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On Bayesian Oracle Properties

Wenxin Jiang∗, and Cheng Li†

Abstract. When model uncertainty is handled by Bayesian model averaging
(BMA) or Bayesian model selection (BMS), the posterior distribution possesses a
desirable “oracle property” for parametric inference, if for large enough data it is
nearly as good as the oracle posterior, obtained by assuming unrealistically that
the true model is known and only the true model is used. We study the oracle
properties in a very general context of quasi-posterior, which can accommodate
non-regular models with cubic root asymptotics and partial identification. Our
approach for proving the oracle properties is based on a unified treatment that
bounds the posterior probability of model mis-selection. This theoretical frame-
work can be of interest to Bayesian statisticians who would like to theoretically
justify their new model selection or model averaging methods in addition to empir-
ical results. Furthermore, for non-regular models, we obtain nontrivial conclusions
on the choice of prior penalty on model complexity, the temperature parameter
of the quasi-posterior, and the advantage of BMA over BMS.
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1 Introduction

The terminology of frequentist oracle property was first introduced in Fan and Li (2001)
for a frequentist penalization method in model selection, by which statistical inferences
“work as well as if the correct submodel were known.” Thereafter the oracle property
has become a popular concept in the statistics literature. On the other hand, analogs
of such an oracle property have not been widely studied in the Bayesian context, with
the exception of a few recent works in special model setups (Ishwaran and Rao 2011,
Castillo, Schmidt-Hieber, and van der Vaart 2015, Li and Jiang 2016, etc.)

In this paper, we define different versions of Bayesian oracle properties in a gen-
eral framework with quasi-posteriors and present a systematic way to study them
by bounding the probability of model mis-selection. In particular, we are interested
in the interplay between several different subjects: Bayesian model averaging (BMA),
Bayesian model selection (BMS) based on the Maximum-A-Posteriori (MAP) model,
and Bayesian posterior inference based on the unknown true model (i.e. the oracle
model). We reveal some surprisingly simple and general relations between these different
topics, and discuss their applications in non-regular models with cubic root asymptotics
and partial identification.
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We first introduce the basic notation we will use throughout this paper. Let D
be the observed data with sample size n. Let M be a generic model index, and the
“true model” M∗ be a possible value of M which is related to the data generating
mechanism. In Bayesian model averaging and model selection, we always consider a
countable sequence of models {Mj} indexed by j = 1, 2, . . ., among which is the true
modelM∗. A prior probability π(Mj) is assigned to each modelMj . Then each modelMj

proposes a different prior density π(θ|Mj) for the parameter θ, supported on a parameter
space Θj , which can possibly overlap. The full parameter space is Θ = ∪j≥1Θj . The
overall prior distribution with density π(θ) is given by

π(θ) =
∑
j≥1

π(θ|Mj)π(Mj), for θ ∈ Θ.

Given the model Mj and its proposed parameter θ, let p(D |θ,Mj) be the likelihood
function. Then the posterior density of θ through Bayesian model averaging (BMA) is
given by

π(θ|D) ∝
∑
j≥1

p(D |θ,Mj)π(θ|Mj)π(Mj), for θ ∈ Θ.

Throughout the paper, we use Π to denote the underlying probability measure associated
with density π.

Below we explain why the Bayesian version of oracle properties is desirable for
dimension reduction in standard regular models, why the more general quasi-Bayesian
framework is useful, and why our work will be of interest to the community of Bayesian
statisticians.

1.1 Bayesian oracle property is desirable for dimension reduction

Consider a simple example of linear regression with known error variance, where y ∼
N(

∑p
j=1 xjθj , 1), and N(μ, σ2) denotes the normal distribution with mean μ and vari-

ance σ2. Suppose that there exists an unknown true model M∗, in which only the first
p∗ components of θ = (θ1, . . . , θp)

� are nonzero. Suppose we consider these nested can-
didate models M1, . . . ,Mp, where the first j components of θ are nonzero if θ comes
from the model Mj . Given an observed independent and identically distributed (i.i.d.)
sample D = {(yi, xi1, . . . , xip), i = 1, . . . , n}, the BMA involves using the posterior

π (θ|D) ∝
p∑

j=1

e−
1
2

∑n
i=1(yi−

∑ j
�=1 xi�θ�)

2

π (θ|Mj)π (Mj) .

When p � n, we can set the prior π(θ|Mj) to be a component-wise independent product
of normal priors, and π(Mj) = 1/p as a uniform prior.

For this simple example, the Bayesian oracle property can be roughly described as

π(θ|D) ≈ π(θ|D,M∗) ∝ e−
1
2

∑n
i=1(yi−

∑p∗
�=1 xi�θ�)

2

π (θ|M∗) ,

which is the posterior based on the true model M∗, as if we knew the truth M∗. This
approximation can be in the sense of total variation norm, or in some other sense
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depending on what is regarded as meaningful. This kind of result is desirable for auto-
matic dimension reduction and variance reduction. If p = 10 but p∗ = 1, then the mean
squared error for estimating the mean function

∑p
j=1 xjθj can be reduced from about

10/n when using the full model Mp, to about 1/n when using BMA. Such advantage of
BMA in dimension reduction and better prediction error has been empirically noticed
in a variety of applications, such as in Li and Jiang (2016) in the context of Bayesian
generalized method of moments. When p � n, such dimension reduction through BMA
is almost indispensable for any useful statistical inference, and has been widely studied
in the literature with sparsity-inducing priors (Johnson and Rossell 2012, Liang et al.
2013, Castillo, Schmidt-Hieber, and van der Vaart 2015, etc.)

1.2 It is useful to extend consideration to quasi-posteriors

Our current paper extends the standard BMA to the general case of a quasi-posterior,
where

π(θ|D) ∝
∑
j≥1

e−λRn(D |θ,Mj)π (θ|Mj)π (Mj) .

Here, the likelihood function p(D |θ,Mj) is replaced by e−λRn(D |θ,Mj), where Rn is a
empirical risk function of the data under the model Mj and the parameter θ. The scaling
parameter λ > 0 can depend on the sample size n, which is analogous to the inverse
temperature in statistical physics. Typically λ ∝ n, as in the usual Bayesian posterior
where −λRn(θ) is the log likelihood function. However in general we allow λ to increase
with n at any rate.

This quasi-posterior framework is very useful since it does not need to make as
much assumptions on the data generation mechanism as is needed to have a true likeli-
hood function. Although the quasi-posterior originates from other fields such as machine
learning and econometrics, research on quasi-posterior from statisticians has been in-
creasing in recent years. It has been applied to problems such as partial likelihood in
Cox regression, model-free clustering (Bissiri, Holmes, and Walker 2016), and clinically
important difference (Syring and Martin 2017). The latter involves an interesting case
of quasi-posterior with general polynomial convergence rates. The current paper will
give two more applications of quasi-posteriors, one incorporating model averaging to
cube-root asymptotics, another allowing partial identification.

1.3 Why our study may be of interest to Bayesian statistics

Since the Bayesian oracle property is a desirable property for BMA, one naturally hopes
that it holds and would like to prove it for some well-established or new methods (see
e.g., Li and Jiang 2016 for Bayesian generalized method of moments, Ishwaran and Rao
2011 for spike and lab linear regression). Our current paper shows that it is widely
valid in the regular cases for general quasi-posteriors, as long as the model selection
consistency holds. This will be useful for Bayesian researchers who invent a new method
and would like to go one step further to provide a theoretical justification, in addition
to empirical results.
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Under the quasi-posterior framework, the more interesting cases are those non-
regular models, in which the extremum estimators related to Rn may have nonstandard
convergence rates, or the parameters are only partially identified. In such situations, we
will show that the Bayesian oracle property does not always hold, and its most straight-
forward definition may not be always useful. Precaution is needed on how to define a
useful oracle property, on how to choose the complexity penalty in the prior, on how to
choose the inverse temperature of the quasi-posterior, and on how to choose between
BMA and BMS. From the two examples we study, we find that the answers to the
aforementioned questions are highly nontrivial, which could be of interest to Bayesian
statisticians.

Example 1. Cubic-root asymptotics

Let Y = I(Z > 0) be an observed binary response variable with a latent variable Z
related to the utility of the binary choice between Y = 0 and Y = 1, where I(·) denotes
the indicator function. Z can be modeled as a linear combination of an observed vector
of predictors X. Given an i.i.d. sample D = {(Yi, Xi) : i = 1, . . . , n}, one can mini-
mize the empirical risk Rn(θ) = −n−1

∑n
i=1 YiI(X

�
i θ ≥ 0). Manski (1975) discovers

that the minimization of Rn(θ) leads to consistent estimation of θ, when the median of
Z is proportional to X�θ, without any other distributional assumption on Z such as
being normal or logistic. This motivates research on quasi-posteriors (e.g. Jun, Pinkse,
and Wan 2015) using e−λRn(θ) to play the role of the likelihood function, whose pos-
terior means consistently estimate θ in a robust way, without additional distributional
assumptions on the data. The exponent function −λRn(θ) in this example is discontin-
uous and its minimizers can converge at a rate of n−1/3. This is just one example of
many similar cases where cubic-root asymptotics appear.

Our study on BMA allows models with various subsets of X components and proves
the oracle property, where the asymptotic behavior of the quasi-posterior from BMA is
the same as if the true subset of X components were known. In particular, our study
in Section 4 shows several nontrivial results in the presence of cubic-root asymptotics:

1. On choice of inverse temperature λ: The standard choice of λ in the likelihoods of
regular models is not very useful since it causes the limiting distribution of the posterior
mean to be a nonstandard distribution. The BMA has a more useful oracle property
when λ growers slower than n2/3 and faster than n2/5.

2. On which oracle property is useful or not useful for the quasi-posterior: The oracle
property on the quasi-posterior distribution itself is not so useful as a more carefully
defined oracle property of the quasi-posterior mean. This is due to the well known result
that asymptotically the quasi-posterior distribution may have the correct centering loca-
tion but the wrong spread. See, e.g., Chernozhukov and Hong (2003) who show that the
quasi-posterior distributions can give consistent parameter estimates but with wrong
standard errors. Therefore, for the purpose of statistical inference, it is more meaning-
ful to consider the mean of the quasi-posterior, rather than the whole quasi-posterior
distribution.
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Example 2. Partial identification

Consider the example of interval censored data, where an unobservable random variable
Y lies in the interval [L,U ], and both L and U are observable random variables. The
goal is to estimate θ = E(Y ). Given an i.i.d. sample D = {(Li, Ui) : i = 1, . . . , n},
one can use the risk function Rn(θ) = [(Ū − θ)+]

2 + [(θ − L̄)+]
2 (Chernozhukov, Hong,

and Tamer 2007), where (a)+ ≡ max{a, 0}, and L̄ and Ū are sample averages of L
and U . The minimizer of Rn(θ) can be the entire non-singleton set [L̄, Ū ]. A quasi-
posterior approach based on this Rn is studied in Wan (2013). If there exist different
prior beliefs in the location of θ, then one can further perform BMA over these different
models. A different approach is provided in the example of Section 5, where we use
the framework in Moon and Schorfheide (2012) with a reduced-form parameter and a
structural parameter. How to properly define BMA and BMS in such partially identified
models is very subtle. Through our effort in finding suitable definitions of Bayesian oracle
properties and finding the conditions for them to hold, we obtain several nontrivial
results in Section 5 and in a supplementary material (Jiang and Li, 2019), which we
believe are of interest to Bayesian statisticians:

1. On the formulation of Bayesian oracle properties: The “true” model needs to be
carefully defined. Partial identification can lead to multiple models that achieve the
same minimal risk and are qualified to be the “true model” simultaneously. In our
simple example above, any model that assigns a uniform prior for θ in a closed interval
can minimize Rn to be zero, as long as this closed interval has non-empty intersection
with [L̄, Ū ]. Therefore, it makes more sense to group all such minimum-risk models to
form a combined true model in the definition of Bayesian oracle properties, instead of
defining the true model as the minimum-risk model with the lowest model complexity.

2. On prior choice of complexity penalty: In the partial identification problem, it is
not wise to artificially penalize the model complexity in the prior, in order to favor
the simplest minimum-risk model and make it the unique large sample limit in the
posterior. In the simple interval censoring example above, suppose that E(L) = −0.1,
E(U) = 0.3, and the true parameter is θ∗ = E(Y ) = 0.1. Suppose that one model is
given by θ ∈ {0}, i.e. it proposes a singleton prior at θ = 0, while the other models
do not propose singletons. Then this singleton model achieves the minimum risk zero
for Rn asymptotically since 0 ∈ [E(L),E(U)], but it gives the wrong parameter value
since E(Y ) �= 0. Therefore, any penalization through the model priors to favor this
simplest but wrong model could lead to misleading inference from the quasi-posterior
distribution.

3. On BMA versus BMS: In the presence of partial identification, the oracle property
does not hold for the BMS in general. The BMS picks only one of the possibly many
minimum-risk models, which may miss the true parameter, as already explained in
our first point before. Hence, BMS is not so reliable as BMA, whose limiting quasi-
posterior distribution usually includes all those minimum-risk models compatible with
the observed data.

In addition to these qualitative guidances on practice, our study also has a number
of virtues in theoretical contribution, which are summarized in a technical report Jiang
and Li (2015).
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1.4 Related works

Bayesian oracle property under model averaging has been considered in the linear model
setup by Ishwaran and Rao (2011) and Castillo, Schmidt-Hieber, and van der Vaart
(2015). In contrast, our paper is more general in the sense that it does not assume
linear models. Hong and Preston (2012) addressed post selection prediction with possi-
bly nonnested models. Li and Jiang (2016) considered Bayesian generalized method of
moments with increasing dimensionality. However, both works assume a regular asymp-
totic behavior with identifiability and

√
n asymptotics. The current paper, on the other

hand, allows partial identification and cubic-root asymptotics, which entails nonstan-
dard limiting posterior distributions.

We also note that the relationships studied by Hong and Preston (2012) are some-
what different from ours: they relate the point prediction from BMA to the frequentist
post-selection predictor, while we study the total variation distance between the entire
distributions of the BMA posterior and the oracle posterior given the true model. In
this sense, their work and our work are complementary to each other from different
perspectives.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we introduce three types of
Bayesian oracle properties for Bayesian model averaging, MAP model selection, and the
posterior mean. Section 3 outlines how one can achieve these Bayesian oracle properties
in a general quasi-Bayesian framework. These general approaches are then applied to
the examples of cubic root asymptotics in Section 4 and partially identified models in
Section 5. Section 6 summarizes the paper with some discussions. Section 7 contains
the proofs of the propositions. All other technical details and proofs are included in a
supplementary material.

We introduce some useful notation. For two n-dependent sequences {an} and {bn},
an ≺ bn and bn � an denote the relation limn→∞ an/bn = 0. an � bn and bn � an denote
that an/bn is bounded by constant. an � bn is equivalent to an � bn and bn � an. We
use I(·) to denote the indicator function. We use op(1) and Op(1) to denote the orders
under the probability measure of D as the sample size n increases to infinity.

2 Bayesian oracle properties

2.1 Bayesian model averaging

The first property we define here is the global model selection consistency.

Property O1. π(θ|D) satisfies the global model selection consistency, if 1−π(M∗|D) =
op(1).

The global model selection consistency says that the true model M∗ has posterior
probability converging to 1 as the sample size increases to infinity. The consistency holds
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for the regular parametric model under the Bayesian framework, based on the standard
Bayesian information criterion theory (BIC, Schwartz 1978). It also holds for general
high dimensional regression models under certain priors that induce sparsity (Johnson
and Rossell 2012, Liang et al. 2013, etc.).

For any (data-dependent) measurable event A, we are interested in the difference
between two probabilities

|Π(A|D)−Π(A|M∗,D)| ,
where Π(A|M∗,D) is the probability of A under the “oracle” posterior distribution,
pretending that the true model M∗ is known, whereas Π(A|D) =

∑
j≥1 π(Mj |D) ·

Π(A|Mj ,D) is the mixed posterior distribution via model averaging, allowing possibili-
ties of all models which are weighted by the model posterior probabilities π(Mj |D) for
j = 1, 2, . . ..

Property O2. π(θ|D) satisfies the oracle property for Bayesian model averaging, if
supA∈F |Π(A|D)−Π(A|M∗,D)| = op(1) where F is the set of all measurable events.

This defines an oracle property for Bayesian model averaging, which basically says
that any posterior inference based on model averaging is asymptotically equivalent to
the oracle posterior inference based on only the true model. It turns out that one can
establish the following fundamental inequality.

Proposition 1.

sup
A∈F

|Π(A|D)−Π(A|M∗,D)| ≤ 1− π(M∗|D),

where F is the set of all measurable events.

This proposition reveals a deep relation between three quantities: the model aver-
aging posterior π(θ|D), the oracle posterior π(θ|M∗,D), and the posterior probability
of the true model π(M∗|D). The total variation distance between the model averaging
posterior and the oracle posterior is bounded above by the posterior probability of miss-
ing the true model. A direct consequence of Proposition 1 is the relation between the
global model selection consistency (Property O1) and the oracle property for Bayesian
model averaging (Property O2).

Theorem 1. The global model selection consistency (Property O1) implies the oracle
property for Bayesian model averaging (Property O2).

Therefore, as the sample size increases to infinity, if the true model has posterior
probability converging to 1, then the limiting behavior of the posterior distribution
under model averaging is the same in total variation norm as the oracle posterior pre-
tending to have known the true model. This kind of oracle property is similar in essence
to the frequentist oracle property of Fan and Li (2001) but is more general.

To fully appreciate the generality of Theorem 1, we emphasize that in the cur-
rent general context, we do not require the oracle posterior π(θ|M∗,D) to satisfy the
parametric Bernstein von Mises theorem (BvM), i.e. converging to a normal limiting
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distribution asymptotically at the rate of n−1/2. The most attractive aspect of Fan and
Li’s oracle property is that the inferential results “work as well as if the correct sub-
model were known” (see the abstract of Fan and Li 2001). This aspect has already been
fully captured by Property O2 and there is no need to impose any additional restric-
tions on the oracle posterior π(θ|M∗,D). Our relaxation makes it possible to include
many nonstandard models where a parametric BvM type result does not hold, such as
the (quasi-)posteriors with discontinuous (quasi-)likelihoods which is characterized by
the cubic root asymptotics (see, e.g., Jun, Pinkse, and Wan 2015), and the partially-
identifying posterior distributions with the O(1) rate asymptotics (see, e.g., Moon and
Schorfheide 2012).

2.2 MAP (maximum a posteriori) model selection

As an alternative to Bayesian model averaging, one could select only one MAP model
that has the maximum posterior probability. We would like to establish similar results
to Theorem 1 for MAP model selection. Suppose M̂ is any MAP model choice, so that
π(M̂ |D) = maxj≥1 π(Mj |D). We are interested in the total variation distance between

the posterior π(θ|M̂,D) based on the MAP model, and the oracle posterior π(θ|M∗,D)
based on the true model M∗. We hope that inference based on the MAP model choice
M̂ is almost as good as if based on the true model M∗.

Property O3. π(θ|D) satisfies the oracle property for MAP model selection, if

supA∈F |Π(A|M̂,D)−Π(A|M∗,D)| = op(1) where F is the set of all measurable events.

Based on this definition, we have the following proposition.

Proposition 2. The maximal total variation distances among any of the three posteri-
ors Π(·|D), Π(·|M̂,D), and Π(·|M∗,D), are at most twice the posterior probability of
missing the true model 2[1− π(M∗|D)].

A direct consequence of this proposition is

Theorem 2. The global model selection consistency (Property O1) implies the oracle
property for MAP model selection (Property O3).

2.3 Mean oracle property

In some situations the (quasi-)posterior π(θ|D) itself is either not of main interest or
does not have any valid interpretation, but the posterior mean E(θ|D) =

∫
Θ
θdπ(θ|D)

for some parameter θ is still of interest, which may have a well understood limiting
distribution that can be used for inference on θ. This can happen for quasi-posteriors
when its credible region does not have asymptotically correct coverage probability. One
example is the Bayesian quantile regression with a quasi-likelihood constructed from the
check function. The generalized information criterion is violated and the quasi-posterior
has no valid interpretation (Chernozhukov and Hong 2003), but the posterior mean can
be used as a convenient frequentist estimator for the quantile regression coefficients.
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Another example is the Laplace version of the least median of squares estimator (Jun,
Pinkse, and Wan 2011). In this case, it is desirable to have a version of Bayesian oracle
property for the posterior mean: If we make inference based on the overall posterior
mean, it is as if we were making inference based on the posterior mean conditional on
the true model only.

To achieve such oracle inference for the mean for a posterior distribution π(·), it is
usually not sufficient to only have the relation ‖E(θ|D)−E(θ|M∗,D)‖ = op(1), because
E(θ|D) and E(θ|M∗,D) may both converge to a true parameter θ∗ but with different
convergence rates. A more proper version of mean oracle property is defined as follows.

Property O4. π(θ|D) satisfies the mean oracle property, if ‖E(θ|D)−E(θ|M∗,D)‖ =
op(1) · ‖E(θ|M∗,D)− θ∗‖.

In other words, we require that the difference between posterior means from Bayesian
model averaging and the oracle is of higher order compared to the posterior bias under
the oracle posterior. This will guarantee that E(θ|D) − θ∗ and E(θ|M∗,D) − θ∗ are
approximately the same, and not merely both converging to zero.

A useful relation which can be applied to achieve the mean oracle property is

E(θ|D)− E(θ|M∗,D) =
∑

j≥1,Mj �=M∗

π(Mj |D) [E(θ|Mj ,D)− E(θ|M∗,D)] . (1)

The mean oracle property holds if there is a fixed number of model candidates and for ev-
ery model Mj �= M∗, π(Mj |D)‖E(θ|Mj ,D)−E(θ|M∗,D)‖ = op(1)‖E(θ|M∗,D)−θ∗‖.
Each product in the sum of (1) can be made small enough for different reasons. For
example, consider the standard variable selection problem in linear models. For those
models that miss nonzero parameters, π(Mj |D) is typically exponentially small. For
the models that do not miss nonzero parameters but include redundant parameters,
E(θ|Mj ,D) − θ∗ is typically of the same order as E(θ|M∗,D) − θ∗, and therefore
E(θ|Mj ,D) − E(θ|M∗,D) is also of the same order as E(θ|M∗,D) − θ∗; then it is
sufficient to have π(Mj |D) = op(1). The method described here will be applied to a
nonstandard example with cubic-root asymptotics in Section 4.

2.4 Applications

There has been extensive work in Bayesian model selection consistency, especially the
global model selection consistency (Property O1). All these results can be readily ex-
tended to the oracle property for Bayesian model averaging (Property O2) and for
MAP model selection (Property O3). Whenever there are already known results on the
limiting distribution of the oracle posterior π(θ|M∗,D) under the true model M∗, the
limiting distribution automatically applies to π(θ|D) from model averaging by Theorem

1 and to π(θ|M̂,D) from model selection by Theorem 2.

The most well known example is the regular finite dimensional models, where BvM
type results hold and the posterior distribution of finite dimensional parameters con-
verges in total variation norm to the normal limit at the parametric rate of n−1/2.
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See for example, Section 10.2 of van der Vaart (1998) for finite dimensional parametric
models, and Shen (2002) for nonparametric and semiparametric models. Consequently,
in combination with the classic BIC theory from Schwartz (1978), one can derive the
global model selection consistency (Property O1) for such finite dimensional cases (see
for example Wasserman 2000 Equation 42), and our theorems suggest that the posterior
inference based on model averaging or model selection is also equivalent to the infer-
ence under the limiting normal distribution given the (unknown) true model. When the
model is regular and high dimensional, exactly the same equivalence holds as long as
a BvM type result can be established for the low dimensional true model M∗, with
properly chosen sparsity inducing priors, such as the priors used in Johnson and Rossell
(2012) and Liang et al. (2013).

In this paper, we are interested in applications of the Bayesian oracle property under
a more general Bayesian framework than the regular parametric models. We extend the
likelihood-based posterior to the general quasi-posterior, in which the likelihood function
is replaced by a quasi-likelihood based on a risk function. We propose two ways to achieve
the Bayesian oracle properties in Section 3.1 and 3.2 respectively, with two applications:
The first application is to the cubic root asymptotics where the convergence rate is not
the standard parametric rate n−1/2. The second application is to partially identified
models where the posterior distribution has a nonstandard limit and a BvM type result
does not hold.

3 Quasi-posterior with general risk

We will work under the general framework of a (quasi-)posterior where we can derive
general bounds on the mis-selection probability 1− π(M∗|D). As discussed in Section
1.2, we consider the quasi-posterior distribution

π(θ|D) =
e−λRn(θ)dπ(θ)∫
Θ
e−λRn(θ)dπ(θ)

, (2)

where π(θ) is the prior density and Rn is an empirical risk function dependent on
both the parameter θ and the data D. Related to Rn(θ) is a theoretical risk function
R(θ), which is typically the large sample limit of Rn(θ). The scaling parameter λ > 0
can depend on n and increase with n at any rate, which is analogous to the inverse
temperature in statistical physics.

We describe what a true model and a true parameter mean. This is not always clear
in the context of quasi-posteriors. Since our quasi-posterior is related to an empirical
risk Rn(θ), which usually has a theoretical risk R(θ) as its large sample limit, we will
treat the minimizer of R(θ) over the entire parameter space Θ as our true parameter
θ∗. We will define a minimum-risk model to be a model whose prior support includes
θ∗. Situations can be complicated in that there may be multiple minimum-risk models.
Conventional wisdom suggests defining the true model M∗ as the simplest minimum-
risk model that has the lowest dimension of the prior support. If needed, we can also
group multiple minimum-risk models together as a composite true model with a mixture
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prior. A later Section 5 uses this approach to handle partial identification, where the
minimizer of R(θ) is not a singleton and some variation is needed in defining the true
model.

In the following, we consider two methods of bounding 1 − π(M∗|D), the quasi-
posterior probability of mis-selecting the true model. Our results from previous sections
have shown that bounding this mis-selection probability can lead to various oracle prop-
erties. We will make an assumption of finitely many models for simplicity.

3.1 Bounding the mis-selection probability: Extending the BIC
approximation for quasi-posterior

In the classical BIC approach (Schwartz 1978), a complexity penalty arises indirectly
from approximating an integral in the posterior calculation. Suppose that the parameter
space Θj is finite dimensional for any j ≥ 1 and the dimension dj = dim(Θj) is bounded.
Let Θ∗ be the parameter space of M∗ and d∗ = dim(Θ∗). The prior probabilities π(Mj)
are all assumed to be of order 1 and will not affect the asymptotic behavior. Suppose
that the risk functions R(θ) and Rn(θ) only depend on the value of θ and do not
depend on the model index Mj . For convenience we assume that θ∗ = argminθ∈Θ R(θ)
is the unique minimizer of R(θ). We can extend the BIC approximation to general
quasi-posteriors and bound the posterior mis-selection probability.

Proposition 3. Consider the following assumptions:

(i) The total number of models is bounded above by a constant integer, and all models
have a positive prior probability;

(ii) For any minimum-risk model Mj that satisfies infΘj R(θ) = R(θ∗) (which im-
plies θ∗ ∈ Θj), the integral in the posterior model probability satisfies a BIC type
approximation

− ln

∫
Θj

e−λRn(θ)dπ(θ|Mj) = λRn(θ
∗) +

dj lnλ

2
+Op(1); (3)

(iii) For any minimum-risk model Mj �= M∗, dj ≥ d∗ + 1;

(iv) For any non-minimum-risk model Mj with infΘj R(θ)−R(θ∗) ≡ γj > 0, we have
γj � 1 and Sn(θ) = op(1/λ) uniformly over θ ∈ Θj , where Sn(θ) = [Rn(θ) −
R(θ)]− [Rn(θ

∗)−R(θ∗)];

(v) λ → ∞ as n → ∞.

Then Bayesian oracle properties O1, O2, and O3 hold under the assumptions (i)–(v).

Although the approach outlined in this subsection is still mathematically a BIC
approximation, it is somewhat more general, in that it accommodates non-likelihood
based quasi-posterior and an arbitrary scaling λ that may increase at a different rate
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than n. Furthermore, one can establish the Bayesian mean oracle property O4 with the
following assumptions in addition to the assumptions (i)–(iv): Θ is compact; the scaling
parameter λ grows polynomially in n; for any minimum-risk model Mj , ‖E(θ|Mj ,D)−
θ∗‖ = Op(1) · ‖E(θ|M∗,D) − θ∗‖; and ‖E(θ|M∗,D) − θ∗‖ � εn, where εn = o(1) is
polynomial in n. The extension of BIC in Proposition 3 as well as the aforementioned
additional assumptions for Property O4 can be applied to the example with nonstandard
cubic-root asymptotics in Section 4.

3.2 Bounding the mis-selection probability: Assumption-free
upperbound for quasi-posterior

In the later example with partial identification (Section 5), the BIC approximation
(which uses a local approximation of the theoretical risk R near its minimum) will
no longer work. We will apply the following assumption-free upper bound on the mis-
selection probability 1 − π(M∗|D), which does not require argminθ∈Θ R(θ) to be a
singleton, and can therefore be applied to situations with partial identification.

Proposition 4. (Model selection with quasi-posterior) The mis-selection probability is
upper bounded by

ln[1− π(M∗|D)] ≤ −0.5λ(γ − r − 2|u|)
where

γ = inf
θ∈Θ,M �=M∗

R(θ)− inf
θ∈Θ

R(θ),

r = −λ−1 ln

∫
Θ

e−λ[R(θ)−infθ∈Θ R(θ)]π(θ)dθ,

u = −(2λ)−1 ln

∫
Θ

e−2λ[(Rn(θ)−R(θ))−
∫
θ∈Θ

(Rn(θ)−R(θ))π∞(θ)dθ]π∞(θ)dθ,

and

π∞(θ) =
e−λR(θ)π(θ)dθ∫

θ∈Θ
e−λR(θ)π(θ)dθ

is the limiting version of the quasi-posterior π(θ|D), in which the theoretical risk R is
used in place of the empirical risk Rn.

This assumption-free bound uses three quantities: γ (gap), which differentiates the
best possible risks achievable by model M∗ and by other models; and r (excess), which
is a nonstochastic term related to the excess risk R(θ) − infθ∈Θ R(θ) which we will
bound later; |u| (noise), which is a stochastic noise term determined by the difference
Rn(θ) − R(θ). This assumption-free bound is only useful when γ > r + 2|u| > 0. We
show in the following how it is possible to make r+2|u| = op(γ), such that 1−π(M∗|D)
can be exponentially small in λγ and decreases very quickly with sample size n.

The noise term u measures the difference Rn(θ)−R(θ) on the support of the limiting
posterior. We can use the simplest uniform bound

|u| ≤ 2 sup
θ∈Θ

|Rn(θ)−R(θ)| .
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By using uniform large deviation, this will typically lead to u = Op(lnn/
√
n). The

nonstochastic term r can be bounded by r = O(lnλ/λ) if R(θ) allows a Laplace ap-
proximation.

In general, without assuming a Laplace approximation forR(θ), the rate r=O(lnλ/λ)
can be derived by the inequality

r = −λ−1 ln

∫
θ∈Θ

e−λ[R(θ)−infθ∈Θ R(θ)]π(θ)dθ

≤ inf
a>0

[
a− 1

λ
lnΠ

({
θ : R(θ)− inf

θ∈Θ
R(θ) < a

})]
, (4)

and choosing a = lnλ/λ. Detailed argument is similar to the remarks after Proposition
1 in Li, Jiang, and Tanner (2014).

Therefore, if γ � r + 2|u| and γ � lnn/λ, then 1 − π(M∗|D) = π(M �= M∗|D) ≺
e− lnn = 1/n → 0 as n → ∞, and we achieve the global model selection consistency
(Property O1). Therefore the oracle properties O2 and O3 also hold true. The above
bound for 1 − π(M∗|D) may also be used to prove the mean oracle property O4 with
the help of (1).

4 Cubic root asymptotics

Suppose that we observe i.i.d. data D = {D1, . . . , Dn}, and the parameter of interest
is θ ∈ Θ ⊆ R

p, whose true value θ∗ is the unique solution to the optimization problem
minθ∈Θ Eg(D1, θ) for some known criterion function g and the expectation is taken
with respect to the true underlying distribution of D1. Let R(θ) = E g(D1, θ) be the
theoretical risk and Rn(θ) = n−1

∑n
i=1 gi(θ) be the empirical risk where gi(θ) is a

shorthand for g(Di, θ). Instead of the parametric rate n−1/2, the frequentist extremum
estimator which minimizes Rn(θ) may have a slower n−1/3 convergence rate when g is
discontinuous in θ. For example, if one predicts a binary variable Yi with a vector of
continuous predictors (X0,i, Xi)

� ∈ R
p+1, the maximum score estimator (Manski 1975)

minimizes Rn(θ) with gi(θ) = −YiI(X
�
i θ−X0,i ≥ 0), which asymptotically can have a

n−1/3 convergence rate. Here we assume that the variable X0,i is always selected and
its coefficient is −1 to ensure the identification of θ∗. Other applications of the cubic
root asymptotics include shorth estimation, least median of squares estimator, isotonic
regression, quantile regression with interval censoring, etc. See Kim and Pollard (1990)
and Jun, Pinkse, and Wan (2015) for more examples.

We consider the quasi-posterior defined in (2) using the empirical risk function
Rn(θ) = n−1

∑n
i=1 gi(θ). For the ease of presentation, we only consider the “theta

class” in Jun, Pinkse, and Wan (2015). The Laplace type estimator of θ discussed in
Jun, Pinkse, and Wan (2015) is the posterior mean of (2). The standard model/variable
selection in this cubic root problem assumes that the true parameter θ∗ could possi-
bly lie in a lower dimensional space Θ ∩ R

p∗
with 1 ≤ p∗ ≤ p. For example, for the

maximum score estimator, our goal is to select only the relevant predictors in X and
we set the θ coefficients of all irrelevant components of X to be zero. Then a model
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Mj in this context is defined as a coordinate subspace of Θ ∩ R
p. The maximum num-

ber of possible models in Θ ∩ R
p is 2p − 1. The true model M∗ is defined to be the

lowest dimensional coordinate subspace that contains the true parameter θ∗ such that
all components of θ∗ in M∗ are nonzero. We assume that the prior density has the
decomposition π(θ|Mj)π(Mj), where π(θ|Mj) is a continuous density on Θj ≡ Θ∩R

dj ,

dj is the dimension of Mj , and
∑2p−1

j=1 π(Mj) = 1 give the discrete probabilities for all
models.

We make the following assumptions on the model and the prior.

(C1) Θ is compact. θ∗ is an interior point of Θ ⊆ R
p with p being a constant dimension.

minj∈M∗ |θ∗j | ≥ cθ, where θ∗j for j ∈ M∗ denotes the jth nonzero component of θ∗

and cθ > 0 is a constant.

(C2) For all θ �= θ∗, R(θ) > R(θ∗).

(C3) R(θ)= E g(D1, θ) is three times continuously differentiable in Θ. Let V = ∂θθ�R(θ∗)
be the second derivative matrix of R(θ) evaluated at θ = θ∗. Then V is positive
definite with eigenvalues bounded from below and above by positive constants.

(C4) For any t, s ∈ R
p, the function H(t, s) = lima→+∞ aE[g1(θ

∗ + t/a)g1(θ
∗ + s/a)]

exists and is always positive.

(C5) π(θ|Mj) is continuously differentiable for all θ ∈ Θj and all models Mj . π(θ|Mj)
and ∂θπ(θ|Mj) are uniformly bounded from above by constant for all θ ∈ Θj and
all models Mj . For all models Mj that satisfy Mj ⊇ M∗, π(θ∗|Mj) is uniformly
bounded from below by a positive constant. π(Mj) is bounded from above and
below by positive constants for all models Mj .

Similar to Jun, Pinkse, and Wan (2015), we make the following assumptions on the
envelope function of g(D1, θ). These assumptions depend on the inverse temperature
parameter λ in the quasi-posterior (2). Let g◦(D1, t) = λ1/4[g(D1, θ

∗+t/
√
λ)−g(D1, θ

∗)]
/(‖t‖+ 1). Let Gn = {g◦(D1, t) : t ∈ R

p}.

(C6) There exists an envelope function G(·) such that supt∈Rp |g◦(D1, t)| ≤ G(D1)
almost surely under the distribution of D1. Furthermore, E[G2(D1)] < ∞ and
limn→∞ E[G2(D1)I(G(D1) > c

√
n)] = 0 for any c > 0.

(C7) For any 0 < εn = o(1), supt,s∈Rp,‖t−s‖≤εn E[g◦(D1, t)− g◦(D1, s)]
2 = o(1).

(C8) Let N (ε,Gn, L2(P )) be the L2-covering number for Gn with respect to the proba-
bility measure P . Then for every sequence 0 < εn = o(1),

sup
P∗

∫ εn

0

√
log [N (ε‖G(D1)‖P∗ ,Gn, L2(P ∗))]dε = o(1),

where supP∗ is the supremum taken over all finitely discrete probability measures
P ∗ with ‖G(D1)‖P∗ =

√
EP∗ [G2(D1)] > 0.
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(C1) assumes the standard beta-min condition on θ∗ to distinguish its nonzero and
zero components. We use the constant lower bound cθ for technical convenience, as
it could be replaced by a rate slowly decreasing to zero that depends on the growth
rate of λ. (C2)–(C4) and (C6)–(C8) are similar to the conditions used in Jun, Pinkse,
and Wan (2015), which leads to the cubic root behavior of the frequentist extremum
estimator that minimizes Rn(θ). (C5) contains mild conditions on the model selection
prior. The essential requirement is that every plausible model should have positive prior
probabilities, and the prior mass around the true parameter θ∗ should not be too small.

Theorem 3. Suppose (C1)–(C8) hold with λ satisfying n2/5 ≺ λ ≺ n2/3. Then the
global model selection consistency (Property O1), the Bayesian model averaging oracle
property (Property O2), the MAP model selection oracle property (Property O3), and
the mean oracle property (Property O4) all hold for the quasi-posterior π(θ|D) in (2).

In Theorem 3 we restrict the growth rate of λ to be between n2/5 and n2/3. The main
reason is that with such λ, the limiting distributions of both the quasi-posterior and
the posterior mean will be normal with mean zero, even under a model selection setup
with our condition (C5) on the prior. The contribution of our mean oracle property
basically says that the asymptotics of the posterior mean from Jun, Pinkse, and Wan
(2015), who did not consider model selection but assumed the true model to be known,
still remains valid as if the true model were known when we have a pool of candidate
models with an unknown true model.

The conclusion of Theorem 3 follows from the BIC type approximation in Case (iii) of
Theorem 1 in Jun, Pinkse, and Wan (2015) together with our approach in Section 3.1.
A heuristic argument is as follows. The exponent in the quasi-posterior (2) has the
decomposition λRn(θ) = λ[R(θ)−R(θ∗)]+λSn(θ) with Sn(θ) defined in Proposition 3.
Although Rn(θ) is discontinuous in θ, R(θ) is continuously differentiable in θ by (C3).
As a result, for any model M that includes the true model M∗ as a submodel (including
M∗ itself), we have a quadratic approximation λ[R(θ)−R(θ∗)] � λ‖θ−θ∗‖2. Meanwhile
it can be shown that the Sn(θ) term has a Gaussian process limit and is about the order
Op(n

−1/2‖θ−θ∗‖1/2). Therefore the nonstochastic term of λ[R(θ)−R(θ∗)] will dominate
the stochastic term λSn(θ) if λn

−1/2‖θ − θ∗‖1/2 ≺ λ‖θ − θ∗‖2 � 1 in the asymptotics,
which leads to λ ≺ n2/3 and ‖θ − θ∗‖ � λ−1/2. Hence the BIC approximation in
Proposition 3 works for the minimum-risk models. For any wrong model M that misses
at least one component of M∗, it follows from the aforementioned relations that Sn(θ) �
n−1/2λ−1/2 ≺ 1/λ, which implies that the integral in (5) is Op(1). Hence these models
will have exponentially small posterior probabilities in λ. The other condition λ � n2/5

in Theorem 3 is required to eliminate the asymptotic bias of the posterior mean. See
the comments after Theorem 1 of Jun, Pinkse, and Wan (2015). As a result, the global
model selection consistency and the Bayesian oracle properties (Properties O1–O4) hold
true following the argument in Section 3.1.

The slowly growing λ in Theorem 3 can overcome the discontinuity in the empirical
risk Rn(θ) with a smoothing effect and justifies the BIC type approximations. The
posterior convergence rate is λ−1/2 from the BIC approximation discussed above, which
is slower than n−1/3 due to the condition on λ. The posterior mean has a different
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convergence rate of n−1/2λ1/4 (see Jun, Pinkse, and Wan 2015 Theorem 1 (iii)), which
is faster than n−1/3.

In this cubic root example, although the limiting distribution of π(θ|D) in (2) is nor-
mal, the quasi-posterior itself typically does not have the usual Bayesian interpretation
even in the asymptotic sense of Chernozhukov and Hong (2003). Therefore, the MAP
model selection oracle property (Property O3) and the model averaging oracle property
(Property O2) are not meaningful, since the quasi-Bayesian inference based on the true
model may still be invalid. However, the mean oracle property (Property O2) can be
very useful because the posterior mean can converge faster than n−1/3 to a limiting
normal distribution, under the choice of λ in Theorem 3. The normal limit allows us to
use various tools such as bootstraps or subsampling to construct asymptotically valid
confidence intervals for the posterior mean estimator. Hence statistical inference based
on the posterior mean estimator can be more advantageous than that based on the fre-
quentist extremum estimator whose limiting distribution is the Chernoff’s distribution
(Kim and Pollard 1990).

5 Partial identification

In econometric and statistical literatures, there exist two different approaches to han-
dle partial identification. One aims for more informative inference about the partially
identified point parameter θ by incorporating prior information (see, e.g., Poirier 1998,
Moon and Schorfheide 2012, Gustafson 2015). Another aims for more robust inference
about the fully identified identification region Ω (see, e.g., Wan 2013, Kline and Tamer
2016, and Chen, Christensen, and Tamer 2016). The current paper follows the first
approach.

In this section, we apply Bayesian model averaging to a situation with partial iden-
tification as described in Moon and Schorfheide (2012), who showed that the limiting
posterior is nonstandard. The posterior contraction rate for a structural parameter for
interest is typically of order 1, instead of the classical order n−1/2, due to partial iden-
tification. For example, (4) of Moon and Schorfheide (2012) provides a simple example
where the limiting posterior for the structural parameter of interest is uniform over an
non-shrinking interval. Despite such nonstandard limiting behavior with partial identi-
fication, our machinery in Section 3.2 (based on bounding the mis-selection probability)
can be used to study the oracle properties under Bayesian model averaging, which uses
a conservative approach to preserve all submodels that are compatible with the data.

5.1 A simple example

This example is similar to the simple example in Moon and Schorfheide (2012). We
add the aspect of model selection or model averaging, and make a small variation that
a quasi-likelihood is used instead of a real likelihood. Suppose we are interested in a
structural parameter ω = EY , where Y ∈ [0, 4] is the GPA of a college student. However,
the GPA is sometimes only known to fall in some interval. For simplicity, assume only
its integer part Z = �Y � of the GPA is observed. The fractional part U = Y − Z is
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unobserved. We define EZ = φ, which is called the reduced-form parameter which is
identified by the observed data Z. We will call the “combined” parameter θ = (ω, φ).
Note that Z ∈ [Y − 1, Y ], and therefore φ = EZ ∈ [EY − 1,EY ] = [ω − 1, ω].

In Bayesian approach, the relation between φ and ω is described by a conditional
prior distribution π(φ|ω) such as const × I({φ ∈ [ω − 1, ω] ∩ [0, 4]}). This conditional
prior will be assumed to be the same for all models that we will consider, since we are
interested in model selection or model averaging on the structural parameter ω only.
Each candidate models Mj , indexed by j = 1, 2, . . . and weighted by π(Mj), proposes
a different prior π(ω|Mj) for the structural parameter ω. So the joint prior for the
combined parameter θ and Mj is

π(θ,Mj) = π(Mj)π(ω|Mj)π(φ|ω).

This way, we can convert the model selection problem for the structural parameter ω
to a model selection problem with the combined parameter θ. This is for a technical
reason to apply the framework of Section 3 in establishing the oracle properties with
Bayesian model averaging, later in Section 5.2.

We will introduce some related concepts first for a very simple example, where
j = 1, 2, π(Mj) = 1/2, π(ω|M1) = δ3(ω) is a point mass supported on W1 = {3},
proposing mean GPA to be 3, and π(ω|M2) = 0.25I({ω ∈ [0, 4]}) is a prior supported
on W2 = [0, 4], proposing no restriction on the mean GPA. This can be regarded as
a simplified version of the example in the supplementary material, where Figure 1
illustrates prior densities for more than two candidate models, the first two of them
being the same as the current models with j = 1, 2.

The observed data Z is integer valued and nonnormal. However, we can use a nor-
mal quasi-likelihood based on Z̄, (the observed sample average of Z), which is typ-
ically asymptotically normal iid data:

√
n/v̂(Z̄ − φ) → N(0, 1) as n → ∞, where

n is the sample size, and v̂ is a consistent estimate of v = var(Z). Then the corre-
sponding quasi-posterior has the form π(θ,Mj) ∝ e−λRn(θ)π(θ,Mj), where λ = n and
Rn(θ) = 0.5v̂−1(Z̄ − φ)2 is an empirical risk derived from asymptotic normality. The
corresponding theoretical risk is R(θ) = 0.5v−1(EZ − φ)2, minimized at φ = EZ.

The model here is partially identified, since the quasi-likelihood e−λRn(θ) only de-
pends on the reduced-form parameter φ. The data can only identify φ. Given φ, the
structural parameter ω can still be anywhere from the prior support of π(ω|φ) ∝∑

j π(Mj)π(ω|Mj)π(φ|ω), which is supported on Ω(φ) = [φ, φ+1]∩ [0, 4]. Here Ω(φ) is
called the identification region for ω given φ. This is related to the minimizer of the the-
oretical risk of R when R is regarded as a function of θ = (ω, φ), even if it depends really
on φ only. Suppose R has a unique minimizer φ = φ∗ (the “true” φ), then attaching all
possible ω values in Ω(φ∗), we have

argmin
θ

R(θ) = {φ∗} × Ω(φ∗).

Suppose the true φ∗ = 3.6. Then the identification region for ω is Ω(3.6) = [3.6, 4], and
argminθ R(θ) = {3.6} × [3.6, 4].
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Model M1 is “incompatible” with data, in the sense that its prior cannot reach the
minimum theoretical risk for R(θ). The proposed prior on ω does not allow φ = φ∗,
the risk minimizer and the true φ. In other words, the prior support of π(θ|M1) =
π(φ|ω)π(ω|M1) does not intersect argminθ R(θ) = {φ∗} × Ω(φ∗), since the support of
π(ω|M1) is {3}, which does not intersect with Ω(φ∗) = [3.6, 4].

Model M2 is “compatible” with data, in the sense that its prior can reach the mini-
mum theoretical risk R. The proposed prior on ω does allow φ = φ∗, the risk minimizer
and the true φ.) In other words, the prior support of π(θ|M2) = π(φ|ω)π(ω|M2) in-
tersects argminθ R(θ) = {φ∗} × Ω(φ∗), since the support of π(ω|M2) is [0, 4], which
intersects with Ω(φ∗) = [3.6, 4].

This simple example will be generalized in the next Section 5.2, where there can be
more than two model candidates and the quasi-posterior can also involve more than two
parameters. We hope that with Bayesian model averaging, incompatible models can have
small posterior probability asymptotically, so that the posterior from model averaging
will be as good as the oracle posterior, which assumes that we knew beforehand and
had only used those models that are compatible with data.

5.2 Bayesian model averaging and oracle properties with partial
identification

We first derive oracle properties for model selection and BMA in the general framework
of quasi-posterior as defined in (2). Later we will consider the special case of partial
identification described in Moon and Schorfheide (2012).

Define the index set J0 = {j ≥ 1 : infθ∈Θj R(θ) = infθ∈Θ R(θ)}, which includes
all model indexes under which the global minimum risk can be reached. These models
will be called “compatible models”. With partial identification, it is important to allow
all compatible models in consideration, and not to exclusively favor one compatible
model, even if it is the simplest model with the lowest model complexity. An alternative
approach could use a dimensional penalty to favor the simplest compatible model, but
this could miss true values of the parameter θ due to partial identification, as discussed
in an earlier technical report Jiang and Li (2015) Section 6.6.2. Another example that
illustrates this kind of subtlety is described as a technical detail in a supplementary
material of the current paper.

In response to this subtlety with partial identification, we will group all the compati-
ble models together to form our “true” modelM∗ = {Mj : j ∈ J0}. Then π(θ,M∗|D) ∝
e−λRn(θ)

∑
j∈J0

π(θ,Mj). The resulting joint prior on θ and Mj can be rewritten as
π(θ,M∗) =

∑
j∈J0

π(θ,Mj) = π(M∗)π(θ|M∗), where π(M∗) =
∑

j∈J0
π(Mj), and

π(θ|M∗) =
∑

j∈J0
π(Mj)π(θ|Mj)/

∑
j∈J0

π(Mj) is a mixture prior for θ conditional on
the composite true model M∗.

All incompatible models are indexed by j ∈ J1. For incompatible models, we assume
the quantity γ = infj∈J1 infθ∈Θj R(θ) − infθ∈Θ R(θ) to be a positive constant, which
holds true if there is a fixed number of candidate models. This γ is exactly the same
γ used in Proposition 4. We can derive an upper bound for the posterior mis-selection
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probability 1−π(M∗|D) (where M∗ = {Mj : j ∈ J0}) as exponentially small in λ from
Proposition 4, which leads to the Bayesian oracle properties O1 and O2 in Section 2.
The oracle posterior here is still π(θ|M∗,D), conditional on compatible models only.

We make the following assumptions.

(A1) λ � 1 as n → ∞.

(A2) supθ∈Θ |Rn(θ)−R(θ)| = op(1) as n → ∞.

(A3) Π({θ : R(θ)− infθ∈Θ R(θ) < a}) > 0 for any small a > 0.

(A4) γ = infj∈J1 infθ∈Θj R(θ)− infθ∈Θ R(θ) is a positive constant.

Assumption (A1) is true when λ ∝ n. When Rn is a sample average of independently
and identically distributed data, we can take the theoretical risk in (A2) to be the
expectation R(θ) = ERn(θ) over the true distribution of the randomly generated data.
Then (A2) can be satisfied due to a uniform law of large numbers, which holds, e.g.,
when the entire parameter space Θ is compact and the risk functions are stochastically
equicontinuous (see, e.g, Newey 1991).1 Assumption (A4) is true when the number of
candidate models is fixed. Regarding (A3), suppose the prior support Θ is compact and
contains a risk minimizer of R in its interior. Then a small enough neighborhood of this
risk minimizer will have positive prior π and can have risk R(θ) being arbitrarily close
to the minimum risk, if R(θ) is continuous in θ.

We can summarize the analysis above formally in the following theorem.

Theorem 4. Assume that (A1)–(A4) hold and M∗ = {Mj : j ∈ J0}. Then the total
variation distance between the distributions π(θ|D) and π(θ|M∗,D) is op(1) as the
sample size n → ∞, i.e., the global model selection consistency (Property O1) and the
Bayesian model averaging oracle property (Property O2) both hold.

The proof of Theorem 4 shows π(J1) = op(1) by applying Proposition 4. Therefore
even though it is impossible to point identify the minimizer of the theoretical risk, we
can still have a similar form of Bayesian oracle properties by selecting all the compatible
models. As a result, the posterior inference based on model averaging is asymptotically
equivalent to the posterior inference based on only those compatible models weighted
by their priors.

The above Theorem 4 is very general. Moon and Schorfheide (2012) considered a
special case where −λRn(θ) is the log likelihood function. Also, the “combined” param-
eter can be decomposed as θ = (ω, φ), where ω is a structural parameter of interest and
φ is a reduced-form parameter that is identified by data. The candidate models impose
different priors on the structural parameter ω, so that π(θ,Mj) = π(Mj)π(θ|Mj) =
π(Mj)π(ω|Mj)π(φ|ω). A simple example of this kind of parametrization and the corre-
sponding prior distribution is described in Section 5.1, using a quasi-likelihood derived

1Assumption (A2) may also be satisfied when Rn is not an average itself, but is a function of some
sample averages, such as is easy too verify for the example in Section 5.1. In fact it is easy to check
that all conditions are valid for that example assuming that var(Z) > 0.
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from asymptotic normality. For such situations when only the structural parameter ω is
of primary interest, the BMA oracle Property O2 for the marginal posterior on ω also
holds:

Corollary 1. Under the assumptions made for Theorem 4, the BMA oracle Prop-
erty O2 holds marginally for the structural parameter of interest ω, i.e.,

∫
|π(ω|D) −

π(ω|M∗,D)|dω = op(1), if ω is a sub-vector of the combined parameter θ.

So far we have discussed Property O1 (for global model selection consistency) and
Property O2 (for the oracle property with BMA). There is an important exception
here: Property O3 for MAP model selection is not guaranteed in this partially identified
model. This is because here the true model M∗ is effectively the set of all compatible
models which is possibly a nonsingleton, and the proof of Proposition 2 does not go
through. When there are two or more compatible models, the MAP model selection may
only choose one compatible model and neglect all the other ones. Posterior inference
based on the MAP model may be different from using the oracle posterior given all the
compatible models and may end up missing the true value of a point parameter. We will
describe this as a technical detail with a simple example in a supplementary material.

Regarding the mean oracle Property O4, we conjecture that it usually holds for the
structural parameter of interest, as will be discussed as some additional technical details
in the supplementary material.

6 Discussion

We have established a fundamental relation between three different topics: Bayesian
model averaging, model selection consistency, and oracle performance in posterior dis-
tribution. The relatively basic property of model selection consistency is shown to imply
a seemingly more advanced distributional result, the oracle property. The result is very
simple and general. Unlike some previous Bayesian oracle properties discussed in spe-
cial cases such as Ishwaran and Rao (2011), and Castillo, Schmidt-Hieber, and van der
Vaart (2015), who consider linear models, and Hong and Preston (2012) and Li and
Jiang (2016) who consider identifiable models with standard limiting distributions, the
current work is completely free from any restriction on the type of prior or (quasi-
)likelihood function used, or even from any restriction on the limiting distribution of
the oracle posterior.

For applications, we considered two classes of models with nonstandard limiting
distributions studied in Moon and Schorfheide (2012) and Jun, Pinkse, and Wan (2015).
They involve partial identifiability or nonstandard rates of convergence, but we can still
show the Bayesian oracle properties, which suggest that Bayesian model averaging can
be applied to their methods and work well for Bayesian inference of the unknown point
parameter. On the other hand, we suspect that model selection based on MAP may not
be reliable for the partial identification example and may miss reasonable models (see
a discussion after Corollary 1).

When the model is misspecified, the model that minimizes the theoretical risk R
plays the role of the true model in our theory. Our oracle property will imply that the
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quasi-posterior based on BMA will converge to the quasi-posterior based on the mini-
mum risk model, asymptotically. Grünwald and van Ommen (2014) discovered subop-
timal predictive performance when a homoscedastic linear model is misspecified. Their
numerical experiments seem to indicate that the performance of BMA still converges to
the performance of the true model eventually, albeit with a much larger sample size com-
pared to the correctly specified case. This indicates a much slower convergence speed of
BMA when the models are misspecified. Our current paper only addresses the limiting
distributional behavior of BMA and BMS, but not their convergence speed. As a possible
future work, we may consider extending our theory in Section 3.1 to study the conver-
gence speed in the presence of model misspecification and how the convergence depends
on the temperature parameter, as discussed in Grünwald and van Ommen (2014).

Given the success of the frequentist oracle properties studied by Fan and Li (2001),
we expect that the Bayesian version should also have applications in a wide variety
of situations, in addition to the examples discussed in this paper. For example, the
relationships described in Section 2 and 3 can be generalized to models with increasing
or high dimensions, and potentially to other nonstandard model selection problems with
appropriate conditions on the priors. For instance, Drton and Plummer (2017) have
developed a generalized version of BIC type approximation for the class of singular
models (such as factor models), where the posterior model probability does not allow a
quadratic approximation and results in an extra ln lnn term in the BIC approximation
(3). Our Bayesian oracle properties may also apply to these singular models. In addition,
in the context with partial identification, our paper only considered inference about the
partially identified point parameter, following the approach of, e.g., Poirier (1998), Moon
and Schorfheide (2012), and Gustafson (2015). It may also be of interest to consider
inference about the fully identified “set parameter”, following the approach of, e.g.,
Wan (2013), Kline and Tamer (2016), and Chen, Christensen, and Tamer (2016), and
develop similar oracle properties for Bayesian model selection or model averaging.

7 Proofs of the propositions

Proof of Proposition 1. For any event A and B, we have

Π(A|D) = Π(A|B,D)Π(B|D) + Π(A|Bc,D)Π(Bc|D),

Π(A|B,D) = Π(A|B,D)Π(B|D) + Π(A|B,D)Π(Bc|D).

Therefore

|Π(A|D)−Π(A|B,D)| = |Π(A|Bc,D)−Π(A|B,D)|Π(Bc|D) ≤ Π(Bc|D)

for any A. Taking supremum over all event A and setting event B = {M = M∗}
lead to the proof. (Note that Castillo, Schmidt-Hieber, and van der Vaart 2015 used a
double-sized upper bound in proving their Theorem 6 in the context of Bayesian linear
regression.)

Proof of Proposition 2. The MAP choice M̂ satisfies π(M̂ |D) ≥ π(M∗|D) by defini-

tion. In the proof of Proposition 1 above, we can replace M∗ by M̂ and obtain that
supA |Π(A|D)−Π(A|M̂,D)| ≤ 1−π(M̂ |D). The right hand side is at most 1−π(M∗|D)
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since π(M̂ |D) ≥ π(M∗|D). Now combining this with the result of Proposition 1 using
the triangle inequality leads to the conclusion.

Proof of Proposition 3. Let p(Mj) =
∫
Θj

e−λRn(θ)dπ(θ|Mj). Under the assumption (ii),

we have that for any minimum-risk model Mj �= M∗,

− ln p(Mj) = λRn(θ
∗) +

dj lnλ

2
+Op(1),

− ln p(M∗) = λRn(θ
∗) +

d∗ lnλ

2
+Op(1). (5)

Taking the difference between these two equations gives

− ln p(Mj)/p(M
∗) =

(dj − d∗) lnλ

2
+Op(1).

Due to the assumptions (iii) and (v), Op(1) is negligible compared to the lnλ term.
Therefore, for any minimum-risk model Mj , there exists a constant C1 > 0 such that

p(Mj)/p(M
∗) ≤ C1λ

−(dj−d∗)/4 ≤ C1λ
−1/4. (6)

We notice that from (5), p(M∗) = exp[−λRn(θ) − d∗ lnλ/2 + Op(1)]. For any non-
minimum-risk model Mj , we can use the assumption (iv) to obtain that for some con-
stant C2 > 0,

p(Mj) =

∫
Θj

e−λSn(θ)−λ[R(θ)−R(θ∗)]−λRn(θ
∗)dπ(θ|Mj)

≤
∫
Θj

e−λSn(θ)dπ(θ|Mj) · e−λγj · p(M∗)e
d∗ lnλ

2 +Op(1)

≤ C2λ
d∗/2e−λγjp(M∗). (7)

Since γj � 1 and maxj≥1 dj is upper bounded by constant, the exponential rate e−λγj

dominates the polynomial rate λd∗/2. Furthermore, from the assumption (i), we also
have that the prior ratio π(Mj)/π(M

∗) is lower and upper bounded by constants for
any model Mj . Therefore, from (6) and (7), we have that

1− π(M∗|D)

=

∑
Mj �=M∗ π(Mj)p(Mj)∑

Mj �=M∗ π(Mj)p(Mj) + π(M∗)p(M∗)
=

∑
Mj �=M∗

π(Mj)
π(M∗)

p(Mj)
p(M∗)∑

Mj �=M∗
π(M)
π(M∗)

p(M)
p(M∗) + 1

≤ 1−
[ ∑
Mj �=M∗ and Mj is minimum-risk

π(Mj)

π(M∗)
C1λ

−1/4

+
∑

Mj is non-minimum-risk

π(Mj)

π(M∗)
C2λ

d∗/2e−λγj + 1
]−1

= op(1).
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Therefore the global model selection consistency (Property O1) is proved. By Proposi-
tions 1 and 2, the Bayesian oracle properties for BMA (Property O2) and BMS (Prop-
erty O3) also hold.

Proof of Proposition 4. First it is clear that on all models not equal to M∗, R(θ) −
infθ∈Θ R(θ) ≥ infθ∈Θ,M �=M∗ R(θ)− infθ∈Θ R(θ) = γ. Hence

1− π(M∗|D) ≤ Π

({
θ : R(θ) ≥ inf

θ∈Θ
R(θ) + γ

} ∣∣∣D)
. (8)

We then show that for any bounded measurable function h(θ),

ln E[h(θ)|D] ≤ 1

2
lnE∞[h2(θ)]− λu, (9)

where E[h(θ)|D] =
∫
θ∈Θ

h(θ)π(θ|D)dθ, E∞[h2(θ)] =
∫
θ∈Θ

h2(θ)π∞(θ)dθ, u is defined as
in Proposition 4. To see why (9) holds true, we recall the definitions of a quasi-posterior
π(θ|D) and its “limiting posterior” π∞(θ):

E[h(θ)|D] =

∫
θ∈Θ

e−λRn(θ)h(θ)π(θ)dθ∫
θ∈Θ

e−λRn(θ)π(θ)dθ

=

∫
θ∈Θ

e−λ[Rn(θ)−R(θ)]h(θ)π(θ)dθ∫
θ∈Θ

e−λ[Rn(θ)−R(θ)]π(θ)dθ
.

Then we apply the Jensen’s inequality to the denominator and apply the Cauchy-
Schwarz inequality to the numerator to obtain that

E[h(θ)|D] ≤

√∫
θ∈Θ

e−2λ[Rn(θ)−R(θ)]π∞(θ)dθ
√∫

θ∈Θ
h2(θ)π∞(θ)dθ

e−λ
∫
θ∈Θ

[Rn(θ)−R(θ)]π∞(θ)dθ

=

√∫
θ∈Θ

e−2λ[(Rn(θ)−R(θ))−
∫
θ∈Θ

(Rn(θ)−R(θ))π∞(θ)dθ]π∞(θ)dθ

√∫
θ∈Θ

h2(θ)π∞(θ)dθ,

which leads to (9). Then we take h = I(A) for a measurable set A and obtain that

lnΠ(A|D) ≤ 1

2
lnΠ∞(A)− λu. (10)

Set A = {θ : R(θ)− infθ∈Θ R(θ) ≥ γ} and use the definition of r in Proposition 4:

Π∞(A) =

∫
θ∈Θ

e−λ[R(θ)−infθ∈Θ R(θ)]I(A)π(θ)dθ∫
θ∈Θ

e−λ[R(θ)−infθ∈Θ R(θ)]π(θ)dθ

=

∫
θ∈Θ

e−λ[R(θ)−infθ∈Θ R(θ)−r]I(A)π(θ)dθ ≤ e−λ(γ−r).

Then applying this upper bound of Π∞(A) to (10) and using (8) leads to the proof.



258 On Bayesian Oracle Properties

Supplementary Material

Supplement to “On Bayesian Oracle Properties” (DOI: 10.1214/18-BA1097SUPP; .pdf).
We provide the technical proofs of Theorem 3, Theorem 4, and Corollary 1, as well as
additional discussion on the Bayesian oracle properties for partial identification.
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