Figure 1.

Note that Step (5) is done using the graphical lasso algorithm from Friedman et al.
(2008). This was created for optimizing the L1 penalized likelihood:

max
Γ

⎡
⎣log det Γ− tr(ΓS)− λ

∑
i �=j

|γij |

⎤
⎦ . (2)

When S is positive definite, the final stage of this algorithm can be used with λ = 0 to
find the best fitting Γ that follows a specified zero pattern. We will most frequently use
the algorithm in this mode, taking S = Σ̄. The posterior distributions we consider are
over positive definite matrices, so Σ̄ is always positive definite. We also use the graphical
lasso in its conventional form, with cross validation to pick the penalty parameter, to
generate the starting point for the BAGL Markov chain Monte Carlo algorithm.

3 Comparison of selection strategies

Sparsification based on progressively larger confidence intervals is, of course, not the
only possible method of selecting the zero elements of Γ. Any strategy with an ordered
scalar criteria that can be “turned up” to increase sparsity can be used to produce a plot
like that in Figure 1, and combined with the chosen fit quantile to produce an estimate.
Far from being an afterthought to the generation of a posterior distribution, we find that
which sparsification strategy is used has a strong influence over the inferred model, and
particularly its level of sparsity. For the volatilome data, we compare three additional
sparsification strategies to the credible interval strategy employed in Figure 1. These
strategies are: 1) ‘ratio selection’—taking elements to be zero if their posterior mean is
less than K times the value obtained using the conjugate Wishart prior (as suggested in
Wang, 2012), 2) thresholding the absolute partial correlations, and 3) choosing non-zero
elements based on the (frequentist) adaptive graphical lasso (Fan et al., 2009).
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Figure 1: Expected fit for sparse summaries of the precision matrix for 174 volatile
compounds measured for 49 individuals. The x axis shows the coverage of the credible
interval used to select zero elements for Γ. The top axis shows the resulting number of
edges in the graph. The 90% credible interval for the fit of Σ̄−1 (blue region), and its
expected fit (central line) are shown for comparison.

The adaptive graphical lasso modifies the criteria in (2) to find

Γλ = max
Γ

⎡
⎣log det(Γ)− tr(ΓS)− λ

∑
i �=j

|γij |√
γ∗
ij

⎤
⎦ , (3)

where γ∗
ij is an initial estimate of the absolute precision matrix elements. This effectively

creates a variable penalty that reduces over-penalization of edges that are clearly non-
zero. We again take S = Σ̄. We use γ∗

ij based on the conventional graphical lasso, with
the shrinkage parameter chosen by cross validation. In practice, for each element we use
the larger of γ∗

ij and 0.00001 to avoid numerical instability. The series of increasingly
sparse estimates is produced by using increasing values of λ.

We note that for all three strategies only steps (3) and (4) of the algorithm in section
2 are changed. In particular, the penalized estimate produced by the adaptive graphical
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Figure 2: Expected fit for sparse summaries of the precision matrix for 174 volatile com-
pounds measured for 49 individuals, using different selection criteria. The 90% credible
interval for the fit of Σ̄−1 (blue region), and its expected fit (central line) are shown for
comparison.

lasso is not used to assess the fit. Instead, Γ is refit using the zero structure of the
adaptive graphical lasso estimated matrix, but with no penalization of the non-zero
elements.

The sequences of estimates produced can be seen in Figure 2, with further informa-
tion on the selected models in Table 1. By design, the fit for each of the selected models
is approximately the same. The sparsity of these models differs substantially, with the
sparsest model produced by the credible interval method. We note that the thresholds
chosen by the decoupled shrinkage and selection criteria in some cases differ markedly
from the “intuitive” choices for the various selection methods used in Wang (2012) and
Peterson et al. (2013): K=0.5 for ratio selection, |ρ| = 0.1 for partial correlations, and
90% for the credible interval. To produce values which are in the fit envelope, much less
stringent criteria must be used in the partial correlation and credible interval methods.

To get a more comprehensive picture of how the different criteria behave in different
situations, we simulate multivariate normal data from two different models with sparse
structures used in Wang (2012). The first is a second order autoregressive, or AR(2),
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Approach Criteria to retain Number of edges E(fit)

Bayes estimate (Σ̄−1) - 15051 65.4
Ratio selection K > 0.45 2212 59.4
Adaptive graphical lasso λ > 6.8× 10−7 1760 58.4
Partial correlation threshold |ρ| > 0.015 1551 58.7
Credible interval 23% credible interval 1407 58.8

Table 1: Comparison of sparsification strategies for the volatilome data. For each strat-
egy, the criteria corresponding to the sparsest model inside the top 95% of fits is given,
as well as the number of edges of that model. By design, the expected fit of each se-
lected model should be approximately the same, and the E(fit) column confirms this.
The expected fit of the Bayes estimate is also given for comparison.

process with the following inverse covariance matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.50 0.25 0 0 0 . . . 0
0.50 1.00 0.50 0.25 0 0 . . . 0
0.25 0.50 1.00 0.50 0.25 0 . . . 0
0 0.25 0.50 1.00 0.50 0.25 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 0.25 0.50 1 0.50 0.25
0 . . . 0 0 0.25 0.50 1 0.50
0 . . . 0 0 0 0.25 0.50 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Second, a star shaped model is used, with a single hub (variable 1) connected to each
of the others. The inverse covariance has ones on the diagonal, and 0.1 for the non-zero
off diagonal elements. For number of variables p = 100, situations with n = 100, 200
and 300 are considered. A smaller sample size, n = 50, is also considered with p = 30.
For each combination of sample size and model, 50 replicates are performed. A sample
from a BAGL posterior is generated, and the most promising sparsification strategies are
used to select models, using sparsest model found with fit above the 5% fit quantile. The
strategies compared are adaptive graphical lasso, credible intervals, and thresholding the
partial correlation ρ. Results are in Table 2. The credible interval method is generally
better for the AR(2) structure, and the adaptive graphical lasso for the star structure,
which has smaller off diagonal elements. Thresholding the partial correlations is com-
petitive when considering the AR(2) structure, but clearly worst for the star structure.

4 Effect of the input posterior

The procedure in Section 2 can be applied to any posterior over precision matrices.
In this section we illustrate its use with the Wishart prior, the priors associated with
Bayesian factor analysis, and the G-Wishart prior.

The Wishart prior is conjugate for the precision matrix. For a p variable system,
prior parameters δ and Φ lead to posterior

Ω ∼ W (Φ +XtX, δ + n).
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AR(2) Star
Sensitivity Specificity MCC Sensitivity Specificity MCC

n = 50, p = 30
A. graphical lasso 25.6 99.7 45.3 0.0 100.0 0.0
Credible interval 29.0 100.0 51.0 0.0 100.0 1.0

ρ threshold 28.0 100.0 50.0 0.1 100.0 0.3
n = 100, p = 100
A. graphical lasso 77.0 98.0 67.2 99.9 97.5 66.6
Credible interval 84.4 98.4 75.3 73.9 94.4 37.6

ρ threshold 87.1 98.5 77.7 47.9 92.8 21.1
n = 200, p = 100
A. graphical lasso 95.1 99.3 89.6 100.0 98.9 80.9
Credible Interval 97.9 99.5 93.4 90.0 97.0 57.0

ρ threshold 98.3 99.6 94.6 78.0 94.0 39.0
n = 300, p = 100
A. graphical lasso 98.4 99.7 96.0 100.0 99.8 96.1
Credible interval 99.4 99.9 98.4 96.7 98.5 74.0

ρ threshold 99.5 99.9 98.7 92.0 96.5 55.7

Table 2: Multivariate normal data was simulated from two different model structures,
AR(2) and Star, for each of the p, n combinations given. BAGL posterior samples were
generated, and three different sparsification strategies applied, to select the sparsest
model with fit above the 5% fit quantile. Fifty replicates are performed. Average sen-
sitivity, specificity, and Matthews correlation coefficient (MCC) for each scenario are
given as percentages.

The covariance Σ then has mean

Φ +XtX

δ + n+ p− 1
.

It is conventional to take Φ as a diagonal matrix with the observed sample variances
(or the identity for standardised data), and δ as small as possible. We use this strategy
for Φ, but take a slightly different approach for δ, choosing δ so that the posterior mean
will match the optimal estimator from Ledoit and Wolf (2004), which also takes the
form of a weighted average of the data and a target matrix.

Bayesian factor analysis (BFA) assumes the data arises from a set of independent,
Gaussian distributed factors:

Xi ∼ Ληi + εi, η ∼ N(0, I), ε ∼ N(0, T ), T diagonal.

Many choices are possible for priors on Λ. We choose a mixture of normal and point
mass priors on the λij , with mixing proportion beta(1/3, 1/3) (the default in the R
package bfa, Murray, 2016). We set the number of factors equal to p/2.

Finally, we use the G-Wishart approach implemented in the BDgraph package (Mo-
hammadi and Wit, 2015). This packages uses a birth-death (BD) algorithm to sample
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Performance on hold-out data
Method Edges % variance unexplained log likelihood

Wishart 1711 17.6 82
Wishart-selection 486 17.5 81
BFA 1711 18.1 78
BFA-selection 384 19.5 74
BAGL 1711 16.1 98
BAGL-selection 184 17.1 96
G-Wishart(0.5) 1711 16.1 107
G-Wishart(0.5)-selection 315 15.7 105
G-Wishart(2/p) 1711 16.6 101
G-Wishart(2/p)-selection 92 20.7 89

Table 3: Models fit to the first 60 months of the mutual fund data. Performance criterial
were evaluated on a hold out set consisting of the subsequent 26 months of data. For
each different prior, both Γ = Σ̄−1 and Γ produced by sparsifying Σ̄−1 are considered. In
each case, the average proportion of unexplained variation and log likelihood evaluated
for the hold-out set are given.

a posterior over G, but we make use of the additional package functions to then sample
Ω|G. Conditional on G, Ω has a G-Wishart distribution (Roverato, 2002; Letac and
Massam, 2007). This distribution is a Wishart conditioned on elements not correspond-
ing to edges in G being equal to zero. We choose the prior Wishart parameters Φ = I
and δ = 3. In the BDgraph framework, we must also specify a prior over G. In this prior,
each edge is included with prior probability π. We use two different settings, π = 0.5,
which favors graphs with roughly half the possible edges, and π = 2/p, which favors
very sparse graphs.

We wish to judge the performance of the different posterior distributions, and do
this using a set of test data, after a set of training data has been used to fit the models.
We evaluate both the log likelihood of the test data, and the average proportion of
unexplained variability (error sum of squares over total sum of squares), where for each
test observation we predict each individual variable, assuming the other variables in
that observation have already been observed. As an example we consider the mutual
fund data from Scott and Carvalho (2008) and Fitch et al. (2014). The data consist of
59 variables, with n = 60 for the training set and n = 26 for the test set. We generate
posteriors over the precision matrix using BAGL, the Wishart, BFA, and the G-Wishart
with graph prior parameters 0.5 and 2/p. In each case we compute the log likelihood and
average proportion of unexplained variability based on Σ̄−1, and on its sparsified version.
Sparsification is done using the credible interval method. Results are given in Table 3.

The two criteria, log likelihood and percent unexplained variability, produce a some-
what different picture. There is very little difference in the percent unexplained variabil-
ity across most of the models, while the log likelihood varies more dramatically. This
is because the unexplained variability for each variable is computed assuming all other
variables have been observed. An observation that is far from the multivariate mean
relative to the inferred variability will have low log likelihood, but potentially each uni-
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variate component of that observation is consistent with its conditional distribution. In
other words, each variable has most of its deviation from the mean explained by the
other variables. This will occur when the deviations from the mean across variables are
consistent with the inferred covariance matrix. Thus the Wishart method, the fastest
of the methods considered, is competitive in the percent of unexplained variability, and
about 72% of the edges in the model can be removed with minimal loss of fit. Spar-
sified BAGL results in the sparsest estimate that manages reasonable performance in
percent variance unexplained. We again note that the BAGL posterior samples contain
no exact zeros. The G-Wishart(0.5) posterior mean produced the best results for the
log likelihood of the test data. Sparsification of this estimate had little impact on the
log likelihood, and slightly improved the percent of variability explained. We note that
the sparsified graph is in fact sparser than the MAP graph from the sample generated,
which had 752 edges. While the G-Wishart(2/p) mean performs well, the selected graph
performs poorly in prediction (but is very sparse). This suggests that when using the
G-Wishart, selecting a prior probability for edge inclusion “large enough” followed by
post processing to induce sparsity may be a more straightforward strategy than tuning
the prior probability of edge inclusion.

5 Identifying differences in Ω across conditions

Considerable attention has been paid to identifying changes in the precision matrix
under C different conditions (Danaher et al., 2013; Cai et al., 2016; Guo et al., 2011;
Zhao et al., 2014; Tian et al., 2016), including Bayesian approaches (Mitra et al., 2016;
Peterson et al., 2015). The concepts introduced here can also address this situation. We
emphasise estimating common elements as well as common structures: in other words,
elements of the condition specific precision matrices Ωc and Ωc′ where ωcij = ωc′ij �= 0.
Rather than directly modelling any shared characteristics between the matrices, we
generate independent posteriors using the data from each condition. A sample from
the joint posterior is formed simply by combining the first posterior sample for each
group, second samples, and so on. The fit of a particular estimate is the sum of the fits,
weighted by the sample size of each group. We then subject the Σ̄−1

c to modification
that makes some elements identical. The fit of these modified estimates, relative to the
Bayes point estimates, is then judged as in the preceding sections.

To modify the Σ̄−1
c , we use a variation of the fused Joint Graphical Lasso (JGL),

described in Danaher et al. (2013). The original algorithm uses a penalized likelihood
of the form:

max
ΓC

⎡
⎣ C∑

c=1

nc (log det Γc − tr(ScΓc)) + λ1

C∑
c=1

∑
i �=j

|γcij |+ λ2

∑
c<c′

∑
i,j

|γcij − γc′ij |

⎤
⎦ ,

where the λ1 governs the sparsity of the estimates, and λ2 governs their similarity. This
function is optimized using the alternating direction method of multipliers (ADMM)
algorithm as outlined in Danaher et al. (2013). The L1 penalties can produce exact
equality between off diagonal elements of the C precision matrices, but this happens
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only when penalization is quite strong. In fact, when starting with matrices that were
already identical at many positions, and moderate penalty parameters, the optimiza-
tion reduces the number of identical elements. Danaher et al. (2013) note that many
conventional criteria for choosing penalty parameters (Akaike or Bayesian information
criteria, cross validation) produce overly dense models, and suggest penalty selection be
guided by “practical considerations”.

As well as using Σ̄c rather than S, we change the penalization strategy. If sparse
matrices are desired, an adaptive penalty analogous to (3) is used. For penalization
of element differences across conditions, we consider only the choice of elements to be
identical across conditions. Suppose the selected elements are in a set H (the strategy
for choosing this set is discussed below). Our objective function becomes:

max
ΓC

⎡
⎣ C∑

c=1

nc

(
log det Γc − tr(Σ̄cΓc)

)
+ λ2

∑
c<c′

∑
i,j∈H

|γcij − γc′ij |

⎤
⎦ ,

with λ2 taken large enough that |γcij−γc′ij | is forced to zero for (i, j) ∈ H. Optimization
is again via an ADMM algorithm. We use the posteriors of the Ωc to select the elements
of H. Specifically, if a P% credible interval for γcij − γc′ij includes zero, (i, j)c,c′ is
included in HP . P is increased to generate increasingly sparse sets of differences. No
effort is made to sparsify the original graphs. Instead, the entire fit budget is spent
increasing the number of common elements across conditions. Alternate strategies are
possible if both sparse matrices and sparse matrix differences are desired.

We also note in our case the nc are tuning parameters. Smaller values of nc increase
the flexibility of Γc to vary from Σ̄−1

c relative to other conditions. We use nc proportional
to the sample sizes from each group. This should be a reasonable choice as sample sizes
typically will indicate the concentration of the posterior, but other strategies would be
possible.

To evaluate the performance of this procedure, we consider detecting differences
between pairs of Ω matrices, where the true set of differences is sparse. In each case,
p = 100, n = 200, and a random selection of 50 edges differs between the pair, with
|γcij − γc′ij | = 0.1. We note that, based on Table 2 of Danaher et al. (2013), this is
a challenging sample size for detection of differential edges with JGL. Two different
scenarios are considered: a case where the matrices are sparse, and one where they are
dense (but still with a sparse set of differences). In the sparse case, one matrix has the
AR(2) structure specified in (4), with the second matrix differing at 50 random elements.
In the dense case, the initial inverse covariance matrix has ones on the diagonal and
0.05 at all off diagonal elements. For each scenario, 50 replicates are performed. The
posterior distributions are generated with BAGL.

The results are compared to results from JGL in Table 4. To provide a fair compari-
son of accuracy, JGL is tuned to produce approximately the same number of differences
as our algorithm. The JGL solution is found for a fine grid of λ values, and the one with
number of selected differences closest to the one found with our method is chosen. Both
λ1 and λ2 are varied in the sparse scenario, while λ1 is set to zero in the dense scenario
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Sparse Case Dense Case
Posterior Summary JGL Posterior Summary JGL

Sensitivity 58.6 42.6 8.9 8.1
Specificity 97.9 97.8 98.9 98.9

MCC 35.5 25.4 7.1 6.4

Table 4: Sensitivity, specificity, and Matthews correlation coefficient for our procedure
for detecting precision matrix differences, averaged over 50 replicates of simulated data
with p = 100, n = 200. In each case there are 50 off-diagonal differences between the
matrices being compared, with magnitude 0.1. The matrix before changes is either an
AR(2) structure (sparse case), or one with diagonal 1 and all off-diagonals 0.05. We
compare to the JGL inferred differences, with λ selected to match the number of edges
detected.

and only λ2 varied. The difference between JGL and the posterior summary method in
number of differences selected was at most two across the individual pairs of matrices.
The average number of differences is identical between the two methods.

The posterior summary method gives improved sensitivity in the sparse case, consis-
tently across replicates (the standard deviation of the 16% of improvement in sensitivity
was 6%). The dense case was more challenging, and performance of the two algorithms
was comparable. However, we note JGL as described in Danaher et al. (2013) lacks a
criteria for selecting the relevant λ.

As a higher dimensional example we compare the precision of the 49 fecal volatilome
measurements from Section 2, a set of control measurements, to the precision for a set of
42 cases. (In this example, the control individuals are 8 year old children born at term,
and the cases are 8 year old children that were born pre-term.) We base our inferences
on posteriors independently generated from the Bayesian adaptive graphical lasso. The
graph of differential edges is shown in Figure 3, and represents 499 differences. Most
vertices have differences for 1–10 of their incident edges. The figure highlights 14 vertices
that have differences at more than 10 of their incident edges. There are also two vertices
that are not involved in any altered edges.

6 Discussion

This paper introduces an extremely flexible method for producing sparse summaries
of a posterior over precision matrices, as well as an extension of the method to a case
where sparse differences across a set of precision matrices is desired. Starting from a
posterior distribution over the precision is key to the method in several ways. The
posterior provides the scale upon which degradation of the fit is judged. The con-
vergence properties of the algorithms used to produce an estimate with a particular
pattern of sparsity rely on the input of a positive definite covariance matrix, which
the posterior mean will satisfy. Finally, the strategy for sparsification can also use in-
formation from the posterior beyond the posterior mean. Using posterior credible in-
tervals for each element to choose the pattern of sparsity is a successful strategy in
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Figure 3: Graph with edges corresponding to our inferred differential precision matrix
elements for 174 volatile compounds measured for 42 cases and 49 controls. Vertices
with more than 10 altered matrix elements are shown in black.

our simulation study, although the structure suggested by application of the adaptive
graphical lasso to Σ̄ may be preferred when sensitivity to small non-zero ωij is a prior-
ity.

The starting posterior can be generated from a range of models. In particular, the
posterior need not be over sparse matrices. When the true precision is sparse incorpo-
rating this information in the prior is clearly useful. However, this might be in the form
of a prior that encourages off diagonal elements to be close to zero rather than exactly
zero (for example BAGL). One possibility for computationally tractable sparse models
that we have not explored is decomposable models (Green and Thomas, 2013). In a data
rich situation these algorithms typically add edges to the model to make it decompos-
able (Fitch et al., 2014), so we might expect similar results to the G-Wishart(0.5) where
there is no pressure for the posterior sample to visit very sparse models, and the sparsi-
fied model actually outperforms Σ̄−1 on some criteria. In our example the “non-sparse”
priors (Wishart or BFA) produce models with more edges, but a great deal of sparsity
can still be introduced. These priors are appealing because they are tractable even in
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relatively high dimensions. Other computationally tractable priors in Huang and Wand
(2013) and Kundu et al. (2018) are also potentially useful.

Finally, we demonstrate how our approach can be used to understand differences
in precision matrices across conditions. There is not a Bayesian method that addresses
the problem of inferring which elements are identical, but non-zero, across such a set of
precision matrices (although there are certainly methods that aim to “share strength”
across conditions). A consequence of this is that our method is suitable for detecting
sparse differences between precision matrices where the individual matrices are dense,
although our simulation study indicates this is a challenging problem at moderate sam-
ples sizes. While frequentist approaches readily produce a series of increasingly sparse
differences, they do not provide a clear criteria for selection. Our method for comparing
precision matrices has the further advantage that any available innovation for Bayesian
modelling of a single precision matrix, whether a new prior or a computational im-
provement, is immediately extendable to the multi-matrix case, rather than requiring
a separate implementation. We envision that even if detailed modelling of similar ele-
ments, as in Peterson et al. (2015), will eventually be carried out, our method will be a
useful preliminary to investigate modelling choices.
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