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Fast Model-Fitting of Bayesian Variable
Selection Regression Using the Iterative

Complex Factorization Algorithm

Quan Zhou∗‡ and Yongtao Guan†§¶

Abstract. Bayesian variable selection regression (BVSR) is able to jointly ana-
lyze genome-wide genetic datasets, but the slow computation via Markov chain
Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel
iterative method to solve a special class of linear systems, which can increase
the speed of the BVSR model-fitting tenfold. The iterative method hinges on the
complex factorization of the sum of two matrices and the solution path resides in
the complex domain (instead of the real domain). Compared to the Gauss-Seidel
method, the complex factorization converges almost instantaneously and its error
is several magnitude smaller than that of the Gauss-Seidel method. More impor-
tantly, the error is always within the pre-specified precision while the Gauss-Seidel
method is not. For large problems with thousands of covariates, the complex fac-
torization is 10–100 times faster than either the Gauss-Seidel method or the direct
method via the Cholesky decomposition. In BVSR, one needs to repetitively solve
large penalized regression systems whose design matrices only change slightly be-
tween adjacent MCMC steps. This slight change in design matrix enables the
adaptation of the iterative complex factorization method. The computational in-
novation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide
association datasets.

Keywords: Cholesky decomposition, exchange algorithm, fastBVSR,
Gauss-Seidel method, heritability.

1 Introduction

Bayesian variable selection regression (BVSR) can jointly analyze genome-wide genetic
data to produce the posterior probability of association for each covariate and estimate
hyperparameters such as heritability and the number of covariates that have nonzero
effects (Guan and Stephens, 2011). But the slow computation due to model averaging
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using Markov chain Monte Carlo (MCMC) hampered its otherwise warranted wide-
spread usage. Here we present a novel iterative method to solve a special class of linear
systems, which can increase the speed of the BVSR model-fitting tenfold.

1.1 Model and priors

We first briefly introduce the BVSR method. Our model, prior specification and notation
follow closely those of Guan and Stephens (2011). Consider the linear regression model

y = μ1+Xβ + ε, ε ∼ MVN(0, τ−1I), (1)

where X is an n × M column-centered matrix with M � n, I denotes an identity
matrix of proper dimension, y and ε are n-vectors, β is an M -vector, and MVN stands
for multivariate normal distribution. Let γj be an indicator of the j-th covariate having
a nonzero effect and write γ = {γ1, . . . , γj , . . . , γM}. A spike-and-slab prior for βj (the
j-th component of β) is specified below,

γj | π ∼ Bernoulli(π),

βj | γj = 0 ∼ δ0,

βj | γj = 1, σβ , τ ∼ N(0, σ2
β/τ),

(2)

where π is the proportion of covariates that have non-zero effects and σ2
β is the vari-

ance of prior effect size (scaled by τ−1). We will specify priors for both later. We use
noninformative priors on the parameters μ and τ ,

μ | τ ∼ N(0, σ2
μ/τ), σμ → ∞,

τ ∼ Gamma(κ1/2, κ2/2), κ1, κ2 → 0,
(3)

where Gamma is in the shape-rate parameterization. As pointed out in Guan and
Stephens (2011), prior (3) is equivalent to P (μ, τ) ∝ τ−1/2, which is known as Jeffreys’
prior (Ibrahim and Laud, 1991; O’Hagan and Forster, 2004). In practice, this means to
use a diffuse prior for both μ and τ . Some may favor a simpler form P (μ, τ) ∝ 1/τ ,
which makes no practical difference (Berger et al., 2001; Liang et al., 2008).

Given γ and σ2
β , after integrating out β, τ , μ and letting σμ → ∞, κ1, κ2 → 0, the

Bayes factor with reference to the null model can be computed in closed form,

BF(γ, σ2
β) = |I + σ2

βX
t
γXγ |−1/2

(
1− ytXγ β̂

yty − nȳ2

)−n/2

, (4)

where Xγ denotes the submatrix of X with columns for which γj = 1, | · | denotes
matrix determinant, and β̂ is the posterior mean for β given by

β̂ = (Xt
γXγ + σ−2

β I)−1Xt
γy. (5)

The null-based Bayes factor BF(γ, σ2
β) is proportional to the marginal likelihood P (y |

γ, σ2
β), and evaluating BF is easier than evaluating the marginal likelihood due to can-

cellation of constants. The limiting prior (3) not only makes the Bayes factor expression
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simpler (compared to that with finite value of σμ and positive values of κ1 and κ2), but
also makes it invariant with respect to the shifting and scaling of y.

We now discuss the prior specification for the two hyperparameters, π and σ2
β . To

specify the prior for σ2
β , Guan and Stephens (2011) introduced a hyperparameter h

(which stands for heritability) such that

h = σ2
β

M∑
j=1

γjsj/(1 + σ2
β

M∑
j=1

γjsj), (6)

where sj denotes the variance of the j-th covariate. Conditional on γ, specifying a prior
on h will induce a prior on σ2

β , so henceforth we may write σ2
β(γ, h) to emphasize σ2

β is
a function of h and γ. Since h is motivated by the narrow-sense heritability, its prior is
easy to specify and we use

h ∼ Unif(0, 1), (7)

by default to reflect our lack of knowledge of heritability, although one can impose
a strong prior by specifying a uniform distribution on a narrow support. A bonus of
specifying the prior on σ2

β through h is that when h ∼ Unif(0, 1), the induced prior on

σ2
β is heavy-tailed (Guan and Stephens, 2011).

Up till now, we follow faithfully the model and the prior specification of Guan and
Stephens (2011). The prior on γ can be induced by the prior on π. Guan and Stephens
(2011) specified the prior on π as uniform on its log scale, log π ∼ Unif(log πmin,
log πmax), which is equivalent to P (π) ∝ 1/π for π ∈ (πmin, πmax), and sampled π, h,γ.
But here we do something slightly different by integrating out π analytically. This is
sensible because γ is very informative on π. Specifically, we integrate P (γ, π) over P (π)
such that P (γ) =

∫
P (γ | π)P (π)dπ to obtain the marginal prior on γ,

P (γ) =
1

log (πmax/πmin)

∫ πmax

πmin

P (γ | π)/π dπ, (8)

where the finite integral is related to the truncated Beta distribution and can be eval-
uated conveniently. If πmin goes to 0 and πmax goes to 1 we have an improper prior
P (π) ∝ 1/π and the marginal prior on γ becomes

P (γ) ∝ Γ(|γ|) Γ(M + 1− |γ|), (9)

where we recallM is the total number of covariates, |γ| =
∑

γj is the number of selected
covariates in the model, and Γ denotes the Gamma function. P (γ) is always a proper
probability distribution because it is defined on a finite set.

1.2 Posterior inference and computation

The joint posterior distribution of (γ, h) is given by

P (γ, h | y) ∝ P (y | γ, h)P (γ)P (h). (10)
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The posterior inferences typically include computing the posterior inclusion probability
P (γj = 1 | y), which measures the strength of marginal association of the j-th covariate,
the posterior distribution of the model size |γ|, and the posterior distribution of the
heritability h, which measures the proportion of phenotypic variance explained by the
selected models. We use MCMC to sample this joint posterior of (γ, h). Our sampling
scheme follows closely that of Guan and Stephens (2011). In each MCMC iteration, to
evaluate (10) for a proposed parameter pair (γ′, h′), we need to compute the marginal
likelihood P (y | γ′, h′), which is proportional to (4). Two time-consuming calculations

are the matrix determinant |I + σ2
βX

t
γXγ | and β̂ defined in (5), both of which have

cubic complexity (in |γ|). The computation of the determinant can be avoided by using
a MCMC sampling trick which we will discuss later. The main focus of the paper is a
novel algorithm to evaluate (5), which reduces its complexity from cubic to quadratic.

The rest of the paper is structured as follows. Section 2 introduces the iterative com-
plex factorization (ICF) algorithm. Section 3 describes how to incorporate the ICF al-
gorithm into BVSR. Both sections contain numerical examples, including a real dataset
from genome-wide association studies. A short discussion concludes the paper.

2 The iterative complex factorization

In this section, we propose a novel algorithm for solving the following linear system

(XtX +Σ2)β̂ = z, (11)

where Σ is a diagonal matrix with positive (but not necessarily identical) entries on the
diagonal, and X is an n× p matrix. Clearly (5) is a special case of (11). In the context
of BVSR, X should be understood as Xγ and p = |γ|. We assume p < n, where the
sample size n ranges from several hundreds to tens of thousands. The computational
advancement we will introduce, however, can be applied to scenarios where p > n (see
discussion in Section 4).

Note that β̂ is the familiar ridge regression estimator (Draper and Van Nostrand,
1979). It may appear that an algorithm designed for solving ridge regression can be
borrowed to solve (11). But a unique feature of BVSR is that in each iteration of MCMC,
the design matrix X usually changes only by one or a few columns. Thus, XtX and its
Cholesky decomposition can be obtained conveniently (details will follow). This unique
feature allows us to design a much more efficient algorithm.

2.1 Existing methods

In Guan and Stephens (2011), the linear system (11) was solved using the Cholesky
decomposition of XtX +Σ2, which requires p3/3 flops (Trefethen and Bau III, 1997,
Lec. 23). Although computingXtX fromX requiresO(np2) flops, whenX only changes
by a few columns, the majority of the entries in XtX do not change and updating XtX
only requires O(np) flops.
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Iterative methods sometimes can be used to reduce the computational time. Define

A = XtX +Σ2 = L+D +U , (12)

where L (U) is the strictly lower (upper) triangular component and D contains only
the diagonals. Then three popular iterative procedures can be summarized as follows:

Jacobi method: β̂(k+1) = D−1
[
−(L+U)β̂(k) + z

]
;

Gauss-Seidel method: β̂(k+1) = (D +L)−1
(
−Uβ̂(k) + z

)
;

successive over-relaxation: β̂(k+1) = (D + ωL)−1
[
−(ωU − (1− ω)D)β̂(k) + ωz

]
.

The successive over-relaxation (SOR) method is a generalization of the Gauss-Seidel
method, where ω is called the relaxation parameter. When A is positive definite,
the Gauss-Seidel method always converges and the SOR method converges for ω ∈
(0, 2) (Golub and Van Loan, 2012, Chap. 10.1.2). For all three iterative methods, each
iteration requires 2p2 flops. Thus, whether an iterative method is more efficient than
the Cholesky decomposition depends on how many iterations it takes to converge. An-
other notable class of iterative methods is called Krylov subspace methods. Two famous
examples are the steepest descent and the conjugate gradient (Trefethen and Bau III,
1997, Lec. 38).

In principle, all methods developed to solve ridge regression can be used here to
solve (11), as we alluded to earlier. For example, the methods of Eldén (1977), Lawson
and Hanson (1995) and Turlach (2006) were developed for solving (11) with fixed X but
changing Σ, while Hawkins and Yin (2002) devised a method for fixed Σ but changing
X. Modern least square solvers (Rokhlin and Tygert, 2008; Avron et al., 2010; Meng
et al., 2014) typically considered the case where X is extremely large, sparse, or ill-
conditioned, and under such conditions, these least square solvers outperform solving
directly via Cholesky decomposition; see Meng et al. (2014, Sec. 5) for how to apply least
square solvers to ridge regression. But all methods quoted above are less effective (or
not applicable) in the context of BVSR, because they are not designed for solving (11)
millions of times, each time with a slightly different X and a different Σ, and they did
not take advantage of the feature of BVSR that the Cholesky decomposition of XtX
can be obtained efficiently.

2.2 The iterative complex factorization (ICF) algorithm

Let RtR be the Cholesky decomposition of XtX, where R is upper triangular. In the
context of BVSR, given the Cholesky decomposition of XtX, the Cholesky decompo-
sition of a new matrix (X ′)tX ′ can be obtained efficiently since X ′ (the proposed new
design matrix) differs from X only by one or a few columns (see Section 3.1). So we
consider solving the linear system

(RtR+Σ2)β̂ = z. (13)

Contrary to our intuition, the Cholesky decomposition of RtR+Σ2 cannot be obtained
efficiently. This was also noticed in Zhou et al. (2013, p. 6). We instead perform the
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following decomposition

RtR+Σ2 = H − iS,

H = (Rt − iΣ)(R+ iΣ),

S = RtΣ−ΣR,

(14)

where i is the imaginary unit. Then we have the update

Hβ̂(k+1) = iSβ̂(k) + z,

where the right-hand side is a complex vector, and β̂(k+1) can be obtained by a forward
and a backward substitution involving two complex triangular matrices, Rt − iΣ and
R+ iΣ. This update, however, diverges from time to time. Examining the details of the
observed divergent cases reveals that the culprit is the imaginary part of β̂(k). Because
the solution β̂ is real, discarding the imaginary part of β̂(k) at the end of each iteration
will not affect the fixed point to which the iterative method converges. Denoting the
real part of a complex entity (scalar or vector) by Re, the generalized update of our
algorithm ICF (Iterative Complex Factorization) becomes

β̂(k+1) = Re[(1− ω)β̂(k) + ωH−1(iSβ̂(k) + z)], (15)

where we have also introduced a relaxation parameter ω. Intuitively ω makes the update
lazy to avoid over-shooting. The revised update converges almost instantaneously, in a
few iterations, compared to a few dozen to a few hundred iterations with the Gauss-
Seidel method. Each iteration of (15) requires 6p2 flops, thrice that required by a Gauss-
Seidel iteration, because ICF operates complex (instead of real) matrices and vectors.

The right-hand side of (15) can be reorganized as Re[((1−ω)I+iωH−1S)β̂(k)+ωH−1z].
Note that H−1z can be computed via forward and backward substitutions and does
not require matrix inversion.

2.3 ICF converges to the right target

Proposition 1. Denote Ψ(ω) = Re[(1−ω)I + iωH−1S]. Then ICF in (15) converges
for any starting point if ρ(Ψ(ω)) < 1 where ρ denotes the spectral radius.

Proof. The true solution β̂ satisfies Hβ̂ = iSβ̂ + z, which, after some algebra, gives
β̂(k+1)−β̂ = Ψ(ω)(β̂(k)−β̂). The statement then follows faithfully from Theorem 10.1.1
of Golub and Van Loan (2012).

Theorem 2. There exists ω ∈ (0, 1] such that the ICF update detailed in (15) converges
to the true solution.

Proof. Using the notation defined in (12) and (14), we have H = A + iS. Since
[Re(H−1) + i Im(H−1)](A+ iS) = I, we have{

Re(H−1)A− Im(H−1)S = I,
Im(H−1)A+Re(H−1)S = 0.
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Using the fact that A is invertible, we can solve the above system and obtain

Im(H−1) = −A−1S(A+ SA−1S)−1.

Both A and S are real matrices, and by the Woodbury identity we have

Ψ(ω) = I − ω(I + (A−1S)2)−1. (16)

Immediately, for a fixed ω, the spectrum of Ψ(ω) is fully determined by the spectrum of
A−1S. Because S is skew-symmetric, we have −S = St. Since A is symmetric, so does
A−1/2. Then we have −A−1/2SA−1/2 = A−1/2StA−1/2, which means A−1/2SA−1/2

is also skew-symmetric. Hence the eigenvalues of A−1S, which are identical to those
of A−1/2SA−1/2, are conjugate pairs of pure imaginary numbers or zero. Let ±ηi be
such a pair with η ≥ 0 and u be the eigenvector corresponding to the eigenvalue ηi. We
have A−1Su = iηu, which implies iu∗Su = −ηu∗Au, where u∗ denotes the conjugate
transpose of u. Since H is a Hermitian positive definite matrix,

u∗Hu = u∗(A+ iS)u = (1− η)u∗Au > 0.

Since A is also positive definite, we have u∗Au > 0 and

0 ≤ η < 1. (17)

By (16), the eigenvalues of Ψ(ω) are identical pairs equal to 1−ω/(1−η2) (this includes
the case η = 0). Proposition 1 just requires |1− ω/(1− η2)| < 1, or equivalently,

0 < ω < 2(1− η2), (18)

holds for all η. Thus the existence of ω follows from (17).

By Proposition 1, the spectral radius of Ψ(ω) determines how fast the error con-
verges to zero. We provide a theory-guided procedure to adaptively tune the relaxation
parameter ω, which relies on the following proposition that connects ρ(Ψ(ω)) with ω
and η.

Proposition 3. Denote the eigenvalues of A−1S as ±ηi (η ≥ 0), where A and S are
defined in (12) and (14), and obtain ηmin and ηmax. Then the spectral radius of Ψ(ω)
is

ρ(Ψ(ω)) = max

{
1− ω

1− η2min

,
ω

1− η2max

− 1

}
, (19)

and the optimal value for ω to achieve the minimum of ρ(Ψ(ω)) is

ω� = 2

(
1

1− η2min

+
1

1− η2max

)−1

. (20)

Proof. By (16) and (17), the smallest and the largest eigenvalue of Ψ(ω) are 1−ω/(1−
η2max) and 1−ω/(1−η2min) with η ∈ [0, 1). After adjusting for their signs, we obtain (19).
The right-hand side of (19) is a function of ω, with the first item decreasing linearly in
ω and the second item increasing linearly in ω. Hence the minimum of (19) is attained
when the two quantities in the braces are equal, which proves (20).
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Our adaptive strategy for choosing ω assumes that ηmin is zero, which holds trivially
for odd p by the property of skew-symmetric matrices. When p is even, our numerical
studies found ηmin = 0 is still a good approximation in practice (Supplementary S3
(Zhou and Guan, 2018)). We start the ICF update with ω(0) = 1. Suppose at the k-
th iteration we can produce an estimate ρ̂(k) for the spectral radius of Ψ(ω(k)). Then
using (19), η2max can be estimated by η2max ≈ 1−ω(k)/(1+ ρ̂(k)). Plugging this into (20)
we obtain an update for ω

ω(k+1) =
2ω(k)

1 + ω(k) + ρ̂(k)
.

Note that the update does not involve η2max, but only ω(k) and ρ̂(k), and ω(k+1) is a
decreasing function of ρ(k). Finally, to estimate the spectral radius of ρ(k) we use

ρ̂(k) =
||β̂(k) − β̂(k−1)||2

||β̂(k−1) − β̂(k−2)||2
,

where || · ||2 denotes the �2-norm. This update strategy borrows the idea of power

iteration and is motivated by the observation that β̂(k)−β̂(k−1) = Ψ(ω)(β̂(k−1)−β̂(k−2))
if ω were fixed (see also Proposition 1). The procedure works well in our numerical
studies. To take care of the boundary conditions, we use ω(k) = 1 for k = 0, 1, 2.

2.4 ICF outperforms other methods

Our numerical comparison studies were based on real datasets of genome-wide asso-
ciation studies downloaded from dbGaP. The details of the datasets can be found in
Section 3.3. Because the convergence of iterative methods is sensitive to the collinearity
in the design matrix X, our comparison studies used two datasets: the first one contains
20K SNPs sampled across the whole genome, and the other contains 20K SNPs that are
physically adjacent. The first dataset has little or no collinearity (henceforth referred
to as IND), and the second has collinearity due to linkage disequilibrium (henceforth
referred to as DEP). The sample size is n = 3000 for both datasets. Our numerical
studies compared different methods (detailed below) for their speed and accuracy of
solving (11). Given p, for one experiment we sampled without replacement p columns
from the IND (or DEP) dataset to obtain X, simulated under the null z ∼ MVN(0, I),
and solved (11) using different methods with Σ = diag(4, . . . , 4), which corresponded
to σβ = 0.5. For each p we conducted 1000 independent experiments.

Our initial studies compared ICF with six other methods: the Cholesky decompo-
sition (Chol), the Jacobi method, the Gauss-Seidel method (GS), the successive over-
Relaxation (SOR) method, the steepest descent method, and the conjugate gradient
(CG) method. We excluded the Jacobi method and the steepest descent method due
to their poor performance. To ensure a fair comparison in the context of BVSR, the
starting point for Chol, GS, and SOR was A = XtX + σ−2

β I being obtained, and the

starting point for ICF was the upper triangular matrix R such that XtX = RtR being
obtained. For GS, we tried the preconditioning method of Kohno et al. (1997), which is
the most efficient among the methods surveyed in Niki et al. (2004), but we observed no
improvement, most likely because A is well-conditioned due to the regularization. For
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SOR, we need choose a value for the relaxation parameter (denoted by ωSOR), which is
known to be very difficult. A solution was provided by Young (1954) (see also Yang and
Matthias, 2007), but we observed that it did not apply when p > 500. After trial and
error, we settled on using ωSOR = 1.2, which appeared to be optimal in our numerical
studies. For all iterative methods, we started from β̂(0) = 0 and stopped if

max
j

|β̂(k)
j − β̂

(k−1)
j | < 10−6, (21)

or the number of iterations exceeded 200. The computer code for different methods was
written in C++ and was run in the same environment. The Cholesky decomposition was
implemented using GSL (GNU Scientific Library) (Gough, 2009), and GS and SOR were
implemented in a manner that accounted for the sparsity of the triangular matrices L
and U to obtain maximum efficiency (Golub and Van Loan, 2012, Chap. 10.1.2). Lastly,
we included in the comparison the LAPACK routine DGELS, the most widely used least
square solver, as a baseline reference.

Dataset p
Time (in seconds) Convergence failures

DGELS Chol ICF GS SOR CG ICF GS SOR CG

IND

50 7.3 0.034 0.019 0.016 0.025 0.054 0 0 0 0
100 26 0.20 0.07 0.07 0.09 0.24 0 0 0 0
200 115 1.38 0.30 0.34 0.39 1.15 0 1 1 0
500 679 21.0 2.7 3.6 2.9 9.8 0 2 1 0
1000 2948 161 14 36 25 60 0 11 7 0

DEP

50 7.3 0.035 0.020 0.029 0.031 0.056 0 8 6 0
100 27 0.20 0.08 0.23 0.19 0.26 0 29 20 0
200 116 1.39 0.45 2.13 1.69 1.34 0 125 93 0
500 683 21.0 5.5 36.1 32.8 15.1 0 621 514 0
1000 2984 160 36 183 180 133 0 979 951 0

Table 1: Wall time usage (in seconds) and numbers of convergence failures. The top
half is for the IND dataset and the bottom half is for the DEP dataset. The statistics
for each of the six methods were obtained from 1, 000 independent repeats. DGELS:
LAPACKE dgels routine; Chol: Cholesky decomposition; ICF: iterative complex fac-
torization; GS: Gauss-Seidel method; SOR: successive over-relaxation; CG: conjugate
gradient. “Convergence failures” columns give the numbers of experiments that fail to
converge within 200 iterations for the four iterative methods.

The results are summarized in Table 1. For the IND dataset, three iterative methods
(ICF, GS and SOR) appear on par with each other for smaller p. For p = 1000, ICF
outperforms the other two, and is 10 times faster than the Cholesky decomposition. On
average it took ICF 5 iterations to converge, and ICF never failed to converge in all
experiments. On the other hand, both GS and SOR failed to converge, at least once, for
large p. For the DEP dataset, we note that ICF is the fastest among all the methods
compared. For larger p (p = 500, 1000), ICF is 4–5 times faster than the Cholesky de-
composition, and 5–6 times faster than the other three methods. Both GS and SOR had
difficulty in converging within 200 iterations for large p. DGELS is always the slowest
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since it assumes XtX is unknown and solves (11) by QR decomposition. Advanced
least square solvers (Avron et al., 2010; Meng et al., 2014) have similar performance to
DGELS and can only beat it by a small margin when X is very large. We also tweaked
simulation conditions to check whether the results were stable. For example, we tried
to simulate z under the alternative instead of the null, and to initialize β̂(0) in different
manners, such as using unpenalized linear estimates. The results remained essentially
unchanged under different tweaks.

Figure 1: Comparison of the accuracy using the IND dataset. The three methods com-
pared here are ICF (iterative complex factorization), CG (conjugate gradient), and
SOR (successive over-relaxation). Each panel shows the distributions of the maximum
(entry-wise) absolute error on log10 scale.

Next, we compared the accuracy of different iterative methods, where the truth was
obtained from the Cholesky decomposition. In this experiment we used the IND dataset
and compared for p = 500 and p = 1000. Each method was repeated for 10, 000 ex-
periments. The maximum entry-wise deviation (denoted by d) was obtained for each
method, each experiment, under each simulation condition. Only those converged ex-
periments were included in the comparison. Figure 1 shows the distributions of log10 d
for three methods. Clearly, ICF outperforms CG and SOR by a large margin. (GS is
omitted since its accuracy is poorer than that of SOR in almost every experiment.)
Because in real applications we are oblivious to the truth (or the truth is expensive to
obtain), a method is more desirable if its deviation from the truth is within the pre-
specified precision. Figure 1 shows that ICF always achieves the pre-specified precision
(10−6) while the other two methods do not. Moreover, the deviation of ICF is 2–3 orders
of magnitude smaller than that of SOR, and 3–4 orders of magnitude smaller than that
of the CG method. We repeated the experiments for the DEP dataset and made the
same observations.

Figure 2 compares the number of iterations used to converge for different iterative
methods for large p. ICF takes a few iterations to converge, SOR a dozen iterations,
CG about 50 iterations. More numerical experiments can be found in Supplementary
S2 where we investigated how p and σβ affects convergence rates. We also compared the
performance of the iterative methods when the design matrix X is beyond the counts
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Figure 2: Comparison of the convergence speed using the IND dataset. Each panel shows
the distributions of the number of iterations needed to stop by rule (21).

of reference alleles, such as normal or log-normal distributed (Supplementary S1), and
when X has a different degree of collinearity (Supplementary S2.2). ICF exhibits an
overwhelming advantage in every scenario.

3 ICF dramatically increases the speed of BVSR

3.1 Incorporating ICF into BVSR

As we mentioned in the introduction, for BVSR the most time-consuming step in MCMC
is the computation of (4) for every proposed (γ′, h′) (superscript ′ denotes the proposed
value). To successfully incorporate ICF into BVSR, we need to overcome two hurdles:
avoiding the computation of the determinant term in (4) and efficiently obtaining the
Cholesky decomposition RtR = Xt

γXγ .

Computing matrix determinant has a cubic complexity. If this is not avoided, us-
ing ICF to compute β̂ becomes pointless. When evaluating (4), we need to compute
the determinant |Xt

γXγ +σ−2
β (γ, h)I|, which takes O(|γ|3) operations. Identifying that

the determinant is a normalization constant, avoiding computation of the determinant
becomes a well studied problem in the MCMC literature that deals with the so-called
“doubly-intractable distributions,” i.e. distributions with two nested unknown normal-
ization constants (Møller et al., 2006; Murray et al., 2012). Recall that we want to
sample

P (γ, h | y) ∝ P (y | γ, h)P (γ, h)

∝ |Ω(γ, h)|−1/2 σ
−|γ|
β (γ, h)

(
1−

ytXγΩ
−1(γ, h)Xt

γy

yty − nȳ2

)−n/2

P (γ, h), (22)
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where Ω(γ, h) = Xt
γXγ + σ−2

β (h,γ)I, and it is the computation of |Ω(γ, h)| that we
want to avoid. For a naive Metropolis-Hastings algorithm, if the current state is (γ, h)
and the proposed move is (γ′, h′), we need to evaluate the Hastings ratio

α =
K(γ, h | γ′, h′)

K(γ′, h′ | γ, h)
Z(γ′, h′)

Z(γ, h)

L(y,γ′, h′)

L(y,γ, h)

P (γ′, h′)

P (γ, h)
, (23)

where
Z(γ, h) = |Ω(γ, h)|−1/2σ

−|γ|
β (γ, h),

L(y,γ, h) = (yty − ytXγΩ
−1(γ, h)Xt

γy − nȳ2)−n/2,
(24)

and K(·′ | ·) is the proposal distribution for proposing ·′ from ·. The proposed move
(γ′, h′) is accepted with probability min(1, α), which is called the Metropolis rule. Ap-
parently, both |Ω(γ, h)| and |Ω(γ′, h′)| need to be evaluated in a naive MCMC imple-
mentation.

To avoid computing Z(γ, h), notice that

Z(γ′, h′)

Z(γ, h)
=

P (ỹ | γ′, h′)

P (ỹ | γ, h)
L(ỹ,γ, h)

L(ỹ,γ′, h′)
(25)

holds for all ỹ, and if ỹ is sampled from P (· | γ′, h′), the ratio L(ỹ,γ, h)/L(ỹ,γ′, h′)
becomes a one-sample importance-sampling estimate of Z(γ′, h′)/Z(γ, h). Hence we can
plug in L(ỹ,γ, h)/L(ỹ,γ′, h′) to replace Z(γ′, h′)/Z(γ, h) and compute the Hastings
ratio by

α(γ, h,γ′, h′, ỹ) =
K(γ, h | γ′, h′)

K(γ′, h′ | γ, h)
L(ỹ,γ, h)

L(ỹ,γ′, h′)

L(y,γ′, h′)

L(y,γ, h)

P (γ′, h′)

P (γ, h)
. (26)

This is the exchange algorithm of Murray et al. (2012), which can be viewed as a special
case of the pseudo-marginal method (Andrieu and Roberts, 2009). In the Appendix we
prove that the stationary distribution of this MCMC is the desired posterior distribution
P (γ, h | y). Since the Bayes factor (4) is invariant to the scaling and shifting of y, we
can simply assume μ = 0 and τ = 1 when sampling ỹ.

To tackle the second difficulty, notice that in each MCMC iteration, usually only
one or a few entries of γ are flipped between 0 and 1. Such proposals are often called
“local” proposals, and Markov chains using local proposals usually have high acceptance
ratios, which indicate the chains are “mixing” well (Guan and Krone, 2007). When one
covariate is added into the model, the new Cholesky decomposition, (R′)tR′, can be
obtained from the previous decomposition RtR by a forward substitution. When one
covariate is deleted from the model, we simply delete the corresponding column from
R and introduce new zeros by Givens rotation (Golub and Van Loan, 2012, Chap. 5.1),
which requires ≈ 3k2 flops if the (|γ| − k)-th predictor is removed. We provide a toy
example in Supplementary to demonstrate the update on the Cholesky decomposition.

3.2 Numerical examples

We developed a software package, fastBVSR, to fit the BVSR model by incorporat-
ing ICF and the exchange algorithm into the MCMC procedure. The algorithm is
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Figure 3: Heritability estimates. The left panel is the result of fastBVSR, obtained
using 20, 000 burn-in steps and 100, 000 sampling steps, and the right panel is the result
of GCTA. In each iteration of BVSR, the heritability is estimated by computing the
proportion of explained variance of y using the sampled parameter values. The grey
bars represent 95% credible intervals for fastBVSR and ±2 standard error for GCTA.

summarized in Supplementary S4. The software is written in C++ and available at
http://www.haplotype.org/software.html. In fastBVSR, we also implemented Rao-
Blackwellization, as described in Guan and Stephens (2011), to reduce the variance of
the estimates for γ and β. By default, Rao-Blackwellization is done every 1000 iterations.

To check the performance of fastBVSR, we performed simulation studies based on
a real dataset described in Yang et al. (2010) (henceforth the Height dataset). The
Height dataset contains 3, 925 subjects and 294, 831 common SNPs (minor allele fre-
quency ≥ 5%) after routine quality control (c.f. Xu and Guan, 2014). We sampled
10, 000 SNPs across the genome to perform simulation studies. Our aim was to check
whether fastBVSR can reliably estimate the heritability in the simulated phenotypes.
To simulate phenotypes of different heritability, we randomly selected 200 causal SNPs
(out of 10, 000) to obtain γ. For each selected SNP we drew its effect size from the
standard normal distribution to obtain βγ (the subvector of β that contains nonzero
entries). Then we simulated the standard normal error term to obtain ε, and scaled the
simulated effect sizes simultaneously using λ such that y = λXγβγ + ε and the heri-
tability, 1 − Var(ε)/Var(y), was h (taking values in 0.01, 0.02, . . . , 0.99). This was the
same procedure as that of Guan and Stephens (2011). For each simulated phenotype, we
ran fastBVSR to obtain the posterior estimate of heritability. We compared fastBVSR
with GCTA (Yang et al., 2011), which is a software package to estimate heritability and
do prediction using the linear mixed model. For heritability estimation, GCTA has been
shown to be unbiased and accurate in a wide range of settings (Yang et al., 2010; Lee
et al., 2011). The result is shown in Figure 3. Both fastBVSR and GCTA can estimate
the heritability accurately; the mean absolute error is 0.014 for fastBVSR and 0.029 for

http://www.haplotype.org/software.html
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Figure 4: Relative prediction gain (RPG) of fastBVSR and GCTA. BVSR stands for the
RPG of the crude posterior mean estimates from fastBVSR; BVSR-RB represents the
RPG of the Rao-Blackwellized estimates from fastBVSR; for GCTA, RPG is computed
using the BLUPs (best linear unbiased predictors) from linear mixed model.

GCTA. Noticeably, fastBVSR has a smaller variance but a slight bias when the true
heritability is large.

Next we compare the predictive performance of fastBVSR and GCTA. We first define
the mean squared error as a function of β̂,

MSE(β̂) =
1

n
||Xβ −Xβ̂||22.

Then following Guan and Stephens (2011) we define relative prediction gain (RPG) to

measure the predictive performance of β̂

RPG =
MSE(0)−MSE(β̂)

MSE(0)−MSE(β)
.

The advantage of RPG is that the scaling of y does not contribute to RPG so that
simulations with different heritability can be compared fairly. Clearly when β̂ = β,
RPG = 1; when β̂ = 0, RPG = 0. Figure 4 shows that fastBVSR has much better pre-
dictive performance than GCTA, which reflects the advantage of BVSR over the linear
mixed model. This advantage owes to the model averaging used in BVSR (Raftery et al.,
1997; Broman and Speed, 2002). Besides, note that BVSR with Rao-Blackwellization
performs slightly better than BVSR alone.

Lastly we check the calibration of the posterior inclusion probability (PIP), P (γj =
1 | y). We pool the results of the 99 simulation sets with different heritability (from
0.01 to 0.99 at increment of 0.01). In each set there are 10, 000 estimated PIPs, one
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Figure 5: Calibration of the posterior inclusion probability (PIP). In the left panel PIP
is estimated directly from MCMC samples, and in the right panel PIP is estimated using
Rao-Blackwellization to reduce variance. All the PIP estimates are pooled into 20 bins
(see the main text for details). X-axis denotes the mean PIP of each bin and the Y-axis
denotes the fraction of true positives in each bin. The grey bars represent ±2 standard
error of the estimated proportion of true positives in each bin. The grey line is y = x.

for each SNP, and in total there are 990, 000 PIP estimates. We group these PIPs into
20 bins, [0.05 × (i − 1), 0.05 × i) for i = 1, . . . , 20, and for each bin we compute the
fraction of true positives. If the PIP estimates are well calibrated, we expect that in
each bin, the average of the PIPs roughly equals the fraction of true positives. Figure 5
shows that the PIP estimated by BVSR is conservative, which agrees with the previous
study (Guan and Stephens, 2011), and the PIP estimated by Rao-Blackwellization is
well cablibrated.

3.3 Analysis of real GWAS datasets

We applied fastBVSR to analyze GWAS datasets concerning intraocular pressure (IOP).
We applied and downloaded two GWAS datasets from the database of Genotypes and
Phenotypes (dbGaP), one for glaucoma (dbGaP accession number: phs000238.v1.p1)
and the other for intraocular hypertension (dbGaP accession number: phs000240.v1.p1).
The combined dataset contains 301, 143 autosomal SNPs and 3, 226 subjects, and was
used previously by Zhou and Guan (2017) to examine the relationship between p-values
and Bayes factors.

We conducted five independent runs with different random seeds. The sparsity pa-
rameters for BVSR were set as πmin = 0.0001 and πmax = 0.01, which reflected a prior
of 30–3000 marginally associated SNPs. The posterior mean model size in each run
ranges from 430 to 622 (Table 2). The average number of iterations for ICF to converge
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is 7.3 (95% interval = [4, 13]), which suggests that ICF is effective in analyzing real
datasets. The speed improvement of fastBVSR over piMASS (a BVSR implementation
that uses the Cholesky decomposition to fit Bayesian linear regression, a companion
software package of Guan and Stephens (2011)) is dramatic: with model size around
500 and more than 3000 individuals, fastBVSR took 14 hours to run 2.1 million MCMC
iterations, compared to more than 1000 hours used by piMASS on problems of matching
size. Out of concern for the cumulative error in obtaining the matrix R by updating
the Cholesky decomposition (detailed in Section 3.1), we compared every 1000 steps the
updated Cholesky decomposition with the directly computed Cholesky decomposition,
and results suggested that the entry-wise difference was absolutely negligible.

We examine the inference of the hyperparameters, namely, the narrow-sense heri-
tability h, the model size |γ|, and the sparsity parameter π. Table 2 shows the inferences
of the three parameters are more or less consistent across five independent runs, and
thus we combine the results from five independent runs in the following discussion.
The posterior mean for h is 0.28 with 95% credible interval (0.1, 0.44). This estimate
of the heritability is smaller than those reported in the literature: 0.62 from a twin
study (Carbonaro et al., 2008), 0.29 from a sibling study (Chang et al., 2005), and 0.35
from an extended pedigree study (van Koolwijk et al., 2007). For comparison, using
the same dataset, the heritability estimated by GCTA is 0.47 with standard error 0.11.
The underestimation of h using fastBVSR is perhaps due to over-shrinking of the effect
sizes (the posterior mean of prior effect size σβ is 0.048). The posterior mean for π is
0.0016, which suggests that IOP is a very much polygenic phenotype, agreeing with the
complex etiology of glaucoma (Weinreb et al., 2014), to which high IOP is a precursor
phenotype.

Combined Run1 Run2 Run3 Run4 Run5
h 0.28 0.27 0.26 0.32 0.28 0.26
|γ| 474 446 395 622 476 430
π 0.0016 0.0015 0.0013 0.0021 0.0016 0.0014

Table 2: Posterior mean estimates for the hyperparameters: heritability h, model size
|γ|, and sparsity parameter π. In each MCMC iteration, heritability is re-estimated by
computing the proportion of explained variance of y using the sampled parameters. The
first column gives the combined results from the five independent runs; each run has
2.1 million MCMC steps, including 0.1 million burn-in steps.

Lastly, we examine the top marginal signals detected by fastBVSR. Table 3 lists
top 11 SNPs based on PIP inferred from fastBVSR, at an arbitrary PIP threshold
of 0.25. Table 3 also includes PPA (posterior probability of association) based on the
single SNP test for two choices of prior effect sizes: σβ = 0.05 which is the posterior
mean of σβ inferred from fastBVSR and σβ = 0.5 which is a popular choice for single
SNP analysis. We use the posterior mean π = 0.0016 inferred from fastBVSR as the
prior odds of association. Multiplying a Bayes factor and the prior odds we obtain the
posterior odds, from which we obtain the PPA = (posterior odds)/(1+posterior odds).
First the two columns of PPAs are highly similar in both ranking and magnitude.
This observation agrees with our experience and theoretical studies (Zhou and Guan,
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2017) that modest prior effect sizes produce similar evidence for association. Second,
PPA and PIP have significantly different rankings (Wilcox rank test p-value = 0.025).
There are two related explanations for this observation: if two SNPs are correlated,
the PIPs tend to split between the two; conditioning on the other associated SNPs,
the marginal associations tend to change significantly. Three known GWAS signals,
rs12150284, rs2025751, rs7518099/rs4656461, which were replicated in our previous
single-SNP analysis (Zhou and Guan, 2017), all show appreciable PIPs. Moreover, we
note a potential novel association first reported in Zhou and Guan (2017): two SNPs
located in PEX14, rs12120962, rs12127400, have PIPs of 0.57 and 0.27 respectively.

SNP Chr Pos (Mb) PPAσβ=0.5 PPAσβ=0.05 PIPBVSR

rs12120962 1 10.53 0.85 0.84 0.57
rs12127400 1 10.54 0.74 0.74 0.27
rs4656461 1 163.95 1.0 0.96 0.36
rs7518099 1 164.00 1.0 0.98 0.42
rs7645716 3 46.31 0.62 0.56 0.35
rs2025751 6 51.73 0.81 0.82 0.68
rs10757601 9 26.18 0.47 0.55 0.31
rs9783190 10 106.76 0.39 0.31 0.32
rs1381143 12 86.76 0.27 0.37 0.31
rs4984577 15 93.76 0.43 0.49 0.42
rs12150284 17 9.97 0.99 0.97 0.92

Table 3: SNPs with (Rao-Blackwellized) PIP > 0.25. Chr is short for chromosome, and
Pos is short for position, which is measured in mega-basepair (Mb) according to HG18.
PPA stands for the posterior inclusion probability. Computing PPA requires the Bayes
factor and the prior odds. For prior odds we use 0.0016, which is the posterior mean
of π inferred from fastBVSR. Bayes factors are computed using two priors effect sizes
(σβ = 0.05, 0.5). SNPs that are mentioned in the main text are highlighted in bold.

4 Discussion

We developed a novel algorithm, iterative complex factorization, to solve a class of
penalized linear systems, proved its convergence, and demonstrated its effectiveness
and efficiency through simulation studies. The novel algorithm can dramatically in-
crease the speed of BVSR, which we demonstrated by analyzing a real dataset. In
our simulation studies we only considered n > p (in BVSR p = |γ| is the size of the
selected model). When n ≤ p, the ICF can be implemented with the dual variable
method of Saunders et al. (1998) (see also Lu et al., 2013), which hinges on the identity
(Xt

γXγ + σ−2
β I)−1Xt

γy = Xt
γ(XγX

t
γ + σ−2

β I)−1y.

One limitation of ICF is that it requires the Cholesky decomposition to obtain the
effective complex factorization. Nevertheless, ICF still has a range of potential appli-
cations. The general ridge regression (Draper and Van Nostrand, 1979) is an obvious
one, and here we point out two other examples. The first is the Bayesian sparse linear
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mixed model (BSLMM) of Zhou et al. (2013), which can be viewed as a generalization
of BVSR. BSLMM has two components, one is the linear component that corresponds
to Xγ and the other is the random effect component. The linear component requires
one to solve a system that is similar to (11) (Text S2 Zhou et al., 2013); therefore ICF
can be applied to BSLMM to make it more efficient. Another example of ICF applica-
tion is using the variational method to fit the BVSR (Carbonetto and Stephens, 2012;
Huang et al., 2016). In particular, Huang et al. (2016) estimated (γ,β) using an itera-
tive method. In each iteration, the posterior mean for β is updated by solving a linear
system that has the same form as (11), where the dimension is equal to the number
of covariates with nonzero PIP estimates, and the diagonal matrix Σ depends on the
PIP estimates. Applying ICF to the variational method might be more beneficial than
applying it to BVSR because the dimension of the linear system is exceedingly larger
in the variational method.

The iterative complex factorization method converges almost instantaneously, and
it is far more accurate than other iterative algorithms such as the Gauss-Seidel method.
Why does it converge so fast and at the same time so accurate? Our intuition is that
the imaginary part of the update in (15), which involves the skew-symmetric matrix
S = RtΣ − ΣR, whose Youla decomposition (Youla, 1961) suggests that it rotates

β̂(k), scales and flips its coordinates and rotates back, and which then appends itself to
be the imaginary part of z, provides a “worm hole” through the imaginary dimension
in an otherwise purely real, unimaginary, solution path. Understanding how this works
mathematically will have a far-reaching effect on Bayesian statistics, statistical genetics,
machine learning, and computational biology.

Finally, we hope our new software fastBVSR, which is 10–100 times faster than
the previous implementation of BVSR, will facilitate the wide-spread use of BVSR in
analyzing or reanalyzing datasets from genome-wide association (GWA) and expression
quantitative trait loci (eQTL) studies.

Supplementary Material

Fast model-fitting of Bayesian variable selection regression using the iterative com-
plex factorization algorithm (Supplementary) (DOI: 10.1214/18-BA1120SUPP; .pdf).
The online appendix includes additional numerical studies (S1–S3), a summary of the
MCMC algorithm (S4), examples for updating the Cholesky decomposition (S5) and a
proof for the stationary distribution of the exchange algorithm (S6). S1 compares the
performance of the iterative methods using simulated datasets; S2 studies the behavior
of the convergence rates of the iterative methods; S3 provides numerical evidence for
the assumption η2min ≈ 0 used in Section 2.3.
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