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Bayesian Spatiotemporal Modeling Using
Hierarchical Spatial Priors, with Applications
to Functional Magnetic Resonance Imaging

(with Discussion)

Martin Bezener∗, John Hughes†, and Galin Jones‡

Abstract. We propose a spatiotemporal Bayesian variable selection model for
detecting activation in functional magnetic resonance imaging (fMRI) settings.
Following recent research in this area, we use binary indicator variables for classi-
fying active voxels. We assume that the spatial dependence in the images can be
accommodated by applying an areal model to parcels of voxels. The use of parcel-
lation and a spatial hierarchical prior (instead of the popular Ising prior) results
in a posterior distribution amenable to exploration with an efficient Markov chain
Monte Carlo (MCMC) algorithm. We study the properties of our approach by
applying it to simulated data and an fMRI data set.

Keywords: Bayesian variable selection, fMRI, MCMC, spatiotemporal, areal
model.

1 Introduction

A typical goal of functional magnetic resonance imaging (fMRI) experiments is to infer
the location and magnitude of neuronal activity in response to a stimulus or task. Neu-
ronal activation is not directly observed with fMRI, but the principle of neurovascular
coupling allows the use of a proxy. When neurons activate, blood flow increases to active
areas of the brain, and an excess of oxygenated hemoglobin is delivered to those regions,
causing a change in the magnetic field. This change, which is known as the blood oxygen
dependent (BOLD) signal, is captured by the scanner.

Before an fMRI experiment, the image space is partitioned into a rectangular lattice
comprising small cubic volume elements, or voxels, of equal size. Partition sizes range
from 100,000 to 5,000,000 voxels, with voxel size chosen to balance resolution and time
requirements. During the fMRI experiment, a subject lies in the scanner and performs
a task (such as finger tapping or talking), or is exposed to an external stimulus (such
as watching a movie), while measurements of the BOLD signal at each voxel are cap-
tured every two to three seconds at several hundred time points. The data are then
preprocessed before statistical analysis to remove artifacts introduced during the data
collection process; see, for example, Friston et al. (2007), Huettel et al. (2009), Kaushik
et al. (2013), Lazar (2008), Lindquist (2008), Mikl et al. (2008), and Triantafyllou et al.
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(2006). We are left with a large amount of data that exhibit spatiotemporal dependence
since repeated observations on the same voxel are temporally dependent and neighbor-
ing voxels tend to behave similarly.

Standard non-Bayesian methods such as those in Friston et al. (1994), Friston et al.
(1995), Friston et al. (2007), Landman et al. (2012), Worsley et al. (1992), Worsley et al.
(2002), and Worsley (2003) do not involve explicit spatial modeling. However, these
methods are computationally efficient. Bayesian approaches have also received a lot of
attention (see, among many others, Bowman et al., 2007; Genovese, 2000; Gössel et al.,
2001; Penny et al., 2003, 2005; Quirós et al., 2010; Woolrich et al., 2004; Xia et al., 2009a;
Zhang et al., 2014, 2016). Bayesian models can incorporate both spatial and temporal
dependence but typically result in complicated high-dimensional posterior distributions
and hence can be computationally burdensome to apply. Reviews of Bayesian methods
for neuroimaging can be found in Bowman (2014), Friston et al. (2007), Lazar (2008),
and Zhang et al. (2015).

One particular Bayesian approach is based on variable selection methods in the linear
model. Originally these methods were developed for independent data (George and
McCulloch, 1993, 1997), but they have been extended to settings with spatiotemporal
dependence in the context of functional neuroimaging (Lee et al., 2014; Smith et al.,
2003; Smith and Fahrmeir, 2007). The basic idea is to extend the linear model by
incorporating a binary indicator variable for each voxel (to indicate activation), thereby
transforming the fMRI activation detection problem into a variable selection problem.
To address spatial dependence, Smith and Fahrmeir (2007) employed a binary Ising
prior on the field of indicator variables. They do not, however, fully consider the issue
of temporal dependence. This is addressed by Lee et al. (2014), who extend the model
of Smith and Fahrmeir (2007) to allow prior information about temporal dependence
to be incorporated in the variable selection scheme.

The Ising model (Cipra, 1987; Smith and Smith, 2006; Murphy, 2012) is popular in
spatial modeling. While attractive from a modeling perspective, its use can create sub-
stantial computational difficulties. For example, it often results in a doubly-intractable
posterior distribution and hence requires an auxiliary algorithm to estimate intractable
normalizing constants (Morris et al., 1996) in Markov Chain Monte Carlo (MCMC) ap-
plications. Most algorithms for this are computationally expensive, result in slow mixing,
or scale poorly to large problems (Zhou and Schmidler, 2009). Additionally, posterior
estimates can be sensitive to the run length of the MCMC sampler (Murphy, 2012).
Indeed it has become common to turn to variational inference (see e.g. Blei et al., 2017)
in these situations, which does make the computation feasible, but provides inferences
based on a difficult-to-quantify approximation to the desired posterior distribution.

We propose a Bayesian spatiotemporal model for detecting activation patterns in
fMRI data. Following Smith and Fahrmeir (2007) and Lee et al. (2014), we use binary
indicator variables for classifying active voxels, but assume that the spatial dependence
in the images is governed by an underlying areal model. This is done by parcellating the
image into clusters of voxels and modeling the structure of the spatial dependence using
a spatial hierarchical prior (Haran, 2011) for the parcels. The use of parcellation and
the spatial hierarchical prior (instead of the Ising prior) results in much more efficient
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computation. The modeling advances in conjunction with careful implementation of
MCMC methods allows a whole-brain analysis in a fraction of the time required by
other methods (cf. Lee et al., 2014) using standard hardware.

The work most closely related to ours was developed by Musgrove et al. (2016).
There are many differences between their modeling approach and ours, but there is one
significant commonality in that they also use a parcellation scheme. However, they as-
sume that the parcels are independent and hence the posterior factors into independent
components. This allows them to use a parallel computing strategy to achieve efficient
computation. We do not make any such assumption and do not use parallel computing,
yet we achieve similar computational efficiency.

The remainder of this paper is organized as follows. Our Bayesian model is intro-
duced in Section 2. Numerical results are reported in Section 3. We then follow with an
analysis of the parcellation in Section 4 and an fMRI data example in Section 5. Details
of model fitting, additional simulation results, and an extra data example are given in
the supplementary material (Bezener et al., 2018). Final remarks are given in Section 6.

2 The Model
We begin by describing our spatiotemporal model and discussing prior selection. We
then describe the posterior distribution and derive the conditional densities used in
posterior sampling.

2.1 Model Formulation

Suppose there are v = 1, . . . , N voxels and a sequence of Tv measurements is taken at
voxel v. Also assume that there are p distinct experimental tasks or stimuli of interest.
The time series at voxel v is modeled as

yv = Zvηv +Xvβv + εv, εv ∼ NTv (0, σ
2
vΛv), (1)

where Xv is a Tv ×p design matrix of full column rank, βv is a p×1 vector of regression
coefficients interpreted as activation amplitudes, and εv is the error with correlation
matrix Λv. The matrix Zv includes covariates that are not of direct interest in the
analysis but must be taken into account to facilitate valid inference. These include the
baseline signal, long-term drift effects, and other low-frequency noise. The vector ηv
contains the coefficients corresponding to Zv. For the remainder, we assume that the
data has been adequately de-trended and preprocessed and drop Zvηv from (1) to focus
on βv.

We assume an AR(1) error process with the (i, j)th element of Λv given by ρ
|i−j|
v . It

is straightforward to incorporate other structures in our modelling framework, however,
autoregressive and autoregressive moving average structures are sensible starting points,
and are common in neuroimaging applications (see e.g. Lee et al., 2014; Lindquist, 2008;
Xia et al., 2009b; Locascio et al., 1997; Monti, 2011; Penny et al., 2003). In particular,
Penny et al. (2003) show that low-order autoregressive processes are sufficient as long
as drift effects are accounted for in Zv.
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Recall that the BOLD signal is used as a proxy for measuring neuronal activation
in fMRI. However, blood does not immediately start flowing to active neurons upon
activation nor does it stop as soon as neurons are no longer active. Instead, blood flow
is delayed by several seconds after activation and proceeds continuously according to a
hemodynamic response function (HRF). A common view is that HRF estimation and
activation detection are impossible to disentangle (Makni et al., 2008), but since we
focus on the use of a spatial hierarchical prior with our parcellation method, we will
follow standard practice and transform the columns of Xv so that the linear model is
appropriate. Let sv,j(t) be the stimulus function for task j at voxel v and hv(t) be the
assumed HRF. We follow the standard practice of transforming the columns of Xv by
the discretized convolution

Xv(t, j) = (sv,j � hv)(t) =

t−dv∑
i=0

sv,j(t− dv − i) · h(i)

if t−dv > 0 and 0 otherwise, where dv is a user-specified lag parameter. We will use the
canonical HRF, which uses the difference of two gamma densities to model the BOLD
response. This issue is discussed in detail in Friston et al. (2007) and Lindquist (2008).

To facilitate variable selection, we extend model (1) by using latent indicator vari-
ables γv = (γv,1, γv,2, . . . , γv,p) to denote which of the p tasks and stimuli results in
activation of voxel v. That is, βv,j �= 0 if γv,j = 1 and βv,j = 0 if γv,j = 0. We rewrite
(1) as

yv = Xv(γv)βv(γv) + εv, (2)

where βv(γv) is the vector of the nonzero coefficients of βv and Xv(γv) is the corre-
sponding design matrix. The activation detection problem in this setting is equivalent
to classifying the non-zero γv,j and is therefore a variable selection problem.

2.2 Prior Specifications

Priors for σ2
v and ρv

Let ρ = (ρ1, ρ2, . . . , ρN ). We assume the ρv are a priori independent so the joint prior

on ρ is π(ρ) =
∏N

v=1 π(ρv). It seems natural to assume that ρv ∼ Uniform(−1, 1),
but our experience with fMRI data indicates that priors putting much more mass on
the nonnegative part of the interval (−1, 1) are more consistent with a priori scientific
expectations. However, we will take an empirical Bayesian approach since being fully
Bayesian may result in substantially more computational effort as we explain in the
supplementary material. In an effort to provide a balance between computational effi-
ciency and inferential efficacy we assume π(ρv) ∼ ρ̂v independently. A good candidate
for ρ̂v is its maximum likelihood estimate. This prior is also recommended by Lee et al.
(2014) for similar reasons.

Let σ2 = (σ2
1 , σ

2
2 , . . . , σ

2
N ). We assume the σ2

v are a priori independent, so the joint

prior on σ2 is π(σ2) =
∏N

v=1 π(σ
2
v). The prior on each σ2

v is the standard invariant prior
π(σ2

v) ∝ σ−2
v .
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Prior for βv(γv)

Let β(γ) = (β1(γ1), β2(γ2), . . . , βN (γN )) and γ = (γ1, γ2, . . . , γN ). Given γ, σ2, and ρ,
we assume the βv(γv) are conditionally independent:

π(β | γ, σ2, ρ) =
N∏

v=1

π(βv(γv) | γv, σ2
v , ρv) .

For each βv(γv), we use a g prior (Zellner, 1996), which has the form

βv(γv) | γv, σ2
v , ρv

ind∼ N(β̂v(γv), gσ
2
vΣ̂v(γv)),

where

β̂v(γv) = [XT
v (γv)Λ

−1
v Xv(γv)]

−1XT
v (γv)Λ

−1
v yv, (3)

Σ̂v = [XT
v (γv)Λ

−1
v Xv(γv)]

−1 .

This prior requires the selection of the tuning parameter g, which we set to g = Tv,
yielding a unit information prior.

Prior for γv

We work directly with the prior probabilities of activation π(γv,j = 1). Such an approach
has been shown to produce activation maps with better edge-preservation properties
and classification accuracies compared to methods that place priors on the activation
amplitudes (Smith and Fahrmeir, 2007). Manually specifying a value for each π(γv,j = 1)
is not feasible unless N is small.

We begin by assuming that the spatial dependence in the images is governed by an
underlying areal model (Cressie, 1993; Haran, 2011; Banerjee et al., 2003) and assume
that the image can be parcellated into G non-overlapping regions. The parcellation
should be chosen so that voxels within each region behave similarly due to their location.

We do not require that each region contain an equal number of voxels. Therefore,
region sizes can be chosen based on prior beliefs regarding activation. If it is known
a priori that a large contiguous group of voxels is unlikely to be activated during a
particular task, those voxels can be assigned to one large region. On the other hand, if
there is an area of uncertainty, the voxels in that area can be split into many smaller
regions. As a practical guideline, we recommend using fewer than G = 500 regions for
computational reasons. For typical data sets, this means each region will contain from
10 to 400 voxels. Computational issues related to various choices of G are investigated
in Section 4.

Let γ(j) = (γ1,j , γ2,j , . . . , γN,j) be the vector all active/inactive voxels under task
j. (Although the notation is similar, this is different from γv previously defined.) The
vector γ(j) is often called the image (after reshaping) under task j. To model the spatial
dependence we introduce spatial random effects S(j) = (S1,j , S2,j , . . . , SG,j). Also denote
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Rg as the collection of all voxels in region g. We assume that the γv,j are conditionally
independent, and so the prior is

π(γ(j) | S(j)) =
G∏

g=1

∏
v∈Rg

π(γv,j | Sg,j) .

Under this framework, all voxels in region g share the same spatial random effect, and so
the prior probability of activation is the same for all voxels in Rg. Note that if G = N ,
each voxel gets its own spatial random effect, which is computationally reasonable when
N is small. Given that voxel v lies in Rg, link the prior probabilities to the spatial
random effects via the logistic transformation

γv,j | Sg,j
ind∼ Bern

(
1

1 + e−Sg,j

)
. (4)

We assume that the S(j) are generated from a Gaussian process so that

S(j) | δ2j , rj
ind∼ N(0, δ2jΓj), (5)

where the (i, k)th element of Γj is given by

Γj(i, k) = exp

(
−‖si − sk‖

rj

)
. (6)

Here si and sk denote the centroid coordinates of regions i and k and || · || is the
Euclidean distance. In this prior, δ2j is a smoothing parameter which controls the amount
of spatial continuity in the S(j) and hence in the γ(j). The spatial covariance matrix Γj

controls the structure and amount of the spatial dependence in the S(j), and therefore,
in the γ(j). Under this prior, the strength of the spatial dependence between neighboring
regions under task j is determined by the range parameter rj . We require that rj > 0
so that Γj is a valid correlation matrix. This prior assumes that regions close to one
another will exhibit similar behavior compared to regions further apart. Notice that we
allow rj and δ2j to vary across the p tasks and stimuli in the experiment since different
tasks may result in images with different amounts of spatial correlation and smoothness.

In some applications long-range spatial dependence may be of interest. One possibil-
ity for addressing this issue is to use an inverse-Wishart prior for Γj instead of assuming
(6). This is outside the scope of the current paper, and so we do not pursue it further
here.

We now place priors on the hyperparameters of the spatial prior. Let r = (r1, r2, . . . ,
rp), δ

2 = (δ21 , δ
2
2 , . . . , δ

2
p), and S = (S(1), S(2), . . . , S(p)). Then we assume π(S | δ2, r) =∏p

j=1 π(S(j) | δ2j , rj), π(δ2) =
∏p

j=1 π(δ
2
j ), and π(r) =

∏p
j=1 π(rj).

We consider χ2 priors for rj . These are reasonable priors for two reasons. First,
the support of the prior density is the non-negative real line, which coincides with the
values of r we consider. Second, as the prior mean of r increases, the prior variance
also increases, reflecting increasing uncertainty about the spatial correlation parameter.
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As r gets larger, images under this prior start to look similar due to the correlation
structure in (6). However, we will show through simulation that posterior inferences are
robust to the choice of degrees of freedom. We assume the standard invariant prior for
δ2j , that is, π(δ

2
j ) ∝ δ−2

j .

Other priors for rj , such as uniform distributions, are also plausible. In situations
where the amount of spatial dependence and smoothness is known a-priori, both rj and
δj could fixed to a particular value. This would simplify the model and would substan-
tially speed up model fitting. In our experience, however, this amount of information
is usually not available before experimentation, and the uncertainty can be quantified
through the use of priors on these hyperparameters.

2.3 Posterior and Conditional Distributions

Combining the results of the previous sections, the posterior distribution is given by

q(β(γ), γ, S, δ2, r, ρ, σ2 | y) ∝ p(y | β(γ), γ, S, δ2, r, ρ, σ2)π(β(γ), γ, S, δ2, r, ρ, σ2) (7)

∝ p(y | β(γ), γ, ρ, σ2)π(β(γ) | γ, ρ, σ2)π(ρ)π(σ2)

× π(γ | S)π(S | δ2, r)π(δ2)π(r) .

Our main goals are to determine which tasks and stimuli result in voxel activation, as
well as to determine the amount of spatial dependence in the images. Therefore, we
need to compute the posterior probabilities of activation q(γv,j = 1 | y) for all v, j, and
well as posterior estimates of the spatial correlation parameter E(rj | y) for all j. These
quantities cannot be analytically determined from (7) so we use MCMC methods.

The dimension of the posterior in (7) is 2p(N + 1) + 2N + pG, which in a typical
single subject study, can range from tens of thousands to several millions of variables.
Clearly, sampling from (7) would be challenging and reducing the dimension of the
posterior would be advantageous here. To balance our inferential goals with computation
limitations, we instead work with a collapsed Gibbs sampler. This requires that some
variables be integrated out from the full posterior. The posterior that allows us to
achieve our goals is q(γ, S, r, ρ | y) which we now derive.

The first step is to integrate out the β(γ) and σ2. These parameters are of no interest
to the classification problem (below we will discuss how to estimate β(γ)) and integrating
them out reduces the dimension of the posterior by (p + 1)N . In typical settings, this
represents a reduction in dimension of approximately 35 to 50%. Note that

p(y | γ, ρ) =
∫

p(y | β(γ), γ, ρ, σ2)π(β(γ) | γ, ρ, σ2)π(σ2)dβ(γ)dσ2 (8)

=
N∏

v=1

(1 + Tv)
−qv/2|Λv|−1/2K(ρv, γv)

−Tv/2,

where qv =
∑p

j=1 γv,j denotes the number of non-zero entries in γv and

K(ρv, γv) = [yv −Xv(γv)β̂v(γv)]
TΛ−1

v [yv −Xv(γv)β̂v(γv)] ,
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where β̂v(γv) is defined in (3). Combining the above results gives the reduced posterior:

q(γ, S, r, δ2ρ | y) ∝ p(y | γ, ρ)π(ρ)π(γ | S)π(S | δ2, r)π(δ2)π(r) .

The next step is to integrate out δ2. It is easy to show that

π(S | r) =
∫

π(S | δ2, r)π(δ2)dδ2 =

p∏
j=1

|Γj |−1/2
[
ST
(j)Γ

−1
j S(j)

]−G/2

.

Removing δ2 avoids expensive matrix operations and is not of direct interest to the
classification problem. Then our reduced posterior is

q(γ, S, r, ρ | y) ∝ p(y | γ, ρ)π(ρ)π(γ | S)π(S | r)π(r) . (9)

It would be ideal to integrate out the S to obtain the reduced posterior q(γ, r, ρ | y).
However, the integral

π(γ | r) =
∫

π(γ | S)π(S | r)dS

is analytically intractable, so we instead sample from (9) and discard the observed S.

Since each conditional posterior density is proportional to the joint posterior in (9),
it is straightforward to see that

q(γ | S, r, ρ, y) ∝ π(γ | S)
N∏

v=1

(1 + Tv)
−qv/2K(ρv, γv)

−Tv/2,

q(S | γ, r, ρ, y) ∝ π(γ | S)π(S | r),
q(r | S, γ, ρ, y) ∝ π(S | r)π(r),

q(ρ | S, γ, r, y) ∝ π(ρ)

N∏
v=1

|Λv|−1/2K(ρv, γv)
−Tv/2 .

None of these full conditionals are available in closed form and hence we have to use a
component-wise Metropolis-Hastings algorithm. The algorithm is fully specified in the
supplementary material as is our method for choosing sensible starting values for the
simulation and the method for termination of the simulation.

2.4 Posterior Estimates and Classification of Active Voxels

We now turn our attention to the estimation of the posterior quantities of interest.
Recall that one of our goals is to identify active voxels. We do this by computing the
posterior probabilities of activation for each voxel q(γv,j = 1 | y).

Suppose we drawM samples from the posterior distribution in (9). Let {γ(1), γ(2), . . . ,
γ(M)} denote the obtained MCMC sample of the binary indicator variables. We can es-
timate the posterior probability that voxel v is activated by task j by

q(γv,j = 1 | y) = 1

M

M∑
m=1

γ
(m)
v,j .
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It is also straightforward to estimate the amount of spatial dependence in the images
under each task. As mentioned previously, the amount of spatial correlation is controlled
by rj . Let {r(1), r(2), . . . , r(M)} denote the obtained MCMC sample of the dependence
parameters. We use the posterior means as the estimates of the rj . That is,

r̂j =
1

M

M∑
m=1

r
(m)
j .

The magnitude of activation is frequently of interest. Even though we are working with
a marginal posterior we can estimate the magnitude through Rao-Blackwellization since

E(βv | y) =
∑
γv

E(βv | γv, y)q(γv | y) ≈ 1

M

M∑
m=1

β̂(γ(m)
v ) .

We choose the number of MCMC samples (that is, the value of M) by assessing
the Monte Carlo standard error of the estimates (Flegal et al., 2008; Jones et al., 2006;
Vats et al., 2016) with the method of batch means calculated using the mcmcse package
(Flegal et al., 2017).

In order to classify voxels as active, an activation threshold is necessary. Following
Smith and Fahrmeir (2007), Lee et al. (2014), Musgrove et al. (2016), Raftery (1996),
and Smith and Smith (2006) we classify voxel v as active under task j if q(γv,j = 1 | y) >
0.8722. Smith and Fahrmeir (2007) show that this threshold corresponds to a p-value of
0.05. This threshold also yields a posterior error probability of 1− .8722 = .1278 which
gives an upper bound on the false discovery rate (Käll et al., 2008; Storey, 2003) There
are several other decision-theoretic approaches to thresholding; see, for example, Zhang
et al. (2016). We find that 0.8722 provides good classification accuracy while keeping the
rate of false positives low. This is further investigated in the supplementary material.

3 Simulation Study

We now assess the performance of the proposed methodology on simulated data sets.
In the first simulation, we focus on the ability of the proposed methodology to clas-
sify active voxels, as well as its ability to accurately describe the amount of spatial
dependence in the images. The second simulation considers the performance of the
model when spatial independence is assumed. The final simulation examines the case
when there is no activation in the image. The supplementary material contains two
additional simulations: a simulation study that assesses the adequacy of the proposed
activation threshold of 0.8722, and a classification accuracy study involving a repeated
task block experiment.

3.1 Simulation 1

We first consider the model which does not parcelate the image by letting G = N . This
is a computationally reasonable model when the number of voxels is small or if a region
of interest or single slice analysis is desired. We generate fifteen 20× 20 active/inactive
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Figure 1: The design matrix used in the simulations.

square images under the proposed spatial hierarchical model when the true value of r is
0.001, 2, 8, and 20. These values represent images that have spatial correlation structures
ranging from near independence to strong spatial correlation. In each case δ2 was fixed
at 5, leading to images with moderate amounts of spatial smoothing.

For each image, a sequence of Tv = 50 responses was generated at each voxel from
the model in (2). The design matrix Xv used in this simulation is displayed in Figure 1.
Denote βv(γv) = (βv,0, βv,1)

T . We assume that βv,0 = 300. When γv = 0, we set βv,1 = 0
and when γv = 1, we consider the cases when βv,1 = 3 and 5. These are typical signal
strengths encountered in fMRI data. We select σ2

v = 3 for all v in this simulation.
The AR(1) correlation coefficients ρv were generated independently from a U(−1, 1)
distribution.

We investigate the performance of the model at two prior settings for r, considering
both χ2

2 and χ2
8 priors.

All tuning parameters were chosen to give acceptance rates between 40 and 55%.
Monte Carlo standard errors were computed using the method of batch means (Jones
et al., 2006; Vats et al., 2016) using the mcmcse package (Flegal et al., 2017) with the
batch size set to the root of the number of samples drawn. In each simulation, 150,000
posterior samples were drawn, which resulted in nearly all standard errors being within
2% of the estimated posterior mean.

The posterior estimates of r, classification accuracies, and false positive rates (FPR)
averaged over the 15 simulated data sets are reported in Tables 1 and 2. We first point
out that on average, classification accuracies are much higher when βv,1 = 5 which is
expected due to the higher signal to noise ratio. We see that the posterior estimates of r
are reasonable. When the prior means coincide with the true value of r (at 2 and 8), the
posterior means are similar to the true values. We also conclude that the classification
accuracies and FPRs are insensitive to the prior degrees of freedom. As the amount
of spatial correlation increases, classification accuracies in general tend to increase as
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True r r̂ Accuracy (%) FPR (%)
0.001 1.01 (0.03) 87.95 (0.08) 1.22 (0.03)
2 2.98 (0.06) 89.70 (0.08) 1.20 (0.03)
8 5.10 (0.11) 89.57 (0.08) 1.14 (0.02)
20 5.58 (0.11) 90.31 (0.08) 0.82 (0.02)

(a)

True r r̂ Accuracy (%) FPR (%)
0.001 3.06 (0.10) 88.18 (0.08) 1.11 (0.03)
2 5.33 (0.10) 89.70 (0.08) 1.21 (0.03)
8 7.46 (0.14) 90.00 (0.08) 1.20 (0.03)
20 7.92 (0.17) 90.13 (0.08) 0.78 (0.02)

(b)

Table 1: Posterior estimates of r, classification accuracies, and false positive rates when
βv,1 = 3, with (a) χ2

2 and (b) χ2
8 priors for r.

True r r̂ Accuracy (%) FPR (%)
0.001 2.35 (0.06) 97.15 (0.04) 1.77 (0.03)
2 3.89 (0.07) 97.76 (0.04) 1.79 (0.03)
8 6.23 (0.11) 97.91 (0.04) 2.21 (0.03)
20 7.24 (0.12) 98.11 (0.03) 2.21 (0.03)

(a)

True r r̂ Accuracy (%) FPR (%)
0.001 4.74 (0.13) 97.08 (0.04) 2.07 (0.04)
2 6.37 (0.11) 97.68 (0.04) 1.83 (0.03)
8 8.80 (0.15) 97.88 (0.04) 2.04 (0.03)
20 10.00 (0.17) 98.05 (0.03) 2.46 (0.04)

(b)

Table 2: Posterior estimates of r, classification accuracies, and false positive rates when
βv,1 = 5, with (a) χ2

2 and (b) χ2
8 priors for r.

well due to the fact that generally it is easier to classify images with higher amounts
of clustering. We also point out that the differences in classification accuracies as r
increases are less pronounced when βv,1 = 5. As the signal increases, most reasonable
methods start to perform similarly.

3.2 Simulation 2

It is well-established that ignoring temporal correlation results in poor classification.
Monti (2011) provides a detailed explanation and some numerical results are reported
by Lee et al. (2014) and Musgrove et al. (2016). However, the performance of models
that do not fully consider spatial dependence has not been widely studied. We therefore
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True r Accuracy (%) FPR (%)
0.001 87.52 (0.08) 1.18 (0.02)
2 87.68 (0.08) 1.07 (0.02)
8 86.35 (0.09) 1.04 (0.02)
20 86.61 (0.09) 0.75 (0.02)

(a)

True r Accuracy (%) FPR (%)
0.001 97.01 (0.04) 1.32 (0.03)
2 97.10 (0.04) 1.38 (0.03)
8 96.88 (0.04) 1.44 (0.03)
20 97.03 (0.04) 1.43 (0.03)

(b)

Table 3: Classification accuracies and false positive rates when the default prior is used
for the γs and (a) βv,1 = 3 and (b) βv,1 = 5.

investigate what happens when default prior for π(γv = 1) described in Smith and Kohn
(1996) is employed. We assume that π(γv = 1) = 1/2 for all v and modify our sampler
to draw from the posterior distribution

q(γ, ρ | y) ∝ p(y | γ, ρ)π(ρ)π(γ) .

We use this modified sampling scheme on the same simulated data sets that were used
in Section 3.1.

Table 3 displays the results when the default prior is used for γ. In each case, the
classification accuracies are lower than those when the spatial hierarchical prior is used.
False positive rates are similar, which implies that a loss of power is incurred under this
prior.

As the amount of spatial correlation in the generated images increases, the perfor-
mance of the default prior gets worse compared to the spatial hierarchical prior. In
fact, when r = 0.001, the classification accuracies are nearly identical, but are markedly
worse when r = 20. Another point worth mentioning is that the performance decrease
under the default prior is less severe when βv,1 = 5. This is expected since as signal
strength gets larger, most methods will perform similarly since activation is easier to
detect. From this simulation, we conclude that the default prior for γ leads to poor
classification accuracy when the spatial correlation in images is high. This prior also
does not provide a way of obtaining information about the amount of spatial depen-
dence in the images from the posterior distribution, and therefore has poorer inferential
properties compared to the spatial hierarchical prior.

3.3 Simulation 3

We now consider the case when there is no activation in the image. We set all γv = 0
and βv,1 = 0. We examine the situation under both χ2

2 and χ2
8 priors.
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Prior Accuracy (%) FPR (%)
χ2
2 99.91 (0.01) 0.09 (0.01)

χ2
8 99.90 (0.01) 0.10 (0.01)

Table 4: Classification accuracies and false positive rates when there is no activation in
the images, using both χ2

2 and χ2
8 priors.

The results are presented in Table 4. Under both priors we see that the false alarm
rate is low, providing evidence that our method will work well even in situations when
there is no activation in the images.

4 Parcellation Effects

In this section, we examine the performance of the proposed methodology on a simu-
lated data set representative of fMRI data. This allows us to apply our method under
several settings and observe how the results vary, primarily focusing on the effects of
the parcellation scheme described in Section 2.2.

In this simulation, we use the 20 × 20 image displayed in Figure 2. This image is
representative of activation patterns in response to a stimulus (several clusters of active
voxels with approximately 10–20% of voxels active overall.) We generate a time series
of length Tv = 50 from model (2) under the same settings as in Section 3.1, considering
both βv,1 = 3 and βv,1 = 5 when γv = 1. We only consider the χ2

8 prior for r.

Figure 2: The image used in the parcellation effects simulation.

We use our method when the image is unparcellated (G = 400), divided into a grid
of 2× 2 squares (G = 100), and divided into a grid of 4× 4 squares (G = 25). Figure 3
displays the parcellations considered in this section. We study how the classification
accuracy, false positive rate, and false negative rate (FNR) change with the different
parcellations.
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Figure 3: The parcellations when (a) G = 400, (b) G = 100, and (c) G = 25.

G r̂ Accuracy (%) FPR (%) FNR (%) Relative Time
400 10.04 (0.14) 97.00 (0.04) 0 (0) 19.35 1.00
100 9.79 (0.07) 97.50 (0.04) 0.30 (0.01) 14.52 0.05
25 9.08 (0.04) 96.50 (0.05) 0.30 (0.01) 20.97 0.01

(a)

G r̂ Accuracy (%) FPR (%) FNR (%) Relative Time
400 9.41 (0.10) 99.50 (0.02) 0 (0) 3.22 1.00
100 9.30 (0.06) 99.25 (0.02) 0.30 (0.01) 3.22 0.05
25 8.70 (0.04) 99.25 (0.02) 0.59 (0.02) 1.61 0.01

(b)

Table 5: Results of the parcellation effects analysis when (a) βv,1 = 3 and (b) βv,1 = 5.

Table 5 displays the results of the three parcellation schemes when applied to our im-
age. The classification accuracies are similar under each parcellation scheme, and this is
especially true when βv,1 = 5. In addition to the usual accuracy statistics, we also report
the computation time relative to the G = 400 case and see substantial speed improve-
ments as the number of regions decreases. This is mostly attributed to the reduction
in dimension of Γj . Figures 4 and 5 display the posterior activation probabilities and
classified images at both activation amplitudes under the three parcellation schemes.

One point worth noting is the large decrease in FNR when G = 100 in Table 5a.
The reason for this decrease can be seen by looking at the parcellation in Figure 3b.
When the entire image is subdivided into a grid of 2 × 2 voxels, the 2 × 2 regions fit
nearly perfectly within the active cluster in the bottom left hand corner. This induces
a smoothing effect on only the activated voxels, which causes nearly the entire area to
be classified correctly. When looking at the G = 25 case in Table 5a, we see that the
FNR is larger than when G = 100 and G = 400. By looking at Figure 3c, we see that
some of the 4×4 regions overlap with non-active regions. This smooths some active and
inactive voxels causing active voxels with weak signal to be classified as inactive. Note
that this does not occur when βv,1 = 5 due to the stronger signal.
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Figure 4: Posterior probabilities of activation and the classified images when (a)(b)
G = 400, (c)(d) G = 100, and (d)(e) G = 25 and βv,1 = 3.
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Figure 5: Posterior probabilities of activation and the classified images when (a)(b)
G = 400, (c)(d) G = 100, and (d)(e) G = 25 and βv,1 = 5.
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We suggest using smaller regions at locations where a priori information suggests
activation and reinforces the idea that the regions be chosen according to prior anatom-
ical knowledge. If no prior spatial information is available, we recommend choosing G
as large as possible given computational constraints.

5 Data Example

We now demonstrate the proposed methodology on an fMRI data set. A second exam-
ple, which analyzes the benchmark auditory data from the Wellcome Trust Centre for
Neuroimaging, is contained in the supplementary materials.

5.1 Emotion Processing Data

We consider data that was collected as part of the Human Connectome Project (HCP)
(Essen et al., 2013), and aims to evaluate emotional processing. The experiment was a
modified version of the design proposed by Hariri et al. (2002), which we now summarize.

The subject completed one of two tasks arranged in a block design. In the first task,
two faces were displayed in the top half of a screen. One of the faces had a fearful
expression, and the other had an angry expression. A third face was displayed in the
bottom half of the screen. The third face had either a fearful expression or an angry
expression. The subject chose which of the two faces in the top half of the screen matched
the expression of the third face in the bottom half of the screen. Each set of faces was
displayed for two seconds, after which there was a one-second pause.

The second task was functionally identical to the first task, except that geometric
shapes were used instead of faces, and the subject had to choose which of the two shapes
in the top half of the screen matched the shape in the bottom of the screen. This task
was used as a control. The goal here is to detect the regions involved in distinguishing
emotional facial expressions, and how the regional activations differ between the two
tasks. Both the face and shape blocks were each 18 seconds long, with eight seconds
rest between successive task blocks. Each pair of blocks was replicated three times.

The researcher’s main goals were to determine (1) which regions of the brain were
activated by the two different tasks and (2) did the total amount of brain activation
differ under both tasks. This provided them insight into how the brain processes facial
expression (emotion) data, compared to how it processed non-emotional (shape) data.

A total of 176 scans were collected on a 3T scanner on over 500 subjects. We ran-
domly selected one subject to analyze using our proposed methodology. Before data
collection, the image space was partitioned into a 91 × 109 × 91 rectangular lattice
comprising voxels of size two mm3. After preprocessing and masking, a total of 225,297
voxels remained to be analyzed. We preprocessed the images using standard techniques,
and spatially smoothed the images five mm in each direction. Because we expected acti-
vation to occur in several regions of the brain, we parcellated the image into 420 regions
of approximately equal size.
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Figure 6: The design matrix used in the HCP analysis.

We use a χ2
12 prior for the task-specific spatial dependence parameters rface and

rshape. The design matrix used in the statistical analysis is displayed in Figure 6.

Computation

The posterior of interest (9) is intractable, and so we used the MCMC method described

in the supplementary material to draw 100,000 MCMC samples. The tuning parameters

of the MCMC algorithm were chosen so as to produce acceptance rates close to 50% in

the Metropolis-Hastings steps. Standard errors were all less than 2% of their posterior

estimates and are therefore omitted in this section. Diagnostic measures used to assess

convergence are contained in the supplementary material.

As a final note, this method took slightly more than 3 hours on a single core of an

Intel i7-4770 3.5 GHz processor, demonstrating computational feasibility.

Results

Figures 7–10 display the detected activation in several horizontal slices. Note that each

slice is two mm thick and slice 1 contains the topmost region of the brain. Most of

the activation occurs in the occipital lobe, which is thought to be responsible for the

processing of visual information. Figures 7 and 8 also show activation in the temporal

and frontal lobes during the face blocks.

During the shape blocks, 2.03% of the voxels were declared as active, whereas 3.01%

of the voxels were declared active during the face blocks, indicating that more neuronal

effort is required to distinguish emotional facial expressions than geometric shapes. The

posterior estimate of r during the shape blocks was r̂shape = 21.56 (0.037), and during

the face blocks was r̂face = 24.47 (0.041). Both tasks had activation patterns with a

substantial degree of spatial dependence.
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Figure 7: Neuronal activation in slices 15–18 during the (a) shape blocks and (b) face
blocks.

Figure 8: Neuronal activation in slices 25–28 during the (a) shape blocks and (b) face
blocks.

Temporal Correlation

The maximum likelihood estimates of ρv in five slices are displayed in Figure 11. We

see that temporal correlation tends to be higher in the areas that displayed activation

in Figures 7–10, showing that voxel-wise temporal independence is an unreasonable

assumption.
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Figure 9: Neuronal activation in slices 36–39 during the (a) shape blocks and (b) face
blocks.

Figure 10: Neuronal activation in slices 57–60 during the (a) shape blocks and (b) face
blocks.

6 Final Remarks

We proposed a novel spatiotemporal Bayesian variable selection model with a focus
on its use in single-subject functional neuroimaging applications. The main advances
are the use of a hierarchical spatial prior in conjunction with a parcellation of the
image. We demonstrated via simulation that the resulting inferences are insensitive
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Figure 11: Maximum likelihood estimates of the AR(1) coefficients at five vertical slices
in the HCP analysis.

to the parcellation, but we recommend that no more than 500 regions be used for
computational reasons. The methodology offers several key advantages over existing
procedures. In particular, it adequately models the spatial dependence in fMRI data
while avoiding the computational issues encountered under the Ising model. We also paid
careful attention to the design and implementation of MCMC methodology, including a
method for choosing default starting values and a method for assessing when the MCMC
sampling should terminate (described in the supplementary material). The procedure
has been shown to be computationally feasible for a whole-brain analysis in that it can
be completed in only a few hours on standard hardware.

Despite the fact that our model works well and is computationally reasonable, there
are many potential modifications to consider. We have discussed some of these at various
points, but we will mention a few more now. For example, the Zellner g-prior for β(γ) is
widely-used, but an obvious alternative is to use spike and slab priors which are common
in variable selection problems and if used in conjunction with an inverse-gamma prior
on σ2

v , then it is straightforward to draw from the full conditionals of β and σ2.

We also assume that the σ2
v and ρv are independent a priori. This could likely be

improved since groups of voxels may have similar values. In Figure 11, there is obvious
spatial clustering in the estimates of the ρv. Priors with spatial correlation for the σ2

v

and ρv are an appealing possibility for future work.

The issue of functional connectivity has also recently received a great deal of atten-
tion. The basic idea behind functional connectivity is to describe long-range dependence
in activation patterns throughout the brain across different tasks. While our method as-
sumes distance-based spatial dependence, it can easily be extended to model long-range
dependence through the use of an Inverse-Wishart prior for the S(j) instead of the prior
described in (5). This method was utilized by Bowman et al. (2007) successfully, albeit
in a simpler modeling situation. While intuitively simple, computation and model fitting
likely would require substantial effort.

We have limited attention to single-subject experiments. It is natural to want to
extend our approach to handle multiple subjects. The biggest obstacle is the increased
computational burden that would result. For example, Zhang et al. (2016) recently used
a Bayesian variable selection approach for multi-subject data and reported that 1,000
iterations of their MCMC algorithm required seven hours, which makes it infeasible
in practical settings. However, they took a modeling approach more closely associated
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with the Ising prior approach in Lee et al. (2014) and Smith and Fahrmeir (2007)
than with the current paper. Thus we believe that there is room for improvement by
using an areal model. Indeed we believe there is a bright future for the development
of spatiotemporal Bayesian variable selection areal models for both single-subject and
multi-subject neuroimaging applications.

Supplementary Material

Supplemental Material for “Bayesian Spatiotemporal Modeling using Hierarchical
Spatial Priors, with Applications to Functional Magnetic Resonance Imaging” (DOI:
10.1214/18-BA1108SUPP; .pdf).
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Smith, M., Pütz, B., Auer, D., and Fahrmeir, L. (2003). “Assessing brain activity
through spatial Bayesian variable selection.” NeuroImage, 20. 1262

Storey, J. D. (2003). “The positive false discovery rate: a Bayesian interpreta-
tion and the q-value.” The Annals of Statistics, 31: 2013–2035. MR2036398.
doi: https://doi.org/10.1214/aos/1074290335. 1269

Triantafyllou, C., Hoge, R., and Wald, L. (2006). “Effect of spatial smoothing on phys-
iological noise in high-resolution fMRI.” NeuroImage, 32: 551–557. 1261

Vats, D., Flegal, J. M., and Jones, G. L. (2016). “Multivariate output analysis for
Markov chain Monte Carlo.” Preprint arXiv:1512.07713. MR3653667. 1269, 1270

Woolrich, M. W., Jenkinson, M., Brady, J. M., and Smith, S. M. (2004). “Fully Bayesian
Spatio-Temporal Modeling of fMRI Data.” IEEE Transactions on Medical Imaging ,
23: 213–231. 1262

Worsley, K. (2003). “Detecting activation in fMRI data.” Statistical Methods in
Medical Research, 12: 401–418. MR2005444. doi: https://doi.org/10.1191/

0962280203sm340ra. 1262

Worsley, K., Marrett, S., Neelin, P., and Evans, A. (1992). “A three-dimensional statis-
tical analysis for CBF activation studies in human brain.” Journal of Cerebral Blood
Flow and Metabolism, 12: 900–918. 1262

Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., and Evans,
A. C. (2002). “A General Statistical Analysis for fMRI Data.” NeuroImage, 15: 1–15.
1262

Xia, J., Liang, F., and Wang, Y. M. (2009a). “FMRI analysis through Bayesian vari-
able selection with a spatial prior.” In Proceedings of the 6th IEEE International
Symposium on Biomedical Imaging , 714–717. IEEE. 1262

Xia, J., Liang, F., and Wang, Y. M. (2009b). “fMRI analysis through Bayesian variable
selection with a spatial prior.” IEEE Int. Symp. on Biomedical Imaging (ISBI), 714–
717. 1263

http://www.ams.org/mathscinet-getitem?mr=1397966
https://doi.org/10.1007/978-1-4899-4485-6
https://doi.org/10.1007/978-1-4899-4485-6
http://www.ams.org/mathscinet-getitem?mr=2252462
https://doi.org/10.1198/106186006X97817
http://www.ams.org/mathscinet-getitem?mr=2370843
https://doi.org/10.1198/016214506000001031
https://doi.org/10.1198/016214506000001031
http://www.ams.org/mathscinet-getitem?mr=2036398
https://doi.org/10.1214/aos/1074290335
http://arxiv.org/abs/1512.07713
http://www.ams.org/mathscinet-getitem?mr=3653667
http://www.ams.org/mathscinet-getitem?mr=2005444
https://doi.org/10.1191/0962280203sm340ra
https://doi.org/10.1191/0962280203sm340ra


1286 Bayesian Spatiotemporal Modeling for fMRI

Zellner, A. (1996). “On assessing prior distributions and Bayesian regression analysis
with g-prior distributions.” In Bayesian Inference and Decision Techniques: Essays
in Honor of Bruno de Finetti North-Holland/Elsevier , 233–243. MR0881437. 1265

Zhang, L., Guindani, M., and Vannucci, M. (2015). “Bayesian models for functional
magnetic resonance imaging data analysis.” WIREs Computational Statistics, 7: 21–
41. MR3348719. doi: https://doi.org/10.1002/wics.1339. 1262

Zhang, L., Guindani, M., Versace, F., Engelmann, J. M., and Vannucci, M. (2016).
“A spatio-temporal nonparametric Bayesian variable selection model of multi-
subject fMRI data.” The Annals of Applied Statistics, 10: 638–666. MR3528355.
doi: https://doi.org/10.1214/16-AOAS926. 1262, 1269, 1281

Zhang, L., Guindani, M., Versace, F., and Vannucci, M. (2014). “A spatio-temporal non-
parametric Bayesian variable selection model of fMRI data for clustering correlated
time courses.” NeuroImage, 95: 162–175. 1262

Zhou, X. and Schmidler, S. C. (2009). “Bayesian Parameter Estimation in Ising and
Potts Models: A Comparative Study with Applications to Protein Modeling.” Tech-
nical report, Duke University. 1262

Acknowledgments

Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Prin-

cipal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16

NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by

the McDonnell Center for Systems Neuroscience at Washington University.

http://www.ams.org/mathscinet-getitem?mr=0881437
http://www.ams.org/mathscinet-getitem?mr=3348719
https://doi.org/10.1002/wics.1339
http://www.ams.org/mathscinet-getitem?mr=3528355
https://doi.org/10.1214/16-AOAS926


R. Prado 1287

Invited Discussion

Raquel Prado∗

I would like to begin by congratulating the authors for a new and valuable contribu-
tion to modeling task-related large-dimensional functional brain imaging data from a
Bayesian perspective. My discussion focuses on highlighting some of the modeling and
computational aspects of this approach and how it compares to alternative approaches
for brain imaging data. I also provide a discussion of possible future extensions.

Modeling features and alternative approaches

The proposed Bayesian approach considers a spatio-temporal model for analyzing func-
tional magnetic resonance images recorded on a subject during a task-related experi-
ment. It uses binary variables for labeling which voxels (volumetric pixels) are active
under a particular task. Spatial dependence across voxels is then described using an
underlying aereal model on a parcellation of the image. This is one of the main features
of the proposed approach, as the parcellation results in substantial dimension reduction
that leads to more computationally efficient posterior inference via MCMC. Temporal
dependence is induced by considering an autoregressive structure of order one, or AR(1),
on the error process, with voxel dependent AR coefficients. Model performance is illus-
trated in simulation studies. The model is also applied to fMRI data collected as part
of the Human Connectome Project (HCP). In particular, fMRI data from a randomly
selected subject who completed two tasks arranged in a block designed experiment were
analyzed. The main goal of the analysis was to determine which regions of the subject’s
brain were active under the two different tasks, and if patterns of brain activation were
different for the two tasks.

Parcellation and anatomical information

As mentioned above, I think one of the most appealing features of the proposed approach
is the parcellation of the image into regions that share some common parameters in
order to achieve dimension reduction and more efficient posterior computations. This
is particularly important when dealing with whole-brain fMRI analysis. In this sense
and as mentioned in the paper, the proposed approach shares similarities with that of
Musgrove et al. (2016). The main difference lies in the assumption that the parcels are
independent in Musgrove et al. (2016) but dependent here. The main idea here is that,
for a given task j and a given parcellation consisting of G regions, all the voxels in the
same region Rg, will share the same underlying spatial random effects denoted by Sg,j .
In other words, it is assumed that, for all v ∈ Rg, the indicators of activation depend

∗Department of Statistics, Baskin School of Engineering, Mail-Stop SOE2, University of California
Santa Cruz, 1154 High St, Santa Cruz, CA 95060, raquel@soe.ucsc.edu
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on the region spatial effect Sg,j , i.e.,

γv,j |Sg,j ∼ Bern

(
1

1 + e−Sg,j

)
,

and then S(j) = (S1,j , . . . , SG,j) are modeled using a Gaussian process. Section 3
presents some results that illustrate the effect of the number of parcels can have on
the activation results via simulation studies, but only equally-sized parcels are consid-
ered. No studies are included to show the effect that the shape and dimension of the
individual parcels may have in the posterior activation results. Furthermore, it is clear
that the parcellation in the aerial spatial model induces edge-type of effects on the
posterior probabilities of activations (e.g., see Figure 5 (e)) which may be problematic.
Do the authors have any suggestions on how to deal with these effects in practice? It
is mentioned that anatomical knowledge could be used to determine the parcellation.
This is certainly a very good idea, however, anatomical restrictions will lead to regions
that are not equally-sized.

Whole-brain analysis versus analysis of 2D slices

All the simulation studies involve analysis of 2D slices as opposed to full 3D volumes.
Also, in the analysis of the single-subject fMRI data, posterior activation results are
presented for specific collections of slices, i.e., slices 15–18 in Figure 7, slices 25–28 in
Figure 8, slices 36–39 in Figure 9 and slices 57–60 in Figure 10. Why are the results
shown for these specific slices? Is there a better way to summarize the results for the full
3D volume? Another interesting question is whether results obtained from separate 2D
analyses of the individual slices will be compatible with those obtained from considering
a single analysis of the entire 3D image.

HRF choice

The proposed approach assumes a fixed HRF for all voxels and considers the canoni-
cal HRF. It has been shown that in some situations the choice of the HRF consider-
ably affects the activation results. In addition, the HRFs may be different for differ-
ent voxels/regions. There are a number of approaches that consider HRFs estimation
and/or joint inference on activation, connectivity and HRFs (e.g., Woolrich et al., 2004;
Lindquist et al., 2009; Yu et al., 2016, among others). The focus of this paper is on study-
ing the main features induced by the spatial hierarchical priors and the parcellation in
the context of activation detection at the voxel-level. Full posterior HRF inference at
this resolution would be too computationally expensive even for single-subject analysis.
However, sensitivity studies could be done to assess the effect of the HRF choice in the
posterior results. This is the path we have taken in Yu et al. (2018) where we found
that for the data sets we considered (complex-valued fMRI as opposed to magnitude
only fMRI) the choice of the HRF did not have a huge impact on the activation results.
How sensitive are the activation results, especially those obtained for the human fMRI
analysis presented in Section 5, to the choice of the HRF function?
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Comparison with alternative approaches

No comparisons with alternative approaches are provided in the paper. Have the authors
considered formal comparisons with the approach of Musgrove et al. (2016) either in
simulation or real settings? Are there substantial differences between the two methods
in terms of classification accuracy and false positive rates? I do believe that the incorpo-
ration of spatial structure within a Bayesian modeling framework as done in the paper
can lead to improved activation results, particularly when this method is compared to
some of the methods based on simpler models that are routinely used and implemented
in software platforms such as FSL and SPM, however, it is difficult to assess if this is
the case given that no comparisons are included.

Multi-subject analysis and additional covariates

The paper briefly discusses future extensions to consider multi-subject models. The
proposed modeling approach offers advantages with respect to other approaches cur-
rently available for voxel-level fMRI data given the dimension reduction induced by the
parcellation. However, before discussing the computational feasibility of the proposed
approach in practical settings there are issues related to the actual modeling of the data.
For instance, would it make sense to consider the same parcellation across subjects or
should parcellations be subject-dependent? Would it be reasonable to have common
spatial effects across multiple subjects with additional effects that depend on the indi-
vidual subjects? Also, in multi-subject analysis there are usually additional covariates
for each subject. How do you suggest to incorporate these covariates?

Additional computational and modeling aspects

This paper focuses on obtaining full posterior inference, however, even with the dimen-
sion reduction induced by the parcellation full posterior inference is achieved via MCMC
and can be very costly in multi-subject studies. Have the authors considered approxi-
mations such as those based on variational inference? How about EM-based algorithms
for posterior estimation?

Finally, there is growing literature on tensor regression models for analyzing neu-
roimaging data (see, e.g., Zhou et al., 2013; Li et al., 2018; Guhaniyogi et al., 2017).
What are the main advantages/disadvantages and similarities/differences of considering
tensor-based models versus the modeling approach considered here?
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Invited Discussion

Per Sidén∗ and Mattias Villani†,‡

1 Introduction and context

Bezener, Hughes and Jones (BHJ) model brain activity using a Bayesian spatial variable
selection approach first proposed in neuroimaging by Smith et al. (2003). Smith et al.
(2003) use an Ising prior on the binary activity indicators. BHJ instead follow the
approach in Kalus et al. (2014) where a Gaussian Markov Random Field (GMRF)
is used to generate the spatially dependent activation indicators, Pr(γv = 1) = Φ(wv),
where Φ(·) is the cumulative distribution function (CDF) of a standard normal variable,
and w1, . . . , wN follow a GMRF; BHJ use the logistic CDF instead of the normal. The
novelty in BHJ is the use of a hierarchically structured prior over functionally distinct
brain regions, or parcels. Using a Gaussian process (GP) rather than a GMRF, this
allows the authors to push the spatial model one level down the hierarchy to obtain
spatially correlated random effects on the lower resolution parcel level, with attractive
computational properties.

The other main approach for Bayesian spatial modeling in functional magnetic res-
onance imaging (fMRI) is to directly model the spatial dependence in the activation
effects (β) with a GMRF or a GP, so that brain activity varies smoothly over neighbor-
ing voxels a priori (Penny et al., 2005).

To place BHJs contribution in context, Table 1 categorizes the various spatial priors
proposed for fMRI data along two dimensions: i) the use of brain parcellation, and ii)
whether the spatial dependence is directly on the activation effects (β) or on the activity
indicators (γ). Note that the categorization treats slice-wise analysis as a special case
of parcellation. Table 1 shows that the authors’ work fill a previously empty gap in the
resulting matrix.

Spatial dependence level Spatial effects, β Spatial indicators, γ
Voxel-level Penny et al. (2005) Vincent et al. (2010)
independent parcels Harrison et al. (2008) Lee et al. (2014)
(slice-wise) Groves et al. (2009) Zhang et al. (2014)

Musgrove et al. (2016)
Parcel-level Bowman et al. (2008) Bezener et al. (2018)
constant within parcels
Voxel-level Harrison and Green (2010) Smith and Fahrmeir (2007)
whole brain Sidén et al. (2017)

Table 1: Categorization of spatial priors for fMRI analysis.
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2 Pre-smoothing the data

BHJ follow the rather common practice of spatially smoothing the data as a pre-
processing step before the spatial analysis. In classical fMRI analysis, three reasons
for pre-smoothing the data are usually given (Lindquist et al., 2008): i) it improves
the inter-subject registration for group analyses, ii) it helps satisfy the assumptions of
the random field theory often used for multiple comparison correction, and iii) it may
increase the signal-to-noise ratio. Points i) and ii) are not applicable to this paper.
Regarding the third point, earlier work (for example Penny et al., 2005; Quirós et al.,
2010) advocate using the prior to handle the spatial information instead of using pre-
smoothing. Moreover, most papers on Bayesian spatial fMRI analysis only model the
spatial dependence in the activity and neglect to model the spatial dependence in the
noise. With pre-smoothing, this deficiency becomes even more serious as it introduces
additional spatial noise.

To illustrate the problem with pre-smoothing, consider the following simple example.
We disregard the temporal dimension and consider the model yv = βv + εv, with εv ∼
N(0, σ2) for a given voxel v ∈ V . That is, there is only one observation in each voxel
which is a sum of the brain activity signal βv and iid noise εv. We put a Gaussian
process (GP) prior on {βv}v∈V with a Matern covariance function with ν = 1, and
weakly informative priors on the marginal precision τ and the range ρ. The posterior
is computed using integrated nested Laplace approximation (INLA) (Rue et al., 2009;
Lindgren et al., 2011), using the r-inla implementation. The model is estimated on
data simulated on a 20× 20 grid, for two different true activity patterns; the one from
Section 4 in BHJ with βv = 5 in active voxels (Figure 1), and an activity pattern that

Figure 1: Comparison of results without pre-smoothing (top row) and with pre-
smoothing (bottom row) for the activity pattern in Section 4. The figure displays the
data (left column), the posterior mean of βv (middle column), and the posterior classi-
fication of active voxels, I{Pr(βv>0|y)>0.99} (right column).
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Figure 2: Comparison of results without pre-smoothing (top row) and with pre-
smoothing (bottom row) for a zero-everywhere activity pattern. The figure displays
the data (left column), the posterior mean of βv (middle column), and the posterior
classification of active voxels, I{Pr(βv>0|y)>0.99} (right column).

is zero everywhere, βv = 0 (Figure 2). In both cases, the model is estimated both on
the raw data and on the same data after pre-smoothing with a Gaussian kernel with
FWHM = 2 voxels. The code for this example, and more details on the simulation
setups, is available at https://bitbucket.org/psiden/BAdiscussion2018.

Figure 1 shows that the common problem with a GP prior of over-smoothing the
edges is substantially worse when data are pre-smoothed, where voxels far away from
the truly active areas are classified as active. This is due to the underestimation of the
noise variance, since the noise has been pre-smoothed out and is instead interpreted
as signal. Figure 2 shows that pre-smoothing the data from a zero-everywhere activity
pattern makes the noise being misinterpreted as signal, resulting in many false positives.

Of course, the presented example is much simpler than a real spatio-temporal fMRI
data set, and the dynamics of using a variable selection prior is somewhat different than
the GP prior used here. Still, we believe that our example clearly illustrates unpleasant
side effects from using pre-smoothing when using Bayesian spatial priors. It would be
interesting if the authors could comment on the motivation for using pre-smoothing,
and on any experiences they might have in applying their proposed model on raw data.

3 Parcellation and edge preservation

The motivation for using a parcellation is usually computational, but it can also have
some additional nice side-effects. For example, spatial non-stationarity can be captured
with different spatial hyperparameters in different parcels. Also, anatomically different

https://bitbucket.org/psiden/BAdiscussion2018


1294 Invited Discussion

regions could potentially be separated, if chosen in some clever way. The authors sug-
gest that “the parcellation should be chosen so that voxels within each region behave
similarly due to their location”, yet they provide no guidance on how to perform the
parcellation, nor mention how the parcellation was done for their real data analysis.

BHJ argue that spatial priors for the activity indicators have better edge-preservation
properties, compared to priors on the activation effects. There are however some possi-
ble objections to this argument. Firstly, some spatial priors for the activity effects are
in fact able to preserve edges, for example the geodesic graph Laplacian used in Harri-
son et al. (2008) and the scale mixture of normals used in Rad et al. (2017). Secondly,
the activated areas from some tasks may actually have smooth boundaries, which may
be cropped by a binary activation indicator; pre-smoothing the data tends to produce
smooth boundaries, as shown in the previous section. Finally, a prior that allows for
sharp continuities will be more prone to overfit the noisy fMRI data.

Nevertheless, the edge preserving property of spatial variable selection priors is at-
tractive. However, when the boundaries of the active regions and parcel boundaries do
not coincide in the BHJ approach, many voxels will be misclassified, and active and
inactive voxels smoothed. That is, edges may not be preserved with the parcel-based
BHJ prior, unless we already have knowledge about where the active regions are located,
in which case there is no need for an analysis. This issue is demonstrated by BHJ in
Section 4, but the highly stylized single slice setup used for illustration does not shed
much light on how serious this issue will be in actual whole brain applications. An open
problem for parcel-based approaches is how to infer parcels and activity jointly in a
computationally tractable way; see e.g. (Chaari et al., 2012) for an attempt.

4 Properties of the hierarchical spatial prior

Interpretation and effect of the spatial hyperparameters

The interpretation of the two key prior hyperparameters, δ and r, could have been more
clearly discussed in the article. The standard deviation of the random field, δ, controls
the within parcel dependence of voxels. This is illustrated by simulating from the BHJ
prior in the first column of Figure 3, where the large δ = 10 makes Pr(γv = 1) vary wildly
from parcel to parcel, giving high within parcel dependence, but low between parcel
dependence (since r = 0.05 is low). Increasing the length scale parameter r increases the
between parcel dependence; see the second column of Figure 3. The rightmost column
of Figure 3 shows that for small δ, the length scale r becomes ineffective since then
Pr(γv = 1) ≈ 1/2 for all v and the γv are close to spatially independent.

Marginal prior on activation indicators

Smith and Fahrmeir (2007) emphasize the importance of using a so called external
field in their Ising prior for fMRI. The argument is that without this external field,
then marginally Pr(γv,j = 1) = 1/2 for all voxels and tasks, which implies a highly
implausible large number of active voxels for a typical fMRI study. Moreover, Smith and



P. Sidén and M. Villani 1295

Figure 3: Realizations from the BHJ hierarchical spatial prior for three different sets of
hyperparameter values. Both the realization of Pr(γv = 1) (first row) and γv (second
row) are shown. The simulations are over a 200×200 grid of voxels divided into a 10×10
grid of parcels.

Fahrmeir (2007) use anatomical information on the location of gray matter (activations
can not occur outside of gray matter) in the external field and argue that the ability
to do so is an important advantage of their approach. The prior in (4) and (5) also
imply the implausible marginal Pr(γv,j = 1) = 1/2. It seems straightforward however
to replace Sg,j in the Bernoulli probability in (4) with αgIv +Sg,j , where Iv is a binary
indicator for gray matter. The αg can be specified as in Smith and Fahrmeir (2007) from
prior information on the expected proportion of active gray matter voxels in parcel
g, or globally if αg = α for all g. This addition should add only marginally to the
computational cost of the single site Metropolis-Hastings updates of the Sg,j .

Data-based prior and activation smoothing

BHJ follow Smith and Fahrmeir (2007) and use a data-based prior for the effects in
active voxels, βv, centered on the maximum likelihood estimates. The consequences of
this violation of Bayes’ theorem is kept to a minimum by using a vague unit information
prior, and one would think that the mean could equally well have been set to zero.
However, the law of total covariance gives

Cov(βu, βv) = E[Cov(βu, βv|γu, γv)] + Cov[E(βu|γu),E(βu|γu)] = μuμvCov(γu, γv),

since Cov(βu, βv|γu, γv) = 0 by assumption, and E(βu|γu) = (1 − γu)0 + γuμi = γuμu,
where μu is the prior mean of βu when γu = 1. Hence, only with a non-zero prior mean
on βv would the spatial dependence in the γv induce spatial covariance between the βv

in different voxels. This is clearly in stark contrast to a spatial prior on βv where the
spatial covariance is completely separate from the prior mean.



1296 Invited Discussion

References
Bezener, M., Hughes, J., Jones, G., et al. (2018). “Bayesian Spatiotemporal Modeling
Using Hierarchical Spatial Priors, with Applications to Functional Magnetic Reso-
nance Imaging.” Bayesian Analysis. 1291

Bowman, F. D., Caffo, B., Bassett, S. S., and Kilts, C. (2008). “A Bayesian hierarchical
framework for spatial modeling of fMRI data.” NeuroImage, 39(1): 146–156. 1291

Chaari, L., Forbes, F., Vincent, T., and Ciuciu, P. (2012). “Hemodynamic-informed
parcellation of fMRI data in a joint detection estimation framework.” In International
Conference on Medical Image Computing and Computer-Assisted Intervention, 180–
188. Springer. 1294

Groves, A. R., Chappell, M. A., and Woolrich, M. W. (2009). “Combined spatial and
non-spatial prior for inference on MRI time-series.” NeuroImage, 45(3): 795–809.
1291

Harrison, L. M. and Green, G. G. (2010). “A Bayesian spatiotemporal model for very
large data sets.” NeuroImage, 50(3): 1126–1141. 1291

Harrison, L. M., Penny, W., Daunizeau, J., and Friston, K. J. (2008). “Diffusion-based
spatial priors for functional magnetic resonance images.” Neuroimage, 41(2): 408–423.
1291, 1294
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Invited Discussion

Marina Vannucci∗ and Jeong Hwan Kook†

We would like to congratulate the authors on a very interesting article on the topic
of Bayesian models for the analysis of functional magnetic resonance imaging (fMRI)
data. Here, in particular, the authors consider a class of spatio-temporal models for
the detection of brain regions that activate in response to a stimulus. With respect to
existing literature that use binary indicator variables for classifying active voxels, the
main advance of the proposed modeling construction is the use of a hierarchical spatial
prior in conjunction with a parcellation of the image. This adequately models the spatial
dependence in fMRI data. The authors develop a Markov chain Monte Carlo (MCMC)
method for posterior inference and show performance of the approach on simulated and
real data. In this discussion, we are elaborating on the authors’ final remarks on having
limited their attention to single-subject data and on the computational burden of the
MCMC procedure. In particular, we briefly describe NPBayes-fMRI (Kook et al., 2018),
a user-friendly MATLAB GUI that implements a multi-subject Bayesian spatio-temporal
approach for the analysis of task-related brain activity proposed by Zhang et al. (2016).
This model formulation specifically accounts for between-subject heterogeneity in neu-
ronal activity via a spatially informed multi-subject nonparametric variable selection
prior. Efficient implementation via a Variational Bayes procedure allows to scale the
inference to whole-brain analysis. As suggested by Bezener and colleagues, we believe
there is room for extending these methods and the software implementation to incor-
porate areal models.

The NPBayes-fMRI software is available for download at: https://github.com/
rimehi/NPBayes fMRI.

1 Bayesian spatio-temporal models for multi-subject
fMRI data

For subject i = 1, . . . , N , let Yiν = (Yiν1, . . . , YiνT )
T be the vector of the BOLD response

data at voxel ν, with ν = 1, . . . , V . We model the data as

Yiν = Xiνβiν + εiν , εiν ∼ NT (0,Σiν), (1)

where Xiν is a known T × p covariate matrix and βiν = (βiν1, . . . , βiνp)
T is a p × 1

vector of regression coefficients. Without loss of generality, we center the data and thus
do not include the intercept term in the model. Let Xiνj be the jth column of Xiν . Then
Xiνj is modeled as the convolution of the j-th stimulus pattern with a hemodynamic
response function (HRF) (Buxton and Frank, 1997), for example a Poisson HRF or the
canonical HRF adopted by Bezener and colleagues.

∗Department of Statistics, Rice University, Houston, TX, USA, marina@rice.edu
†Department of Statistics, Rice University, Houston, TX, USA
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The error term in (1) is modeled as auto-correlated, specifically long memory and
Discrete wavelet transforms (DWT) are employed as a way to decorrelate the data.
This is a common approach in the fMRI literature (Fadili and Bullmore, 2002; Meyer,
2003; Sanyal and Ferreira, 2012; Zhang et al., 2014). After applying the DWT to (1)
the model in the wavelet domain can be written as

Y ∗
iν =

p∑
j=1

X∗
iνj ◦ βiνj + ε∗iν , ε

∗
iν ∼ NT (0,Σ

∗
iν), (2)

with ◦ the element-by-element (Hadamard) product, and whereW is a T×T matrix cor-
responding to the wavelet transform, Y ∗

iν = WYiν , X
∗
iν = WXiν , and ε∗iν = Wεiν , and

with the covariance matrix Σ∗
iν approximately diagonal with elements ψiνσ

2
imn indicat-

ing the variance of the nth wavelet coefficient at the mth scale. We follow the variance
progression method of Wornell and Oppenheim (1992) for the wavelet coefficients,

ψiνσ
2
imn = ψiν(2

αiν )−m, (3)

with ψiν the innovation variance and αiν ∈ (0, 1) the long memory parameter. This
structure encompasses the general fractal process, which includes long memory.

Detecting voxels that activate in response to a stimulus is equivalent to identifying
the non-zero regression coefficient βiνj in model (2). In formulas, let γiνj be a binary
indicator of whether a given voxel is activated or not, that is, γiνj = 0 if βiνj = 0 and
γiνj = 1 otherwise. A spiked nonparametric prior is imposed on the coefficients

βiνj |γiνj , Gi ∼ γiνjGij + (1− γiνj)δ0, (4)

where δ0 is a point mass at zero and G denotes a known distribution. With multiple
subjects, a hierarchical Dirichlet Process (HDP) prior can be specified as the nonpara-
metric slab, inducing clustering among voxels within a subject on one level and between
subjects on the second level. This construction enables the model to borrow information
from subjects exhibiting similar activation patterns in estimating parameters of interest
and also capture spatial correlation among distant voxels. For single-subject analysis,
the HDP reduces to a Dirichlet process (DP) prior.

In our construction we capture spatial correlation among neighboring voxels within
a subject via a Markov Random Field (MRF) prior imposed on γiνj ,

P (γiνj |d, e, γikj) ∼ exp(γiνj(d+ e
∑

k∈Niν

γikj)),

withNiν the set of neighboring voxels of voxel ν for subject i, and p(γiν) =
∏p

j=1 p(γiνj).
The sparsity parameter d ∈ (−∞,∞) represents the expected prior number of activated
voxels, while the smoothness parameter e > 0 controls the probability of identifying a
voxel as active based on the activation of the neighboring voxels. As noted by Bezener
and colleagues, areal models could be used instead. The prior model is completed by
considering a uniform prior distribution on the delay parameter, λiνj ∼ U(u1, u2), an
Inverse Gamma (IG) prior on the innovation variance parameter, ψiν ∼ IG(a0, b0), and
a Beta distribution on the long memory parameter, αiν ∼ Beta(a1, b1).
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For posterior inference, Zhang et al. (2016) use Variational Bayes (VB) algorithms
which, unlike MCMC methods, do not rely on numerical integration. VB methods have
been employed successfully in Bayesian models for single-subject fMRI data (Penny
et al., 2003; Flandin and Penny, 2007; Harrison and Green, 2010). These methods find
an optimal approximation to the posterior that minimizes the Kullback-Leibler (KL)
divergence. Typically, VB approaches provide good estimates of means, although they
tend to underestimate posterior variances and also to poorly estimate the correlation
structure of the data. This can still be an acceptable trade-off for our inferential pur-
poses, as we are only interested in the identification of broad areas of activations. When
analytically tractable updates for some of the parameters are not available, the VB al-
gorithm can be combined with importance sampling. See Zhang et al. (2016) for details
of the algorithm.

The primary interest of the inference is in the estimation of the selection parameters,
γ, and the regression coefficients, β. These can be used to obtain activation maps, by
subject and by stimulus. Using the output from the VB algorithm, posterior probabil-
ities of inclusion (PPIs) for stimulus j, p(γiνj = 1), for j = 1, . . . P , are approximated
as weighted averages of the variational distribution values. Activation maps can then
be obtained by thresholding the PPIs using a threshold value to ensure a pre-defined
Bayesian false discovery rate (FDR) (Newton et al., 2004). This produces a spatial map-
ping of the activated brain regions, for each subject. Corresponding posterior β-maps
can be calculated by estimating the β coefficients via weighted averages of the variational
distribution values, on active voxels. An additional feature of the modeling approach of
Zhang et al. (2016) is that the use of the nonparametric HDP prior construction (4) can
be exploited to obtain a clustering of the subjects for possible discovery of differential
activations. Finally, when analyzing experimental data with multiple stimuli, contrast
maps can be produced to compare the effects of different treatments, by subject, by
estimating probability maps of the type p(βj − βj′ > κ), with j and j′ a pair of stimuli
and κ a pre-defined hypothesized value.

2 NPBayes-fMRI software design

We now briefly describe the NPBayes-fMRI software. Details on parameter setting and
input arguments can be found in Kook et al. (2018). NPBayes-fMRI comprises of two
main interfaces, one for model fitting and one for the visualization of the results, orga-
nized as shown in Figure 1.

Model Fitting. For model fitting, the user loads the data and specifies the number
of subjects and the type of analysis, that is, whether it should be performed on a single
2D slice or on a 3D whole-brain parcellation. Based on this, the user will be prompted to
either define or load additional files. These arguments will be used later for visualization
of the results. For both 2D and 3D analyses, the percent signal change normalization
and the DWT are applied as part of the model fitting stage. For DWT, Daubechies
minimum phase wavelets with 4 vanishing moments are used. The user can choose to
run the model with a default parameter setting or to manually set the parameters.
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Figure 1: NPBayes-fMRI: Main interfaces for Model Fitting and Visualization.

Visualization. This interface is used to visualize the results. It comprises of three
components, as briefly described here. For simplicity, we consider 3D data.

• Activation Maps by Subject: This function allows the user to view the activa-
tion maps, the posterior β-maps and the HRF maps for a single subject. Matlab’s
built-in colormaps can be selected via a pop-up menu. The PPI threshold and
FDR value can be automatically adjusted or set manually by the user. Activation
maps are overlayed on top of a reference image. Multiple slices of the brain in one
particular orientation for a given stimulus can be viewed as well as single slices
for all stimuli at once.

• Activation Maps by Cluster: This function is used to view cluster-level ac-
tivation maps, for a given stimulus and PPI (or FDR) threshold. Clusters are
defined based on a dendrogram obtained by applying hierarchical clustering with
Ward’s linkage method to a dissimilarity matrix defined based on the posterior
mean estimates of the non-zero β coefficients.

• Contrast Maps by Subject: For multiple stimuli, this function lets the user
define a contrast by subject by defining a Contrast Vector and Hypothesis

Value. Once a contrast has been defined, the user can adjust a threshold to view
different subjects by entering the subject numbers.

NPBayes-fMRI includes data of 30 subjects performing an experiment with three
different stimuli. The dataset is part of a pilot study on variability in the cognitive
and neural processes involved in reading, conducted at Rice University (Fischer-Baum
et al., 2018). Figure 2 shows the posterior β-map for one of the subjects, for stimulus
2, obtained at a PPI threshold of 0.9. Multi-slice sagittal views can also be selected.
For stimulus 2 and a PPI threshold of .9, Figure 3 shows the dendrogram, obtained
by clustering the posterior β estimates of all 30 subjects, and the cluster-level β-maps
when 3 clusters are selected.
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Figure 2: 3D Analysis: Example of activation β-map, for stimulus 2 and PPI threshold
of .9 coordinates X = 92, Y = 115, Z = 111. Different locations of the brain can be
examined by using the three sliders to control the X,Y, Z coordinates.

Figure 3: 3D Analysis: Example of dendrogram (middle), for stimulus 2 and a PPI
threshold of .9, and cluster-level β-maps (right), obtained with three clusters. The sub-
ject cluster memberships are displayed in the Cluster tab of the interface (left).
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Contributed Discussion

Max Hinne∗, Ronald J. Janssen†,§, and Reza Mohammadi‡

Bezener, Hughes and Jones (BHJ from here on) propose an elegant Bayesian approach

for spatiotemporal modeling of activated voxels in fMRI studies. We would like to

discuss two avenues for extending their model that would benefit the functional Magnetic

Resonance Imaging (fMRI) research community: automated, data-driven parcellation,

rather than using an arbitrary division into a grid, as well as estimation of long-range

connectivity, rather than modeling only local spatial correlations.

Data-driven parcellation

BHJ introduce a grid structure with a user-defined resolution to capture the spatial

correlation between voxels. For voxels i, j in regions si, sj , the correlation between their

activation is a function of the Euclidean distance between the centers of si and sj . This

is a convenient approach, as the user can define the resolution of the grid to meet their

computational restrictions. However, the cells of the grid have no neurological basis and

likely contain many neuronal populations that are responsive to very different tasks.

This issue can be addressed by incorporating data-driven parcellation into the BHJ

model (Blumensath et al., 2013). An example of this that would integrate nicely with

the BHJ model is CAESAR (Clustered Activation Estimation with Spatial Adjacency

Restrictions) (Janssen et al., 2016). CAESAR is a non-parametric model that clusters

voxels together based on the similarities of their time courses. Temporal smoothness of

the time courses is modeled via a Gaussian process. The clustering itself is inferred using

a distance-dependent Chinese restaurant process prior. This distribution enforces spatial

contiguity between voxels in a cluster. As a result, only those neuronal populations are

grouped together that are nearby on the cortical sheet.

CAESAR was intended for resting-state fMRI data and contains no separate step

to learn which voxels are responsive to a particular task; but this is precisely what BHJ

offer. Their model can be augmented by replacing the fixed grid parcellation with CAE-

SAR, to learn both the voxel activation and parcellation from the data simultaneously.

Because these parcels will now have a functional meaning, the constraints they pose

on voxel correlations are now much more interpretable. This also naturally leads to the

next extension.
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Long-range estimation of connectivity

BHJ introduce spatial correlations via random effects distributed according to a Gaus-
sian process, where correlation is a function of spatial proximity. This captures only
short-range associations, while ignoring connectivity between spatially segregated re-
gions; a fundamental topic of study for network neuroscience (Behrens and Sporns,
2012; Bassett et al., 2018). BHJ mention that instead of a Gaussian process kernel,
connectivity can be modeled using an inverse-Wishart distribution, but do not con-
sider this further. However, given the tremendous amount of interest into precisely this
long-range coupling, we think this extension to the BHJ model is very relevant to the
community. Here too, existing methodology can be readily integrated with the BHJ
model. For instance, in the BaCon (Bayesian Connectomics) framework (Hinne et al.,
2014, 2015), hierarchical models were explored to infer long-range connectivity from
fMRI data. Here the G-Wishart distribution is central to inference (Mohammadi and
Wit, 2015), which couples correlated activity with anatomical connections. An addi-
tional parameter controls the density of the resulting network, which may be used as
regularization or learned using a beta distribution prior (Janssen et al., 2014).

Similar to CAESAR, BaCon was originally designed with applications in resting-
state connectivity in mind. For task-based studies, BHJ could use the BaCon approach
as prior distributions on the (long- and short-range) spatial correlations. Via this ap-
proach, important long-range correlations (consider for example the homotopic inter-
hemispheric connections that tend to be quite strong) will further contribute to correctly
estimating active voxels.

Integrating existing models for fMRI studies

An important benefit of Bayesian modeling is that newly proposed models can often
benefit from preexisting material. In the case of BHJ, the two major limitations of their
study have solutions already available in the computational neuroscience community.
Obviously, the practical downside of this ‘lego-ing’ together of Bayesian models is the
computational burden this imposes. While this is a fundamental problem that has no
end-all solution, we note that smart model and inference choices, such as Gaussian
processes with their analytically available posterior (Hyun et al., 2016), automated
inference procedures (Kucukelbir et al., 2017) and the spike-and-slab alternative to the
G-Wishart distribution (Wang, 2015) raise our optimism about fully Bayesian data-
driven fMRI analyses.
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Contributed Discussion

D. Andrew Brown∗ and Nicole A. Lazar†

We congratulate the authors on their timely contribution toward fully Bayesian anal-
ysis of extremely high-dimensional neuroimaging data with spatiotemporal correlation.
Using pre-defined parcellations to reduce the size of the spatial field over which to run
Markov chain Monte Carlo (MCMC) is an innovative way to dramatically reduce the
computational bottleneck associated with MCMC on this type of data.

The methodology depends crucially on the choice of regions defining the parcella-
tion of the brain. The authors offer some suggestions on how to choose these regions,
including anatomically-based regions of interest and k-means clustering. It seems that
this issue could be more fully explored. For instance, if a researcher were to use brain
anatomy to define the parcels, the regions would have to be segmented separately in
each brain that is to be analyzed. Segmentation is a challenging issue in neuroimaging.
Broadly speaking, segmentation of a brain is accomplished either through manual delin-
eation, or automatically by, e.g., registering pre-segmented reference images to the target
brain image whereby the region labels can be propagated and combined to determine the
new segmentation (Iglesias and Sabuncu, 2015). Even if the regions are appropriately
defined according to the task being studied in the experiment, delineating these regions
in a new brain image is subject to error so that some voxels may be assigned to regions
other than what is intended. We wonder how sensitive the results from the proposed
model are to misclassified voxels. The simulation study clearly illustrates potentially
deleterious effects of grouping together active and inactive voxels. Thus there remains
the question of how robust the proposed methodology is to segmentation errors.

Related to the previous point is the need to balance “correct” partitioning of the
brain with computational effort of the MCMC algorithm. Is there some way to determine
an optimal partitioning subject to an upper limit on the number of regions in the
parcellation? The paper illustrates the benefit of grouping together as many active
voxels as possible to boost their signal for the selection procedure, but this signal is
attenuated if too many inactive cases are included in the parcel. In practice, how can
one balance the desired signal boosting against the risk of misaligned regions?

Other questions we have concern the prior specification in the Gaussian processes,
Sj ∼ N(0, δ2jΓj), where Γj ≡ Γ(rj) depends on a correlation length parameter rj .
The authors suggest using a conventional (improper) Jeffreys prior for the variance,
π(δ2j ) = δ−2

j . However, Gelman (2006) discusses potential risks of using this prior, or a
Ga(ε, ε) approximation, at this level in the hierarchy. There it is shown that even sup-
posedly vague priors can have a disproportionate effect on the posterior distribution.
While the model considered by Gelman (2006) is quite different than what is considered

∗School of Mathematical and Statistical Sciences, Clemson University, 220 Parkway Drive, Clemson,
SC 29634, USA, ab7@clemson.edu

†Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA,
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in this work, it is not unreasonable to suspect that the same problem could be present.
It seems that prior specification is important here, as the authors’ simulation results
(e.g., Tables 1 and 2) suggest that the data contain only limited information about the
parameters governing the Gaussian processes. Perhaps a subjective prior on the corre-
lation length rj could be elicited by reparameterizing with ρj = exp(−1/rj) and taking
ρj ∼ Beta(α1, α2). This parameterization, in our opinion, is more interpretable and thus
easier to model. Of course, the correlation length issue could be circumvented altogether
if a Gaussian Markov random field (GMRF; Rue and Held, 2005) were used in place
of the Gaussian process. Indeed, Gaussian processes are appealing for modeling spatial
correlation due to their use of explicit covariance functions and the formal prediction
rules that follow (e.g., kriging), and there is generally no formal covariance function
associated with a GMRF. Nevertheless, such a model might still be sufficient for the
functional magnetic resonance imaging application in which there is no need for spatial
prediction at unobserved locations. A GMRF could potentially ease the computational
burden, as well, due to its typically sparse precision matrix. The ability to assess a
posteriori correlation between regions would not be lost, since one could simply study
the distribution of Moran’s I statistic in place of the posterior of rj .

Lastly, we remark that the authors’ methodology is similar to the multi-resolution
Bayesian variable selection approach proposed by Zhao et al. (2018). Their approach
initially searches over a coarse partition of the brain image, and then searches through
partitions of successively refined resolutions only within those larger regions that are
identified as potentially interesting. Some of the techniques in that work could poten-
tially be applicable for drawing inference in the model proposed here.
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Francesca Gasperoni∗ and Alessandra Luati†

The paper introduces a Bayesian spatiotemporal model for identifying and assessing
the strength of neural activations in task based functional magnetic resonance imag-
ing (fMRI) data. A key feature of the model is the inclusion of explanatory indicator
variables in a regression framework at voxel level, so that a detection problem, which
is a core challenge in fMRI analysis, may be treated as a variable selection problem. In
this context, the authors recognise the relevance of taking into account both spatial and
temporal correlations and, by extending previous works of Smith and Fahrmeir (2007)
and Lee et al. (2007), assume temporally correlated errors and consider an areal model
to account for spatial dependence, instead of the Ising model, thus avoiding Bayesian
computation inefficiency.

We enjoyed reading the paper and agree with the authors that it is reasonable to
assume temporal dependence among repeated observations in the same voxels. In this
discussion, we would like to comment on three aspects of the paper, related with the
time series analysis of fMRI data: preprocessing, to remove artifacts; estimation of a
drift term, accounting for low frequency movements; specification of the dynamics in
the error term, i.e. the temporal correlation.

Preprocessing is an essential component in the analysis of fMRI data, to remove
noise arising from many different sources such as motion artifacts, instrumental noise
or scanner instabilities, see Tovar et al. (2015). If preprocessing accounts for artifacts,
drift components may account for low frequency fluctuations of neuronal origin, usually
addressed in resting state fMRI analysis. Detrending is typically obtained by low-order
polynomial models, high-pass filters, spline functions, or wavelets, and it can be part
of the preprocessing stage or not. We prefer to separately consider preprocessing and
baseline drift estimation, as in Zhang and Yu (2008), where voxelwise semiparametric
inference for fMRI is discussed; the drift term is estimated non parametrically and inter-
preted, as in the present paper, as a nuisance parameter. As far as temporal correlation
is concerned, most of the models used for the time series analysis of fMRI assume a sta-
tionary Gaussian distribution for the noise term. However, there is still a considerable
debate on the dynamic properties of fMRI and AR(p) or ARMA(p, q) errors have been
considered, as Lee et al. (2007) widely discuss, as well as change point methods, as an
alternative to stationarity, see Aston and Kirsch (2012). Lund (2006) concluded that no
commonly accepted model for noise in fMRI exists and that regressors may whiten the
noise as well as high pass filters.

This is actually the main point we raise here: specification of the time dynamics
heavily depends on preprocessing and detrending, as low frequency components, what-
ever their origin, if not adequately accounted for in the preprocessing stage or in the
drift term, will enter in the model in the noise term.
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The authors acknowledge this point, as their motivation for a low order, namely first
order, autoregressive model, AR(1), for the noise term, lies in the fact that low frequency
or cyclical features are accounted for in the term Zvηv of (1). If the component Zvηv
were absent, then higher order autoregressive processes would be necessary to capture
low frequency fluctuations, such as AR(2), ARMA(2,1) or even ARMA(1,1). However,
the authors preprocess the data by spatial smoothing (section 5.1) and assume that the
drift component is preprocessed as well (section 2.1). This assumption is not fully clear
to us, although we understand that the term Zvηv is then considered as a negligible
nuisance component and model (2) is applied in the paper, both in the simulation study
and in the real data analysis.

We conclude our comment by addressing the reproducibility of the model in the case
when resting state fMRI data are of interest. Spontaneous activations, as opposed to
task-based activations, are getting more and more attention in the neurological litera-
ture (Cole et al., 2010) and it would be promising to investigate whether and how the
proposed model is applicable to this framework.
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Rejoinder

Martin Bezener∗, John Hughes†, and Galin Jones‡

We extend our sincere appreciation to the discussants for their efforts at a thought-
provoking discussion. The discussants will be referred to by initials: Brown and Lazar
(BL), Gasperoni and Luati (GL), Hinne, Janssen, and Mohammadi (HJP), Prado (P),
Sidén and Villani (SV), and Vanucci and Kook (VK).

Our goal was developing a computationally efficient, yet scientifically reasonable
Bayesian approach to task-based fMRI. This was motivated in part by our prior work
in Lee et al. (2014) which was a good start, but still too computationally intensive
for large fMRI problems. We think that we largely achieved our goal, but, as noted
by the discussants, there is still work to be done with many possible refinements of
the proposed model. Moreover, we are clearly some ways from attaining any sort of
consensus Bayesian approach to task-based fMRI analysis.

The main topics raised by the discussants include the following.

Parcellation. We introduced parcellations in order to facilitate efficient computation by
reducing the dimension of the spatial component of the model. Absent computational
constraints it is optimal to have a parcel for each voxel. However, we saw massive
computational gains from a coarser partition with little loss in inferential efficacy.

HJM consider using data-driven methods for parcellation and SV asks about how
the parcellation was done for the HCP data. We endorse the idea behind the suggestion
of HJM, having used clustering methods in our HCP data examples. We note that while
the parcels are two-dimensional in the simulation study, they are three-dimensional in
our data examples.

Throughout we used equal-sized parcels. It is unclear to us if having different sized
parcels will impact the computational effort, but it does seem plausible that they could
impact the posterior inference. For example, if there is some a priori information about
activation and it were incorporated through a finer partition in the relevant region, then
it wouldn’t be surprising to get better classification.

We leave it as an open question as to how to best construct the parcels. Should it be
that they are all equally-sized, or chosen by anatomical considerations, or chosen in a
data-driven fashion? Should we use a mulitresolution approach as suggested by BL? As
noted by P and BL this question doesn’t get easier to answer if the models are extended
to incorporate multiple subjects.

Temporal Correlation. We agree with GL who note that there is “no commonly ac-
cepted model for noise in fMRI”. We believe the AR(p) and ARMA (p, q) structures are
reasonable starting points; see also Monti (2011) for further discussion on the nature
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temporal correlation in fMRI. There is nothing in our setup that prevents the use of
alternative models for the temporal correlation; it simply wasn’t our main focus.

Comparison to other methods. P asks about comparisons with other approaches. The
work most closely associated with ours is that of Musgrove et al. (2016). The two
methods were directly compared in Bezener et al. (2018) where we found that the
method in Musgrove et al. (2016) can achieve slightly better computational efficiency
whereas our work results in more accurate classification of voxels.

Priors. HJM, BL, and SV all comment on the choice of priors. This is another area
where there are open questions that merit further investigation. In our development of
the current work we tried several variations on the priors eventually chosen. Our choice
of priors was largely guided by our overall goal of balancing inference and computation.

SV ask about replacing Sg,j with αgIv + Sg,j in the Bernoulli in (4). This was
investigated in an earlier version of our paper, but it was not impactful and space
constraints forced us to remove it; but see Bezener (2015) for more. As we mention
in the paper, we agree with HJM in that the use of an inverse Wishart to capture
information about connectivity would be an interesting extension to our methods. This
is mentioned in the conclusion of our paper as a potential direction for future research.

We do not generally share BL’s pessimism about Jeffrey’s priors, but their suggestion
to consider a subjective prior on the correlation length is one that deserves further
investigation. We’ll go one step further and say that while we use a mixture of data-
driven priors, improper priors, and subjective priors, we believe that the use of fully
Bayesian (subjective) models have been underdeveloped in the fMRI literature.

Another possible modification of our method would be to replace the prior for ρv in
Section 2.2 with a proper prior that incorporates anatomical information. We chose a
point-mass prior to avoid expensive computations in the inversion of Λv. However, we
later realized that Λ−1

v has a closed form equation if an AR(1) process is assumed and
does not require numerical inversion at each MCMC sampling step. This modification
potentially will add information for little additional computation.

Edge Effects. Both P and SV bring up the issue of edge effects. SV observes that (1)
there exist priors on activation amplitudes that are able to preserve edges and (2) edges
themselves may be smooth in some settings. We agree with the first point. We were
using the argument made in numerous other papers (cf. Smith et al., 2003; Smith and
Fahrmeir, 2007) as a starting point. In a non-detection problem, the priors mentioned by
SV may certainly be more appropriate. With regards to the second point, while there are
settings in which activation tapers off gradually, in many applications a binary decision
must be made, in which case that decision would still need to be made using posterior
activation amplitudes. Regardless, this is an interesting point and we agree that the
effects of the parcellation is an open issue.

P and SV consider what happens if the edges of the parcellation don’t line up with
the edge of an active area. We agree that this can influence posterior inference. Note
that this is the case in our simulation in an attempt to display the worst-case scenario,
but yet the edges are still well preserved and also any “holes” in the bottom left active
area of Figure 5(e) are “filled in” that would otherwise be misclassified as inactive.
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Spatial Smoothing. GL and SV bring up the issue of spatial smoothing. In particular we
thank SV for the detailed demonstration included in their discussion. Spatial smoothing,
while common, is somewhat controversial. However, our method does not require the use
of smoothing, as the spatial random effects essentially act to smooth the field of binary
indicator variables. Therefore we do not use smoothing in any of our simulations. For
example, our results in Section 3.3 of our paper agree with the simulations in bottom
row of Figure 2 of SV’s discussion. Furthermore, none of the false positive rates in
our simulations appear to be inflated, at least to the degree demonstrated in SV’s
simulations.

In the data example of Section 5, we used a small amount of spatial smoothing. We
first tried our method without spatial smoothing and the posterior activation maps were
unusually disjoint and choppy according to a neuroscientist we consulted. We offer two
points to address this. First, despite trying our best to recreate fMRI noise in a simulated
environment, real fMRI data is more complicated, noisy, full of artifacts, missing values
etc. Second, we chose a distance based parcellation–with a more anatomically informed
parcellation, the spatial random effects may have done a better job of smoothing out
the posterior without having to use pre-smoothing.
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