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Bayesian Parametric Bootstrap for Models
with Intractable Likelihoods

Brenda N. Vo∗, Christopher C. Drovandi†, and Anthony N. Pettitt‡

Abstract. In this paper it is demonstrated how the Bayesian parametric boot-
strap can be adapted to models with intractable likelihoods. The approach is
most appealing when the computationally efficient semi-automatic approximate
Bayesian computation (ABC) summary statistics are selected. The parametric
bootstrap approximation is used to form a proposal distribution in ABC algo-
rithms to improve the computational efficiency. The new approach is demonstrated
through the sequential Monte Carlo and the ABC importance and rejection sam-
pling algorithms. We found efficiency gains in two simulation studies, the univari-
ate g-and-k quantile distribution, a toggle switch model in dynamic bionetworks,
and in a stochastic model describing expanding melanoma cell colonies.

Keywords: Bayesian parametric bootstrap, approximate Bayesian computation,
sequential Monte Carlo, melanoma cell spreading, agent-based model, quantile
distribution.

1 Introduction

For many complex models in biological, medical and ecological sciences, the likelihood
functions are not available in an analytical form and are computationally intractable, so
computing the posterior distribution for these models is challenging. To overcome this
limitation, approximate Bayesian computation (ABC), a class of Bayesian “likelihood-
free” techniques, has emerged, which avoids direct evaluation of the likelihood through
repeated simulation of data from the model. As such, ABC methods permit Bayesian
inference for models with intractable likelihoods, when simulation from the model for a
range of parameter values is feasible.

ABC methods have been successfully applied in a wide range of problems such as
population genetics (Beaumont et al., 2002), infectious diseases (Drovandi and Pettitt,
2011c; Tanaka et al., 2006), astronomical model analysis (Cameron and Pettitt, 2012)
and cell biology (Vo et al., 2015a,b). ABC is often implemented using one of the three
main algorithms: importance and rejection sampling (ABC IS), Markov chain Monte
Carlo (MCMC ABC) or sequential Monte Carlo (SMC ABC). In these ABC algorithms,
a good proposal is crucial to improve the computational efficiency.

It has been shown that, for some cases, bootstrap methods are useful for numerical
calculation of Bayes posterior distributions (Newton and Raftery, 1994; Efron, 2012;
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Rubin, 1981). In particular, Efron (2012) proposed the use of a parametric bootstrap
and a re-weighting scheme to approximate posterior distributions and their expectations.
This approach is efficient and computationally straightforward. However, it depends
upon an analytical expression for the sampling density of a statistic and a point estimate
of the parameter, which generally requires the availability of the likelihood function.
We show in this article that nevertheless parametric bootstrap samples can be used to
construct a good proposal distribution in the context of ABC.

The main purpose of this paper is to present new and efficient ABC algorithms by
introducing a good proposal distribution. The proposal distribution is constructed using
the semi-automatic approach to ABC of Fearnhead and Prangle (2012) and the Bayesian
parametric bootstrap (PB) of Efron (2012). The semi-automatic ABC is chosen because
it provides summary statistics as point estimators, which are then used in the Bayesian
PB process. In this paper, the resulting PB distributions, which require very few model
simulations, are used as an initial importance distribution for SMC ABC algorithms and
ABC IS. Hereafter, we refer to these new ABC algorithms as PB SMC ABC and PB
ABC IS algorithms, respectively. We also note that, in some cases, the PB distribution
can be a useful posterior approximation in its own right.

We first apply the methodology to simulated datasets from two examples: (i) the
g-and-k quantile distribution of Rayner and MacGillivray (2002) and (ii) the toggle
switch model of Bonassi et al. (2011) to validate the approach and compare it with the
standard SMC ABC algorithm in Vo et al. (2015a).

We then apply the new collection of methods to a stochastic model that describes the
expansion of human malignant melanoma cells (MM127) in a circular barrier assay (Vo
et al., 2015a; Treloar et al., 2013). The cell expanding populations are governed by three
parameters: cell motility, cell proliferation and cell-to-cell adhesion. Simulation of cell
experiments from the stochastic model is highly computationally intensive, especially
for a relatively large cell proliferation rate. Thus, inference requires an ABC algorithm
that is efficient in terms of the number of model simulations.

This article is organized as follows. Background of ABC methodology is briefly re-
viewed in Section 2, followed by the Bayesian PB of Efron (2012) in Section 3. We
demonstrate how the Bayesian PB can be efficiently adapted to likelihood-free prob-
lems and how to use this result to form a proposal for ABC algorithms in Section 4.
Sections 5 and 6 contain the results from the two simulation studies, while Section 7
illustrates results from experimental data of human melanoma cells. The article is con-
cluded with a discussion in Section 8.

2 Approximate Bayesian computation

Let θ ∈ Θ be the parameter of a statistical model with a prior distribution p(θ) and
an intractable likelihood, p(y|θ), where y is the observed data. ABC avoids likelihood
evaluations by simulating data x from the model and comparing it with the observed
data. In ABC, direct comparison between the observed and the simulated datasets is
often inefficient, especially when the data is high dimensional (Blum, 2010). Thus, we
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consider a vector of summary statistics s(·) = {s1(·), . . . , sd(·)} and denote sobs =
s(y) and s = s(x). To measure the closeness between x and y, via the closeness
between s and sobs, we use a distance metric ρ(s, sobs) and a kernel weighting function
Kε(ρ(s, sobs)), where ε > 0 is a bandwidth that is referred to as the ABC tolerance.
The ABC posterior is constructed as

pε(θ|sobs) ∝ p(θ)pε(sobs|θ), (1)

with

pε(sobs|θ) =
∫

Kε(ρ(sobs, s))p(s|θ)ds. (2)

The general guidance for choosing the summary statistic is that it should be low di-
mensional but still incorporates most of the information contained in the data (Blum
et al., 2013). In additional to the loss of information introduced by the use of an insuf-
ficient summary statistic, the ABC posterior is also affected by the tolerance ε, which
is necessary to ensure computational feasibility. The smaller ε leads to a more accurate
approximation in (2) but more computation. In practice, the kernel weighting function
Kε(ρ(sobs, s)) is often chosen as an indicator function, 1{ρ(sobs,s)≤ε}, that is unity if the
condition involving the discrepancy is satisfied and is zero otherwise.

ABC algorithms for sampling from (1) generally consist of three major steps: sam-
pling a proposed parameter θ�, simulating data x as per the observed data structure
from the model p(·|θ�) and comparing x with the observed data y. Different ABC algo-
rithms are distinguished by the process of sampling proposed parameters. Some of these
are discussed next. Despite on-going research on developing more efficient ABC algo-
rithms, often many hundreds of thousands or millions of model simulations are required.

We suggest that the efficiency of ABC algorithms can be improved if there is a
good analytical approximation to the posterior p(θ|sobs) that can be obtained quickly.
For example, such an approximation can be used to form importance distributions
for importance sampling (IS) or sequential Monte Carlo (SMC) based algorithms. In
Section 3, we describe an adaptation of the Bayesian parametric bootstrap that can be
used to form this initial approximation. The remainder of this section briefly discusses
the ABC IS algorithm (Fearnhead and Prangle, 2012) and the SMC ABC algorithm of
Vo et al. (2015a).

2.1 ABC importance and rejection sampling

Fearnhead and Prangle (2012) provide an importance and rejection sampling imple-
mentation of ABC for which the output is a weighted sample of values from the ABC
posterior distribution (Algorithm 1). For simplicity, we set up the acceptance-rejection
step (line 6) using the indicator function 1{ρ(sobs,s)≤ε}.

In Algorithm 1, a proposed parameter θ� is drawn from an importance distribution,
g(θ). Each proposed value θ� is assigned a weight proportional to p(θ�)/g(θ�) if it
produces simulated data that satisfies the discrepancy condition, otherwise its weight
is zero. When g(θ) = p(θ), this algorithm becomes ABC rejection sampling which is
similar to the algorithm of Beaumont et al. (2002).
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Algorithm 1: ABC importance and rejection sampling (ABC IS) (Fearn-
head and Prangle, 2012).

1 Given observed data y, N > 0, summary statistics s(·); a proposal density g(θ),
with g(θ) > 0 when prior p(θ) > 0; a density kernel K(·), with max{K(·)} = 1
and a bandwidth ε > 0

2 compute sobs = s(y)
3 for j = 1 to N do
4 simulate θi ∼ g(θ)
5 simulate x ∼ p(·|θi), and calculate s = s(x)
6 with probability K{(s− sobs)/ε} set Wi = p(θi)/g(θi); otherwise set Wi = 0

7 end

The advantage of this algorithm is that it generates independent samples and the
algorithm can easily be run in parallel. However, if a good importance distribution is
not available and the prior distribution is substantially different from the posterior, this
algorithm results in low acceptance rates and is computationally inefficient.

2.2 SMC ABC

In this paper, we use the SMC ABC algorithm of Vo et al. (2015a) (Algorithm 2), which,
for the motivating application in cell biology, was shown to have improvements over the
algorithms of Sisson et al. (2009); Beaumont et al. (2009); Drovandi and Pettitt (2011a).
For a non-increasing sequence of tolerances {εt}Tt=1, the SMC ABC algorithm aims to
obtain a set of N weighted particles from the following sequence of targets

pεt(θ, s|sobs) ∝ p(θ)p(s|θ)1{ρ(s,sobs)≤εt}.

In brief, the SMC ABC algorithm of Vo et al. (2015a) integrates the advantages of au-
tomatically determining tolerance values from Drovandi and Pettitt (2011a), Del Moral
et al. (2012), and the advantage of geometric sampling from a proposal distribution until
an acceptable parameter value is obtained (Sisson et al., 2009; Beaumont et al., 2009).
In this SMC ABC algorithm, N (·, ·) denotes the multivariate normal distribution, and
Nα = �αN� is the number of particles to keep at each iteration among the N particles,
with α ∈ [0, 1]. The stopping criterion is either the minimal acceptance rate, paccmin ,
or a target tolerance, εT .

For many applications of ABC, the most computationally intensive procedure is the
model simulation process. Therefore, we aim to develop efficient ABC algorithms that
can achieve a low tolerance value within a manageable number of model simulations. To
achieve this, we incorporate an importance distribution at the initial iteration, t = 0,
of the SMC ABC algorithm. Section 3 will describe how to obtain such an importance
distribution while the detail of the algorithms will be provided in Section 4.
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Algorithm 2: SMC ABC algorithm of Vo et al. (2015a).

1 Given N , Nα, sobs = s(y), paccmin , εT .
2 set pacc = 1, t = 0
3 for i = 1 to N do

4 simulate θ
(t)
i ∼ p(θ) and x ∼ p(·|θ(t)i )

5 compute s = s(x), ρ
(t)
i = ρ(sobs, s), w

(t)
i = 1

N

6 end

7 compute ε(t) = max
i=1,...,N

{ρ(t)i }

8 while (pacc > paccmin) and (ε(t) > εT ) do

9 sort the particle set (θ
(t)
i , ρ

(t)
i )Ni=1 by ρ

(t)
i

10 normalise the weights W
(t)
i = w

(t)
i /

∑Nα

j=1 w
(t)
j , i = 1, . . . , Nα

11 set Σt as twice the weighted empirical covariance using (θ
(t)
i ,W

(t)
i )Nα

i=1

12 set ε(t) = ρ
(t)
N−Nα

and the number of trials, Ntrials = 0

13 for i = Nα + 1 to N do

14 while ρ
(t)
i > ε(t) do

15 resample θ�i from (θ
(t)
j ,W

(t)
j )Nα

j=1

16 generate θ
(t)
i |θ�i ∼ N (θ�i , Σt) and simulate x ∼ p(·|θ(t)i )

17 compute s = s(x), ρ
(t)
i = ρ(sobs, s)

18 Ntrials = Ntrials + 1

19 end

20 set w
(t)
i =

π(θ
(t)
i )∑Nα

j=1 W
(t)
j N (θ

(t)
i ;θ

(t)
j ,Σt)

21 end

22 set pacc = N−Nα

Ntrials

23 normalise the weights W
(t)
i = w

(t)
i /

∑N
j=Nα+1 w

(t)
j , i = Nα + 1, . . . , N .

24 set w
(t+1)
i = Nα

N W
(t)
i , i = 1, . . . , Nα and w

(t+1)
i = N−Nα

N W
(t)
i ,

i = Nα + 1, . . . , N
25 set t = t+ 1

26 end

2.3 Summary statistics and discrepancy function

In the literature, various approaches have been proposed to choose useful summary

statistics including a sequential scheme based on the principle of approximate sufficiency

(Joyce and Marjoram, 2008), partial least-squares regression (Wegmann et al., 2009),

indirect inference (Drovandi et al., 2011) and machine learning methods (Aeschbacher

et al., 2012). In this paper, we implement the method proposed by Fearnhead and

Prangle (2012) who use the estimates of the posterior means of θ as the summary

statistics. These posterior means are obtained via regression.
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Initially, M draws of {θi}Mi=1 are made from the prior distribution. If the prior p(θ)
is diffuse then draws of θi can be restricted to regions of non-negligible posterior density
found using a pilot run of ABC. Each parameter θi is then used to simulate a dataset
xi from the model, xi ∼ p(·|θi), i = 1, . . . ,M . We fit the regression model

θi = α+ βT f(xi) + ξi, i = 1, . . . ,M, (3)

with zero mean error ξi and f(·) is a vector-valued function of the data (or a set
of summary statistics if using the full data is not feasible). Different choices of f(·)
could be considered to obtain a better fit in the regression. In this paper, to find the
best regression model, we employ a stepwise (bidirectional) regression method and the
Bayesian information criterion (BIC) for model selection.

The expected value of θi given the simulated data xi, E[θi|xi], is then estimated by

α̂ + β̂T f(xi), i = 1, . . . ,M , where the intercept parameter α̂ and the vector of regres-

sion coefficients β̂ is estimated from the best regression model. The derived summary
statistic, sFP (y) = α̂+ β̂T f(y), is then interpreted as the estimated posterior mean of θ
obtained from the regression procedure. Thus, using this dimension reduction approach,
we have only one summary statistic per parameter. In practice, if the parameter θ is
vector valued, then a multiple linear regression model (3) is fitted to each component

of θ in turn, with possibly a different function f(·) and different estimates α̂ and β̂.

The derived summary statistics sFP can have different scales and correlations be-
tween summaries. Thus, we consider the Mahalanobis distance to compare the summary
statistics of the observed and the simulated data. This discrepancy function is given by

ρ(y,x) =
(
sFP (y)− sFP (x)

)T ×W−1 ×
(
sFP (y)− sFP (x)

)
,

where W is an estimate of the covariance matrix of the summary statistics sFP . To
estimate W , we generate 100 simulated datasets {xi|θ̂}100i=1, using our point estimate

θ̂ = sFP (y), obtained from the regression step above. For each simulated dataset
xi, we compute the vector of summary statistics sFP

i = sFP (xi). W is subsequently
estimated by cov({sFP

i }100i=1).

3 Bayesian parametric bootstrap

In this section, the summary statistics s(·) are assumed to be an estimator of θ. Given

an observed data set, we can compute an estimate of θ, θ̂, as a function of sobs. For
simplicity we denote θ̂ = sobs.

The Bayesian PB of Efron (2012) independently generates B values of the statistic

sj = s(xj), j = 1, . . . , B where xj is a simulated data set from the model p(·|θ̂). Each
sample estimate of θ, θj = sj , j = 1, . . . , B, is a PB replication of θ̂. By re-weighting
these points with an importance weight

Wj ∝
[p(θ)]θ=sj [p(s|θ)]s=sobs,θ=sj

[p(s|θ)]s=sj ,θ=sobs

, (4)
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we obtain a weighted sample from the posterior distribution of θ given θ̂ (Efron, 2012).
If the likelihood function of the summary statistics p(s|θ) can be evaluated then the
importance weights (4) can be found. However, for models with intractable likelihoods,
p(s|θ) cannot be evaluated.

We consider a special case where the weights in (4) can be simplified. If the likelihood
for s is symmetric in s−θ (s and θ must be the same dimension), there exists a symmetric
density h such that h(x) = h(−x) for all x. Denote p(s|θ) = h(s−θ), then the bootstrap
provides values of

[p(s|θ)]s=sj ,θ=sobs
= [h(s− θ)]s=sj ,θ=sobs

= [h(θ − s)]s=sj ,θ=sobs

= [p(s|θ)]s=sobs,θ=sj ,

(5)

for j = 1, . . . , B. Therefore, the importance weights for the posterior become just the
prior evaluated at the bootstrap replication sj

Wj ∝ [p(θ)]θ=sj , j = 1, . . . , B. (6)

Without the assumption of exact symmetry, the PB sample may give a poor ap-
proximation to the likelihood [p(s|θ)]s=sobs,θ=sj , j = 1, . . . , B. The weighted samples
{θj ,Wj}Bj=1 derived from (6), where θj = sj , j = 1, . . . , B, may give a poor approxima-
tion to the posterior, p(θ|sobs).

4 Coupling Bayesian parametric bootstrap with ABC

This section demonstrates two main innovations: how to obtain the PB distribution for
models with intractable likelihoods and how to incorporate this PB distribution in ABC
algorithms to improve their efficiency.

To apply the Bayesian PB idea for models with intractable likelihoods, it is compu-
tationally too intensive to take θ̂ as a point estimate of the ABC posterior pε(θ|sobs)
obtained from the standard ABC IS or SMC ABC (Algorithms 1 and 2 above). The

main idea here is to perform the Bayesian PB with θ̂ derived from the semi-automatic
approach of Fearnhead and Prangle (2012) since it is very fast to obtain.

Sampling simulated data x for ABC requires different values of θ while obtaining
the PB distribution only requires sampling x for fixed θ̂ = sFP (y) obtained from
the regression approach in Section 2.3. Assuming that the likelihood for the summary
statistic p(s|θ) has the symmetry property so that the following holds

[p(s|θ)]s=sj ,θ=sobs
= [p(s|θ)]s=sobs,θ=sj , (7)

then the weighted samples {θj ,Wj}Bj=1 give an approximation to the posterior p(θ|sobs).
Here θj = sj and the importance weights Wj are proportional to the prior den-
sity (6). This approximation is extremely computationally efficient having used only
(Npilot+M +B) simulations from the model p(·|θ). Here, Npilot is the number of model
simulations from the ABC pilot run. Pseudo code to perform the Bayesian parametric
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Algorithm 3: Likelihood-free Bayesian PB algorithm.

1 Given observed data y, prior distribution p(θ) and integers M,B > 0
2 Optional: Perform an ABC pilot run to obtain a training region of θ
3 Generate M synthetic data sets for the regression: Simulate θi from the
truncated region as appropriate, and generate xi ∼ p(·|θi), i = 1, . . . ,M

4 Perform a regression analysis: θi = α+ βT f(xi) + εi, i = 1, . . . ,M , for each
component in θ

5 Compute the point estimate θ̂ = α̂+ β̂T f(y), for each component in θ
6 for j = 1 to B do

7 Simulate xj ∼ p(·|θ̂)
8 Compute the bootstrap value, θj = α̂+ β̂T f(xj) for each component in θ
9 Compute the weight Wj ∝ p(θj)

10 end

bootstrap in this section is provided in Algorithm 3. For the ABC pilot run, one could
adopt any ABC algorithm.

The appeal of likelihood-free Bayesian PB is that once the regression model has
been fitted, all the samples generated through the PB approach are kept. Li and Fearn-
head (2016b) demonstrated that in standard ABC the ABC tolerance must reduce with
an increase to the size of the sample, so that low acceptance rates are still required
even in large sample settings to obtain estimators with good asymptotic properties.
One exception as determined by Li and Fearnhead (2016a) is that when a good pro-
posal distribution is used we are able to accept more of the proposals as the sample
size increases if a post-hoc regression adjustment is applied. However, in finite sample
scenarios that we are likely to encounter in practice, ABC methods typically suffer from
very low acceptance rates. We show in the Supplementary Material (Vo et al., 2019)
that the standard ABC IS in Algorithm 1 would require 70 times more model simu-
lations than the PB ABC IS algorithm when a good proposal obtained from the PB
distribution is used. Thus, the Bayesian PB approach in Algorithm 3 will be signifi-
cantly more computationally efficient than standard ABC algorithms, however the PB
distribution is likely to differ in some way to the standard ABC posterior. Furthermore,
Li and Fearnhead (2016b) show that the asymptotic efficiency of ABC does at least
improve with a good proposal distribution. Therefore, we consider harnessing the PB
ABC approximation, which can be obtained quickly, to form a proposal distribution for
ABC algorithms.

We denote an analytic approximation of the weighted sample {θj ,Wj}Bj=1 resulting
from the Bayesian PB algorithm above as g(θ), which can be taken as a parametric
distribution such as a multivariate normal or a kernel density estimate. It is important
that the tails of the proposal distribution are thicker than that of the target distribution
(for an argument of this in the ABC context, see Li and Fearnhead (2016b)). This can be
achieved by extending the multivariate normal proposal to a multivariate t by choosing a
small number of degrees of freedom or inflating the variance of the multivariate normal
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Algorithm 4: PB SMC ABC algorithm. SMC ABC algorithm with initial
proposal density g(θ). In this paper we form g(θ) using the PB method, creating
the PB SMC ABC algorithm.

1 Given N , Nα, paccmin , εT , a summary statistic function s(·) and sobs = s(y).
2 Obtain the Bayesian PB distribution, g(θ), as described in Algorithm 3
3 Set pacc = 1, t = 0
4 for i = 1 to N do

5 Simulate θ
(t)
i ∼ g(θ) and x ∼ p(·|θ(t)i )

6 compute s = s(x), ρ
(t)
i = ρ(sobs, s)

7 w
(t)
i = π(θi)

g(θi)

8 end

9 ε(t) = max
i=1,...,N

{ρ(t)i }

10 while (pacc > paccmin) and (ε(t) > εT ) do

11 Sort the particle set (θ
(t)
i , ρ

(t)
i )Ni=1 by ρ

(t)
i , such that ρ

(t)
1 ≤ ρ

(t)
2 ≤ · · · ≤ ρ

(t)
N

12 Normalise the weights W
(t)
i = w

(t)
i /

∑Nα

j=1 w
(t)
j for i = 1, . . . , Nα

13 Set Σt as twice the weighted empirical covariance using (θ
(t)
i ,W

(t)
i )Nα

i=1

14 Set ε(t) = ρ
(t)
N−Nα

and the number of trials, Ntrials = 0

15 for i = Nα + 1 to N do

16 while ρ
(t)
i > ε(t) do

17 Draw θ�i from (θ
(t)
j ,W

(t)
j )Nα

j=1

18 Generate θ
(t)
i |θ�i ∼ N (θ�i , Σt) and simulate x ∼ p(·|θ(t)i )

19 Compute s = s(x), ρ
(t)
i = ρ(sobs, s)

20 Ntrials = Ntrials + 1

21 end

22 Set w
(t)
i =

π(θ
(t)
i )∑Nα

j=1 W
(t)
j N (θ

(t)
i ;θ

(t)
j ,Σt)

23 end

24 Set pacc = N−Nα

Ntrials

25 Normalise the weights W
(t)
i = w

(t)
i /

∑N
j=Nα+1 w

(t)
j for i = Nα + 1, . . . , N .

26 Set w
(t+1)
i = Nα

N W
(t)
i for i = 1, . . . , Nα and w

(t+1)
i = N−Nα

N W
(t)
i for

i = Nα + 1, . . . , N
27 Set t = t+ 1

28 end

proposal. In this paper we choose the latter and scale the sample covariance matrix
by a factor of 2. The approximation g(θ) is used as a proposal density in the ABC
IS (see Algorithm 1, PB ABC IS) or an initial importance distribution for the SMC
ABC algorithm (see Algorithm 4, PB SMC ABC), and we discuss other options in
Section 8.



220 Bayesian Parametric Bootstrap forModelswith Intractable Likelihoods

Figure 1: Estimated probability density based on the simulated dataset from the g-and-k
distribution.

5 Quantile distribution

5.1 Model and data

We now validate our new collection of methods using synthetically generated data
from the g-and-k quantile distribution (Rayner and MacGillivray, 2002). The g-and-k-
distribution is a class of quantile distributions and it is defined by its quantile function,
the inverse cumulative distribution function

Q(z(u); θ) = F−1(z(u); θ) = a+ b

(
1 + c

1− exp(−gz(u))

1 + exp(−gz(u))

)(
1 + z(u)2

)k
z(u), (8)

where z(u) is the u-quantile of the standard normal distribution and θ = (a, b, c, g, k)
is the unknown parameter. Given a fixed value of c, c = 0.8 (Rayner and MacGillivray,
2002), the g-and-k distribution consists of four unknown parameters, a, b, g and k, which
are related to location, scale, skewness and kurtosis, respectively. The simulated dataset
consists of n = 104 independent draws from the g-and-k distribution with parameters
θ = (a, b, g, k) = (3, 1, 2, 0.5). A uniform prior (0, 10)4 is used for the parameters. This
is similar to the example used in Fearnhead and Prangle (2012); Drovandi and Pettitt
(2011b); Allingham et al. (2009). A plot of the estimated probability density function
based on this dataset is shown in Figure 1. The data shows significant skewness and
kurtosis.

5.2 Results

For the ABC pilot run, we use the SMC ABC approach in Algorithm 2, the set of oc-
tiles as summary statistics (Drovandi and Pettitt, 2011b) with the Euclidean distance
between summary statistics and set N = 1, 000. After 18 iterations, we find that the
training regions for a, b, g and k are given by (2.8, 3.2), (0.7, 1.3), (1, 4) and (0, 1),
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Figure 2: Posterior distributions for the parameters of the g-and-k simulated dataset.
In all subfigures, results from using the Bayesian PB (dashed red), the PB SMC ABC
(solid green) and the plain SMC ABC (dotted blue) are shown. The true values of a, b, g
and k are plotted as red triangles.

respectively. The number of model simulations for the pilot run is 25,012 and the prob-
ability of acceptance in the last iteration is approximately 27%.

For the regression procedure, we simulate M = 5, 000 datasets from the parameters
that are drawn from the training regions above. For the covariates in the regression
model (3), we consider a set of summary statistics, {Li}19i=1, where Li, i = 1, . . . , 19 is the
(0.05× i)th quantile, rather than the entire dataset. A bidirectional stepwise regression
is then fitted to determine a 4-dimensional summary statistic sFP . The point estimate
θ̂ obtained from the regression is θ̂ = (â, b̂, ĝ, k̂) = (2.9970, 1.0064, 2.0426, 0.4965). It
should be noted that the summary statistics {Li}19i=1 are highly informative for all
parameters a, b, g, k, since the adjusted R-square values of the regressions for the four
parameters are 85.1%, 91.5%, 92.5% and 95.6%, respectively.

Using this value of θ̂, we perform the Bayesian PB with B = 1, 000 (Algorithm 3).
The densities of the Bayesian PB samples are plotted in Figure 2 (dashed red). We fit a
multivariate normal distribution to the PB samples and use it as an initial importance
distribution, g(θ), in the PB SMC ABC algorithm. In order to help ensure coverage of
the tails, the covariance matrix of g(θ) is set as twice the empirical covariance matrix
based on the PB samples. The ABC posterior distributions of a, b, g and k from the
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PB SMC ABC algorithm are plotted in Figure 2 (solid green) together with the results
from using the standard SMC ABC algorithm of Vo et al. (2015a) (dotted blue).

It should be noted that, in the standard SMC ABC approach, we use an initial
importance distribution formed from the pilot, a multivariate normal distribution with
covariance matrix estimated from the pilot run samples inflated by a factor of two,
rather than the prior distribution to avoid the extrapolation issue in the regression
procedure (Fearnhead and Prangle, 2012).

For all four parameters, the posteriors resulting from standard SMC ABC and PB
SMC ABC are well-defined and quite similar, as expected. However, PB SMC ABC
required 35% fewer model simulations, about 303,000 simulations less than the standard
SMC ABC algorithm. The PB distributions are also very close to the ABC posteriors
given a very small number of model simulations (31,012).

In both algorithms, we set N = 2, 000 and a tolerance ε = 0.78. The effective sample
size, ESS, for the PB SMC ABC and the standard SMC ABC algorithms are 1,413
and 1,390, respectively. We also compare ABC posterior distributions with the true
posteriors obtained from the numerical evaluation of the likelihood function (Rayner
and MacGillivray, 2002) (results not shown). The results for a and b are very accurate,
suggesting that the summary statistics sFP are close to sufficient for these parameters.
The results for g and k obtained from the two ABC algorithms show slight deviation
from the true posteriors and also a small loss of precision.

6 Toggle switch model

6.1 Model

The performance of the new methods was also investigated on a toggle switch model
describing gene expressions. Details of the model and its background were previously
described in Gardner et al. (2000); Bonassi et al. (2011). Motivated from a study of
dynamic cellular networks using E.coli bacterial cells (Gardner et al., 2000), Bonassi
et al. (2011) proposed a discrete time stochastic model to capture the behaviour of a
network with two genes in a synthetic toggle switch design. In brief, for each cell c,
c = 1, . . . , 2000, we let uc,t and vc,t be the expressions of genes u and v for cell c at time
t, respectively. Given an initial state (uc,0, vc,0) and a small discrete time step h, the
states of uc,t and vc,t are updated using the equations below (Bonassi et al., 2011):

uc,t+h = uc,t + hαu/(1 + vβu

c,t)− h(1 + 0.03uc,t) + 0.5hξc,u,t,

vc,t+h = vc,t + hαv/(1 + uβv

c,t)− h(1 + 0.03vc,t) + 0.5hξc,v,t,
(9)

where t = 0, . . . , T , with T is the assumed time to reach steady-state. The terms ξc,u,t
and ξc,v,t are independent standard normal random variables and they represent the
intrinsic noise within cell c.

For a particular cell c, the stochastic process is only observed for gene u, at the
steady-state time T . Let yc be the noisy measurements of uc,T , which is modelled by
Bonassi et al. (2011) as follows:
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Figure 3: Simulated data from the toggle switch model, using the parameters value
θ = (μ, σ, γ, αu, βu, αv, βv) = (320, 0.25, 0.15, 25, 4, 15, 4). Subfigure (A) demonstrates a
time series of uc,t for a single cell c, over T = 300 time steps. Subfigure (B) shows the
histogram of the synthetic dataset used in this example.

yc = uc,T + μ+ μσηc/u
γ
c,T , for c = 1, . . . , 2000, (10)

where the measurement errors η are drawn from a standard normal distribution. The
model consists of seven unknown parameters, which are denoted as θ =(μ, σ, γ, αu, βu,
αv, βv). For all model simulations, we use h = 1 and T = 300 time steps as suggested
in Bonassi et al. (2011). An example of the time series data for uc,t over 300 time steps
is shown in Figure 3A.

In this example, we illustrate our collection of methods using a synthetic dataset
where θ = (320, 0.25, 0.15, 25, 4, 15, 4). The histogram of the synthetic dataset, which
consists of the value of uc,T for c = 1, . . . , 2000 cells, is given in Figure 3B. A character-
istic of the histogram is that the data appear to be well represented by a mixture of two
unimodal densities. For the ABC analysis, we use the same uniform priors as in Bonassi
et al. (2011): μ ∼ U(250, 400); σ ∼ U(0.05, 0.5); γ ∼ U(0.05, 0.35); αu ∼ U(0, 50);
βu ∼ U(0, 7); αv ∼ U(0, 50); βv ∼ U(0, 7).

6.2 Results

For the pilot run, we use the SMC ABC in Algorithm 2 with N = 200 particles, the
minimum probability of acceptance at 20% and a 19-dimensional summary statistic
{Li}19i=1, where Li is the (0.05 × i)th quantile, for i = 1, . . . , 19. To perform the re-
gression procedure, we simulate M=10,000 datasets from the fitted multivariate normal
distribution of the resulting posterior distributions from the pilot run. For each sim-
ulated dataset, we fit a Gaussian mixture model with three components and use the
estimated means, standard deviations and the mixture proportions (after accounting
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for label switching by ordering the means) for the regression input. This provides eight
summary statistics, together with Li and L2

i , for i = 1, . . . , 19, producing a vector of 46
variables which are then used as explanatory variables in the regression stage. We use
a bidirectional stepwise regression and fit each parameter in turn.

The point estimate θ̂ obtained from the regression is θ̂ = (μ̂, σ̂, γ̂, α̂u, β̂u, α̂v, β̂v) =
(317.18, 0.25, 0.14, 24.86, 4.17, 22.90, 4.33). We found that the set of 46 explanatory
variables above is only informative for μ, σ, γ and αu, explaining about 90.5%, 91.9%,
96.9% and 94.9% of the variability of these parameters, respectively. However, for βu, αv

and βv, the point estimates from the regression models are very similar to the posterior
means from the ABC pilot run and using the same explanatory variables only accounts
for 34.2%, 33.7% and 30.7% of the variability in these three parameters, respectively.
The low values of the adjusted R-square for these parameters has a strong effect in the
Bayesian PB procedure. In particular, the PB distributions for these parameters have
an extremely small variance. Thus, we suggest that the PB method is more suitable
when the regression adjusted R-square is high, roughly 80% or above. In this case, for
the PB procedure, we use the point estimate obtained from the regression for the first
four parameters, and for the last three parameters, we discard the regression models
and use the posterior means from the pilot run instead.

The resulting PB distributions (dashed red) with B = 1, 000 samples are presented
in Figure 4 together with the final ABC posterior distributions resulting from the PB
SMC ABC algorithm (solid green) and the standard SMC ABC algorithm (dotted blue).
It should be noted that, in the PB SMC ABC algorithm, we use the PB samples to form
an importance distribution g(θ) for μ, σ, γ, αu, while for the parameters βu, αv and βv,
the proposal is formed from the pilot run instead.

For the parameters μ, σ, γ and αu, it can be seen that the ABC posterior distributions
are well-defined and have much smaller variance compared to the results from Bonassi
et al. (2011). The PB distributions also provide a good approximation to the marginal
ABC posterior distributions, given a very small number, 18,068, of model simulations.
Furthermore, the posteriors resulting from the standard SMC ABC and the PB SMC
ABC algorithms are similar, as expected. Both the PB SMC ABC and the standard
SMC ABC algorithms use the same summary statistics, final tolerance ε = 0.7 and
N = 2, 000 particles. However, standard SMC ABC required 220,320 model simulations,
while PB SMC ABC only used 165,210 model simulations, which is about 25% less model
simulations. The reason is that, for four parameters μ, σ, γ and αu, PB SMC ABC starts
from the importance distribution g(θ) which is very close to the actual ABC posteriors,
whereas standard SMC ABC starts from an importance distribution formed from the
pilot run.

The results in Figure 4(e)–(g) indicate that we obtain far less information for βu, αv

and βv regardless of the tolerance values and the summary statistics used in the ABC
analysis, indicating that the data may be not informative for these parameters. This is
consistent with the results previously shown in Bonassi et al. (2011). To overcome this,
one could incorporate additional information from the network such as including the
information from both genes at the steady-state time T .
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Figure 4: Posterior distributions for the seven parameters in the toggle switch model.
Shown are the results from the PB distribution (dashed red), the SMC ABC algorithm
of Vo et al. (2015a) (dotted blue) and the PB SMC ABC algorithm (solid green). The
true values are plotted as red upper triangles. For the parameters βu, αv and βv, the PB
approximations have a very small variance since the regression models do not explain
much of the variation in these parameter values. Because of this, only the point estimates
obtained from the fitted regressions are shown as vertical lines for these parameters.
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7 Application to a collective cell spreading model

We now present our main application involving a discrete stochastic model describing
the expansion of melanoma cell populations (Vo et al., 2015a). Melanoma is a cancer
that begins in the melanocytes and is the most dangerous form of skin cancer (Garbe
et al., 2012). Melanoma is less common, approximately 5% of all skin cancer occur-
rences, but accounts for approximately 75% of skin cancer deaths (Australian Institute
of Health and Welfare and Australasian Associate of Cancer Registries, 2012). The
spatial expansion of melanoma cells is governed by various mechanisms including cell
motility, cell proliferation and cell-to-cell adhesion. Estimating these mechanisms can
improve our understanding of melanoma biology and its response to treatment.

7.1 Data

We applied the new ABC algorithms to analyse an experiment of human malignant
melanoma cells (MM127) (Pope et al., 1979; Whitehead and Little, 1973) in a circular
barrier assay. Details of the experimental protocol were described in Treloar et al. (2013).
In brief, the experiment was conducted using a 24-well tissue culture plate, where each
well has a diameter of 15.6 mm. Initially, 20,000 cells were evenly distributed within a
metal-silicone barrier, of a diameter 6.0 mm, which was located in the centre of the well.
The tissue culture plate was kept for one hour to allow the cells to attach to the surface.
Subsequently, the barrier was lifted and the plate was incubated for two time durations
of 24 or 48 hours. The experiment was repeated in triplicate. For each experiment,
we obtained two types of images: (i) a population-scale image which shows the entire
melanoma cell colony and (ii) individual-scale images which show the location of each
cell in the population. For the application in this paper, we only analyse the experiments
that were terminated at 24 hours. Details of the ABC analyses for experiments at 48
hours and experiments with different initial cell densities can be found in Vo et al.
(2015a).

Initially, we summarise the experimental data using a high dimensional summary
statistics including three radii of the entire expanding melanoma colonies, {ri}3i=1, the
total number of cells, {ci}6i=1, and the number of isolated cells, {pi}6i=1, in six subregions
of the cell population. We compute {ri}3i=1 by locating the position of the leading edge,
measuring the area of the spreading cell population and converting this area into an
equivalent circular radius. We average the {ci}6i=1 and {pi}6i=1 over three replicates,
to produce a total of 15 summary statistics. These processes were performed using a
segmentation algorithm written with the Matlab Image Processing Toolbox (Vo et al.,
2015a) and were repeated for images that were produced by the discrete model described
in Section 7.2. For more details on the image analysis and how the summary statistics
were obtained see Vo et al. (2015a). Table 1 shows 15 observed summary statistics that
were used for the ABC analysis in this section.

7.2 Model

To describe the spatial expansion of the melanoma cell population, we use a discrete
stochastic model that incorporates cell motility (unbiased random walk), cell prolif-
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Summary statistics
ri (mm) 3.3136 3.3185 3.3265
pi (%) 12.26 11.79 12.65 11.20 11.04 10.17
ci (cells) 446 435 410 429 444 438

Table 1: Initial summary statistics for the experimental data. Results shown include
three radii, {ri}3i=1, the percentage of isolated cells, {pi}6i=1, and the total number of
cells, {ci}6i=1, in six subregions of the cell population (average over three replicates).

eration and cell-to-cell adhesion on a two-dimensional square lattice with spacing Δ
(Treloar et al., 2013; Vo et al., 2015a,b). Each lattice site can be occupied by at most one
agent. This model is also referred to as an agent based model or individual based model.

To simulate the experiments, we use a two-dimensional square lattice of size 867×
867, with lattice spacing Δ =18 μm, so that the width of the lattice corresponds to the
diameter of the well, 15.6 mm (15,600μm/18 μm = 867). Let C(t) be the number of
agents in the discrete model at time t, Pm ∈ [0, 1] be the probability that an isolated
agent will attempt to step a distance Δ within a time step of duration τ , and let
Pp ∈ [0, 1] represent the probability that an agent will attempt to proliferate and deposit
a daughter within a time step of duration τ . The strength of cell-to-cell adhesion is
represented by q ∈ [0, 1]. To step from time t to time t + τ , C(t) agents are sampled,
with replacement, and given the opportunity to move with probability Pm × (1 − q)n,
where 0 ≤ n ≤ 4 is the number of occupied nearest neighbour sites. If an agent is at
position (x, y) and has an opportunity to move, it will attempt to step to either (x±Δ, y)
or (x, y ±Δ), with each target site chosen with equal probability. For increasing values
of q, neighbour agents adhere more tightly to each other and it is difficult for an agent
to move away from its neighbours. A similar mechanism is employed for proliferation
events. A proliferative agent at position (x, y) will attempt to deposit a daughter agent
at (x±Δ, y) or (x, y ±Δ), with each target site chosen with equal probability.

In this model, the cell motility rate is quantified in terms of the cell diffusivity, D,
D = PmΔ2/4τ , and the cell proliferation rate, λ, is related by λ = Pp/τ (Simpson
et al., 2010). A uniform prior U(0, 1) is used for all three parameters (Pm, q, Pp). For
all model simulations, we use a time step duration τ as 0.04 h (Vo et al., 2015a). We
apply ABC algorithms to obtain joint posterior distributions for (Pm, q, Pp), then use
the values of Δ and τ to rescale posterior distributions of Pm and Pp into posterior
distributions of the biological parameters of interested D and λ, respectively.

7.3 Parameter inferences

A pilot run was conducted using the SMC ABC algorithm of Vo et al. (2015a), incor-
porating all 15 summary statistics (Table 1), s = ({ri}3i=1, {pi}6i=1, {ci}6i=1), and using
the Mahalanobis distance to compute the distance between the observed and the sim-
ulated summary statistics. We set N = 500 particles and paccmin = 0.2 as the stopping
criterion. We obtain the training regions for Pm, q and Pp as (0.07, 0.14), (0.14, 0.43)
and (0.0010, 0.0018), respectively, using only 13,925 model simulations.
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Figure 5: ABC posterior distributions for D, q and λ resulting from PB SMC ABC
(solid green), standard SMC ABC of Vo et al. (2015a) (dotted blue) and the Bayesian
PB distribution (dashed red).

Bayesian PB Standard SMC ABC PB SMC ABC

D
E[D] (μm2 h−1) 250 (242, 278) 235 (219, 248) 234 (221, 248)

CV (%) 4.2 3.7 3.6

q
E[q] 0.24 (0.20, 0.29) 0.25 (0.21, 0.28) 0.25 (0.21, 0.29)

CV (%) 10.5 9.2 9.1

λ
E[λ]× 10−2 (h−1) 3.77 (3.54, 4.01) 3.73 (3.55, 3.94) 3.73 (3.57, 3.92)

CV (%) 3.6 3.1 2.9

Table 2: ABC posterior summary for D, q and λ for two different ABC algorithms and
the bootstrap distribution. Results shown include the posterior mean (the 90% CI in
the parentheses) and the coefficient of variation, CV.

A regression analysis (3) was performed for each parameter in turn, using M =
5,000 datasets that were generated by parameters in these training regions. We found
that using a vector of 30 explanatory variables {s, s2} can produce reasonable accuracy
in the regression models, where the adjusted R-square values of the regression for Pm,
q and Pp are 95.8%, 94.4% and 97.5%, respectively. Furthermore, we find that all ele-
ments of the initial summary statistics s are informative about Pm. However, to obtain
estimates for q and Pp, the two largest radii of the expanding cell colonies were not
significant in the regression. From the regression analysis, we obtain the point estimate
(P̂m, q̂, P̂p) = (0.1217, 0.2477, 0.0015). Using the values of Δ =18 μm and τ = 0.04 h,

we obtain estimates of the biological parameters D and λ, D̂ = 246 μm2 h−1 and λ̂ =
0.038 h−1. A Bayesian PB procedure with B = 1, 000 particles is then performed with
the point estimate (P̂m, q̂, P̂p). The resulting PB distributions are given in Figure 5 to-
gether with the posterior distributions from the PB SMC ABC and the standard SMC
ABC algorithms. A numerical summary is given in Table 2.

Results in Figure 5 show that the Bayesian PB distributions (dashed red) are very
close to the ABC posterior distributions for q and λ, whereas there is some deviation
between the PB distribution and the ABC posterior for D. This suggests that the PB
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distributions produce good approximations to the posterior distributions of q and λ, and
a good enough approximation for D to produce a useful initial importance distribution
for the PB SMC ABC algorithm. This PB distribution is produced using only 19,925
models simulations.

The ABC posterior distributions resulting from the two ABC algorithms, with sam-
ple size N = 2, 000, are very similar as expected given that we use the same summary
statistics sFP and the same final target tolerance. However, given the same target toler-
ance εT = 0.4, the PB SMC ABC (solid green curves) only requires 135,080 model simu-
lations, whereas the standard SMC ABC (dotted blue curves) using an initial importance
distribution formulated from the pilot run needed more than 210,000 model simulations.

8 Discussion

In this paper, we have presented a novel approach to perform a Bayesian PB for models
with intractable likelihoods and newly developed ABC algorithms that aim to minimise
the number of model simulations. The main idea is to use the PB distribution as an ini-
tial importance distribution for SMC ABC (named PB SMC ABC), and ABC IS (named
PB ABC IS) algorithms. The new algorithms were validated on two test examples, the
g-and-k quantile distribution and the toggle switch model. Both of these examples have
shown that the PB SMC ABC algorithm outperformed the standard SMC ABC by 25–
35% in terms of the number of model simulations. We also found efficiency gains when
incorporating the PB approximation in ABC IS. However, for brevity, results from the
PB ABC IS and standard ABC IS algorithms were not shown.

The main application of the new method was to obtain Bayesian inference for the
key parameters governing the expansion of melanoma cell colonies. The simulation pro-
cedure from the stochastic model is computationally intensive for some regions of the
parameter space (a high proliferation rate). Thus, using the PB approximation as an
importance distribution is efficient as it is reasonably close to the ABC posterior and
does not propose additional parameter values in parameter regions where it is expensive
to simulate.

To speed up the SMC ABC method we used the PB approximation g(θ) as the
initial importance distribution as opposed to the prior. Another approach would define
a sequence of distributions formed by a geometric path that connects g(θ) with the
ABC target of interest, pεT (θ|sobs).

The PB distributions can also be embedded within MCMC ABC algorithms. While
Fearnhead and Prangle (2012) used the results from the pilot run to choose a starting
value of the chain and to form a proposal distribution for MCMC ABC algorithms,
one could use an analytical approximation to the PB distribution to form a proposal
distribution and use the point estimate obtained from the regression procedure as a
starting value. For the tolerance value in MCMC ABC algorithms, one could use a
particular quantile of the discrepancies produced from the PB replications.

It should also be noted that the quality of the PB distributions relies very much on
the quality of the multiple linear regression procedure to obtain a point estimate of θ.
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Investigating the output from the linear model can help to identify which parameters
were poorly estimated and as such one could modify the explanatory variables or the
training region of model parameters to obtain more accurate results. Here, we suggest
that the PB method is more appropriate when the regression model is able to explain
a large amount of the variation in the parameters, with adjusted R-square above 80%.
There are also several alternative approaches to linear regression such as non-linear
regression methods (Blum and François, 2010), artificial neural networks (Chen, 2012)
or partial least squares (Beaumont, 2012). These more advanced techniques may be
useful in obtaining better fitting regressions. Here, we demonstrate that the PB method
is more suitable for low to moderate dimensional θ, where the model simulation is
expensive, as in the melanoma application considered in this paper.

To examine whether the assumption for the symmetry property for the summary
statistics in the Bayesian PB is reasonable, we could apply a synthetic likelihood eval-
uation to estimate the log-likelihood ratio in (4). If there is no extreme value in the
estimated ratios, then the assumption of symmetry is reasonable. The other assump-
tion that our method makes is that the regression produces accurate point estimates for
the parameters. If a particular point estimate is biased then the corresponding posterior
approximation is likely to be biased too.

We also examined the possibility of integrating a non-parametric bootstrap proce-
dure for models with intractable likelihoods. The Bayesian version of the non-parametric
bootstrap was introduced by Rubin (1981) and later was extended by Newton and
Raftery (1994) who named it the weighted likelihood bootstrap (WLB). Rubin (1981)
used non-parametric bootstrapping of the maximum likelihood estimate which relies
on re-sampling the data, and as such this approach may be applicable for datasets of
independent observations, such as the g-and-k example in this paper, but cannot be
easily applied if there is a complex dependence structure in the data, such as in the
melanoma example.

Instead of re-sampling the data as in Rubin (1981), the WLB randomly weights the
components of a likelihood function then maximises this weighted likelihood function
to provide a bootstrap replication of the parameter. For a certain weight distribution,
the WLB samples can provide an approximation to the posterior distribution, and as
such it can be used to form a good starting point for an adaptive importance sampling
algorithm, similar in spirit to what we do in this paper. This approach is straightforward
to apply, however it relies on being able to explicitly write the likelihood function as a
product of components so different weights for each component can be easily applied.
Thus, the WLB is not applicable for models of interest in this paper. In conclusion,
we suggest that the PB approach is the only bootstrap method generally applicable for
models with intractable likelihoods.

Supplementary Material

Supplement Material for “Bayesian parametric bootstrap for models with intractable
likelihoods” (DOI: 10.1214/17-BA1071SUPP; .pdf).

https://doi.org/10.1214/17-BA1071SUPP
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