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Bayesian Effect Fusion for Categorical
Predictors

Daniela Pauger* and Helga Wagner

Abstract. We propose a Bayesian approach to obtain a sparse representation of
the effect of a categorical predictor in regression type models. As this effect is
captured by a group of level effects, sparsity cannot only be achieved by exclud-
ing single irrelevant level effects or the whole group of effects associated to this
predictor but also by fusing levels which have essentially the same effect on the re-
sponse. To achieve this goal, we propose a prior which allows for almost perfect as
well as almost zero dependence between level effects a priori. This prior can alter-
natively be obtained by specifying spike and slab prior distributions on all effect
differences associated to this categorical predictor. We show how restricted fusion
can be implemented and develop an efficient MCMC (Markov chain Monte Carlo)
method for posterior computation. The performance of the proposed method is
investigated on simulated data and we illustrate its application on real data from
EU-SILC (European Union Statistics on Income and Living Conditions).

Keywords: spike and slab prior, sparsity, nominal and ordinal predictor,
regression model, MCMC, Gibbs sampler.

1 Introduction

In many applications, especially in medical, social or economic studies, potential covari-
ates collected for a regression analysis are categorical, measured either on an ordinal or
on a nominal scale. The usual strategy for modelling the effect of a categorical covariate
is to define one level as baseline and to use dummy variables for the effects of the other
levels with respect to this baseline. Hence, the effect of a categorical covariate is not
captured by a single but by a group of regression effects. Including categorical variables
as covariates in regression type models can therefore easily lead to a high-dimensional
vector of regression effects. Moreover, as only observations with a specific level con-
tribute information on this level effect, estimated effects of rare levels will be associated
with high uncertainty.

Many methods have been proposed to achieve sparsity in regression models by iden-
tifying regressors with non-zero effects. Whereas frequentist methods, e.g. the lasso
(Tibshirani, 1996) or the elastic net (Zou and Hastie, 2005) rely on penalties, Bayesian
variable selection methods are based on the specification of appropriate prior distribu-
tions, e.g. shrinkage priors (Park and Casella, 2008; Griffin and Brown, 2010) or spike
and slab priors (Mitchell and Beauchamp, 1988; George and McCulloch, 1997; Ishwaran
and Rao, 2005). However, variable selection methods identify single non-zero regression
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effects and do not take into account the natural grouping of the set of dummy variables
capturing the effect of a categorical covariate.

Moreover, for a categorical covariate a sparser representation of its effect cannot
only be achieved by restricting some or all of its level effects to zero but also when
some of the levels have the same effect. To address this problem, we propose a Bayesian
approach to achieve sparsity by encouraging both shrinkage of non-relevant effects to
zero as well as fusion of (almost) identical level effects.

Methods that explicitly address inclusion or exclusion of a whole group of regression
coefficients are the group lasso (Yuan and Lin, 2006), the Bayesian group lasso (Raman
et al., 2009; Kyung et al., 2010) and the approach of Chipman (1996) who uses spike and
slab priors for grouped selection of the set of dummy variables related to a categorical
predictor. The recently proposed sparse group lasso (Simon et al., 2013) and Bayesian
sparse group selection (Chen et al., 2016) aim at sparsity at the group level as well
as within selected groups by selecting non-zero regression effects, but do not consider
fusion of effects.

For metric predictors, effect fusion is addressed in Tibshirani et al. (2005) with the
fused lasso and in Kyung et al. (2010) with its Bayesian counterpart, the Bayesian fused
lasso. Both methods assume some ordering of effects and shrink only effect differences
of subsequent effects to zero. Hence, they are not appropriate for nominal predictors
where any effect difference should be subject to shrinkage.

Sofar, only a few papers consider effect fusion for nominal predictors. Bondell and
Reich (2009) propose a modification of the fused lasso for ANOVA (Analysis of vari-
ance) and Gertheiss and Tutz (Gertheiss and Tutz, 2009, 2010; Tutz and Gertheiss,
2016) specify different lasso-type penalties for ordinal and nominal covariates. Recently,
Tutz and Berger (2018) propose tree-structured clustering of effects of categorical co-
variates. In a Bayesian approach, fusion (or merging) of levels of categorical variables is
addressed only in Dellaportas and Tarantola (2005). Their goal is to analyse dependence
of categorical variables in loglinear models. To search the huge space of models, that can
be obtained by collapsing levels of categorical variables, a reversible jump algorithm is
employed. This method could be extended to search the space of regression type models
where levels of categorical predictors are subject to merging, but we suggest a different
approach where Bayesian inference is feasible via a simple Gibbs sampling algorithm.

To allow for effect fusion we specify a joint multivariate Normal prior for all level
effects of one covariate with a precision matrix that allows for either almost perfect or low
dependence of regression effects. This prior is related to spike and slab prior distributions
that have been applied extensively in Bayesian approaches to variable selection. We show
that the prior proposed for effect fusion can be derived alternatively by specifying spike
and slab prior distributions on all level effects as well as their differences and taking
into account their linear dependence. Whereas with the usual variable selection prior,
regression effects can be classified as (almost) zero, if assigned to the spike, and as
non-zero otherwise, the effect fusion prior allows for intrinsic classification not only of
effects but also of effect differences as negligible or relevant. In contrast to a categorical
predictor where typically each pair of level effects will be subject to fusion, for an ordinal
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predictor the available ordering information can be exploited by restricting fusion to
adjacent categories. We show how restriction of effect fusion to specific pairs of effects
can be implemented in our framework.

For ease of exposition we will discuss construction of the prior and MCMC (Markov
chain Monte Carlo) inference for a Normal linear regression model with categorical co-
variates. However, the method we propose can be used in any regression type model
with a structured additive predictor, where additionally to effects of categorical covari-
ates further effects, e.g. linear or nonlinear effects of continuous covariates, spatial or
random effects are included.

The rest of the paper is organised as follows: in Section 2 we introduce the data model
and in Section 3 we describe construction of the prior distribution to encourage a sparse
representation of the effect of a categorical predictor. Posterior inference is discussed in
Section 4 and Section 5 investigates the performance of the method for simulated data.
Application of Bayesian effect fusion is illustrated on a real data example in Section 6
and we conclude with Section 7.

2 Model specification

We consider a standard linear regression model with Normal response y and p categorical
covariates where covariate h has ¢, 41 ordered or unordered levels 0, . . . , ¢,. To represent
the effect of covariate h on the response y, we define 0 as the baseline category and
introduce dummy variables, X}, , to capture the effect of level k. The regression model
is then given as

P ch
y=M+ZZXh,k5h,k+€, (1)

h=1k=1

where (4 is the intercept, Bk is the effect of level k of covariate h (with respect to the
baseline category 0) and € ~ N(0,0?) is the error term.

For an (n x 1) response vector y = (y1,...,¥y,)" we write the model as
P
y:l,u+ZXh,6h+e, ENN(O,O’QI), (2)
h=1

where X, is the (n X ¢;) design matrix for covariate h, 3, is the (¢j, x 1) vector of the
corresponding regression effects and e the (n x 1) vector of error terms. 1 denotes a
vector with elements 1 and I the identity matrix.

3 Prior specification

Bayesian model specification is completed by assigning prior distributions to all model
parameters. We assume a prior of the structure

p
p(uvﬂlv"'aﬂgﬂgz): H ﬂthhA(sh ( ) (5h)
h=1
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where 77 and §j, denote additional hyperparameters, which are specified below. We
assign a flat proper prior p(u) ~ N (0, Mp) to the intercept, and an Inverse Gamma
prior p(c?) ~ G71 (s0,Sp) to the error variance. In our analyses we use the standard
improper prior p(c?) x 1/02.

To allow for effect fusion we specify the prior on the regression effects 8, hierarchi-
cally as

/Bh|7-}%76h NN(OthO((S}HTiQL)) ) (3)
i ~ G~ (gnos Gho), (4)

with prior covariance matrix of 3;, given as
Bo(8n,7i) = W73, Qp ' () (5)

Here ~,, is a fixed constant, T}? is a scale parameter and the matrix Q(d) determines
the structure of the prior precision matrix of 3;. To encourage effect fusion, we let
Q#(0%) depend on a vector d5, of binary indicator variables dp, 1, which are defined for
each pair of level effects B, 1, and B, ; subject to fusion. d5, x; = 1 indicates that 5y, 1 and
Bh,; differ considerable and hence two regression parameters are needed to capture their
respective effects whereas for dj, 1; = 0 the effects are almost identical and the two level
effects could be fused. To allow also fusion of level effects to 0, i.e. conventional variable
selection, we define S, o = 0 and include in 8y, also indicators dp, ko, K =1, ... cp.

The dimension of §;, and the concrete specification of Qp(dy) depend on which pairs
of effects are subject to fusion. For a nominal covariate typically levels are completely
unstructured and hence any pair of effects might be fused. We discuss this case where
fusion is unrestricted in Section 3.1.

In contrast, for an ordinal covariate the information on the ordering of levels suggests
to restrict fusion to adjacent categories (Gertheiss and Tutz, 2009). Restrictions that
preclude direct fusion for specified pairs of effects can easily be implemented in the
specification of the prior covariance matrix Bpo (85, 77). We present two different ways to
incorporate fusion restrictions in Section 3.2 and discuss the case of an ordinal covariate
where fusion is restricted to adjacent categories in more detail.

Marginalized over the indicators 4y, the prior on 3, is a mixture of multivariate
Normal distributions

P(BulTR) = p(8n) fir (B0, Bro(dn, 7)),

Sn

with different component covariance matrices depending on &, and mixture weights
p(dy). We discuss specification of the prior on d;, in Section 3.3 and the choice of the
hyperparameters in Section 3.4.

For notational convenience we drop the covariate index h in the rest of this Section.
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3.1 Prior for unrestricted effect fusion

To perform unrestricted effect fusion for a categorical covariate with levels 0, ..., ¢, we
introduce a binary indicator dj; for each pair of effects 0 < j < k < ¢. Thus, the vector
6 subsuming all these indicators is of dimension d x 1 where d = (6;1).

We specify the structure matrix Q(4) as

Zj;él R1j —K12 e —K1ie
—k21 Zﬁgg Raj = —R2¢
Q@)= . S : (6)
—FKel —Ke2 e Dise e

with diagonal elements gxx given as

Qkk = Z”kj = hKgo + 0t Rkg-1 T Rkl T Rke k=1,...,c
J#k

For j < k, ki; is defined as
fkj = Okj + (1 = dkj),

and kji = kg, for j > k. The value of dj; determines whether xi; = 1 (for dx; = 1) or
kkj =1 (for dx; = 0). r is a fixed large number, which we call precision ratio for reasons
explained below. Finally, we set v = ¢/2.

We discuss this specification now in more detail. First, as the structure matrix Q(9)
determines the prior precision matrix By '(d,72) up to the scale factor 1/(y72) it has
to be symmetric and positive definite. Symmetry of Q(d) is guaranteed by definition
and positive definiteness as

c c k—1
B'Q)B=DBirro+ D> (Bx— B;)kr; >0, (7)
k=1 k=2 j=1

if B # 0, see Supplemental Appendix A.1 (Pauger and Wagner (2018)) for a detailed
proof.

The diagonal elements gx; determine the prior partial precisions and the off-diagonal
elements gx; the prior partial correlations of the level effects:

) N — Akj _ Kkj
Cor(Bk, B; |,3\kj) JTE JTTn ) (8)
PreC(ﬁHﬁ\k) = Qkk/(772)~ 9)

Thus, depending on the value of the binary indicator dy;, the prior allows for high (if
dx; = 0) or low (if dx; = 1) positive prior partial correlation of £ and f;.

The prior partial precision Prec(Sx|B,;) can take one of ¢ different values, depend-

ing on the binary indicators involving level k. Subsuming these indicators in o, =



346 Bayesian Effect Fusion for Categorical Predictors

(0k0s - -+ s Ok k—1, Ok+1,k» - - - Oc, k), the minimum value for Prec(f|B\,) results for o, =1
as ¢/(y7?), and its maximum value, attained for 8, = 0, is r-¢/(y72). Thus the precision
ratio r is the ratio of maximum to minimum prior partial precision. With our choice of
v = ¢/2 the partial prior precision ranges from 2/72 to r - 2/72, and does not depend
on the number levels c.

To illustrate the specification of the structure matrix Q(d) we consider a covariate
with ¢ = 3 levels where only one of the indicators dx;, 0 < j < k < ¢ has the value 0
whereas all others are 1. For a precision ratio of r = 10000 and 19 = 0 the structure
matrix is given as

10002 -1 -1
Qo) = -1 3 -1
-1 -1 3

The marginal prior on (; is concentrated close to zero, thus encouraging fusion to the
baseline category. If 31 = 0, the structure matrix is

10002 —1 —10000
Q= -1 3
—10000 —1 10002

Hence, the joint prior on (81, 83) is concentrated close to §; = B3 and encourages fusion
of these two effects.

The quadratic form given in (7) suggests an interpretation of the effect fusion prior in
terms of conditional Normal priors with zero mean and precision proportional to sy; on
all effect differences 0,; = B — B, 0 < j < k < ¢. For d5; = 0 the prior precision is high
with #r; = r and hence the effect difference 6y; is concentrated around zero, whereas
it is more dispersed for di; = 1 where k; = 1. Actually, as we show in Supplemental
Appendix A.2 the effect fusion prior specified above can be derived alternatively by
first specifying independent spike and slab priors on all effect differences 6y, and then
correcting for the linear restrictions 6y; = 0o — 00. Thus, the proposed prior allows for
shrinkage of effect contrasts to zero while taking into account their linear dependence.

As all pairwise effect contrasts 6i; are taken into account symmetrically, the ef-
fect fusion prior is invariant to the choice of the baseline category, see Supplemental
Appendix A.3 for a formal proof. This invariance distinguishes the effect fusion prior
from the conventional spike and slab prior used for variable selection, which allows only
shrinkage of regression effects 8 = 0xo, i.e. effect contrasts with respect to the baseline,
but not all other effect contrasts 8;, where j > 0.

Finally, we note that from a frequentist perspective, the effect fusion prior can be
interpreted as an adaptive quadratic penalty with either heavy or slight penalization of
effect differences, see (7). Similarly, Gertheiss and Tutz (2010) in a frequentist approach
use a weighted L; penalty on the effect differences, which has the advantage that effect
differences are not only shrunken but can actually be set to zero.
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3.2 Prior for restricted effect fusion

We consider now the case where due to available information on the structure of levels
fusion is restricted to specific pairs of level effects. A prominent example is an ordinal
covariate where the ordering of levels suggests to allow only fusion of subsequent level
effects Br—1 and fBi. A restriction that e.g. B, and S; should not be fused can be
implemented in our prior in two ways: we can either fix the corresponding indicator at
dk; = 1 or set the corresponding element in the prior precision matrix Q(d) to zero.
Whereas g;; = 0 is a hard restriction which implies conditional independence of 3, and
Bj, setting dx; = 1 is a soft restriction which implies that effects 8, and B; are still
smoothed to each other.

The implementation of soft restrictions is straightforward, but (hard) conditional
independence restrictions require slight modifications in the definition of the structure
matrix Q(d), the vector of indicators § and the constant 7. To specify hard fusion
restrictions we introduce a vector ¢ of indicators (;, which are defined for each effect
difference 6y;. The elements of ¢ are fixed and indicate whether an effect difference is
subject to fusion (for (x; = 1) or not (for (x; = 0). Deviating from unrestricted effect
fusion considered in Section 3.1, we define a stochastic indicator §;; only for those effect
differences where (; = 1 and hence the dimension of § is d = Y ;_, > o<j<k Ckj-

To allow off-diagonal elements of the prior precision to be zero, we set
)Rk Gy =1,
qkj = .
0 if ij = 0,

and gj, = qi;j. Thus, gg; takes the value zero if (;; = 0 and —ry; otherwise. Accordingly,
the diagonal elements are specified as

) Eko = Dy aky i Cro =1,
Qrk = .
- Zk;ﬁj qk;j if (o = 0.

As noted above, an important special case is an ordinal covariate, where fusion of
effects can be restricted to adjacent categories, see Gertheiss and Tutz (2009). We define

1 forj=k—-1,
ijZ{ J

0 otherwise.

Thus, the vector of indicators d has only d = ¢ elements, § = (619, ... 0¢,c—1) and Q(¢, )
is a tri-diagonal matrix with elements

K10 + K21 —K12 e 0 0
—Ko21 Ko1 + K32 ... . 0
0 —K32 .
Q(¢,9) = : : : N : . (10)
Re—1,e—2 + Re,e—1 —Reye—1

0 0 - —Ke,e—1 Ke,e—1



348 Bayesian Effect Fusion for Categorical Predictors

In this case, the maximum value of a diagonal element is gir = 2r and therefore we set
v =1

It is easy to show that this specification of Q((,d) corresponds to a random walk
prior on the regression effects:

Bk = Br—1 + Ok, O ~ N (0,7 /K1) ,

with initial value Sy = 0. Due to the spike and slab structure, this prior allows for adap-
tive smoothing, with almost no smoothing for 5 ,—1 = 1 and pronounced smoothing
for 6k,k—1 = 0.

Another special case of a restricted effect fusion prior is the standard spike and
slab prior used for variable selection, which encourages only fusion to the baseline,
i.e. shrinkage of B; to Sy = 0. In our framework the spike and slab prior is recovered

with
Cor = 1 for j =0,
7o otherwise,

and y = 1. Therefore the off-diagonal elements of Q((, d) are zero and qir = Ko-

3.3 Prior on the indicator variables

To perform variable selection the elements of § are usually assumed to be conditionally
independent a priori with p(d; = 1) = w, where w is either fixed or assigned a hyperprior
w ~ B(vg,wp). This would be possible also for the effect fusion prior, but from a
computational point of view a more convenient choice is to set

p(8) o< [Q(&)[ /2 (mom)/2, (11)

Thus, the determinant of Q(d) cancels out in the joint prior of regression effects and
indicators p(3, 8|72), which results as

(B.817%) = (818, 7p(8) = () e (- PG ymm- 1y

This prior has attractive features: Firstly, as p(3,8|72) can be factorized as

p(8,0|7?) H V)i exp( (ﬂkQT 5)* (6j +r(1— 5kj))) x (13)
k#j

o Hp(9kj,5kj\72)a (14)
k#j

the effect differences 0p; and indicators dy; are jointly independent across all pairs
0 < j < k < c conditional on the scale parameter 72. Secondly, conditioning on the
corresponding effect difference 6y; the conditional prior of the indicator dy;,

P01V (0,777) )
p(Ok; IV (0,772) ) + p(Ok;IN (0,772/7) )

is identical for all pairs of indices k, j subject to fusion.

p(0r; =118, 7%) = (15)
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Figure 1: Simulation from the effect fusion prior: Plot of (81, 82) for ¢ = 3 and hyper-
parameters go = 5, Go = 2, r = 1000 (left) and » = 10000 (right).

The properties of the prior p(d) given in (11) depend on the concrete specification of
4. For the special cases of restricted effect fusion discussed above, fusion of subsequent
levels of an ordinal covariate with & = (419, ...0cc—1) and Q(d) specified in (10), and
variable selection with & = (d10,...0.0) and Q(d) = diag(k1o,- .-, ko), the prior p(d)
is uniform over all 2¢ different values of 4,

p(0) ox 1,
see Supplemental Appendix A.4 for a formal proof.

In contrast, for a nominal covariate with unrestricted effect fusion p(d) specified in
(11) favours sparse models. As Q(d) has a more complicated structure in this case (see
formula 18 in the Appendix), its determinant is not available in closed form for arbitrary
4, but we can compare the full model, where § = 1 and the null model where § = 0 and
hence all effects are sampled from the spike component. As |Q(0)| = [rQ(1)], we get

p(d =0) _ 1Q(1)|'/? Cpd/2 —pme/2,d/2 _ pe(e=1)/2
p(6=1)  [Q(0)|'/2 '

Thus, a priori the null model is increasingly favoured over the full model with higher
number of levels and higher precision ratio.

Figure 1 shows simulations from the marginal prior p(3) for a categorical regressor
with ¢ = 3 levels (except baseline) for » = 1000 and r = 10000. Due to the symmetry
of the prior with respect to all level effects only plots for (81, 2) are presented. The
prior is concentrated at configurations where all or a subset of the regression effects is
zero, or where two effects are equal, 3; = 85 and concentration at these configurations
increases with the precision ratio r.

Corresponding plots for simulations from the variable selection prior, where fusion
is restricted to B = 0, and the ordinal fusion prior with fusion restricted to 8y = Br_1
are shown in Figure 2. Compared to unrestricted effect fusion, sparsity is much less
pronounced in these two priors.
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Figure 2: Simulation from the prior: Plot of (1, 82) for ¢ = 3 and hyperparameters
go = 5, Gg = 20 and r = 10000. Left: variable selection prior, right: ordinal fusion prior.

3.4 Choice of hyperparameters

To provide a rationale for the choice of the hyperparameters r, gy and Gy we focus
on the joint marginal prior distribution of one effect difference and the corresponding
indicator 0 < j < k < c¢. As already noted above, the random variables (6;,dx;) are
independent and identically distributed for all pairs of indices k,j conditional on the
scale parameter 72. Marginalized over d;; and 72 the prior on an effect difference 6y; is a
spike and slab distribution, where both the spike and the slab are scaled t-distributions
with 2gy degrees of freedom and scale parameter o = \/Go/go (for 0x; = 1) and o/y/r
(for dx; = 0), respectively. For effect fusion we follow the standard choice in variable
selection to set gg = 5 (Fahrmeir et al., 2010; Scheipl et al., 2012) where tails of spike
and slab fat enough to avoid MCMC mixing problems when the indicator dx; is sampled
conditional on ;.

Our modelling goal is to allow for fusion of level effects with negligible difference
while level effects with relevant difference should be modelled with seperate effects. To
avoid misclassification of relevant differences as negligible, which we call false negatives
or of negligible effects as relevant, i.e. false positives, the scale parameter Gy and the
precision ration r could be chosen by specifying the conditional fusion probability

1
1+ t2go(%)

Vrtagy (Vi)

P(0k; = 0|0;) =

for two values of ;.

Figure 3 shows plots of the fusion probabilities as a function of the effect differ-
ence for various values of r and Gg with go = 5. For fixed 6y; the fusion probability
P(0; = 0]6k;) decreases with r and increases with Gy which suggests to choose a large
value for r large and a small value for Gy. However for smaller values of G shrinkage
effect differences to zero is more pronounced even under the slab, which might hamper
detection of small effect differences and hence G has to be chosen carefully to represent
the scale of relevant effects.
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LS. =200 =1 — &=
- =200 ™~ e
20000 \ N =200

Figure 3: Fusion probabilities for go = 5. Left: Gy = 2 and different values of r, right:
r = 20000 and different values of Gj.

We will investigate different values for both hyperparameters Gy and r in the simu-
lation study in Section 5.3. As suggested by a referee, we investigate also a hyperprior
on Go, where a convenient choice is an exponential prior Gy ~ £ (A) with mean A. We
tried also to put a hyperprior on r, which did however not prove useful as the additional
flexibility resulted in all effect differences being assigned to the spike component.

4 Posterior inference
Our goal is posterior inference for the parameters of linear regression model

y=XB+e e~N(0,0)

with prior

p(IB’ 63 T2ﬂ 02) = P(ﬁ|57 T2)p(5)p(’r2)p(0’2).
Here the regressor matrix is X = [1,Xy,...,X,] and the vector of regression effects is
B=(uB1...,B,) The vector § = (87,...,8,) stacks the vectors of binary indicators
dn,h=1,...,pand 72 = (73,... ,Tp2)' subsumes the scale parameters 7. The prior for

3 is multivariate Normal, 3|8, 72 ~ N (0, By (4, ’7'2)) with covariance matrix Bo(d, 72),
which is block-diagonal with elements My (for the intercept) and Bpo(p,73), h =
1,...,p.

The resulting posterior distribution is proper even for the partial improper prior with
p(u, 0?) o< % under conditions given by a theorem of Sun et al. (2001), see Supplemental
Appendix B.1 for details.

Posterior inference can be accomplished by sampling from the posterior distribution
using MCMC methods. For the prior distributions specified above posterior inference
for the model parameters is feasible by a Gibbs sampler, where the full conditionals are
standard distributions. The sampling scheme is outlined in Section 4.1. Model averaged
estimates of the parameters can be obtained as the means of the MCMC draws but
often the goal is to select a final model with eventually fused levels. In Section 4.2,
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we discuss how this model selection problem can be addressed in Bayesian decision
theoretic approach by choosing an appropriate loss function.

4.1 MCMC scheme

We initialise MCMC by choosing starting values for the error variance o2, the indicators
& and the scale parameters 72 and compute the prior covariance matrix Bg(d, 72).

MCMC then iterates the following steps:

(1) Sample the regression coefficients B from the full conditional Normal posterior
p(Blo?,8,7%y).

(2) Sample the error variance o from the full conditional Inverse Gamma distribution
p(@?B,y).

(3) For h =1,...,p: Sample the scale parameter 77 from the full conditional Inverse
Gamma distribution p(7?|8;,, 6r).

(4) For all h € {1,...,p} with a hyperprior specified on Gj: Sample G} from
P(GulAn, 73})

(5) For h = 1,...,p: Sample d;, independently from its full conditional posterior
p(5h|5h’7—}%)'

(6) Update the prior covariance matrix Bo(8, 72).

Due to the hierarchical structure of the prior, the posterior of §; in sampling step
(5) depends only on 3, and 77 and as discussed in Section 3.3 elements of &), are
conditionally independent given 77 and 3;,. Therefore all binary indicators dj, ;; can be
sampled independently from p(&p x; = 1|0k; = Bn.x — Br.j» T4), Which is given in (15).

Full details of the sampling steps are provided in Supplemental Appendix B.2. The
sampling scheme is implemented in the R package effectFusion (Pauger et al., 2016).

Compared to posterior inference with a standard Normal prior on the regression
effects 3, only steps (3)—(6) have to be added under the effect fusion prior. These steps
are fast for nominal covariates that are typical in applications with 2-50 levels. However,
as all pairwise differences are assessed in each sweep of the sampler computation times
become prohibitive for covariates with 100 or more levels. For a data set of n = 10000
observations and one nominal covariate 1000 MCMC iterations take 1.5 seconds for a
covariate with ¢ = 20 levels, but roughly 25 min. for ¢ = 100 levels on a standard
laptop with Intel i7-5600U processor with 2.60 GHz and 16 GB RAM. More details on
computation times are given in Supplemental Appendix B.3.

As already noted above, due to the hierarchical structure of the effect fusion prior
the full conditionals of the parameters &, 77 and G, depend only on the regression
effects 3,;, and not on the data likelihood. Thus, implementation of effect fusion for cat-
egorical covariates is straightforward in any type of regression model with an additively
structured linear predictor.
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4.2 Model selection

If the goal is to select a final model, e.g. to be used for prediction, a Bayesian decision
theoretic approach requires to choose an appropriate loss function. A particularly ap-
pealing loss function for effect fusion is a special case Binder’s loss (Binder, 1978) which
is used in Lau and Green (2007) for Bayesian model based clustering of observations.
Binder’s loss considers pairs of items and penalizes incorrect clustering, which occurs
when two items which should not be clustered are assigned to the same cluster or when
two items which should be clustered are assigned to different clusters. For effect fusion
incorrect clustering corresponds to classifying an effect difference falsely as negative or
falsely as positive, respectively.

Binder’s loss is given as
[’(Za Z*) = Z (ZII{zk:zJ}I{zzyﬁz]*} + eQI{zk;ézj}I{z,::z;})a
ik

where z denotes the true and z* the proposed clustering and the constants ¢; and /o
are misclassification costs. For £; = {5 the expected posterior loss results as

E(L(z,2°)y) = 3 Misimary — g, (16)
J#k

where m; = P(2, = z;]y) denotes the (k,j) element of the posterior similarity matrix,
see Fritsch and Ickstadt (2009). The Bayes optimal action, i.e. the clustering which
minimizes the expectation of Binder’s loss, can be determined by minimizing

1
> Ty (5 — ) (17)
ik
For this minimization problem Lau and Green (2007) use an algorithm based on integer
programming, which is implemented in the function minbinder (R package mcclust).

We determine the optimal fusion model with respect to the expected posterior Binder
loss (16) for each covariate Cj, separately and approximate the elements 7y ; of the
corresponding posterior similarity matrix from M MCMC draws (after burnin) by

1 M

~ m)

Thij = 37 > 52@
m=1

Finally, we refit the selected model with dummy-coded regression coefficients for the
fused levels under a flat Normal prior N (0,1B).

5 Simulation study

To investigate the performance of the proposed method we conducted a simulation
study with a similar set-up as in Gertheiss and Tutz (2010) where we compare model
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averaged results (FusBMA) and results of the finally selected model (FusSel) under
the effect fusion prior with respect to parameter estimation, correct effect fusion and
predictive performance to various other approaches: penalized regression (Penalty), the
Bayesian lasso (BLasso), the Bayesian elastic net (BEN), the group lasso (GLasso), the
sparse group lasso (SGL) and the Bayesian Sparse Group Lasso (BSGS). Additionally,
we include Bayesian regularization via graph Laplacian (GLap), proposed in Liu et al.
(2014), where the prior is also specified directly on the elements of the prior precision
matrix, however with the goal to identify conditional independence by shrinking off-
diagonal elements to zero. A list of the papers introducing these methods and the
related R packages is given in Supplemental Appendix C.1. For comparison we also fit
the full model (Full) with separate dummy variables for each level and the true model
(True), i.e. the model where the correct fusion is assumed to be known.

5.1 Simulation set-up

We generated 100 data sets with n = 500 observations from the Gaussian linear regres-
sion model (2) with intercept ;4 = 1, a standard Normal error ¢ ~ N (0,1) and fixed
design matrix X. We use four ordinal and four nominal predictors, where two regres-
sors have eight and two have four categories for each type of covariate (ordinal and
nominal). Regression effects are set to 3, = (0,1,1,2,2,4,4) and B85 = (0,—2,—2) for
the ordinal, to 8; = (0,1,1,1,1,—2,—2) and B, = (0,2,2) for the nominal covariates,
and 3; = 0 for h = 2,4,6,8. Levels of the predictors are generated with probabilities
(0.1,0.1,0.2,0.05,0.2,0.1,0.2,0.05) and (0.1,0.4,0.2,0.3) for regressors with eight and
four levels, respectively.

To perform effect fusion, we specify a Normal prior with variance By = 10000 on
the intercept and the improper prior p(c?) o 1/0? (which corresponds to an Inverse
Gamma distribution with parameters sy = Sy = 0) on the error variance o2. For each
covariate h, the hyperparameters are set to Gpg = 20 and r = 20000, but we investigate
also various other values for both parameters and an exponential hyperprior on Gpg
with A = E(Gpo) = 2 in Section 5.3.

MCMC is run for 10000 iterations after burnin of 5000 for each data set to obtain
model averaged estimates (FusBMA) and to perform model selection. Models Full and
True and the refit of the selected model FusSel are estimated from 3000 MCMC itera-
tions (after a burnin of 1000) under a flat Normal prior N (0,1B,) with By = 10000 on
the regression coefficients. The tuning parameters of the frequentist methods Penalty
and GLasso are selected automatically via cross-validation in the corresponding R pack-
ages. For SGL we choose the penalty parameter via cross-validation in the range from
0.00005 to 0.05. For the Bayesian methods, we use the default prior parameter settings
in the code (for GLap) and the R packages monomvn and EBglmNet and estimate the re-
gression coefficients by the posterior means. For BSGS which is tailored to sparse group
selection of numeric regressors in a model with no intercept the recommendation in Lee
and Chen (2015) to demean the response is not useful in our setting and hence we set
the prior inclusion probability for the intercept to 0.99 (which due to implementation
specifics resulted in a higher posterior inclusion probability than setting this value to
1) and used the default value of 0.5 for all other covariates.
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5.2 Simulation results

We first compare the different methods with respect to estimation of the regression
effects. Figures 4 and 5 show boxplots of the mean squared estimation error (MSE),
which is defined for data set 7 and covariate h as

Ch

i 1 NG
MSEY = — 3 (Bl = Bun)®,
k=1

for ordinal covariates (h = 1,...,4) and nominal covariates (h =5, ...,8), respectively.

No method outperforms the others consistently in all data sets for all covariates. The
mean MSE (averaged over all 100 data sets) is lower for both versions of Bayesian effect
fusion, FusBMA and FusSel, than in the model Full and only slightly higher than in the
model True for all covariates. Fuse BMA and FuseSel perform similar and outperform
all other methods with respect to the mean MSE for the ordinal covariates 1 and 3
and for all nominal covariates (5-8). However they are outperformed in some data sets
by BLasso and BSGS for the ordinal covariates 2 and 4 (both with no effect on the
response) and by BEN for covariate 4. Though overall performance of FusBMA and
FusSel is very good, for single data sets the MSE can be even higher than for the model
Full. This occurs when levels with actually different effects are fused, e.g. for some of
the 8 levels of the nominal covariate 5.

As noted above the overall performance of FusBMA and FusSel is very similar in this
simulation. Some differences can be seen for covariates 2 and 4 where FusSel performs
better than FusBMA in most data sets, however occasional outliers are more extreme.
This is not surprising, as FusSel depends only on the selected model and hence the MSE
will be lower than for FusBMA if the correct model is selected and higher otherwise.

The frequentist method for effect fusion, Penalty, which uses a global penalty pa-
rameter across all covariates yields a lower MSE than the model Full for covariates with
no effect and for ordinal covariates, but only small improvements for nominal covariates.

BLasso which aims at shrinkage of effects to zero performs very well for covariates
with no effect but also good for the other covariates 1, 3, 5 and 7. The performance
of BEN is similar, however slightly worse than that of BLasso for all covariates. As
expected, GLasso which aims at sparsity at the group level performs well for covariates
with no effect but the MSE values are similar to those of the model Full for covariates
with non-zero effects. GLap which is designed for a different goal yields small improve-
ments for covariates with no effect compared to the model Full and performs similar for
covariates with non-zero effects. Finally, both SGL and BSGS, which aim at sparsity at
the group level as well as within groups of effects outperform Full for covariates with
no effect and to a smaller extent also for the nominal covariates 5 and 7, where some
level effects are zero. However, SGL performs worse then Full for covariates 1 and 3,
where the ordinal structure is not taken into account. BSGS performs almost as good
as True and similar to Bayesian effect fusion (slightly better for covariates 2 and 4,
slightly worse for covariates 6 and 8) for covariates with no effects. For nominal and
ordinal covariates with non-zero effects it is outperformed by FusBMA and FusSel but
performs similar as the two other Bayesian methods BLasso and BEN.
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Figure 4: Simulation study: MSE for ordinal covariates (1-4) in 100 simulated data sets. Covariates 2 and 4 (right panel) have
no effect on the response.
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Figure 5: Simulation study: MSE for nominal covariates (5-8) in 100 simulated data sets. Covariates 6 and 8 (right panel) have
no effect on the response.
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To evaluate the predictive performance of Bayesian effect fusion, we generate a new
sample of n* = 500 observations z;, j = 1,...,n* from the linear regression model
(2) with fixed regressors X; and the same parameters as in the simulated data sets.
Predictions for these new observations are computed using the estimates from each of

the original data sets as 2§i) = ij,él(z),i =1,...,100.

The mean squared prediction errors (MSPE) defined for each data set as

oL iy
MSPE():EZ(zj— 2 i=1,...,100
j=1

are shown in Figure 6. The predictive performance of FusBMA and FusSel is almost as
good as for the model True with correctly fused effects, and is considerably better than
for all competing methods in most data sets. The Bayesian methods BLasso and BSGS
perform similar with respect to the mean (averaged over 100 data sets) and slightly
better than Penalty, BEN and GLasso. Finally, MSPEs for SGL and GLap are similar
to those of model Full.

1.25
1

1.15
1

1.10
1

T T T T T T T T T
Full FusBMA FusSel Penalty BlLasso BEN  GlLasso GlLap SGL BSGS True

Figure 6: Simulation study: MSPE of 500 new observations. Predictions are based on
the estimates from 100 simulated data sets.

To evaluate and compare the performance of the methods with respect to model se-
lection, we report for each covariate the true positive rate (TPR), the true negative rate
(TNR), the positive predictive value (PPV) and the negative predictive value (NPV),
see Supplemental Appendix C.2 for detailed definitions. If fusion is completely correct,
all four values are equal to 100% but TPR and PPV are not defined for covariates where
all effects are zero.

For Bayesian effect fusion (Fusion) we perform model selection as described in Sec-
tion 4.2, for the other methods we consider two level effects as identical if the posterior
mean of their difference is smaller or equal to 0.01. Tables 1 and 2 report the averages
of these statistics in the 100 simulated data sets for each covariate separately. Bayesian
effect fusion clearly outperforms all other methods with respect to identifying categories
with the same effect with averaged TNR higher than 95% for all covariates. This comes
at the cost of occasionally missing a non-zero effect difference and hence an average
TPR slightly lower than 100%.
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Covariate Method TPR TNR PPV NPV
1 Fusion 99.7 95.2  95.3 99.8
Penalty 100.0 18.8 489 100.0
BLasso  100.0 6.5 44.7  100.0

BEN 100.0 19.0 48.4 100.0
GLasso  100.0 2.8 43.7 100.0

GLap 100.0 2.8 43.6  100.0

SGL 100.0 8.2 45.2  100.0

BSGS 100.0 12.0 46.3 100.0

2 Fusion - 98.3 - 100.0
Penalty - 21.3 - 100.0

BLasso - 22.3 - 100.0

BEN - 54.4 - 100.0
GLasso - 20.6 - 100.0

GLap - 2.7 - 100.0

SGL - 18.6 - 100.0

BSGS - 83.9 - 100.0

3 Fusion 100.0 99.0 99.3 100.0
Penalty 100.0 24.5 44.8 100.0
BLasso 100.0 24.5 43.5 100.0

BEN 100.0 47.0 52.7 100.0
GLasso 100.0 10.0 36.7 100.0

GLap 100.0 6.5 35.5 100.0

SGL 100.0 19.0 40.0 100.0

BSGS 100.0 31.0 45.7 100.0

4 Fusion - 99.0 - 100.0
Penalty - 21.3 - 100.0

BLasso - 48.0 - 100.0

BEN - 62.0 - 100.0
GLasso - 33.0 - 100.0

GLap - 7.0 - 100.0

SGL - 19.3 - 100.0

BSGS - 74.7 - 100.0

359

Table 1: Simulation study: Model selection results for ordinal covariates. TPR, TNR,

PPV and NPV are averaged over 100 data sets.

5.3 Influence of hyperparameters

In this section, we investigate the sensitivity of model selection under the effect fusion
prior with respect to the hyperparameters. While false positives result in a loss of
estimation efficiency, false negatives will yield biased effect estimates and poor predictive
performance, and hence the goal is to avoid false negatives while keeping false positives
at a moderate level. We report false negative rates, FNR = 1 — TPR and false positive
rates FPR = 1 — TNR for various values of Gy and fixed » = 20000 in Table 3 and
for various values of r and fixed Gg = 20 in Table 4. Results in Table 3 indicate that
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Covariate Method TPR TNR PPV NPV
5 Fusion 99.1 98.8  99.5 98.5
Penalty 100.0 17.2 75.3 100.0

BLasso 100.0 6.6 72.9 100.0

BEN 100.0 124 74.1 100.0

GLasso 100.0 4.5 72.4  100.0

GLap 100.0 4.4 72.4 100.0

SGL 100.L0 7.0 72.9 100.0

BSGS 100.0 7.1 72.9 100.0

6 Fusion - 100.0 - 100.0
Penalty - 51.4 - 100.0
BLasso - 26.8 - 100.0
BEN - 53.8 - 100.0
GLasso - 19.5 - 100.0
GLap - 3.9 - 100.0
SGL - 19.2 - 100.0
BSGS - 83.2 - 100.0
7 Fusion 100.0 99.5 99.8 100.0

Penalty 100.0 17.5 71.6 100.0
BLasso 100.0 21.5 72.5 100.0
BEN 100.0 43.0 78.3 100.0
GLasso  100.0 5.0 68.0 100.0
GLap 100.0 3.5 67.6 100.0
SGL 100.0 16.0 71.0 100.0
BSGS 100.0 31.0 75.1 100.0

8 Fusion 100.0 - 100.0
Penalty - 27.5 - 100.0
BLasso - 48.0 - 100.0
BEN - 70.2 - 100.0
GLasso - 34.3 - 100.0
GLap - 4.8 - 100.0
SGL - 21.2 - 100.0
BSGS - 80.0 - 100.0

Table 2: Simulation study: Model selection results for nominal covariates. TPR, TNR,
PPV and NPV are averaged over 100 data sets.

increasing Go from 0.2 to 200 has little effect on FNR but yields lower FPR for ordinal
predictors (covariates 1-4), and has little effect on FPR but leads to higher FNR for
nominal predictors (covariates 5-8). We conclude that for nominal predictors Gy = 2
is a good choice which allows to detect also small effect differences whereas for ordinal
predictors we suggest to choose a larger value for Gy, e.g. Gy = 20. An exponential
hyperprior with E(Gy) = 2 performs similar to a fixed value of Gy = 2 with slightly
lower FNR and FPR for nominal covariates but higher FPR for ordinal covariates.

Table 4 reports FNR and FPR for values of the precision ratio r from 2 - 102 to
2 - 10°. Whereas for ordinal predictors FNR and FPR change only little with r, for
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Go=0.2 Gp=2 Go =20 Go =200 Go ~ £ (2)
h|FNR, FPR,|FNR, FPR,|FNRy FPRy|FNR;, FPR,|FNR, FPRy
11 00 13.0 0.3 10.5 0.3 4.7 0.7 1.7 0.3 9.0
2 - 18.9 - 7.4 - 1.7 - 0.3 - 11.7
3| 0.0 11.0 0.0 7.5 0.0 1.0 0.0 0.5 0.0 5.0
4 - 14.3 - 5.0 - 1.0 - 0.3 - 8.7
5| 04 1.2 0.7 1.0 0.9 1.2 81.0 0.0 0.5 0.9
6 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0
71 0.0 3.0 0.0 2.0 0.0 0.5 0.0 0.0 0.0 1.5
8 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0
Table 3: Simulation study: Model selection results for » = 20,000 and various values of
Go.
r =200 r = 2,000 r = 20,000 r = 200,000
h | FNR, FPRy, | FNR, FPRy, | FNR, FPR), | FNR, FPRy,
1 0.3 2.7 0.3 4.2 0.3 4.7 0.3 3.0
2 - 0.9 - 1.4 - 1.7 - 1.7
3 0.0 0.5 0.0 1.5 0.0 1.0 0.0 2.0
4 - 0.3 - 0.3 - 1.0 - 1.7
5 | 100.0 0.0 92.0 0.0 0.9 1.2 0.8 1.9
6 - 0.0 - 0.0 - 0.0 - 0.6
7 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
8 - 0.0 - 0.0 - 0.0 - 0.0

Table 4: Simulation study: Model selection results for Gg = 20 and various values of r.

nominal covariates low values of r encourage too much fusion of effects and hence result
in a high FNR. Both FNR and FPR are small for » = 2-10* and r = 2-10°. As MCMC
mixing is adequate for both values, we suggest to choose r in this range.

6 Real data example

As an illustration of Bayesian effect fusion on real data, we model contributions to pri-
vate retirement pension in Austria. The data were collected in the European household
survey EU-SILC (European Union Statistics on Income and Living Conditions) 2010 in
Austria. We use a linear regression model to analyse the effects of socio-demographic
variables on the (log-transformed) annual contributions to private retirement pensions.
As potential regressors we consider gender (binary, 1=female/0=male), age group (or-
dinal with eleven levels), child in household (binary, 1=yes/0=no), income class (in
quartiles of the total data set, i.e. ordinal with four levels), federal state of residence
in Austria (nominal with nine levels), highest attained level of education (nominal
with ten levels) and employment status (nominal with four levels). We restrict the
analysis to observations without missing values in either regressors or response and a
minimum annual contribution of EUR 100. Hence, the final data set used for our analysis
comprises data of 3077 persons.
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We standardised the response and fit a regression model including all potential
covariates. Results reported in Table 5 (left panel) indicate that several levels of covariate
education have a similar effect and most level effects of federal state are close to
zero, which suggests that a sparser model might be adequate for these data.

To specify the effect fusion prior, we chose the hyperparameters with r = 50000,
grho = 5, Gpo = 2 for nominal and Gy = 20 for ordinal predictors and used the improper
prior p(o?) = 0—12 MCMC was run for 50000 iterations after a burn-in of 30000 with the
first 500 draws of the burnin drawn from the unrestricted model where all elements of §
are 1. The median of the integrated autocorrelation times over all regression effects was
11.9 (range 1-104) and integrated autocorrelation times were lower than 30 for effects
of all covariates except age. We ran several chains from different starting values which
yielded essentially the same results.

Figure 7 shows the estimated posterior means of the pairwise fusion probabilities
1 — 7 kx—1 for the ordinal covariate age group. The estimated fusion probability is
higher than 0.5 (dotted line) for five levels, which indicates that age categories could
be fused as follows: categories 20-25 and 25-30 to 20-30, categories 35-40 and 40-45
to 35—45 and finally the four categories 50-55, 55—60, 60—65 and >65 to a new category
>50.

For a nominal covariate we suggest to visualize the pairwise fusion probabilities in
a heatmap. Figure 8 shows the corresponding heatmap for the covariate education,
where all pairwise fusion probabilities are displayed. Darker colours indicate higher
fusion probabilities and values in the diagonal (which represent fusion probability of a
category with itself) are always one. Thus, only three levels are required to capture the
effect of education (secondary school and apprenticeship; doctoral degree; all remaining
levels) and thus the number of effects to be estimated reduces from nine to two.

Model averaged parameter estimates under the effect fusion prior (i.e. FusBMA) are
reported in the middle panel of Table 5. The narrow model averaged 95% — HPD inter-
vals around zero for the effects of covariates child, federal state and employment
status indicate that there is low uncertainty on the irrelevance of these effects. Encour-
aging fusion of level effects by the effect fusion prior also reduces uncertainty on the
level effects of education compared to the full model. However, uncertainty on effects
can even increase under the effect fusion prior, see e.g. the effect of age category 25-30,
for which fusion probabilities to the category 20-25 are close to 0.5 and hence there is
high uncertainty whether these categories should be fused or not.

Next, we select the final model for all covariates based on the estimated pairwise
fusion probabilities as described in Section 4.2. Covariates child, federal state and
employment status are completely excluded from the model, whereas some of the levels
are fused for covariates age group, income class and education. Thus, the final
model has only 11 regression effects compared to 35 in the full model. The right panel
of Table 5 shows results from the selected model using flat priors (FusSel). Regression
effects are similar to the model averaged estimates and the posterior mean of the error
variance 62 = 0.829 is almost identical to that of the full model, where 62 = 0.826.



Full model 95% Model averaged 95% Selected model 95%

Posterior mean  HPD interval | Posterior mean  HPD interval Posterior mean  HPD interval
Intercept -1.15 (-1.38 = -0.91) -1.05 (-1.29 — -0.80) -1.10 (-1.31 — -0.90)
Age
20-25 0.20 (-0.03 — 0.42) 0.20 (-0.01 - 0.49) 0.33 (0.14 — 0.52)
25-30 0.36 (0.15 - 0.57) 0.30 (0.00 — 0.54)
30-35 0.60 (0.40 — 0.80) 0.62 (0.36 — 0.88) 0.65 (0.45 — 0.86)
35-40 0.74 (0.53 — 0.95) 0.74 (0.49 — 0.98)
40-45 0.80 (0.60 — 1.00) 0.77 (0.54 — 1.00) 0.82 (0.62 — 1.01)
45-50 0.90 (0.70 — 1.10) 0.87 (0.61 — 1.12) 0.93 (0.74 — 1.13)
50-55 1.01 (0.80 — 1.23) 0.96 (0.73 — 1.20)
55-60 1.06 (0.81 — 1.30) 0.97 (0.73 - 1.21)
60-65 1.23 (0.83 — 1.62) 0.97 (0.72 — 1.25) 1.05 (0.85 — 1.24)
> 65 0.67 (0.14 — 1.22) 0.75 (0.10 — 1.18)
Female -0.24 (-0.32—-0.17) -0.25 (-0.31 — -0.18) -0.25 (-0.31 —-0.18)
Child 0.00 (-0.07 - 0.07) 0.00 (-0.02 - 0.02) - -
Income
2nd quartile 0.20 (0.07 - 0.32) 0.23 (0.01 - 0.35)
3rd quartile 0.25 (0.13 - 0.37) 0.23 (0.08 — 0.35) 0.23 (0.12 - 0.35)
4th quartile 0.52 (0.40 — 0.64) 0.53 (0.38 — 0.66) 0.54 (0.42 — 0.66)
Federal State
Carinthia -0.16 (-0.30 — -0.01) 0.00 (-0.01 - 0.01) - -
Lower Austria 0.06 (-0.03 - 0.16) 0.00 (-0.01 — 0.01) - -
Burgenland -0.03 (-0.21 - 0.15) 0.00 (-0.01 - 0.01) - -
Salzburg 0.15 (0.01 - 0.30) 0.00 (-0.01 - 0.01) - -
Styria 0.01 (-0.10 — 0.13) 0.00 (-0.01 — 0.01) - -
Tyrol 0.08 (-0.06 - 0.20) 0.00 (-0.01 - 0.01) - -
Vorarlberg 0.02 (-0.15 - 0.19) 0.00 (-0.01 - 0.01) - -
Vienna 0.00 (-0.11 - 0.10) 0.00 (-0.01 - 0.01) - -

Table 5: EU-SILC data: Posterior means and 95%-HPD intervals of regression effects and error variance in the full model,

model averaged and in the selected model.
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Full model

95%

Posterior mean HPD interval

Model averaged
Posterior mean

95%
HPD interval

Selected model

Posterior mean HPD interval

95%

Education

Apprenticeship, trainee 0.09 (-0.04 — 0.23) 0.02 (-0.01 - 0.17) 0.00 -
Master craftman’s diploma 0.24 (0.06 — 0.43) 0.22 (0.14 - 0.36)

Nurse’s training school 0.22 (-0.04 — 0.47) 0.22 (0.14 - 0.35)

Other vocational school

(medium level) 0.26 (0.11 - 0.42) 0.22 (0.14 - 0.36)

Academic secondary school

(upper level) 0.22 (0.05 - 0.37) 0.22 (0.14 — 0.35) 0.21 (0.14 - 0.28)
College for higher

vocational

education 0.28 (0.12 - 0.43) 0.22 (0.14 - 0.35)

Vocational school for 0.29 (0.06 — 0.51) 0.22 (0.14 — 0.36)

apprentices

University, academy: first 0.35 (0.20 — 0.49) 0.22 (0.14 - 0.35)

degree

University: doctoral studies 1.12 (0.85 — 1.37) 1.00 (0.76 — 1.25) 1.03 (0.80 — 1.26)
Employment status

Unemployed -0.10 (-0.34 - 0.12) 0.00 (-0.01 - 0.01) - -
Retired -0.15 (-0.37 - 0.07) 0.00 (-0.01 - 0.01) - -
Not-working

(other reason) 0.01 (-0.11 — 0.14) 0.00 (-0.01 — 0.01) - -
Variance o> 0.826 (0.787 — 0.870) 0.830 (0.789 — 0.872) 0.829 (0.790 — 0.870)

Table 5: (Continued.)
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Figure 7: EU-SILC data, covariate age group: estimated probabilities for fusion with
preceding level.
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Figure 8: EU-SILC data, covariate education: Estimated pairwise fusion probabilities
of level effects (baseline: category 0). Darker colours indicate higher fusion probabilities.

7 Conclusion

In this paper, we present a method that allows for sparse modelling of the effects of
categorical covariates in Bayesian regression models. Sparsity is achieved by excluding
irrelevant predictors and by fusing levels which have essentially the same effect on
the response. To encourage effect fusion, we propose a finite mixture of Normal prior
distributions with component specific precision matrices, that allow for almost perfect
or almost zero partial dependence of level effects. Alternatively, this prior can be derived
by specifying spike and slab prior distributions on all level effect contrasts associated
with one covariate and taking the linear restrictions among them into account. The
structure of this prior easily allows to incorporate prior information that restricts direct
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fusion to specific pairs of level effects. This property is of particular interest for ordinal
covariates where fusion usually will be restricted to effects of subsequent levels.

Posterior inference for all model parameters is straightforward using MCMC meth-
ods. To select one final model we suggest to determine the clustering of level effects
which minimizes Binder’s loss based on the estimated posterior means of the pairwise
fusion probabilities. Simulation results show that the proposed method automatically
excludes irrelevant predictors and outperforms competing methods in terms of correct
model selection, coefficient estimation as well as predictive performance.

The proposed method for Bayesian effect fusion is not restricted to linear regres-
sion models with categorical predictors but can be applied in more general regression
type models e.g. generalised linear models, with a structured additive predictor that
also contains other types of effects, e.g. nonlinear or spatial effects. Implementation of
effect fusion requires little adaption of an MCMC scheme for posterior sampling of any
Bayesian regression type model with a Gaussian prior on the regression effects as only
two Gibbs sampling steps and the update of the structure matrix have to be added in
each MCMC sweep.

A certain drawback of the method is that all pairwise effect differences have to be
determined and classified in each MCMC sampling step to construct the prior covariance
matrix and hence the computational effort can be prohibitive for nominal covariates with
a large number of levels. If we consider each combination of spike and slab distribution
on effect differences as a different model, then for a nominal covariate with c+1 levels the
procedure searches a space of 2¢(¢t1)/2 different models. This number is much larger than
the number of possible clusterings, which is given by the Bell number B(c+ 1) of order
c. A search in the model space of possible clusterings could be performed by employing
a reversible jump MCMC algorithm as in Dellaportas and Tarantola (2005). Another
option to determine a model with eventually fused level effects was recently proposed
in Malsiner-Walli et al. (2018). The authors use model-based clustering methods and
specify a finite mixture prior with many spiky components on the level effects. The prior
on the mixture weights encourages empty components and thus some level effects will
be assigned to the same mixture component. Due to the spikyness of the components,
almost identical effects are assigned to the same component which suggests to fuse effects
according to the clustering solution. This approach works well for nominal covariates
but does not easily allow incorporation of fusion restrictions.

Supplementary Material

Supplementary Material of “Bayesian Effect Fusion for Categorical Predictors” (DOTI:
10.1214/18-BA1096SUPP; .pdf).
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