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Constrained Bayesian Optimization with Noisy
Experiments

Benjamin Letham*, Brian Karrer!, Guilherme Ottonit, and Eytan Bakshy?

Abstract. Randomized experiments are the gold standard for evaluating the ef-
fects of changes to real-world systems. Data in these tests may be difficult to collect
and outcomes may have high variance, resulting in potentially large measurement
error. Bayesian optimization is a promising technique for efficiently optimizing
multiple continuous parameters, but existing approaches degrade in performance
when the noise level is high, limiting its applicability to many randomized exper-
iments. We derive an expression for expected improvement under greedy batch
optimization with noisy observations and noisy constraints, and develop a quasi-
Monte Carlo approximation that allows it to be efficiently optimized. Simulations
with synthetic functions show that optimization performance on noisy, constrained
problems outperforms existing methods. We further demonstrate the effectiveness
of the method with two real-world experiments conducted at Facebook: optimizing
a ranking system, and optimizing server compiler flags.

Keywords: Bayesian optimization, randomized experiments, quasi-Monte Carlo
methods.

1 Introduction

Many policies and systems found in Internet services, medicine, economics, and other
settings have continuous parameters that affect outcomes of interest that can only be
measured via randomized experiments. These design parameters often have complex
interactions that make it impossible to know a priori how they should be set to achieve
the best outcome. Randomized experiments, commonly referred to as A/B tests in the
Internet industry, provide a mechanism for directly measuring the outcomes of any given
set of parameters, but they are typically time consuming and utilize a limited resource of
available samples. As a result, many systems used in practice involve various constants
that have been chosen with a limited amount of manual tuning.

Bayesian optimization is a powerful tool for solving black-box global optimization
problems with computationally expensive function evaluations (Jones et al., 1998). Most
commonly, this process begins by evaluating a small number of randomly selected func-
tion values, and fitting a Gaussian process (GP) regression model to the results. The
GP posterior provides an estimate of the function value at each point, as well as the
uncertainty in that estimate. We then choose a new point at which to evaluate the
function by balancing exploration (high uncertainty) and exploitation (best estimated
function value). This is done by optimizing an acquisition function, which encodes the
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value of potential points in the optimization and defines the balance between exploration
and exploitation. A common choice for the acquisition function is expected improvement
(EI), which measures the expected value of the improvement at each point over the best
observed point. Optimization then continues sequentially, at each iteration updating
the model to include all past observations.

Bayesian optimization has recently become an important tool for optimizing ma-
chine learning hyperparameters (Snoek et al., 2012), where in each iteration a machine
learning model is fit to data and prediction quality is observed. Our work is motivated by
a need to develop robust algorithms for optimizing via randomized experiments. There
are three aspects of A/B tests that differ from the usual hyperparameter optimization
paradigm. First, there are typically high noise levels when measuring performance of sys-
tems. Extensions of Bayesian optimization to handle noisy observations use heuristics to
simplify the acquisition function that can perform poorly with high noise levels. Second,
there are almost always trade-offs involved in optimizing real systems: improving the
quality of images may result in increased data usage; increasing cache sizes may improve
the speed of a mobile application, but decrease reliability on some devices. Practitioners
have stressed the importance of considering multiple outcomes (Deng and Shi, 2016),
and noisy constraints must be incorporated into the optimization. Finally, it is often
straightforward to run multiple A/B tests in parallel, with limited wall time in which
to complete the optimization. Methods for batch optimization have been developed in
the noiseless case; here we unify the approach for handling noise and batches.

This work is related to policy optimization (Athey and Wager, 2017), which seeks
to learn an optimal mapping from context to action. When the action space is discrete
this is the classic contextual bandit problem (Dudik et al., 2014), but with a contin-
uous action space it can be solved using Bayesian optimization. For example, there
are many continuous parameters involved in encoding a video for upload and the most
appropriate settings depend on the Internet connection speed of the device. We can
use Bayesian optimization to learn a policy that maps connection speed to encoding
parameters by including connection speed in the model feature space. Related policy
optimization problems can be found in medicine (Zhao et al., 2012) and reinforcement
learning (Wilson et al., 2014; Marco et al., 2017).

Most work in Bayesian optimization does not handle noise in a Bayesian way. We
derive a Bayesian expected improvement under noisy observations and noisy constraints
that avoids simplifying heuristics by directly integrating over the posterior of the acqui-
sition function. We show that this can be efficiently optimized via a quasi-Monte Carlo
approximation. We have used this method at Facebook to run dozens of optimizations
via randomized experiments, and here demonstrate the applicability of Bayesian opti-
mization to A/B testing with two such examples: experiments to tune a ranking system,
and optimizing server compiler settings.

2 Prior work on expected improvement

The EI acquisition function was introduced by Jones et al. (1998) for efficient opti-
mization of computationally expensive black-box functions. They considered an un-
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constrained problem miny f(x) with noiseless function evaluations. Given data Dy =
{xi, f(x:)}7—,, we first use GP regression to estimate f. Let g(x|Dy) be the GP poste-
rior at x and f* = min; f(x;) the current best observation. The EI of a candidate x is
the expectation of its improvement over f*:

apr(x[f*) = E[max (0, f* —y)|y ~ g(x[Dy)].

The GP posterior g(x|Dy) is normally distributed with known mean p(x) and variance
0? (x), so this expectation has an elegant closed form in terms of the Gaussian density
and distribution functions:

[ = np(x)

api(x|f*) = o7(x)2®(2) + 07(x)¢p(2), where z =
(%)

: (1)
This function is easy to implement, easy to optimize, has strong theoretical guarantees
(Bull, 2011), and performs well in practice (Snoek et al., 2012).

2.1 Noisy observations

Suppose that we do not observe f(x;), rather we observe y; = f(x;) + €;, where ¢; is
the observation noise, for the purposes of GP regression assumed to be ¢; ~ N(0,72).
Given noisy observations with uncertainty estimates Dy = {x;, y;, 7 }1—1, GP regression
proceeds similarly to the noiseless case and we obtain the GP posterior g(x|Dy).

Computing EI with observation noise is challenging because we no longer know
the function value of the current best point, f*. Gramacy and Lee (2011) recognize
this problem and propose replacing f* in (1) with the GP mean estimate of the best
function value: g* = miny p¢(x). This strategy is referred to as a “plug-in” by Picheny
et al. (2013a). With this substitution, EI can be computed and optimized in a similar
way as in the noiseless case.

Measuring EI relative to the GP mean can be a reasonable heuristic, but when noise
levels are high it can underperform. Vazquez et al. (2008) show that EI relative to the
GP mean suffers from slow convergence to the optimum. Empirically, we found in our
experiments that EI relative to the GP mean can often produce clustering of candidates
and fail to sufficiently explore the space. This behavior is illustrated in Figure S7 in the
supplement (Letham et al., 2018).

Huang et al. (2006) handle this issue by defining an augmented EI which adds a
heuristic multiplier to EI to increase the value of points with high predictive variance.
EI is measured relative to the GP mean of the point with the best quantile, which they
call the “effective best solution.” The multiplier helps to avoid over-exploitation but is
not derived from any particular utility function and is primarily justified by empirical
performance. Picheny et al. (2010, 2013a) substitute a quantile in the place of the mean
for the current best, and then directly optimize expected improvement of that quantile.
Quantile EI also has an analytic expression and so can be easily maximized, in their
application for multi-fidelity optimization with a budget.
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Picheny et al. (2013b) show the performance of a large collection of acquisition
functions on benchmark problems with noise. The methods that generally performed
the best were the augmented EI and the knowledge gradient, which is described in
Section 2.4.

2.2 Constraints

Schonlau et al. (1998) extend EI to solve noiseless constrained optimization problems
of the form
min f(x) subject to ¢;j(x) <0, j=1,...,J,
X

where the constraint functions c;(x) are also black-box functions that are observed
together with f. As with f, we give each ¢; a GP prior and denote its posterior mean
and variance as fi.,;(x) and Ufj (x). Let f* be the value of the best feasible observation.
Schonlau et al. (1998) define the improvement of a candidate x over f¥ to be 0 if x is
infeasible, and otherwise to be the usual improvement. Assuming independence between
f and each ¢; given x, the expected improvement with constraints is then

J
apio(X|f7) = ani(x|£7) H P(c;(x) <0). (2)

As with unconstrained EI, this quantity is easy to optimize and works well in practice
(Gardner et al., 2014).

When the observations of the constraint functions are noisy, a similar challenge arises
as with noisy observations of f: We may not know which observations are feasible, and so
cannot compute the best feasible value f¥. Gelbart et al. (2014) propose using the best
GP mean value that satisfies each constraint ¢;(x) with probability at least 1 —4;, for a
user-specified threshold §; (0.05 in their experiments). If there is no x that satisfies the
constraints with the required probability, then they select the candidate that maximizes
the probability of feasibility, regardless of the objective value. In a high-noise setting,
this heuristic for setting f can be exploitative because it gives high EI for replicating
points with good objective values until their probability of feasibility is driven above
1-4;.

The alternative versions of EI designed for noisy observations, described in Sec-
tion 2.1, have not been adapted to handle constraints. Augmented EI and quantile EI,
for example, require nontrivial changes to handle noisy constraints. The strategy for
selecting the best observation would need to be changed to consider uncertain feasibil-
ity, and the multiplier for augmented EI would need to somehow take into account the
predictive variance of the constraints.

Gramacy et al. (2016) describe a different approach for handling constraints in which
the constraints are brought into the objective via a Lagrangian. EI is no longer analytic,
but can be evaluated numerically with Monte Carlo integration over the posterior, or
after reparameterization via quadrature (Picheny et al., 2016). The integration over the
posterior naturally handles observation noise, and the same heuristics for selecting a
best-feasible point can be used.
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2.3 Batch optimization

EI can be used for batch or asynchronous optimization by iteratively maximizing EI
integrated over pending outcomes (Ginsbourger et al., 2011). Let x4, ..., x> be m can-
didates whose observations are pending, and f* = [f(x%),..., f(x?,)] the corresponding
unobserved outcomes at those points. Candidate m + 1 is chosen as the point that
maximizes

owm(x(1*) = [ ol min 7, £)p(ED; " 3)

Because of the GP prior on f, the conditional posterior £*|D + has a multivariate normal
distribution with known mean and covariance matrix. The integral in (3) does not
have an analytic expression, but we can sample from p(f°|D;) and so can use a Monte
Carlo approximation of the integral. Snoek et al. (2012) describe this approach to batch
optimization, and show that despite the Monte Carlo integration it is efficient enough to
be practically useful for optimizing machine learning hyperparameters. This approach
has not previously been studied in a noisy setting.

Taddy et al. (2009) handle noise in batch optimization of EI by integrating over
samples from the multi-point EI posterior (implemented in Gramacy and Taddy, 2010).
To maintain tractability, their approach is limited to evaluating EI on a discrete set of
points. Here we take a similar approach and integrate over the EI posterior, but use the
iterative approach in (3) to allow optimizing the integrated EI over a continuous space.

2.4 Alternative acquisition functions

There are several other acquisition functions that handle noise more naturally than EI.
One class of methods are information-based and seek to reduce uncertainty in the loca-
tion of the optimizer. These methods include TAGO (Villemonteix et al., 2009), entropy
search (Hennig and Schuler, 2012), and predictive entropy search (PES) (Herndndez-
Lobato et al., 2014). PES has been extended to predictive entropy search with con-
straints (PESC) (Herndndez-Lobato et al., 2015) and to batch optimization (Shah and
Ghahramani, 2015). Although the principle behind PES is straightforward (select the
point that most reduces predictive entropy of the location of the minimizer), the quan-
tities that must be calculated are intractable and a collection of difficult-to-implement
approximations must be used.

Another acquisition function that naturally handles noise is the knowledge gradi-
ent (Scott et al., 2011). Knowledge gradient has been extended to batch optimization
(Wu and Frazier, 2016; Wang et al., 2016), but has not been extended to constrained
problems. Optimizing the knowledge gradient repeatedly is the myopic one-step optimal
policy, and each optimization selects the point that will be most useful in expectation if
the next decision is to select the best point. Constraints cannot be simply added to the
knowledge gradient without losing the tractability of this expectation, and the construc-
tion of a knowledge gradient suitable for noisy constraints would involve a substantial
update to the implicit procedure for selecting the best point.

Recently the classic Thompson sampling algorithm (Thompson, 1933) has been ap-
plied to GP Bayesian optimization (Herndndez-Lobato et al., 2017; Kandasamy et al.,
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2018). This approach optimizes the objective on individual draws from the GP posterior
to provide highly parallel optimization.

2.5 Selecting the best point after Bayesian optimization

The final step of Bayesian optimization, referred to as the identification step by Jalali
et al. (2017), is to decide which evaluated point is best. Without noise this step is
trivial, but with noise a difficult decision must be made. For noisy objectives without
constraints, typical strategies are to choose the point with the best GP mean or the
best quantile (Jalali et al., 2017).

For A/B tests where the choice of best point can have longstanding effects, teams
often prefer to manually select the best point according to their understanding of the
trade-offs between constraints, objectives, and uncertainty.

For closed-loop optimization or other settings where a rigid criterion is required, one
approach is to select the point that has the largest expected reduction in objective over
a known baseline B, which could be the objective achieved by a worst-case (i.e. largest)
feasible objective value. This is the point maximizing

(B = 1y [[ Ples ) < 0) (@

over the evaluated points. Another approach is to select the point that has the smallest
posterior mean objective that meets all constraints, or each constraint, with probability
1 — 6 for a given § (Gelbart et al., 2014). In our experiments we show results for both
of these strategies.

3 Utility maximization and El with noise

El is the strategy that myopically maximizes a particular utility function. By considering
that utility function in the case of noisy observations and constraints we can derive an
appropriate form of EI without heuristics, and will see that it extends immediately to
handle asynchronous optimization. The result will be an integral similar to that of (3),
but in Section 4 we develop a more efficient estimate than has previously been used for
batch optimization.

3.1 Infeasibility in the noiseless setting

We build up from the noiseless case, where both objective and constraints are observed
exactly. We begin by defining a utility function that gives the utility after n iterations of
optimization. To correctly deal with noisy constraints later, we must explicitly consider
the case where no observations are feasible. Let S = {7 : ¢;(x;) < 0 Vj} be the set of
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feasible observations. The utility function is

w(n) = {minies f(x)) if[S] >0,

—-M otherwise.

Here M is a penalty for not having a feasible solution.® As before, f7 is the objective
value of the best feasible point after n iterations. We only gain utility from points that
we have observed, inasmuch as we would typically not consider launching an unobserved
configuration. Note that this is the utility implied by the constrained EI formulations
of Schonlau et al. (1998) and Gardner et al. (2014). The improvement in utility from
iteration n to iteration n 4 1 is

I(xp41) =u(n+1) —u(n)
0 Xn41 infeasible,
=4 M — f(xn11) Xn41 feasible, S, = &,
max (0, f¥ — f(Xn+1)) Xn1 feasible,|S,| > 0.

We choose x,,11 to maximize the expected improvement under the posterior distribu-
tions of f(x) and ¢;(x). For convenience, let f* = [f(x1),..., f(x,)] be the objective
values at the observations, ¢ = [c;(x1), ..., ¢j(xn)] the values for each constraint, and
c¢” = [c},...,c] all constraint observations. In the noiseless setting, f” and c” are

known, the best feasible value f) can be computed, and the EI with infeasibility is
aEIx(X|fn7 Cn) = Ef(x),cl(x),...,CJ(x) [I(X)|fna cn]
* . cj (x)
a2 T @ (—520) 1Sl >0,
(M — p(x)) T, <I>( £ (x)) otherwise.

j=1 - oc; (x)

(5)

This extends the constrained EI of (2) to explicitly handle the case where there are
no feasible observations. Without a feasible best, this acquisition function balances the
expected objective value with the probability of feasibility, according to the penalty
M. As M gets large, it approaches the strategy of Gelbart et al. (2014) and maximizes
the probability of feasibility. For finite M, however, given two points with the same
probability of being feasible, this acquisition function will choose the one with the
better objective value.

3.2 Noisy EI

We now extend the expectation in (5) to noisy observations and noisy constraints. This
is done exactly by iterating the expectation over the posterior distributions of f* and
c” given their noisy observations. Let D., be the noisy observations of the constraint

I This penalty should be high enough that we prefer finding a feasible solution to not having a feasible
solution. This can be achieved by setting M greater than the largest GP estimate for the objective in
the design space. The value is only important in settings where there are no feasible observations; see
the supplement for further discussion on sensitivity.
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functions, potentially with heteroscedastic noise. Then, by their GP priors and assumed
independence,

"Dy ~ Npg, 3p),
D ~ Nt Be,) G =1,...,.

These are the GP posteriors for the true (noiseless) values of the objective and con-
straints at the observed points. The means and covariance matrices of these posterior
distributions have closed forms in terms of the GP kernel function and the observed
data (Rasmussen and Williams, 2006). Let D = {Dy, D, , ..., D, } denote the full set
of data. Noisy expected improvement (NEI) is then:

J
anel(x|D) = //ozEIx x|f", c")p(f"|Dy) H c}|De,)dc"df". (6)

This acquisition function does not have an analytic expression, but we will show in the
next section that both it and its gradient can be efficiently estimated, and so it can be
optimized.

This approach extends directly to allow for batch or asynchronous optimization with
noise and constraints following the approach of Section 2.3. The objective values at the
observed points, f”, and at the earlier points in the batch, f°, are jointly normally
distributed with known mean and covariance. The integral in (6) is over the true values
of all previously sampled points. For batch optimization, we simply extend that integral
to be over both the previously sampled points and over any pending observations.
Replacing f" in (6) with [f",f’] and making the corresponding replacement for c"
yields the formula for batch optimization.

Without observation noise, NEI is exactly EI. Like EI in the noiseless setting, NEI
is always 0 at points that have already been observed and so will never replicate points.
Replication can generally be valuable for reducing uncertainty at a possibly-good point,
although with the GP we can reduce uncertainty at a point by sampling points in
its neighborhood. NEI will typically sample many points near the optimum to reduce
uncertainty at the optimum without having to replicate. This behavior is illustrated in
Figure S7 in the supplement, which shows the NEI candidates from an optimization run
of Section 5.2.

4 Efficient quasi-Monte Carlo integration of noisy El

For batch optimization in the noiseless unconstrained case, the integral in (3) is esti-
mated with Monte Carlo (MC) sampling. The dimensionality of that integral equals
the number of pending observations. The dimensionality of the NEI integral in (6)
is the total number of observations, both pending and completed. We benefit from a
more efficient integral approximation, for which we turn to quasi-Monte Carlo (QMC)
methods.
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QMC methods provide an efficient approximation of high-dimensional integrals on
the unit cube as a sum of function evaluations:

LN

u)du ~ — tr).

[, S 3 st

k=1

When t;, are chosen from a uniform distribution on [0, 1]¢, this is MC integration. The
Central Limit Theorem provides a convergence rate of O(1/v/N) (Caflisch, 1998). QMC
methods provide faster convergence and lower error by using a better choice of tj. For the
purposes of integration, random samples can be wasteful because they tend to clump; a
point that is very close to another provides little additional information about a smooth
f. QMC methods replace random samples for t; with a deterministic sequence that is
constructed to be low-discrepancy, or space-filling. There are a variety of such sequences,
and here we use Sobol sequences (Owen, 1998). Theoretically, QMC methods achieve
a convergence rate of O((log N)?/N), and typically achieve much faster convergence
in practice (Dick et al., 2013). The main theoretical result for QMC integration is the
Koksma-Hlawka theorem, which provides a deterministic bound on the integration error
in terms of the smoothness of f and the discrepancy of t; (Caflisch, 1998).

To use QMC integration to estimate the NEI in (6), we must transform that integral
to the unit cube.

Proposition 1 (Dick et al., 2013). Let p(x|u,X) be the multivariate normal density
function and choose A such that ¥ = AAT. Then,

/ fy)r(ylp, E)dyz/ F(A®(u) + p)du.
R4 [0,1]¢

The matrix A can be the Cholesky decomposition of 3. We now apply this result to
the NEI integral in (6).

Proposition 2. Let ¥ = diag(¥y,%,,...,%5c,) and pp = [pp, pe, s -5 e,]. Choose A
such that ¥ = AAT and let

[ e

with £"(u) € R and ¢"(u) € R’™. Then,

anpi(x|D) = / ap(x[f" (), ¢ (u))du.

[071]7L(J+1)

QMC methods thus provide an estimate for the NEI integral according to
1 .
ang1(x|D) =~ N ; apr(x[£" (tk), €™ (tr)). (7)

The transform A®~!(u)+p is the typical way that multivariate normal random samples
are generated from uniform random samples u (Gentle, 2009). Thus when each tj is
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Figure 1: (Left) Multivariate normal random samples. (Right) Space-filling quasirandom
multivariate normal samples.

chosen uniformly at random, this corresponds exactly to Monte Carlo integration using
draws from the GP posterior. Using a quasirandom sequence {t1, ..., tx} provides faster
convergence, and so reduces the number of samples N required for optimization.

As an illustration, Figure 1 shows random draws from a multivariate normal along-
side quasirandom “draws” from the same distribution, generated by applying the trans-
form of Proposition 1 to a scrambled Sobol sequence. The quasirandom samples have
better coverage of the distribution and will provide lower integration error.

The algorithm for computing NEI is summarized in Algorithm 1. In essence, we draw
QMC samples from the posteriors for the true values of the noisy observations, and
for each sampled “true” value, we compute noiseless EI using (5). The computationally
intensive steps in Algorithm 1 are kernel inference in line 1 and constructing the noiseless
GP models in line 8. For the noiseless GP models we reuse the kernel hyperparameters
from line 1, but must still invert each of their covariance matrices. Lines 1-8 (the QMC
sampling and constructing the noiseless models for each sample) are independent of the
candidate x. In practice, we do these steps once at the beginning of the optimization and
cache the models. When we wish to evaluate the expected improvement at any point x
during the optimization, we evaluate the GP posteriors at x for each of these cached
models and compute EI (lines 10-13). This allows NEI to be quickly computed and
optimized. For asynchronous or batch optimization, the posteriors in line 2 are those of
both completed and pending observations, and all other steps remain the same. Note
that line 3 utilizes the assumed independence of the objective and constraint values
from line 2, but the algorithm could utilize a full covariance matrix across functions if
available.

The gradient of agx can be computed analytically, and so the gradient of (7) is
available analytically and NEI can be optimized with standard nonlinear optimization
methods. Besides the increased dimensionality of the integral, it is no harder to optimize
(7) than it is to optimize (3), which has been shown to be efficient enough for practical
use. Optimizing (3) for batch EI requires sampling from the GP posterior and fitting
conditional models for each sample just as in Algorithm 1. We now show that the QMC
integration allows us to handle the increased dimensionality of the integral and makes
NEI practically useful.
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Algorithm 1: Noisy EI with QMC integration
Data: Noisy objective and constraint observations D, candidate x.
Result: Expected improvement at x.

1 Infer GP kernel hyperparameters for objective and constraints, from D.

2 Compute GP posteriors for the objective and constraint values at the
observations:

£'Dy ~ Ny, Zy),
M Dey ~ N1t Be)) G =1, ]

3 Construct ¥ = diag(Xys, X¢,, .-+, Xe,) and po = [py, phe, s K, -

4 Compute the Cholesky decomposition 3 = AAT.

5 Generate a quasi-random sequence tq,...,ty.

6 fori=1,...,N do

7 Draw quasi-random samples from the GP posterior for the values at the

observations: B

[fl’] = A1 (t;) + p.
Ci

8 Construct a GP model M; with noiseless observations f; and c;.

9 Initialize angr = 0.

10 fori=1,...,N do

11 Compute the posterior at x under model M;.

12 Use this GP posterior to compute EI as in the noiseless setting, agr, in (5).

13 | Increment angr = angr + %aEIX.

14 return aygr

5 Synthetic problems

We use synthetic problems to provide a rigorous study of two aspects of our method. In
Section 5.1 we compare the performance of QMC integration to the MC approach used
to estimate (3). We show that QMC integration allows the use of many fewer samples
to achieve the same integration error and optimization performance, thus allowing us to
efficiently optimize NEI. In Section 5.2 we compare the optimization performance of NEI
to that of several baseline approaches, and show that NEI significantly outperformed
the other methods.

We used four synthetic problems for our study. The equations and visualizations
for each problem are given in the supplement. The first problem comes from Gramacy
et al. (2016), and has two parameters and two constraints. The second is a constrained
version of the Hartmann 6 problem with six parameters and one constraint, as in Jalali
et al. (2017). The third problem is a constrained Branin problem used by Gelbart
et al. (2014) and the fourth is a problem given by Gardner et al. (2014); these both
have two parameters and one constraint. We simulated noisy objective and constraint
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observations by adding normally distributed noise to evaluations of the objective and
constraints. Noise variances for each problem are given in the supplement.

In the experiments here and in Section 6, GP regression was done using a Matérn 5/2
kernel, and posterior distributions for the kernel hyperparameters were inferred using
the NUTS sampler (Hoffman and Gelman, 2014). GP predictions were made using
the posterior mean value for the hyperparameters. NEI was optimized using random
restarts of the Scipy Sequential Least SQuares Programming (SLSQP) optimizer. In a
typical randomized experiment, including those of Section 6, we observe both the mean
estimate and its standard error. All methods were thus given the true noise variance of
each observation.

5.1 Evaluating QMC performance

The first set of simulations analyze the performance of the QMC estimate in (7). We
simulated computing NEI in a noisy, asynchronous setting by using observations at 5
quasirandom points as data, and then treating an additional 5 quasirandom points as
pending observations. We then estimated the NEI integral of (6) at a point using regular
MC draws from the posterior, and using QMC draws as in Algorithm 1. The locations
of these points and the true NEI surfaces are given in Figure S5 in the supplement.

For a range of the number of MC and QMC samples, we measured the percentage
error relative to the ground-truth found by estimating NEI with 10* regular MC samples.
Figure 2 shows the results for the Gramacy problem. For this problem, QMC reliably
required half as many samples as MC to achieve the same integration error.

Typically we are not interested in the actual value of NEI, rather we only want
to find the optimizer. For 100 replicates, we optimized NEI using the MC and QMC
approximations, and measured the Euclidean distance between the found optimizer and
the ground-truth optimizer. Figure 2 shows that the lower integration error led to better
optimization performance: 16 QMC samples achieved the same optimizer distance as 50
MC samples. This same simulation was done for the other three problems, and similar
results are shown in Figure S6 in the supplement.

5.2 Optimization performance compared to heuristics and other
methods

We compare optimization performance of NEI to using the heuristics of Section 2 to
handle the noise in observations and constraints and to available baselines. For the
El+heuristics method, we measure expected improvement relative to the best GP mean
of points that satisfy the constraints in expectation. Batch optimization is done as de-
scribed in Section 2.3, but using MC draws from a GP that includes the observation
noise. The EI+heuristics method uses the same GP models and optimization routines
as the NEI method, with the only difference being the use of heuristics in comput-
ing EI. In particular, the methods are identical in the absence of observation noise. In
addition to the heuristics baseline, we also compare to two commonly used Bayesian op-
timization methods from the Spearmint package: Spearmint EI (Snoek et al., 2012), and
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Figure 2: (Top) NEI integration error (average over 500 replicates, and two standard
errors of the mean) as a function of the number of MC or QMC samples used for the
approximation. (Bottom) Average distance from the optimizer using the approximated
NEI to the true NEI global optimum, as a percentage of the maximum distance in the
search space. QMC yielded substantially better optimization performance.

Spearmint PESC (Hernéndez-Lobato et al., 2015). Spearmint EI uses similar heuristics
as El+heuristics to handle noise, but also uses a different approach for GP estimation,
different optimization routines, and other techniques like input warping (Snoek et al.,
2014). Spearmint PESC implements constrained predictive entropy search. There are a
number of other available packages for Bayesian optimization, however only Spearmint
currently supports constraints and so our comparison is limited to these methods.

Each optimization was begun from the same batch of 5 Sobol sequence points, after
which Bayesian optimization was performed in 9 batches of 5 points each, for a total
of 50 iterations. After each batch, noisy observations of the points in the batch were
incorporated into the model. This simulation was repeated 100 times for each of the
four problems, each with independent observation noise added to function and constraint
evaluations.

Figure 3 shows the value of the best feasible point at each iteration of the optimiza-
tion, for all four problems. NEI consistently performed the best of all of the methods.
Compared to EI+heuristics, NEI was able to find better solutions with fewer iterations.
Without noise, these two methods are identical; the improved performance comes en-
tirely from correctly handling observation noise. PESC had equal performance as NEI
on the Gardner problem, but performed worse even than El+heuristics on the other
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Figure 3: Value of the best feasible objective by each iteration of optimization, for each
of the four problems and each of the four methods. Plots show mean over replicates
and two standard errors of the mean. Horizontal line indicates the global optimum for
the problem and the black bar is the standard deviation of the observation noise. NEI
consistently outperformed the other methods.

problems. Computation time was similar for the four methods, all requiring around 10s
per iteration.

As illustrated in Figure S7 in the supplement, the proposals from El+heuristics
tended to form clumps at points with a good objective value and uncertain feasibility.
Being more exploitative in a noisy setting could potentially be advantageous by allow-
ing the model to more accurately identify the best feasible solution. We compare the
final model-identified best points after each batch for NEI and El+heuristics for the
Hartmann6 problem in Figure 4, according to the criterion of (4). By the final batch
of the optimization, both methods were able to identify arms that were feasible but
those chosen by NEI had significantly better objective. Similar results for the other
three problems are given in Figure S9 of the supplement. Figure S10 of the supplement
shows results using the alternative identification strategy of choosing the best arm that
is feasible with probability greater than 1 — §.
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Figure 4: (Left) For the Hartmann6 problem, the objective value of the arm identified
from the model as being best after each batch of the simulation in Figure 3. (Right) The
proportion of replicates in which the model identified best point was actually feasible.
NEI was able to both find and identify better points.

6 Bayesian optimization with real-world randomized
experiments

We present two case studies of how Bayesian optimization with NEI works in prac-
tice with real experiments at Facebook: an online field experiment to optimize ranking
system parameters, and a randomized controlled benchmark to optimize server perfor-
mance. Both experiments involved tuning many continuous parameters simultaneously
via noisy objectives and noisy constraints.

6.1 Optimizing machine learning systems

Advances in modeling, feature engineering, and hyperparameter optimization are typical
targets for improving the performance of the models that make up a machine learning
system. However, the performance of a machine learning system also depends on the
inputs to the model, which often come from many interconnected retrieval and ranking
systems, each of which is controlled by many tuning parameters (Bendersky et al., 2010;
Covington et al., 2016). For example, an indexer may retrieve a subset of items which
are then fed into a high-precision ranking algorithm. The indexer has parameters such
as the number of items to retrieve at each stage and how different items are valued
(Rodriguez et al., 2012). Tuning these parameters can often be as important as tuning
the model itself.

While Bayesian optimization has proven to be an effective tool for optimizing the
performance of machine learning models operating in isolation (Snoek et al., 2012), the
evaluation of an entire production system requires live A/B testing. Since outcomes
directly affected by machine learning systems are heavily skewed (Kohavi et al., 2014),
measurement error can be on the same order as the effect size itself.
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We used NEI to optimize a ranking system. This system consisted of an indexer
that aggregated content from various sources and identified items to be sent to a model
for ranking. We experimented with tuning indexer parameters in a 6-dimensional space
to improve the overall performance of the system. We maximized an objective metric
subject to a lower bound on a constraint metric. NEI is ideally suited for this type of
randomized experiment: noise levels are significant relative to the effect size, multiple
variants are tested simultaneously in a batch fashion, and there are constraints that
must be satisfied (e.g., measures of quality).

The experiment was conducted in two batches: a quasirandom initial batch of 31
configurations selected with a scrambled Sobol sequence, and a second batch which
used NEI to propose 3 configurations. Figure 5 shows the results of the experiment as
change relative to baseline, with axes scaled by the largest effect. In this experiment,
the objective and constraint were highly negatively correlated (p = 0.78). NEI proposed
candidates near the constraint boundary, and with only three points was able to find
a feasible configuration that improved over both the baseline and anything from the
initial batch.
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Figure 5: Posterior GP predictions (means and 2 standard deviations) from an A /B test
using NEI to generate a batch of 3 candidates. The goal was to maximize the objective,
subject to a lower bound on the constraint. The shaded region is infeasible. NEI found
a feasible point with significantly better objective value than both the baseline and the
quasirandom initialization.

6.2 Optimizing server performance

We applied Bayesian optimization with NEI to improve the performance of the servers
that power Facebook. Facebook is written in a mix of the PHP and Hack programming
languages, and it uses the HipHop Virtual Machine (HHVM) (Adams et al., 2014) to
execute the PHP /Hack code in order to serve HT TP requests. HHVM is an open-source
virtual machine containing a just-in-time (JIT) compiler to translate the PHP/Hack
code into Intel x86 machine code at runtime so it can be executed.

During the compilation process, HHVM’s JIT compiler performs a large number of
code optimizations aimed at improving the performance of the final machine code. For
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example, code layout optimization splits the hot and cold code paths in order to im-
prove the effectiveness of the instruction cache by increasing the chances of the hot code
remaining in the cache. How often a code block is executed to be considered hot is a
tunable parameter inside the JIT compiler. As another example, function inlining elim-
inates the overhead of calling and returning from a function, with tunable parameters
determining which kinds of functions should be inlined.

Tuning compiler parameters can be very challenging for a number of reasons. First,
even seemingly unrelated compiler optimizations, such as function inlining and code
layout, can interfere with one another by affecting performance of the processor’s in-
struction cache. Second, there are often additional constraints that limit the viable
optimization space. Function inlining, for example, can drastically increase code size
and, as a result, memory usage. Third, accurate modeling of all the factors inside a
processor is so difficult that the only reasonable way to compare the performance of two
different configurations is by running A /B tests.

Facebook uses a system called Perflab for running A /B tests of server configurations
(Bakshy and Frachtenberg, 2015). At a high level, a Perflab experiment assigns two
isolated sets of machines to utilize the two configurations. It then replays a representative
sample of user traffic against these hosts at high load, while measuring performance
metrics including CPU time, memory usage, and database fetches, among other things.
Perflab provides confidence intervals on these noisy measurements, characterizing the
noise level and allowing for rigorous comparison of the configurations. The system is
described in detail in Bakshy and Frachtenberg (2015). Each A/B traffic experiment
takes several hours to complete, however we had access to several machines on which
to run these experiments, and so could use asynchronous optimization to run typically
3 function evaluations in parallel.

We tuned 7 numeric run-time compiler flags in HHVM that control inlining and code
layout optimizations. This was a real experiment that we conducted, and the results were
incorporated into the mainstream open-source HHVM (Ottoni, 2016). Parameter names
and their ranges are given in the supplement. Some parameters were integers—these
values were rounded after optimization for each proposal. The goal of the optimization
was to reduce CPU time with a constraint of not increasing peak memory usage on the
server.

We initialized with 30 configurations that were generated via scrambled Sobol se-
quences and then ran 70 more traffic experiments whose configurations were selected
using NEI. Figure 6 shows the CPU time and probability of feasibility across itera-
tions. In the quasirandom initialization, CPU time and memory usage were only weakly
correlated (p = 0.21). CPU times shown were scaled by the maximum observed dif-
ference. The optimization succeeded in finding a better parameter configuration, with
experiment 83 providing the most reduction in CPU time while also not increasing
peak memory. Nearly all of the NEI candidates provided a reduction of CPU time rel-
ative to baseline, while also being more likely to be feasible: the median probability
of feasibility in the initialization was 0.77, which increased to 0.89 for the NEI candi-
dates.
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Figure 6: (Top) Posterior GP predictions (means and 2 standard deviations) of CPU
time across the optimization iterations, as scaled change relative to baseline. The vertical
line marks the end of the quasirandom initialization and the start of candidates selected
using NEI. The objective was to minimize CPU time, subject to peak memory not
increasing. (Bottom) The probability of feasibility at each iteration. Horizontal lines
show the median for the quasirandom points and for the NEI points. NEI candidates
reduced CPU time and increased probability of feasibility.

7 Discussion

Properly handling noisy observations and noisy constraints is important when tuning
parameters of a system via sequential experiments with measurement error. If the mea-
surement error is small relative to the effect size, Bayesian optimization using a heuristic
EI can be successful. However, when the measurement noise is high we can substantially
improve performance by properly integrating out the uncertainty.

NEI requires solving a higher dimensional integral than has previously been used
for batch optimization, but we developed a QMC integration technique which allowed
the integral to be estimated efficiently enough for optimization. Even in the noiseless
case, the QMC approach that we developed here could be used to speed up the batch
optimization strategy of Snoek et al. (2012). QMC provided a useful approximation to
the integral with a relatively low number of samples. Part of the success of QMC for the
NEI integral likely comes from the low effective dimensionality of this integral (Wang
and Fang, 2003). The EI at a point is largely determined by the values at nearby points
and at the best point. Points that are far away and not likely to be the best will have
little influence on the NEI integral, and so the effective dimensionality is lower than the
total number of observations.
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Qualitatively, we are measuring EI under various possible realizations of the true
function. Averaging over a number of such realizations finds points that have high EI
under many possible true functions, which is a desirable property even if there are
too few QMC samples to fully characterize the posterior. Regardless of the number
of QMC samples or dimensionality of the integral, points with positive NEI estimated
via sampling are guaranteed to actually have positive NEI, hence we can expect the
optimization to progress.

Measuring EI at x relative to the GP mean at the best x*, as EI+heuristics does,
ignores the covariance between f(z) and f(x*). Given two points x; and zo with the
same marginal posteriors f(xz1) = f(x2), we should prefer the point that is less correlated
with f(2*) since our expected total utility will be higher. NEI incorporates covariance
between points and so would prefer the less correlated point, whereas for EI+heuristics
they would be considered equally valuable.

The NEI acquisition function does not give value to replicating points. This pre-
vents NEI from being useful for discrete problems, and could also be a limitation in
continuous spaces. Binois et al. (2017) derive conditions under which it is beneficial
to replicate, and show that in some situations replication can lead to lower predictive
variance across the design space than new observations. In continuous spaces, NEI will
reduce uncertainty at the optimum without replicates by sampling nearby points. In our
experiments this was sufficient, but incorporating a replication strategy is an area of
future work (see Jalali et al., 2017, for additional discussion on replication strategies in
this setting). NEI also does not give value to points outside the feasible region, due to the
myopic utility function. Infeasible points may be useful for reducing model uncertainty
and allowing better, feasible points in future iterations. Less myopic methods such as
integrated expected conditional improvement (Gramacy and Lee, 2011) measure that
value. Knowledge gradient also gives value to points according to their improvement
of the global model, not just their individual objective value. Incorporating utility for
infeasible points into NEI could also be beneficial.

Recent work in Chevalier and Ginsbourger (2013) and Marmin et al. (2016) provides
an alternative to MC integration for batch Bayesian optimization using formulae for
truncated multivariate normal distributions. Applying these results to the multivariate
normal expectation of NEI is another promising area of future work.

For simplicity, here we assumed independence of the constraints. This could easily be
replaced by a multi-task GP over the constraints for computing probability of feasibility.
The sampling would then use the full covariance matrix across all constraints. The
assumed independence of the objective with each constraint is required for the analytic
form of the inner EI computation. Extending EI to account for correlations between
objective and constraints is an open challenge.

We found that not only did NEI generally outperform PESC, but even EI4heuristics
outperformed PESC in three of the four experiments. PESC has been compared to
Spearmint EI on these same problems before, but in settings more similar to hyper-
parameter optimization than our noisy experiments setting. Hernandez-Lobato et al.
(2014) evaluated PESC on unconstrained Branin and Hartmann6 problems, but with a
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very low noise level: 0.03, whereas in our experiments the noise standard deviation was 5
for Branin and 0.2 for Hartmann6. Herndndez-Lobato et al. (2015) evaluated PESC on
the Gramacy problem, but with no observation noise. These previous experiments were
also fully sequential, whereas ours required producing batches of 5 proposals before up-
dating the model. Shah and Ghahramani (2015) evaluated predictive entropy search on
unconstrained Branin and Hartmann6 problems with no noise, but with batches of size
3. They found for both of these problems that Spearmint EI outperformed predictive
entropy search. Metzen (2016) showed that entropy search can perform worse than EI
because it does not take into account the correlations in the observed function values.
This can cause it to be over-exploitative, and is an issue that would be exacerbated by
high observation noise. The approximations required to compute and optimize PESC
are sufficiently complicated that it is hard to pinpoint the source of the problem. We are
interested in production optimization systems that are used and maintained by teams,
and so the straightforward implementation of NEI is valuable.

Spearmint EI performed worse than EI+heuristics, despite also being an implemen-
tation of EI with heuristics. The most significant difference between the two is the way
in which the constraint heuristic was implemented. EI4+heuristics measured EI relative
to the best point that was feasible in expectation. Spearmint EI requires the incumbent
best to be feasible with probability at least 0.99 for each constraint. In our experiments
with relatively noisy constraints, there were many iterations in which there were no
observations with a probability of feasibility above 0.99, in which case Spearmint EI ig-
nores the objective and proposes points that maximize the probability of feasibility. The
sensitivity of the results to the way in which the heuristics are implemented provides
additional motivation for ending our reliance on them with NEI.

We demonstrated the efficacy of our method to improve the performance of machine
learning infrastructure and a JIT compiler. Our method is widely applicable to many
other empirical settings which naturally produce measurement error, both in online and
offline contexts.

Supplementary Material

Supplement to “Constrained Bayesian Optimization with Noisy Experiments” (DOT:
10.1214/18-BA1110SUPP; .pdf).
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