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A Bayesian Approach to Statistical Shape
Analysis via the Projected Normal Distribution

Luis Gutiérrez∗, Eduardo Gutiérrez-Peña† and Ramsés H. Mena‡

Abstract. This work presents a Bayesian predictive approach to statistical shape
analysis. A modeling strategy that starts with a Gaussian distribution on the con-
figuration space, and then removes the effects of location, rotation and scale, is
studied. This boils down to an application of the projected normal distribution to
model the configurations in the shape space, which together with certain identifia-
bility constraints, facilitates parameter interpretation. Having better control over
the parameters allows us to generalize the model to a regression setting where the
effect of predictors on shapes can be considered. The methodology is illustrated
and tested using both simulated scenarios and a real data set concerning eight
anatomical landmarks on a sagittal plane of the corpus callosum in patients with
autism and in a group of controls.
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1 Introduction

Kendall (1977) defined a shape as the geometric feature of an object that is invariant
to rigid motions and global scaling. There has since been a growing literature devoted
to developing both theory and methods for statistical shape analysis. Most approaches
borrow traditional ideas from geometry and statistics in order to model and analyze
shapes (e.g. Small, 1996), with a more recent trend focusing on techniques for closed
curves, e.g. to describe the boundary of an object (Klassen et al., 2004; Srivastava et al.,
2005; Kurtek et al., 2012; Cheng et al., 2015). These extensions go back to the original
question: On which space should we define the probability models required for shape
analysis?

There are at least three spaces on which models can be defined (Dryden and Mar-
dia, 2016): 1) The configuration space, represented by the Euclidean space Rmp, where
configurations Z1, . . . ,Zn of m-dimensional shapes are depicted by p landmarks. This
is the space where raw objects are represented. 2) The pre-shape space, typically a
hypersphere of unit radius in m(p−1) dimensions, where configurations are represented
after translations and scalings have been removed. We denote the configurations in the
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pre-shape space by Z†
1, . . . ,Z

†
n. 3) The shape space, where configurations are invari-

ant under location, rotation and scaling. We denote configurations in this space by
Z∗

1, . . . ,Z
∗
n. One could go from the configuration space to the pre-shape space using

the transformation Z† = HZ
‖HZ‖ , where H is the Helmert sub-matrix, and from the

configuration space to the shape space via Procrustes Analysis (Gower, 1975; Goodall,
1991).

Models on the pre-shape space are widely used due to the availability of the complex
elliptical family of distributions, which have the property of being rotation-invariant
(see, e.g. Micheas et al., 2006). Popular members of this family are the complex Bingham
distribution (Kent, 1994) and the complex Watson distribution (Mardia and Dryden,
1999), with the former being a conjugate family to the latter. See also Leu and Damien
(2014) for a novel Bayesian analysis of the complex Bingham distribution, and Mardia
et al. (2013) for a model for the alignment of two unlabeled landmark configurations.

The rotation-invariance property can be seen as a drawback for the statistical identi-
fication of the underlying parameters. The lack of identifiability may hinder the correct
interpretation of the parameters and make a Bayesian approach difficult. Indeed, the
parameters of these distributions are not explicitly related to the corresponding dis-
tributional moments; thus, for example, extensions to the regression setting are not
straightforward. In order to overcome these drawbacks of shape analysis on the pre-
shape space, we use a statistical model on the configuration space with the similarity
transformations “integrated out”, i.e. a marginal approach (Dryden and Mardia, 2016).

An alternative way to remove similarity transformations is the use of Bookstein
coordinates (Bookstein, 1986), which allows us to use well-known models on the config-
uration space and then project them onto the shape space. Following this idea, Kume
andWelling (2010) proposed a maximum-likelihood estimation procedure; however, they
were not concerned with the identifiability of the model. In this paper we undertake a
Bayesian analysis of the projected-normal distribution on the shape space which con-
siders the identifiability of the model and facilitates parameter interpretation. We also
derive some new properties of the projected normal distribution and extend the model
to consider the effect of predictors on shapes.

The rest of the paper is organized as follows. In Section 2 we introduce the pro-
jected normal distribution on the shape space and discuss both the data structure and
the transformations, including Bookstein’s coordinates. Some useful properties of the
projected normal distribution are presented in Section 3. Section 4 is concerned with
the identifiability analysis. To this end, constraints on the parameter space and a strat-
egy to fix some of the parameters using the observed shape variables are proposed.
Based on these constraints and a suitable reparameterization, in Section 5 we develop
a Gibbs sampling algorithm for posterior inference. In Section 6, we extend the model
to a regression setting. Section 7 illustrates our proposal using simulated scenarios; in
particular, a Monte Carlo study allows us to visualize the asymptotic behavior of our
density estimator of the projected normal distribution. In Section 8 we fit the model to
a data set consisting of eight anatomical landmarks on a sagittal plane of the corpus
callosum in patients with autism and in a group of controls. Section 9 provides some
concluding remarks.
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2 The projected normal distribution on the shape space

The projected normal distribution (Dryden and Mardia, 1991), is obtained by the pro-
jection of a p-dimensional normal distribution onto a manifold M ⊂ R

p. A common
example is the projection of a bivariate normal distribution on a circle, used for the anal-
ysis of directional data (Mardia and Jupp, 2000; Jammalamadaka and SenGupta, 2001).
Let us describe the data structure required for shape analysis and the transformations
needed to derive the projected normal distribution on the shape space.

LetZ be a p×2 random configuration matrix, and denote byX = (x1, y1, . . . , xp, yp)
T

the 2p-dimensional landmarks vector with elements from Z. We assume X ∼ N2p(ν,Ω),
with Nd denoting a d-dimensional Gaussian distribution. We remove the effect of loca-
tion, rotation and scale from the landmarks using the method proposed by Bookstein
(1986).

2.1 Location

In order to remove the location effect, we consider the linear transformation of X

X̃ = LX with L =

⎛
⎝ I2 � 02×2(p−1)

−− � −−
A � I2(p−1)

⎞
⎠ (1)

and

A =

[
−1 0 −1 0 · · · −1 0
0 −1 0 −1 · · · 0 −1

]T
.

This transformation shifts all landmarks, except the first one, by the vector (x1, y1).
The random vector X̃ is still normally distributed on R2p, with mean μ̃ = Lν and
covariance matrix Σ̃ = LΩLT . If, in (1), we shifted the first landmark too, then
it would be fixed at the location (0, 0) yielding a singular normal distribution. In-
stead, we marginalize with respect to the first landmark (x1, y1) from X̃; the cor-
responding (p − 1) shifted landmarks are denoted by X∗ = (x∗

2, y
∗
2 , . . . , x

∗
p, y

∗
p)

T , so

X∗ ∈ R
2(p−1), where x∗

i = xi − x1 and y∗i = yi − y1. Then X∗ ∼ N2(p−1)(μ,Σ), where

μ = (μx2 , μy2 , . . . , μxp , μyp)
T and Σ is the sub-matrix of Σ̃ corresponding to the last

2(p− 1) coordinates of X̃.

2.2 Rotation and scale

To remove the effect of rotation and scale, we apply the following transformation:

hx = x∗
2, ui =

x∗
i x

∗
2 + y∗i y

∗
2

x∗2
2 + y∗22

, i = 3, . . . , p,

hy = y∗2 , vi =
y∗i x

∗
2 − x∗

i y
∗
2

x∗2
2 + y∗22

, i = 3, . . . , p. (2)
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Note that the second landmark remains the same. If the transformations defined for ui

and vi (i = 3, . . . , p) were to be applied also to the second landmark, it would move
it to the location (1, 0) giving rise to a singular distribution on R2(p−1). The vector
U = (u3, v3, . . . , up, vp)

T is known as the Bookstein coordinates and it is in the shape
space. Letting H = (hx, hy)

T and det(J) = (h2
x + h2

y)
p−2, the distribution of (H ,U) is

given by

f(H,U | μ,Σ) = |Σ|− 1
2√

(2π)2(p−1)
exp

{
−1

2
(X∗ − μ)TΣ−1(X∗ − μ)

}
|det(J)|, (3)

where X∗ = X∗(H,U) = (hx, hy, u3hx − v3hy, v3hx + u3hy, . . . , uphx − vphy, vphx +
uphy)

T is the inverse transformation. Finally, note that X∗ = W (U)H , where

W (U) =

[
1 0 u3 v3 · · · up vp
0 1 −v3 u3 · · · −vp up

]T
.

2.3 Projected normal distribution

Setting Γ = Γ(U) = [W (U)TΣ−1W (U)]−1, ξ = ξ(U ) = ΓW (U)TΣ−1μ, and denoting
with N2(H | ξ,Γ) the joint density of (3) can be factorized as

f(H,U | μ,Σ) = f(U | μ,Σ) f(H | U , μ,Σ)

=
|Γ|1/2

(2π)p−2|Σ|1/2 exp

{
−1

2

(
μTΣ−1μ− ξTΓ−1ξ

)}
N2(H | ξ,Γ)(h2

x + h2
y)

p−2. (4)

Integrating (4) over H, we obtain the projected normal distribution with density

f(U | μ,Σ) = C(U) |Γ(U)|1/2
(2π)p−2|Σ|1/2 exp

{
−1

2

(
μTΣ−1μ− ξ(U)TΓ(U)−1ξ(U)

)}
, (5)

where ‖ H ‖= (h2
x + h2

y)
1/2 and C(U) =

∫
‖ H ‖2(p−2) N2(H; ξ(U),Γ(U))dH. We

denote this distribution by PN2(p−2)(μ,Σ).

p C(U)

3 g(0) = tr(Γ) + ξT ξ
4 g(1) + [g(0)]2 = 2[tr(Γ)2 + 2ξTΓξ] + [tr(Γ) + ξT ξ]2

5 g(2) + 3g(1)g(0) + [g(0)]3 = 8[tr(Γ)3 + 3ξT (Γ)2ξ] + 6[tr(Γ)2 + 2ξTΓξ][tr(Γ) + ξT ξ] + [tr(Γ) + ξT ξ]3

Table 1: Values of C(U) for different values of p.

Using Theorem 3.2b.2 in Mathai and Provost (1992), the value of C(U) can be
computed via

C(U) =

{
p−3∑
r1=0

(
p− 3
r1

)
g(p−3−r1)

r1−1∑
r2=0

(
r1 − 1
r2

)
g(r1−1−r2) · · ·

}
, (6)

where g(k) = 2kk!{tr(Γ(U))k+1 + (k + 1)ξ(U )TΓ(U)kξ(U)}, k = 0, 1, 2, . . .; Table 1
shows explicit values of C(U) for different values of p.
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3 Properties of the projected normal distribution

The next result gives conditions for the symmetry of the projected normal distribution.

Theorem 1. Consider the following partition of the parameters, μ = (μ1;μ2)
T and

Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
,

where μ1 is a vector of dimension 2 × 1 and Σ11 is a matrix of dimension 2 × 2. If
Σ11 = I2, Σ12 = 02×2(p−2) and μ1 = 02 or μ2 = 02(p−2), then the projected normal
distribution PN2(p−2)(μ,Σ) is symmetric around 02(p−2).

The proof of Theorem 1 is given in the Supplementary Material (Gutiérrez et al.,
2018). Figure 1 shows some contours of the projected normal density for the third of
the p = 3 landmarks (recall that the first two landmarks have been ‘removed’). In panel
(a), the conditions of Theorem 1 are satisfied and the distribution is symmetric around
02; in this case μ2 = (2, 1.5)T and Σ = I4, μ1 = (0, 0)T . In panels (b), (c) and (d),
asymmetric cases are illustrated. In panel (b), μ1 = (3, 6)T , μ2 = (2, 1.5)T and Σ = I4.
For panel (c) the parameters are given by μ1 = (0, 0)T , μ2 = (0, 0)T , Σ11 = I2,

Σ12 =

(
2 3
0.8 1

)
, and Σ22 =

(
17 −1
−1 17

)
.

In panel (d) the parameters are μ1 = (3, 6)T , μ2 = (2, 1.5)T , Σ11 = I2, Σ12 = 02 and

Σ22 =

(
17 −10
−10 17

)
.

The parameters affect the shape of the projected normal distribution in different
ways. For example, in panel (b), the parameters μ1 and μ2 induce asymmetry. This
asymmetry affects the tails of the distribution. In panel (c), the parameter Σ12 induces
asymmetry near the mode of the distribution and the tails remain mostly unaffected.
Thus, certain choices of the parameters μ and Σ12 induce different kinds of asymmetry,
while the parameter Σ22 controls dispersion and orientation of the distribution.

We now exhibit an interesting relationship between the projected normal and the
Student t distributions.

Theorem 2. For p = 3, 4, . . . , let d = 2(p− 1) and q = 2(p− 2). If U ∼ PNq(0d, Id),

there exists a ∈ (0, 1] such that, Ũ = aU follows a q-dimensional Student t distribution.

Specifically, Ũ ∼ tq(μ
a,Σa, ν), with parameters μa = 0, Σa = a2

ν Iq, and ν = 2. When
p = 3 the value of a is 1, while for p = 4, 5, . . .

a =

[
(p− 2)!

cj

] 1
2p−5

, with c0 = 1 and cj = jcj−1 + (p− 2)cj−1, where j = p− 3.

The proof of Theorem 2 can be found in the Supplementary Material. For p = 3,
Theorem 2 shows that U follows a bivariate Student t distribution. In this case, E(U) =
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Figure 1: Contours of the projected normal distribution under different parameter val-
ues. In panel (a) the conditions of Theorem 1 are satisfied, then the distribution is
symmetric. Panels (b), (c) and (d) show different kinds of asymmetry and dispersion.
The asymmetry in (b) mainly affects the tails of the distribution while in (c) the region
near to the mode is more affected. In (d) a different kind of dispersion combined with
asymmetry is illustrated.

02, while Var(U) is undefined as there are only 2 degrees of freedom. For p ≥ 4, the
projected normal distribution with μ = 0d and Σ = Id is a rescaled version of a standard
Student t distribution. Thus, when landmarks follow a normal distribution with μ = 0d

and Σ = Id in the configuration space, the statistical shape analysis is reduced, after
the Bookstein transformation, to that of a rescaled multivariate Student t distribution.
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The invariance properties of the projected normal distribution make it appealing for
statistical shape analysis. However, different sets of parameters (μ,Σ) can generate the
same model, leading to lack of parameter identifiability. This is an important issue and
we discuss it in some detail in the next section.

4 Identifiability analysis

The following result states in what sense the distribution (5) is not identifiable.

Proposition 1. Let r > 0 be a positive constant and let R be a d-dimensional rotation
matrix, where d = 2(p− 1). Define μr = rRμ and Σr = r2RΣRT . Then

f(U | μr,Σr) = f(U | μ,Σ). (7)

The proof of Proposition 1 is given in the Supplementary Material. This result states
that the projected normal distribution is invariant within the set of rescaled and/or
rotated versions of μ and Σ, so that the actual parameter space is the equivalence class

Θ =
{(

rRμ, r2RΣRT
)
| r ∈ R

+, R ∈ SO(2)
}
,

where SO(2) denotes the group of rotations in the plane. This clearly complicates the
interpretability of the parameters and the comparability between different models.

The distribution on the left-hand side of (7) corresponds to the projection of the
random vector X∗

r = rRX∗. If we apply transformation (2) to X∗
r , the Bookstein

coordinates U remain the same; only H is affected by the transformation. Thus the
lack of identifiability is related to H = (x∗

2, y
∗
2)

T , which are unobserved variables that
determine the scale and orientation of the rest of the coordinates of X∗. In order to
have an identifiable model, we constrain those parameters that control the location and
variability of (x∗

2, y
∗
2). To this end, consider the following partitioning of the parameters

μ =

⎡
⎣ μ1

−−
μ2

⎤
⎦ and Σ =

⎛
⎝ Σ11 � Σ12

−− � −−
Σ21 � Σ22

⎞
⎠ , (8)

where the 2×1 vector μ1 and the 2×2 matrix Σ11 are fixed and the remaining parameters
are estimated. We fix the value of Σ11 as in Hernandez-Stumpfhauser et al. (2016), where
an identifiability constraint is derived for a p-dimensional projected normal distribution
with support on the unit hypersphere.

Let Σ11 and Σ∗
22 be positive-definite matrices and let γ be a matrix of dimension

2(p− 2)× 2 with columns γ1, γ2. Consider the following reparameterization

Σ =

(
Σ11 γT

γ Σ∗
22 + γγT

)
. (9)

Proposition 2. The constraint Σ11 = I2 in (9) yields a positive definite matrix Σ.



434 A Bayesian Approach to Statistical Shape Analysis

The proof of Proposition 2 is given in the Supplementary Material. We fix the value
of μ1 by means of the procedure described in the following remark.

Remark 1. The value of μ1 can be fixed at μT
1 = (x̄∗

3, ȳ
∗
3)

T , where x̄∗
3 and ȳ∗3 are

the sample means of the inverse transformations given by x̄∗
3 = ū3x

∗
2 − v̄3y

∗
2 and ȳ∗3 =

ū3y
∗
2 + v̄3x

∗
2, for values of x∗

2 and y∗2 obtained under the constraint Var([x∗
3, y

∗
3 ]) ≈ I2.

This result follows from the constraint Σ11 = I2, since any procedure to fix the value of
μ1 based on the observed shape variables must consider the constraint imposed on Σ11.

The values of x∗
2 and y∗2 can be obtained with a simple optimization algorithm. See

Algorithm 1 and the corresponding discussion in the Supplementary Material. Once μ1

and Σ11 have been fixed, we are in a position to derive a Bayesian approach for inference
on the parameters μ2, Σ

∗
22 and γ.

5 Posterior inference

Based on the reparameterization (9), we have Θ = (μ2,Σ
∗
22,γ). Posterior inference on

Θ from the marginal density (5) is not straightforward, but inferences based on the
joint density (3) of (H,U) are relatively simple provided that H is regarded as a latent
variable. Thus, the augmented model has density

f(Hi,U i | μ,Σ) = N2(p−1)(X
∗
i | μ,Σ)(h2

xi + h2
yi)

p−2, i = 1, . . . , n (10)

where, X∗ = X∗(H ,U). The model is completed with the conjugate prior specification

(μ2 | μ02,Σμ2) ∼ N2(p−2)(μ02,Σμ2),

(γ1, γ2 | μγ ,Σγ)
iid∼ N2(p−2)(μγ ,Σγ), (11)

(Σ22 | φ,A) ∼ IW2(p−2)(φ,A).

To derive a Gibbs sampling algorithm for model (10), first consider a partition of the
vector X∗ = (X∗

1,X
∗
2)

T , where the dimensions of X∗
1 and X∗

2 are 2×1 and 2(p−2)×1
respectively. Now, using the reparameterization (9) and the identifiability constraints
on Σ11 and μ1, the joint density function of (3) can be factorized as

f(H,U | μ,Σ) = N2(p−2)(X
∗
2 | μ2 + γ(X∗

1 − μ1),Σ
∗
22)N2(X

∗
1 | μ1, I2) (h

2
x + h2

y)
p−2. (12)

Using (12), we can now derive the following Gibbs sampler algorithm.

Algorithm 2:

Updating μ2: The full conditional for μ2 is (μ2 | . . .) ∼ N2(p−2)(μ̃2, Σ̃μ), where

Σ̃μ =
[
nΣ−1

22 +Σ−1
μ2

]−1
and μ̃2 = Σ̃μ

[
(Σ∗

22)
−1

n∑
i=1

[X∗
2i − γ(X∗

1i − μ1)] + Σ−1
μ2

μ02

]
.

Updating Σ∗
22: This block of the covariance matrix follows a 2(p−2)-dimensional Inverse

Wishart distribution, i.e. (Σ∗
22 | . . .) ∼ IW2(p−2)(φ+ n, S∗

22 +A), where

S∗
22 =

n∑
i=1

[X∗
2i − μ2 − γ(X∗

1i − μ1)][X
∗
2i − μ2 − γ(X∗

1i − μ1)]
T .
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Updating γ: (γ1 | . . .) ∼ N2(p−2)(γ̃1, Σ̃γ1) and (γ2 | . . .) ∼ N2(p−2)(γ̃2, Σ̃γ2), where

Σ̃γ1 =

[
n∑

i=1

(y∗11i − μ11)
2(Σ∗

22)
−1 +Σ−1

γ

]−1

,

Σ̃γ2 =

[
n∑

i=1

(y∗12i − μ12)
2(Σ∗

22)
−1 +Σ−1

γ

]−1

,

γ̃1 = Σ̃γ1

[
(Σ∗

22)
−1

n∑
i=1

{(y∗11i − μ11)[X
∗
2i − μ2 − (y∗12i − μ12)γ2]}+Σ−1

γ μγ

]
and

γ̃2 = Σ̃γ2

[
(Σ∗

22)
−1

n∑
i=1

{(y∗12i − μ12)[X
∗
2i − μ2 − (y∗11i − μ11)γ1]}+Σ−1

γ μγ

]
.

Updating the latent variables Hi, i = 1, . . . , n: The full conditional posterior distribu-
tion of H is proportional to N2(H | ξ,Γ)(h2

x+h2
y)

p−2; see (4). This distribution cannot
be sampled directly, hence we use a Metropolis-Hastings step. The proposal distribution
is given by H∗ ∼ N2(H

(t−1), aI2) with a > 0. Thus, H(t) is sampled as:

H(t) =

{
H∗ with probability min(α, 1),

H(t−1) otherwise,
(13)

where

α =
N2(H

∗ | ξ,Γ) (h∗2
x + h∗2

y )p−2

N2(H
(t−1) | ξ,Γ)

(
(h

(t−1)
x )2 + (h

(t−1)
y )2

)p−2 .

6 Extension to shape regression

We now propose an extension of the projected normal distribution to the shape re-
gression setting, where we include the effect of predictors through the parameter μ.
Specifically, we let

X∗ ∼ N2(p−1)(μz,Σ), (14)

where μz = (μ,βz)T , β is a 2(p − 2) × q matrix of regression coefficients and z is a
q-dimensional vector of predictors. The conjugate prior (11) can be readily extended to
this regression setting. The model (14) considers the identifiability constraint on Σ and
μ; thus, only the last p− 2 coordinates of μ are affected by the value of the predictor z.
In this case, instead of updating μ2 in Algorithm 2, we have to update β. The posterior
distribution for the j-th column of β is given by

βj ∼ N2(p−2)(β̃j , Σ̃βj ), (15)

where Σ̃βj = [
∑n

i=1 z
2
ji(Σ

∗
22)

−1 +Σ−1
β ]−1 and

β̃j = Σ̃βj

⎡
⎣ n∑

i=1

zji(Σ
∗
22)

−1[X∗
2i −

∑
k �=j

zkiβk − γ(X∗
1i − μ1)] + Σ−1

β β0

⎤
⎦ .
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7 Examples with simulated data

Here we provide two illustrations and a simulation study. The first example illustrates
the estimation process without predictors, whereas the second considers the regression
model. For the first exercise we simulated random triangles, each described using three
landmarks.

We considered two cases: Scenario 1, where random triangles were simulated from
a normal distribution in the configuration space with mean μ1 = (1,−1,−3, 0.5, 3.5, 5)
and covariance matrix Σ1 = 0.2I6; and Scenario 2, where triangles were simulated using
a normal distribution with mean μ2 = μ1 and covariance matrix Σ2 = {B1, B2, B3},
where

B1 =

(
0.25 −0.2
−0.2 0.23

)
, B2 =

(
0.2 0.18
0.18 0.23

)
and B3 =

(
0.15 −0.13
−0.13 0.19

)
.

The difference between these scenarios is the non-null correlation between the x and
y coordinates of the landmarks in Scenario 2. Figure 2 shows the landmarks together
with the corresponding Bookstein coordinates. The algorithm was coded in R (R Core
Team, 2016).

Figure 3 shows the true and estimated densities for Scenarios 1 and 2 under vague
priors and illustrates the effect of the correlation on the landmarks in Scenario 2, where
the density becomes asymmetric and deformed. The density is well estimated with a
sample size of 300. To study the impact of a small sample size on the estimation of
the projected normal distribution, we performed a Monte Carlo study. Specifically, we
simulated from the true densities of Scenarios 1 and 2, using sample sizes ranging from
30 to 300. The Hellinger distance and the Kullback–Leibler divergence between the true
and the estimated densities were calculated for each sample. Figure 4 shows how these
metrics decrease to zero as the sample size increases.

The second illustration is designed to assess the changes in the projected normal dis-
tribution as the predictor varies. It also allows us to explore how the model discriminates
between groups. We considered a predictor z with two levels and affecting three land-
marks. Specifically, z takes values in the set {1 : sick, 0 : healthy}. Here, μi = β0 + β1zi,
where β0 = (1,−1,−3, 0.5, 3.5, 5)t and β1 = (0.2, 0.95,−0.8, 0.95,−2.3, 2.1)t. For each
level of the predictor we assumed n1 = n2 = 150. We set Σ = {A1, A2, A3}, where

A1 =

(
0.2 −0.13

−0.13 0.2

)
, A2 =

(
0.2 0.16
0.16 0.2

)
and A3 =

(
0.21 −0.17
−0.17 0.21

)
.

Figure 5 shows the true and estimated densities for sick (level 1 of the predictor)
and healthy (level 2). Location, shape and orientation, are all affected by the predictor.
The estimated densities are very similar to the true ones.

Note that we can classify individuals into sick and healthy, for example based on the
posterior probability
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Figure 2: In Scenario 1, three uncorrelated landmarks in the configuration space were
simulated; panel (a). After the Bookstein transformation, using Landmark 1 and 2, the
shape information is represented in panel (b). In Scenario 2, the x and y coordinates for
each landmark are correlated; panel (c). After the transformation, the shape information
is displayed in panel (d).

P(sick | U) =
π(sick)f(U | z = 1)

π(sick)f(U | z = 1) + π(healthy)f(U | z = 0)
.

Table 2 shows the results of this classification using the prior probabilities π(sick) =

π(healthy) = 0.5. Using the simple rule “classify the individual as sick if and only if

P(sick | U) > 0.5”, the false-positive rate was 16%, while the false-negative rate was

14.7%. Thus, the shape regression model can be used as a classification tool.
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Figure 3: (a) True density for Scenario 1. (b) Estimated density for Scenario 1. (c) True
density for Scenario 2. (d) Estimated density for Scenario 2.

8 Application

The corpus callosum is a wide flat bundle of neural fibers beneath the cortex of the brain
at the longitudinal fissure. Its function is to connect the left and right cerebral hemi-

spheres and facilitates inter-hemispheric communication. Many studies have reported a
reduction in the size or volume of the corpus callosum in patients diagnosed with Autism

Spectrum Disorder (ASD), see, e.g., Piven et al. (1997), Hardan et al. (2000), Brambilla
et al. (2003), Vidal et al. (2006), Hardan et al. (2009) and Prigge et al. (2013). However,

only a few of these studies have considered possible differences in the shape of the cor-
pus callosum between patients with autism and healthy individuals. Indeed, potential

differences in shape might reveal focal abnormalities helping to pinpoint which cortical
regions are involved in the pathophysiology of autism (c.f. Casanova et al., 2011).



L. Gutiérrez, E. Gutiérrez-Peña, and R. H. Mena 439

Figure 4: Monte Carlo estimation of the Hellinger distance and Kullback–Leibler di-
vergence based on 100 replicates. Mean values (continuous lines), 2.5% and 97.5% per-
centiles (dotted lines): (a) Scenario 1; (b) Scenario 2.

Figure 5: (a) True densities for the two levels of the predictor. (b) Estimated densities.

With this is mind, we produced a dataset consisting of eight anatomical landmarks
that describe the shape of the corpus callosum, both in children diagnosed with autism
and in a control group. For our study, the landmarks were located in the sagittal plane
view of the corpus callosum using magnetic resonance images (MRI) of the brain. These
MRI images were obtained from the public repository ABIDE (Autism Brain Imaging
Data Exchange) (Di Martino et al., 2014) located at http://www.loni.usc.edu.

http://www.loni.usc.edu
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Health condition Healthy Sick % Correct classification
Healthy 126 24 84.0%
Sick 22 128 85.3%
Total 84.7%

Table 2: Classification rates.

The MRI images were downloaded and stored in NifTI format, and then loaded
into R using the oro.nifti library (Whitcher et al., 2011). Once in R, the images
were explored using the EBImage library (Pau et al., 2010). During this exploration, a
trained technician – working under the supervision of a radiologist – selected a sagittal
view of the corpus callosum for each patient. Each sagittal view was saved as an image
and loaded into the StereoMorph library (Oslen and Westneat, 2015), with the purpose
of locating and digitalizing the landmarks. Figure 6 shows the sagittal plane view of the
corpus callosum of a typical patient, together with the location of the eight anatomical
landmarks. Locating the landmarks can be a difficult task, since there is considerable
variability between the patients (see Figure S.1 in the Supplementary Material).

Figure 6: Location of eight anatomical landmarks on the sagittal view of the corpus
callosum.

Table 3 shows the sample sizes for each level of disease and sex. The ages of the
patients range from 6 to 13 years.

We used landmarks 1 and 2 to perform the Bookstein transformation, and then
fitted models that included disease, sex and age as predictors; we also included some
interactions. In particular, we considered the following three models: model 1, including
the main effects only; model 2, which considers the main effects and the interaction
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Male Female Total
Autism 153 24 177
Control 145 37 182
Total 298 61 359

Table 3: Sample size for each condition.

between disease and age; and model 3, which includes the main effects and the inter-
action between sex and disease. In all three models we considered the reference-cell
parametrization, i.e. the parameter β1 represents the baseline given by female patients
of the control group; β2 quantifies the effect of the disease (1 : yes, 0 : no); β3 corre-
sponds to gender, coded as (1 : male, 0 : female). Additionally, in model 2, β4 quantifies
the effect of the interaction disease×gender; similarly, in model 3, β4 represents the ef-
fect of the interaction sex×disease. In each of these three models we used vague priors
on all of the parameters.

Disease β2 Sex β3 Age β4

Landmark mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5%
u3 -0.119 -0.357 0.126 -0.242 -0.534 0.055 0.039 -0.031 0.115
v3 -0.013 -0.346 0.339 -0.043 -0.524 0.448 -0.201 -0.312 -0.100
u4 -0.035 -0.374 0.315 -0.195 -0.587 0.235 0.108 -0.001 0.236
v4 -0.137 -0.505 0.267 0.353 -0.164 0.932 -0.201 -0.316 -0.066
u5 -0.016 -0.417 0.410 -0.091 -0.569 0.416 0.247 0.132 0.432
v5 -0.036 -0.532 0.446 0.235 -0.346 0.872 -0.172 -0.310 -0.014
u6 -0.028 -0.363 0.307 -0.219 -0.628 0.210 0.168 0.074 0.298
v6 -0.085 -0.488 0.317 0.356 -0.143 0.899 -0.171 -0.283 -0.039
u7 -0.075 -0.358 0.225 -0.200 -0.545 0.168 0.129 0.045 0.247
v7 0.05 -0.349 0.442 0.261 -0.244 0.824 -0.194 -0.309 -0.068
u8 -0.075 -0.327 0.176 -0.141 -0.437 0.183 0.085 0.016 0.176
v8 -0.142 -0.556 0.279 0.278 -0.236 0.836 -0.139 -0.261 -0.027

Table 4: Posterior means and credible sets for β2, β3 and β4 in model 1.

For model comparison, we computed the Conditional Predictive Ordinates (CPOi)
(Chen et al., 2000), summarized in the log-pseudo marginal likelihood statistic LPML=∑n

i=1 log (CP0i) (Geisser and Eddy, 1979). The values of the LPML for each model
were −1555.39, −1559.167 and −1550.228 for models 1, 2 and 3, respectively. Even
thoughmodel 3 attained the highest LPML, the 95% credible intervals for the sex-disease
interaction coefficients suggest these terms can be removed from the model. Since there
does not seem to be an effect of the interaction terms for either of the models 2 and 3,
we opted for model 1 which has the second highest LPML. The posterior mean for each
of the parameters, together with the corresponding credible intervals for model 1, are
shown in Table 4. These results suggest that age does have an effect on the shape of
the corpus callosum for landmarks 3 to 8. On the other hand, all the credible intervals
for the coefficients of disease and sex include the value zero, suggesting a lack of effect
of those variables on the shape of the corpus callosum.
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With the aim of visualizing the distributions of some of the landmarks in the
shape space, we computed the marginal posterior predictive distributions with model 1.
Figure 7 shows these predictive distributions for comparison purposes.

The distributions of cases and controls for females and males all look quite similar,
while the predictive distributions for the female-control and male-autism groups show
small differences. As expected, larger differences in the shape of the corpus callosum
are observed with changes in age. Furthermore, our results agree with those found in
He et al. (2010), who used nine anatomical landmarks to compare the shape of the
corpus callosum in autistic patients and controls. That said, the results for our data
set are not conclusive so as to highlight significant differences in the shape due to
the disease. Indeed, He et al. (2010) did not find significant differences in their studies
based on landmarks. However, by comparing the boundaries of the corpus callosum after
automatic or semi–automatic segmentation in the MRI images, they found significant
differences in the distance between the interior genu and the posterior-most section of
the corpus callosum. Finally, it is important to mention that our regression model allows
us to perform comparisons controlling the effect of covariates such as sex and age. Here,
age is an important factor that helps explain the observed differences in the shape of
the corpus callosum.

9 Discussion

Our approach offers a simple way to perform statistical shape analysis. The definition of
a probability model in the configuration space and its projection onto the shape space
allows us to work with a well-known model in the configuration space. This approach,
together with the constraints to attain identifiability, facilitates the Bayesian analysis
of the model and the inclusion of predictors. In the particular case of the projection
of a standard normal distribution, we have found connections with the Student t dis-
tribution that gives us some insight about the tail behavior of the projected normal
distribution.

Typically, the parameters of a projected distribution have a different interpretation
than in the original space. In our case, μ (representing the mean in the configuration
space) becomes an asymmetry parameter in the shape space and also affects the tails
of the distribution. Similarly, Σ (the variance-covariance matrix in the configuration
space) represents the dispersion in the shape space and also affects the symmetry of
the distribution. In our extension to the regression case, we are indexing the parameter
μ with the predictors. Thus, the tails of the projected normal distribution are more
affected by the changes in the predictors than other aspects of the distribution.

Even though the use of the Bookstein coordinates induces correlation in the shape
variables, in our approach we are estimating the full covariance structure; thus, it is not
really a problem. The proposed strategy can also be applied to other distributions on
the configuration space and their projections onto the shape space. We are currently
studying the use of infinite mixture models on the configuration space, which would allow
us to model data sets of landmarks with heavy tails or asymmetries in the configuration
space.
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Figure 7: Marginal posterior predictive distributions: (a) female control vs female autism
for landmark 8; (b) male control vs male autism for landmark 8; (c) male control vs
male autism for landmark 5; (d) female control vs male autism for landmark 3; (e) male
autism 8 yr. vs male autism 12 yr; (f) male autism 7 yr. vs male autism 13 yr.
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Supplementary Material

Supplementary Material for ‘A Bayesian approach to statistical shape analysis via the
projected normal distribution’ (DOI: 10.1214/18-BA1113SUPP; .pdf). The online Sup-
plementary Material contains the proofs of Theorems 1 and 2, as well as those of Propo-
sitions 1 and 2. It also contains Algorithm 1 from Section 4 and some images relating
to the application described in Section 8.
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