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Filtering and Estimation for a Class
of Stochastic Volatility Models with Intractable

Likelihoods

Emilian R. Vankov∗§, Michele Guindani†, and Katherine B. Ensor‡§

Abstract. We introduce a new approach to latent state filtering and parame-
ter estimation for a class of stochastic volatility models (SVMs) for which the
likelihood function is unknown. The α-stable stochastic volatility model provides
a flexible framework for capturing asymmetry and heavy tails, which is useful
when modeling financial returns. However, the α-stable distribution lacks a closed
form for the probability density function, which prevents the direct application of
standard Bayesian filtering and estimation techniques such as sequential Monte
Carlo and Markov chain Monte Carlo. To obtain filtered volatility estimates, we
develop a novel approximate Bayesian computation (ABC) based auxiliary par-
ticle filter, which provides improved performance through better proposal distri-
butions. Further, we propose a new particle based MCMC (PMCMC) method
for joint estimation of the parameters and latent volatility states. With respect
to other extensions of PMCMC, we introduce an efficient single filter particle
Metropolis-within-Gibbs algorithm which can be applied for obtaining inference
on the parameters of an asymmetric α-stable stochastic volatility model. We show
the increased efficiency in the estimation process through a simulation study. Fi-
nally, we highlight the necessity for modeling asymmetric α-stable SVMs through
an application to propane weekly spot prices.

Keywords: particle Markov chain Monte Carlo, auxiliary particle filter,
approximate Bayesian computation, stable distribution.

1 Introduction

Assessing the unobserved variability of financial returns is crucial to regulators and
policy makers. Underestimating such variability can have detrimental effects to the in-
dividual investor as well as the stability of the entire global economy. In an effort to
study the variability of returns, researchers have proposed various measures such as his-
torical volatility, conditional heteroscedastic volatility models (Engle, 1982; Bollerslev,
1986; Nelson, 1991) and stochastic volatility models (SVM) (Taylor, 1994; Hull and
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White, 1987). In these models, a Gaussian distribution is often assumed, (Kim et al.,
1998; Kastner and Frühwirth-Schnatter, 2014).

While assuming Gaussian returns allows simpler and estimable models, this assump-
tion excludes important features of financial returns, such as heavy tails and skewness.
A natural framework for modeling such behavior has been provided by the α-stable
distribution (Mandelbrot, 1963). In addition to scale and location parameters, this dis-
tribution has two additional parameters representing the heavy-tailedness (stability)
and skewness of the distribution (Nolan, 1997). The Gaussian distribution can be ob-
tained as a special case to the α-stable distribution, so that modeling returns with
an α-stable distribution provides a flexible framework to estimate the volatility. A key
challenge to models based on the α-stable distribution is the absence of closed form
expression for the probability density function (p.d.f.). Standard estimation techniques,
such as maximum likelihood and Markov chain Monte Carlo (MCMC) are unsuitable.
In the last decade, advancements in approximate Bayesian computation (ABC), have
aided the applications of α-stable distributions.

In this paper we develop an ABC based auxiliary particle filter (APF-ABC) for
efficient latent state estimation in state-space models. In addition, we develop a single
filter particle Metropolis-within-Gibbs (SF-PMwG) algorithm to efficiently estimate
the volatility and parameters of the asymmetric α-stable stochastic volatility model. To
avoid confusion, we note that we refer to asymmetry in the unconditional distribution
of the returns rather than the correlation between volatility and lagged returns, also
known as ‘leverage’ effect. Current methods for ABC filtering use proposal densities
which do not consider available information from the data. While simple and easy to
implement, such a strategy can lead to inefficiencies and poor estimates in the presence
of heavy tails in the state-space model. Building upon ideas from Pitt and Shephard
(1999) and Carpenter et al. (1999), we introduce a modified proposal density for the
ABC filter, which uses the data to pre-weight the samples, also termed particles, used
for approximating the latent states. We show through simulation studies that APF-ABC
improves on standard ABC based filters.

The ABC based auxiliary particle filter only provides estimates of the latent volatil-
ity, conditional on the data and the parameters. The parameters are typically unknown
and need to be estimated. Particle MCMC (PMCMC) algorithms (Andrieu et al., 2010),
use a particle filter to build a proposal within standard MCMC techniques. These type
of algorithms can be divided into particle marginal Metropolis-Hastings (PMMH) and
particle Gibbs sampler (PG). Mendes et al. (2015) have recently proposed a sampler
that combines PMMH and PG. As indicated by the authors there is an increased com-
putational burden associated with running two filtering algorithms at each step of the
sampler. In an effort to produce an efficient sampler, we develop a single filter particle
Metropolis-within-Gibbs. Through simulations, we illustrate the significant increase in
computational efficiency of our algorithm as compared to standard ABC based particle
MCMC discussed in Jasra et al. (2013) and the ABC counterpart of Mendes et al. (2015).
We show how our work can provide inference on a dataset involving weekly propane
spot prices from Mount Belvieu, Texas. Our estimation confirms empirical findings that
propane returns are heavy-tailed and skewed.
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Our paper is organized as follows: in Section 2 we provide an overview of most used
filtering and estimation procedures for the stochastic volatility model under different
distributional assumptions. In Section 3 we introduce the ABC based auxiliary particle
filter for filtering in state-space models and study its properties via a simulation study.
In Section 4 we introduce the single filter particle Metropolis-within-Gibbs algorithm.
We present the results obtained by applying the proposed algorithms to simulated data
from the α-stable SVM along with comparison to other methods in Section 5. In Sec-
tion 6 we study the volatility of weekly propane spot prices, and consider the economic
implications. Section 7 concludes the paper.

2 Background

2.1 Stochastic Volatility Models

The simple stochastic volatility model for a time series of length T was originally intro-
duced in Taylor (1994) and can be represented by the following set of equations:

yt = exp (xt/2) vt 1 ≤ t ≤ T,

xt = μ+ φ(xt−1 − μ) + σwt 1 ≤ t ≤ T,
(1)

where {Yt}t≥1, Yt ∈ Y ⊆ R
N indicates the returns process with p.d.f. satisfying Yt|Xt =

xt ∼ g(·|xt, θ); and {Xt}t≥1, Xt ∈ X ⊆ R
N indicates the latent log-volatility process

with p.d.f. Xt|Xt−1 = xt−1 ∼ f(·|xt−1, θ). The initial distribution of the latent process,
η(x0|θ), isX0 ∼ N(μ, σ2/(1−φ2)). The parameter vector is denoted as θ = {μ, φ, σ, λ} ⊆
R × (−1, 1) × (0,∞) × R, where λ is a vector including any additional parameters
associated with the distribution of the latent log-volatility and returns processes.

If we assume that θ is known, the volatility estimation is based on the filtering
distribution

p(x0:T |y1:T , θ) =
p(x0:T , y1:T |θ)

p(y1:T |θ)

∝ η(x0|θ)
T∏

t=1

g(yt|xt, θ)f(xt|xt−1, θ). (2)

In what follows we may equivalently set pθ(·) = p(·|θ) for any p.d.f. p, for notational
simplicity when there is no possibility of confusion. Due to the inability to express
the filtering distribution in closed form, the estimation of the unobserved volatility
is typically based on numerical methods known as sequential Monte Carlo (SMC) or
particle filters. Applications of those methods to SVMs are given in Doucet (2001), Pitt
and Shephard (1999), and Creal (2012).

In most applications, however, θ is unknown; hence interest lies in joint estimation
of the parameters as well as the filtered states given by p(θ, x0:T |y1:T ). Regardless of the
particular choice for f and g, closed forms for the posterior densities associated with
the SVM given in (1) are not available.
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Different specifications of the distributional form for the noise terms vt and wt have
appeared in the literature, the most common assuming that they are uncorrelated and
follow a standard normal distribution (Shephard, 2005). In such cases, Bayesian es-
timation of the parameters and the filtering of states can rely on standard MCMC
methods (Jacquier et al., 1994; Kim et al., 1998). Kastner and Frühwirth-Schnatter
(2014) studied the efficiency of the MCMC estimates for the different parametrizations
of the Gaussian SVM and introduced an interweaving strategy to improve efficiency of
parameter estimation. However, to capture the heavy-tails empirically observed in finan-
cial returns Harvey et al. (1994) and Chib et al. (2002) have also suggested t-distributed
error term vt for modeling returns. Other attempts to capture the heavy-tails have been
made via finite (Jacquier et al., 2004; Abanto-Valle et al., 2010) and infinite (Jensen
and Maheu, 2010) mixture of distributions. Alternatively, one can use the α-stable dis-
tribution (Lombardi and Calzolari, 2009). Here we denote the α-stable distribution as
SD(α, β, ζ, ν). The parameter vector (α, β, ζ, ν) ∈ (0, 2] × [−1, 1] × (−∞,∞) × [0,∞)
gives a measure of heavy-tailedness, skewness, location and scale, respectively. When
α < 2, the distribution is heavy-tailed; negative values of the parameter β correspond
to negatively skewed returns.

Due to the inability to express the p.d.f. in closed form, traditional estimation tech-
niques, such as MCMC, are unavailable. Earlier estimation procedures for the parame-
ters of the α-stable distribution can be attributed to Press (1972), McCulloch (1986),
Buckle (1995), and more recently Lombardi (2007). The development of ABC in the
last decade, which requires only that one is able to simulate auxiliary data from the
model, has aided inference in α-stable models (Peters et al., 2012). This is possible due
to the likelihood-free data generating algorithm of α-stable random samples of Cham-
bers et al. (1976). For details see Appendix A of the Supplementary Material (Vankov
et al., 2019).

2.2 Approximate Bayesian Computation and SMC

A standard SMC algorithm provides approximate samples from pθ(x0:T |y1:T ) by sam-
pling a vector of particles {Xi

t , i = 1, . . . , N} from an importance distribution q(·). To
account for the difference between the target and the importance distributions, one
typically needs to weight the samples sequentially through time.

In contrast, ABC based sequential Monte Carlo (Peters et al., 2012) targets an
extended distribution given by pεθ(x0:T , u1:T |y1:T ), where u1:T is a sequence of auxiliary
data simulated from the model pθ(y1:T |x0:T ). More specifically, the target is

pεθ(x0:T , u1:T |y1:T ) =
∏T

t=1 Kε(yt|ut)gθ(ut|xt)fθ(xt|xt−1)∫ ∏T
t=1 Kε(yt|ut)gθ(ut|xt)fθ(xt|xt−1)dx1:t

, (3)

where Kε(y) = K(y/ε)/ε is a general kernel, for a given bandwidth ε > 0 with K(·)
a density satisfying

∫
K(y)dy = 1. The use of an extended target circumvents the

evaluation of the likelihood in the sampling algorithm. Furthermore, if the proposal
q(·) is selected so that Xt ∼ fθ(·|xt−1), and Ut ∼ gθ(·|xt), then the weights used for
propagating the particles through time are updated simply as
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wi
t = Kε(yt|ui

t)w
i
t−1 , for i = 1, . . . , N.

This is desirable in models such as those based on the α-stable distribution, where

the likelihood is computationally expensive to calculate, while simulating data can be
achieved at a low computational cost.

There has been considerable literature expanding on the SMC-ABC idea. For exam-
ple, Jasra et al. (2012) propose to use a uniform kernel in (3). A drawback, however,
is that the uniform kernel produces binary weights, either 0 or 1. Hence, it is possible

that at some point all weights will become zero. In order to prevent the algorithm from
collapsing in such a manner, when using a uniform kernel, Jasra et al. (2013) propose

the alive particle filter, which ensures that a pre-specified number of particles survives
all steps of the algorithm. In particular, this filter resamples particles at each step,

until there are exactly N − 1 of them with non-zero weights. This scheme comes at a
computational cost, however, as the amount of time each step takes to ensure that the

above condition holds is a random variable. For a review and further examination of
SMC-ABC we refer the reader to Jasra (2015).

To estimate the latent states and parameters of a symmetric stochastic volatil-

ity model for stock returns, Jasra et al. (2013) propose to combine particle marginal
Metropolis-Hastings with ABC based sequential Monte Carlo (PMMH-ABC). However,

the parameter characterizing the stability of the distribution is set to a fixed value
rather than being part of the estimation. Another application of the symmetric SVM

can be found in Barthelmé and Chopin (2014), who extend the expectation propaga-
tion algorithm of Minka (2001) to ABC framework (EP-ABC). A simulation example

is provided to compare their method to PMMH-ABC. The authors conclude that EP-
ABC provides improvements in computational time by sacrificing some accuracy. The
theoretical properties related to the loss in accuracy remain to be studied. All of these

methods, however, do not account for asymmetry in the financial returns.

In the following sections we introduce a single filter particle Metropolis-within-Gibbs

algorithm, combined with an ABC based auxiliary particle filter and show improved
efficiency for simultaneously estimating all parameters of the asymmetric, heavy-tailed

stochastic volatility model.

3 Auxiliary Particle Filter for ABC

All the SMC-ABC algorithms discussed in the previous section have relied on sampling
Xt ∼ fθ(·|xt−1), the state transition density, without accounting for the most current

data point. While this is a convenient choice, in certain situations, especially when
the data is very informative, such proposals can degenerate the performance of the

algorithm. Being able to account for the data in the proposal distribution of the particles
can improve the performance of the algorithm as the state space is explored more

efficiently. Based on those considerations, we develop an ABC based auxiliary particle
filter, which we present in the following subsection.
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3.1 Algorithm Description

In this section we introduce an ABC based auxiliary particle filter, which is inspired
by ideas in Pitt and Shephard (1999) and Carpenter et al. (1999), and then examine
its application to α-stable stochastic volatility models. For propagating the particles
{Xi

t , i = 1, . . . , N} through time in ABC based sequential Monte Carlo, one requires
the evaluation of weights

wi
t ∝ pεθ(x

i
0:t, u

i
1:t|y1:t)

qθ(xi
0:t, u

i
1:t|y1:t)

∝ Kε(yt|ui
t)gθ(u

i
t|xi

t)fθ(x
i
t|xi

t−1)

qθ(xi
t, u

i
t|xi

0:t−1, u
i
1:t−1, y1:t)

pεθ(x
i
0:t−1, u

i
1:t−1|y1:t−1)

qθ(xi
0:t−1, u

i
1:t−1|y1:t)

. (4)

The optimal importance density, in the sense of minimizing the variance of the weights,
pεθ(x0:t−1, u1:t−1|y1:t) is not available for the α-stable stochastic volatility model. How-
ever, we would like to choose qθ(x0:t−1, u1:t−1|y1:t) as close as possible to the optimal
density without severely increasing the computational complexity of the particle filter.
Consider that we can write

pεθ(x0:t−1, u1:t−1|y1:t)

∝ pεθ(x0:t−1, u1:t−1|y1:t−1)

∫ ∫
Kε(yt|ut)gθ(ut|xt)fθ(xt|xt−1)dxtdut

≈
N∑
i=1

ŵi
t−1δXi

0:t−1
, (5)

where

ŵi
t−1 =

(
wi

t−1

∫ ∫
Kε(yt|ui

t)gθ(u
i
t|xi

t)fθ(x
i
t|xi

t−1)dx
i
tdu

i
t

)
. (6)

In (5) we have made use of the SMC approximation

p̂εθ(x0:t−1, u1:t−1|y1:t−1) =

N∑
i=1

wi
t−1δXi

0:t−1
.

Therefore, we can choose the importance density

qθ(x0:t, u1:t|y1:t) = qθ(xt, ut|x0:t−1, u1:t−1, y1:t)

N∑
i=1

ŵi
t−1δXi

0:t−1

and substitute in (4) to obtain

wi
t ∝ wi

t−1

ŵi
t−1

Kε(yt|ui
t)gθ(u

i
t|xi

t)fθ(x
i
t|xi

t−1)

qθ(xi
t, u

i
t|xi

0:t−1, u
i
1:t−1, y1:t)

.

As the integral in (6) does not typically admit a closed form, we must either numerically
evaluate it or resort to alternative approximation methods. In the context of standard
SMC, Johansen and Doucet (2008) suggest that having an importance function with
heavier tails than the target keeps the variance of the estimates bounded. In concurrence
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with this guideline, in our work we chose to approximate the integral with the density
of a t-distribution, but arguably other approximations can be employed.

Let h : R → [0,∞) be a density approximating the integral in (6). Further, let
ξ : R → R, typically chosen to be the mean or mode of the state. In our work we let ξ
be the identity function. Finally, let At ∼ R(·|Wt−1) be a random variable representing
the index used for resampling the particles at each time step. For a review of commonly
used resampling methods we refer to Douc and Cappé (2005). Here we use multinomial
resampling.

We present our ABC based auxiliary particle filter (APF-ABC) in Algorithm 1. We
should note that the algorithm can be applied to a wide range of state-space models,
for which the p.d.f. of the data is not available in closed form, but simulation from the
model is possible.

Algorithm 1 ABC based auxiliary particle filter (APF-ABC)

Initialization: t = 0

Sample x
(1)
0 , . . . , x

(N)
0 from ηθ(·)

set wi
0 = 1

N for i = 1, . . . , N
Update: t ≥ 1
for t = 1, . . . , T do

for i = 1, . . . , N do
Set ŵi

t−1 ∝ wi
t−1hθ(yt|ξ(xi

t−1))

Sample Ai
t−1 ∼ R(·|Ŵt−1)

Sample (Xi
t , U

i
t ) ∼ qθ(·|x

ai
1:t−1

0:t−1 , u
ai
1:t−1

1:t−1 , y1:t)
Update the weights via:

wi
t ∝

wi
t−1

ŵi
t−1

Kε(yt|u
ai
1:t−1

t )gθ(u
i
t|x

ai
1:t−1

t )fθ(x
i
t|x

ai
1:t−1

t−1 )

qθ(xi
t, u

i
t|x

ai
1:t−1

t−1 , u
ai
1:t−1

t−1 , y1:t)
(7)

Normalize the weights wi
t = wi

t/
∑N

j=1 w
j
t

end for
end for

If Xt is sampled from the transition density of the state, fθ(·|xt−1) and Ut from the
observation density gθ(·|xt), the weights in (7) become

wi
t =

wi
t−1

ŵi
t−1

Kε(yt|ui
t). (8)

The typical choice of a uniform kernel for Kε(yt|ut) can cause the integral in (6) to
become zero and force the weights in (7) to be undefined. Therefore, we select a Gaussian
kernel.

Algorithm 1 provides us with an approximation to the target ABC based density;
p̂εθ(x0:T , u1:T |y1:T ) =

∑N
i=1 w

i
T δXi

0:T
. To obtain the filtered volatility state associated
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with this approximation, Kitagawa (1996) has proposed to use ancestral sampling. This
technique consists of drawing an index from the distribution R(·|WT ) and tracing back
the ancestor particles corresponding to that index. If we let I denote the random vari-
able representing the sampled index, then we can mathematically describe this pro-
cedure by choosing a particle at time T, and defining the path of such a particle as

{Bi
t−1 = A

Bi
t

t−1 : t = T, . . . , 0}. Tracing the particles in such a manner provides us with

{XBi
T

T , X
Bi

T−1

T−1 , . . . , X
Bi

0
0 } as described by Andrieu et al. (2010). Finally, the marginal

likelihood can be approximated via:

p̂εθ(y1:T ) =
1

NT

T∏
t=1

N∑
i=1

wi
t. (9)

The ABC based auxiliary particle filter allows for the best parent trajectories to be
selected while taking the current data point yt into consideration by pre-weighting the
particles sampled at each iteration.

3.2 Simulation Study

We begin this section by first exploring the performance of APF-ABC on a dynamic
Gaussian linear model (DGLM). For such a model, the exact filtering densities can be
obtained via the Kalman filter. In particular, the DGLM is given by:

yt = xt + σyvt 1 ≤ t ≤ T,

xt = μ+ φxt−1 + σxwt 1 ≤ t ≤ T .
(10)

The initial distribution of the latent process, η(x0|θ), is X0 ∼ N(μ/(1−φ), σ2/(1−φ2))
where the parameter vector is denoted as θ = {μ, φ, σy, σx} ⊆ R × (−1, 1) × (0,∞) ×
(0,∞). The noise terms vt and wt are assumed to be uncorrelated and follow a standard
normal distribution.

We study the performance of APF-ABC, the Kalman filter, as well as an imple-
mentation of SMC-ABC as in Jasra et al. (2012), based on root-mean-squared error
(RMSE), for three different data sets with different signal-to-noise ratios (Tables 1–3 in
Appendix C of the Supplementary Material (Vankov et al., 2019)). We find that while
the Kalman filter has slightly lower RMSE, both APF-ABC and SMC-ABC can provide
low errors even with as few as 1000 particles. We notice that as εg, the bandwidth of
the Gaussian kernel used in APF-ABC, and εu, the bandwidth of the uniform kernel
used in SMC-ABC, increase, the performance of the filters deteriorates. Similarly, the
RMSE increases as the length of the time series data increases. We note that even when
the data is generated from DGLM, APF-ABC can provide lower RMSE as compared to
SMC-ABC. Increasing the signal-to-noise ratio, results in higher RMSE for all filters.
The accuracy of the ABC based filters is comparable to the RMSE of the Kalman filter,
despite being slightly lower.

We note here that the results presented are the estimates of the filtering distribution
of the state. The Kalman filter can also provide the exact smoothing density of the un-
observed state. Moreover, recently, Martin et al. (2014) considered an ABC extension of



E. R. Vankov, M. Guindani, and K. B. Ensor 37

the forward only smoothing algorithm of Del Moral et al. (2010), which is an extension
to the forward-filtering backward smoothing (FFBS) method by Godsill et al. (2004).
In particular, to avoid a backward pass, an auxiliary function is introduced, which is
updated at each step of the filter. The weights, W i

t , from (7) and the corresponding par-
ticles Xi

t , for i = 1, . . . , N , computed at each step of Algorithm 1 can be used to update
the auxiliary function, which in turn provides the smoothed estimates. The theoretical
and empirical results presented in Martin et al. (2014) indicate that ABC based ap-
proximations to the smoothing density are feasible in the context of state space models.

In order to study the performance of our proposed APF-ABC filter on data charac-
terized by heavy tails, we apply our proposed algorithm to a simulated data from the
stochastic volatility model (1). We assume that wt ∼ N(0, 1) and vt ∼ SD(α, β, 0, 1). In
our first simulation setting, we set the parameters of the model to the following values:
α = 1.75, β = 0.1, μ = −0.2, φ = 0.95, σ = 0.2. We simulate 350 observation (yt)
and state (xt) data points. For model fitting, we implement APF-ABC with Kε(yt|ut)
to be Gaussian with bandwidth εg = 0.5. The integral in (6) is approximated with the
p.d.f. of a t-distribution. We choose a t-distribution with 2 degrees of freedom to allow
for heavier tails in the proposal distribution. We tested allowing for more degrees of
freedom, but did not find any significant impact on the performance of our algorithm.
Figure 1 represents a plot of the true state values along with the mean estimates of the
latent unobserved log-volatility given by xt, t = 1, . . . , 350 from the APF-ABC filter
with N = 5 × 103 particles (left) as well as the simulated returns (right). APF-ABC
captures the general trend very well and provides estimates of the log-volatility that are
close to the true values.

Figure 1: Simulation Study in Section 3.2. Left panel: APF-ABC mean volatility esti-
mate (dashed line) and the true state volatility (solid line). The filtered values presented
are averaged over 100 simulations of the APF-ABC. Right panel: simulated returns. The
data is simulated from the model given by (1) with wt ∼ N(0, 1), vt ∼ SD(α, β, 0, 1)
where α = 1.75, β = 0.1, μ = −0.2, φ = 0.95, σ = 0.2.

To study the differences between APF-ABC and SMC-ABC, we report in Figure 2
box plots of the RMSE for the two ABC based particle filters. The SMC-ABC and
the APF-ABC were run with the same number of particles. Such a choice does not
produce significant computational differences. The value of εu = 1.5 is chosen as the



38 Filtering and Estimation with Intractable Likelihoods

minimum possible epsilon for which SMC-ABC does not completely collapse, which

happens when all weights become zero. The advantage of our proposed filter in fitting

an α-stable stochastic volatility model is highlighted by the fact that the maximum

error of APF-ABC is less than the minimum possible error for SMC-ABC (Figure 2).

We also investigated the performance of the two algorithms for alternative scenarios,

characterized by different parameter values, sample sizes, number of particles N, and

εu and εg values (see Tables 4 and 5 in Appendix C of the Supplementary Material

(Vankov et al., 2019)). All simulations confirm the conclusions obtained by comparing

the RMSE between the two ABC based filters. Further, we notice that increasing the

number of particles improves the accuracy of the filters. Smaller values of the stability

parameter, α, which allow for heavier tails, and larger sample sizes result in higher

RMSE for both filters. Finally, a larger value of εu and εg decreases the accuracy of

the filters, consistently with results in the literature (Jasra, 2015). We note that direct

comparison of the two filters based on the magnitude of each bandwidth εg and εu is not

possible due to their different interpretation within the Gaussian and uniform kernels.

Figure 2: Simulation Study in Section 3.2. Box plots of the root-mean-square error for
APF-ABC and ABC-SMC. The box plots were obtained from 100 runs of each filter.

So far we have considered only the problem of obtaining estimates of the latent

volatility states assuming that all parameters are known. While APF-ABC proves to be

a powerful tool for obtaining inference on the filtered states, the assumption of known

parameters is typically not true in practice. As a matter of fact, the main interest

of the α-stable SVM lies in estimating the joint distribution p(θ, x0:T |y1:T ). In the

remainder of this paper we develop a novel algorithm for filtering and estimation of

the asymmetric α-stable stochastic volatility model, which makes use of the APF-ABC

algorithm developed in this section.
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4 Single Filter Particle Metropolis-within-Gibbs

In this section we introduce a single filter particle Metropolis-within-Gibbs sampler,
which we then use to estimate the asymmetric, heavy-tailed stochastic volatility model
(1) with wt ∼ N(0, 1) and vt ∼ SD(α, β, 0, 1). Denote the parameter vector in a state-
space model as θ1:p = (θ1, . . . , θp) ∈ Θp. An ideal sampler for this problem would require
to

1. sample (θj , x0:T ) ∼ p(·|y1:T , θ(−j)), for j = 1, . . . ,m < p, and (11)

2. sample θj ∼ p(·|y1:T , x0:T , θ
(−j)), for j = m+ 1, . . . , p, (12)

where we have used the short hand notation θ(−j) to indicate all components in θ
except the j-th one. However, direct sampling from p(x0:T |y1:T , θ1:p) and hence from
p(·|y1:T , θ(−j)) is not possible. To address this, Andrieu et al. (2010) have proposed two
particle based MCMC algorithms, the particle Gibbs sampler (PG) and the particle
marginal Metropolis-Hastings algorithm (PMMH). Both algorithms rely on constructing
an extended target distribution,

pN (θ1:p, x1:N
0:T , a1:N0:T−1, I|y1:T ), (13)

where (X1:N
0:T , A1:N

0:T−1) is defined on the space X (T+1)N×{1, . . . N}TN . If direct sampling
from the full conditional distribution of the parameters p(θ1:p|y1:T , x0:T ) is available,
one can construct a Gibbs sampler on an extended target, where at each iteration the
sampler alternates among the following steps:

1. sample θ1:p ∼ pN (·|y1:T , x1:N
0:T , a1:N0:T−1, I),

2. sample {X1:N
0:T , A1:N

0:T−1} ∼ pN (·|y1:T , θ1:p, I),
3. sample I ∼ pN (·|y1:T , x1:N

0:T , a1:N0:T−1, θ
1:p) = wi

T .

Andrieu et al. (2010) propose a conditional sequential Monte Carlo algorithm to obtain
samples in step 2. In the conditional SMC one particle is guaranteed to survive all
resampling steps and hence we resample only N − 1 particles. For a more detailed
discussion we refer the readers to Andrieu et al. (2010). Alternatively, one could use the
procedures proposed by Lindsten et al. (2014) and the references therein for sampling
from a conditional SMC.

If the full conditional distributions of the parameters are not available, Andrieu et al.
(2010) have proposed a particle marginal Metropolis-Hastings algorithm, which as the
name suggests, relies on a particular form of a proposal density qN (θ1:p, x1:N

0:T , a1:N0:T−1,
I|y1:T ) to form a Metropolis-Hastings (MH) ratio targeting (13). In particular, if at
iteration k, for j = 1, . . . , p one sets:

qN (θj∗, x∗1:N
0:T , a∗1:N0:T−1, I

∗|θ(−j)) = q(θj∗|θj(k − 1), θ(−j)) (14)

× p(x1:N
0:T , a1:N0:T−1|y1:T , θj∗, θ(−j))P (I = i|WT ),

then the Metropolis-Hastings ratio is given by:

1 ∧ p̂N (y1:T |θj∗, θ(−j))

p̂N (y1:T |θj(k − 1), θ(−j))
× q(θj(k − 1)|θj∗, θ(−j))

q(θj∗|θj(k − 1), θ(−j))
× p(θj∗|θ(−j))

p(θj(k − 1)|θ(−j))
. (15)
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Upon inspection of (15), we note that the result resembles the ratio of a standard MH
step with target given by (13), and likelihood approximation as in (9). Furthermore,
Andrieu et al. (2010) prove that the marginal distribution of (θ1:p(k), X0:T (k)), FN , for
the PG and PMMH converges to the target distribution in total variation norm:∥∥FN (θ1:p(k), X0:T (k)|y1:T )− p(·|y1:T )

∥∥ → 0, as k → ∞. (16)

After describing the PMCMC algorithms, we now introduce our proposed sampler.
Our motivation for the new sampler stems from the difficulty in certain situations to
build adequate proposals for some of the parameters in PMMH algorithms as well as
the intractability of the full conditionals for others. Here, we propose to sample (11)
via a particle marginal Metropolis-Hastings step and (12) via a standard Gibbs step.
By combining the two we show we can obtain more efficient parameter sampling. In
contrast to Mendes et al. (2015) which incorporate the idea of sampling the parameters
of a state-space model in blocks by PG and PMMH, we propose an algorithm which
relies on using SMC only once – in the PMMH step of the algorithm. Our single filter
particle Metropolis-within-Gibbs algorithm is given in Algorithm 2.

Algorithm 2 Single Filter PMwG

k = 0
Initialize θj(0) for j = 1, . . . , p
Run SMC targeting p(x0:T |y1:T , θ1:p(0))
Sample X0:T (0) ∼ pN (x0:T |y1:T , θ1:p(0)) and calculate p̂N (y1:T |θ1:p(0))

k = 1, . . . ,K
PMMH step
For j = 1, . . . ,m < p
Sample θj∗ ∼ q(·|θj(k − 1))
Run SMC targeting p(x0:T |y1:T , θj∗, θ(−j))
With probability

1 ∧ p̂N (y1:T |θj∗, θ(−j))

p̂N (y1:T |θj(k − 1), θ(−j))

q(θj(k − 1)|θj∗)
q(θj∗|θj(k − 1))

p(θj∗|θ(−j))

p(θj(k − 1)|θ(−j))
(17)

Set θj(k) = θj∗, X0:T (k) = X∗
0:T and p̂N (y1:T |θj(k), θ(−j)) = p̂N (y1:T |θj∗, θ(−j));

otherwise set θj(k) = θj(k − 1), X0:T (k) = X0:T (k − 1) and
p̂N (y1:T |θj(k), θ(−j)) = p̂N (y1:T |θj(k − 1), θ(−j))

Gibbs step
For j = m+ 1, . . . , p
Sample θj(k) ∼ p(·|y1:T , θ(−j), X0:T (k))

We present SF-PMwG in general form, where K is the number of iterations. Each
parameter is sampled individually conditionally on all other parameters at each iter-
ation. However, in some applications block sampling can improve the efficiency of the
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algorithm, as we shall see in the following section. To estimate the α-stable stochastic
volatility model, we replace the SMC step of the algorithm with APF-ABC. Addition-
ally, if further smoothing of the states is desired, one can adopt ABC based smoothing
strategies similar to the forward smoothing discussed in Martin et al. (2014).

More specifically, the first step in Algorithm 2 is a PMMH step targeting the den-
sity pN (θj , x1:N

0:T , a1:N0:T−1, I|y1:T , θ(−j)) for j = 1, . . . ,m < p. A proper full conditional

which will leave the extended target invariant is pN (θj |y1:T , x1:N
0:T , a1:N0:T−1, I, θ

(−j)) for
j = m + 1, . . . , p. However, the Gibbs step in Algorithm 2 samples from a marginal-
ized full conditional pN (θj |y1:T , xi

0:T , b
i
0:T−1, I, θ

(−j)), which could potentially cause the
sampler to converge to a stationary distribution different from (13). Following Dyk and

Jiao (2015) one must sample {X(−i)
0:T , B

(−i)
0:T−1} ∼ pN (·|y1:T , θ1:p, I) to ensure that SF-

PMwG leaves (13) invariant. However, {X(−i)
0:T , B

(−i)
0:T−1} does not appear in (17) and

only modifies the PMMH kernel following a rejection. Moreover, the inferential interest

is in the marginal distribution FN , which does not depend on {X(−i)
0:T , B

(−i)
0:T−1}. Hence,

the additional sampling step may be omitted with no impact on the posterior samples
from FN (θ1:p, X0:T |y1:T ).

5 Simulation Study: Estimation of the α-Stable SVM

In this section we compare the accuracy and efficiency of three algorithms for esti-
mating the asymmetric α-stable SVM. More specifically, we compare SF-PMwG, the
algorithm of Mendes et al. (2015) extended to a likelihood free setting and referred
to here as DF-PMwG, and PMCMC-ABC (Jasra et al., 2013). The latter algorithm
employs SMC-ABC. The single and double filter PMwG algorithms use APF-ABC. We
use the following parametrization for the α-stable stochastic volatility model:

yt = exp

(
x̃tσ

2

)
vt, vt ∼ SD(α, β, 0, 1), (18)

x̃t = γ + φ(x̃t − γ) + wt, wt ∼ N(0, 1), (19)

x0 ∼ N

(
γ,

1

1− φ2

)
, (20)

where we have let x̃t = xt/σ and γ = μ/σ. We choose this parametrization following
Roberts et al. (2004) for efficiency purposes, see also Kastner and Frühwirth-Schnatter
(2014).

We assume γ ∼ N(γ0, τ0), (φ+1)/2 ∼ Beta(a0, b0), σ ∼ IG(c0, d0), α ∼ U(0, 2), and
β ∼ U(−1, 1) to be the prior distributions for all model parameters. To our knowledge,
all available methods for the α-stable SVM have used the ABC version of PMMH to
estimate all parameters. However, including an ABC step inside PMMH can further
affect the accuracy of the approximation in (9), which can lead to higher inefficiency in
the estimation procedure. The Gaussian assumption for the distribution of the latent
volatility states, and the dependence of the state parameters on y1:T only through x0:T ,
enables us to sample γ and φ, respectively, via a full conditional step and a MH step as



42 Filtering and Estimation with Intractable Likelihoods

detailed in Appendix B of the Supplementary Material (Vankov et al., 2019). However,
the parameters α, β and σ in (18) can not be sampled via a Gibbs step, because their
full conditional distributions depend on the data y1:T , for which the p.d.f. is not known
in closed form. Therefore, we use SF-PMwG to improve sampling efficiency.

We consider a normal random walk proposal. To account for the support of the pa-
rameters we transform and define the new set of parameters as θ = {log σ,Φ(α/2),Φ([β+
1]/2)} ∈ R

3. The prior used on the transformed parameters is N(01×3, I3×3) as in
Barthelmé and Chopin (2014). For PMCMC-ABC the transformed parameter vector is
θ = {log σ,Φ(α/2),Φ([β + 1]/2),Φ([φ + 1]/2), μ} ∈ R

5. To facilitate comparison with
literature, nevertheless, we report the final posterior estimates in terms of the original
parameters.

The choice of the covariance matrix in the proposal distribution can have a large
impact on the performance of the Metropolis-Hastings algorithm. If we set the covariance
too large, the algorithm will have very few acceptances. If the covariance is too small, the
parameter space is explored poorly. Furthermore, tuning the covariance of the proposal
can be very cumbersome and require many test runs. This has lead researchers to develop
adaptive MH algorithms, which propose values of the covariance based on the history of
the Markov chain. Haario et al. (2001) propose to use a scaled version of the empirical
covariance calculated from the Markov chain until the current iteration, as follows,

Σ̂k =

{
Σ0 if k ≤ k0,

cd

(
Σ̂θ(1:k−1) + ζId

)
if k > k0,

(21)

where Σ̂θ(1:k−1) is the empirical covariance of θ until iteration k, and d denotes the
dimension of the parameter vector. We set Σ0 = I3×3, k0 = 500 and ζ = 0.0001. Since
d = 3 for both SF-PMwG and DF-PMwG, and d = 5 for PMCMC-ABC, the scaling
constant is set to c3 = 2.382/3 and c5 = 2.382/5, respectively (Haario et al., 2001;
Roberts and Rosenthal, 2009).

To compare the efficiency of the different algorithms, we consider the integrated
autocorrelation time, defined by IACT = 1 + 2

∑∞
l=1 ρl, where ρl denotes the auto-

correlation function at lag l. Let ˆIACT = 1 + 2
∑L

l=1 ρ̂l(θ(1 : K)) be an estimate of
IACT, where L is the lag at which the empirical autocorrelation function becomes sta-
tistically insignificant. This condition is satisfied whenever |ρ̂L(θ(1 : K))| < 2/

√
K.

Low IACT values indicate that we have more uncorrelated samples generated from the
Markov chain implying that we have good mixing. In all of our results, we normalize
the estimated IACT by the run time of the algorithms. To compare the accuracy of the
algorithms we consider the posterior mean, standard deviation and the 95% credible
interval for θ.

We simulate T = 350 data points from the model in (18)–(20) with (α, β, γ, φ, σ) =
(1.7, 0.3,−2, 0.95, 0.2). Hence, the value of the mean of the latent state corresponding to
(1) is μ = −0.4. The hyperparameters for the prior are set to a0 = 40, b0 = 80/(1+φtrue),
γ0 = 0, τ0 = 10 as in Kastner and Frühwirth-Schnatter (2014) and c0 = 5/2, d0 =
0.01c0/2 as in Kim et al. (1998).
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Figure 3: Simulation study in Section 5. Box plots of the root-mean-square error for the
latent volatility estimates for SF-PMwG, DF-PMwG and PMMH-ABC (left). Compar-
ison of IACT values of the three algorithms for estimating the α-stable SVM (right).
The bars represent average IACT values over 30 runs for each parameter. The standard
errors are shown as black lines.

To ensure that all algorithms run for the same amount of time we use N = 104

particles for the standard PMMH-ABC and SF-PMwG. For DF-PMwG we use N =
5 × 103 particles for APF-ABC and Nc = 1500 particles for the conditional filter. All
algorithms run for K = 3× 104 iterations with the first 5000 discarded as burn-in. The
tuning parameters for APF-ABC and SMC-ABC are the same as in Section 3 except
we set εg = εu = 0.5 to improve on the accuracy of the filter.

SF-PMwG results in decreased RMSE for the estimation of the latent volatility when
compared to PMMH-ABC (Figure 3, left panel). The performance of DF-PMwG is
similar to SF-PMwG with the latter having narrower RMSE range. Further, SF-PMwG
leads to significant gains in efficiency for σ, α and β (Figure 3, right panel). The efficiency
for the parameters sampled by the Gibbs step of the algorithms, μ and φ, is similar for
the single and double filter PMwG. Both PMwG algorithms yield a lower IACT than
PMCMC-ABC with respect to the estimation of φ. In this scenario, the inclusion of
a Gibbs step has allowed very efficient sampling of μ compared to the PMCMC-ABC
algorithm. Moreover, the standard error of the estimated integrated autocorrelation
time of SF-PMwG, is significantly smaller than the other two algorithms.

The higher IACT values for σ and φ compared to the remaining parameters seen in
SF-PMwG are consistent with the findings of Kastner and Frühwirth-Schnatter (2014)
for the Gaussian stochastic volatility model.

All algorithms perform similarly for α, β and σ in terms of accuracy (Table 1). The
proximity of the posterior mean to the true value and the smaller 95% credible intervals
for μ and φ indicate the improvement in accuracy resulting from the addition of a Gibbs
step.
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Table 1: Simulation study in Section 5. Summary of the posterior distribution gener-
ated from SF-PMwG, DF-PMwG and PMCMC-ABC for all parameters of the α-stable
stochastic volatility model. We present the posterior mean, standard deviation (SD)
and 95% credible interval. All quantities are averaged over 30 runs.

Algorithm SF-PMwG DF-PMwG PMMH-ABC

Parameters Mean(SD) 95% CI Mean(SD) 95% CI Mean(SD) 95% CI

α = 1.7 1.691 (0.09) (1.51, 1.86) 1.691 (0.11) (1.507, 1.857) 1.71 (0.1) (1.52, 1.867)
β = 0.3 0.322 (0.221) (−0.119, 0.701) 0.327 (0.218) (−0.116, 0.74) 0.324 (0.223) (−0.128, 0.75)
σ = 0.2 0.251 (0.09) (0.114, 0.472) 0.254 (0.09) (0.114, 0.475) 0.256 (0.11) (0.09, 0.524)
φ = 0.95 0.941 (0.04) (0.848, 0.992) 0.94 (0.039) (0.841, 0.992) 0.91 (0.08) (0.74, 0.99)
μ = −0.4 −0.404 (0.331) (−1.08, 0.312) −0.39 (0.338) (−1.02, 0.335) −0.42 (0.392) (−1.21, 0.33)

Further, we study the impact of different values of the bandwidths of the Gaussian
and uniform kernels used in filtering, εg and εu, respectively, different number of parti-
cles, different sample sizes and different SVM parameter values (Tables 6–9 in Appendix
D of the Supplementary Material (Vankov et al., 2019)). Considering the efficiency of
the algorithms (Tables 6 and 7), as measured by IACT, increasing the value of the
bandwidth εg and εu or increasing the number of particles results in increases efficiency
for all algorithms. However, increasing the sample size or decreasing the value of α for
the α-stable SVM results in decreased efficiency for all algorithms. Similar to our results
in the right panel of Figure 3, when εg = εu = 0.5, the proposed SF-PMwG algorithm
has lower IACT for α, β and σ over all simulation scenarios. Moreover, SF-PMwG
and DF-PMwG perform similarly for μ and φ, outperforming PMMH-ABC. When the
bandwidth, ε, is increased SF-PMwG continues to outperform for α, β and σ. For the
parameters calculated in the Gibbs step, μ and φ, SF-PMwG performs similarly or
better to the other two algorithms.

Comparing the accuracy of the parameter estimates, as measured by their posterior
means and 95% credible intervals, for the different scenarios, we find that increasing the
value of εg and εu results in less accurate posterior mean estimates for all algorithms.
Further, increasing the number of particles can lead to more accurate posterior mean
estimates. Increasing the magnitude of the tails of the returns distribution, by lowering
the value of α in the SVM, has little effect on the posterior means. As previously
noted, direct comparison between the performance of SF-PMwG, DF-PMwG and the
PMMH-ABC algorithms for different magnitudes of εg and εu should be attempted
with caution due to their different interpretation within the context of the Gaussain
and uniform density kernels.

6 An Application to the Study of Weekly Spot Prices
for Propane

In this section, we apply SF-PMwG to an α-stable stochastic volatility model for weekly
propane spot prices.

Propane is a very clean fuel that can be produced from natural gas or crude oil.
In the United States it is heavily used in the agricultural and industrial sectors, and
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as a source for residential and commercial heating. It was estimated that in 2014, the
industrial and agricultural sectors, combined for 65% of the total propane used in the
United States (Kanderdine, 2014).

Key drivers for propane prices are weather, inventory capacity and transportation in-
frastructure. Inventories for propane are typically accumulated over the summer months
when demand is low. During the winter, the stored propane is withdrawn, transported
to the locations in high demand and used for heating. If the winter is severe, the in-
ventory levels are low and the demand increases sharply, large increases in prices can
occur. If the infrastructure in place does not allow for timely delivery of propane to the
locations in high demand, price fluctuations are additionally exacerbated. For exam-
ple, in the winter of 2014, the Northeast and Midwest regions of the United States were
faced with extreme winter conditions, the stored propane in the region was not sufficient
and transportation was difficult, which resulted in propane shortages and large price
increases (Kanderdine, 2014). Thus, the stochastic volatility model we consider here can
serve policy makers in their effort to minimize the impact of large energy shocks.

To study the distribution of the returns and the volatility, Charfeddine (2014), con-
sidered commodity future prices for the period 1994–2009, including propane, with one
and three month maturities. More specifically, propane daily returns are found to be neg-
atively skewed and have significant excess kurtosis. When studying month-spot prices
for propane for the period 1994–2005, Elder and Serletis (2008), find the distribution
to be positively skewed.

We have available weekly spot prices for propane for Mount Belviue, Texas from
the Energy Information Administration (EIA) for the time period 10/01/2007 through
04/12/2015 (393 data points), allowing us to study volatility in propane prices for several
winter seasons. We should also note that this time period covers the financial crisis of
2008. We select weekly data, as we are interested in the long term behavior of volatility,
while discarding as much of the noise inherent in daily trading activities. We calculate
the weekly demeaned returns as

yt = 100

(
log(Pt/Pt−1)−

1

T

T∑
t=1

log(Pt/Pt−1)

)
.

In order to check for normality of the returns we perform a Jarque–Bera test, for which
we reject the null-hypothesis (p − value < 0.001) and conclude that the returns are
not normal. Moreover, high sample skewness (-1.44) and kurtosis (8.90) suggest that a
Gaussian SVMmay not capture all distributional features present in the data (Figure 4).

The prior distribution of the parameters of the α-stable SVM is characterized as in
Section 5. Similarly, all hyperparameters are unchanged except we fix a0 = 20, b0 = 1.5
as in Kim et al. (1998). We apply SF-PMwG to the weekly spot propane prices with Σ0 =
0.5I3×3, c3 = 2.382/3, and N = 104 particles for APF-ABC. We run multiple chains of
the algorithm for K = 105 iterations. To assess convergence we use the Gelman–Rubin
statistic (after 5× 104 burn-in). The potential scale reduction factors for all parameters
are between 1 and 1.01, indicating that our chains have converged. We combine the
chains for posterior parameter inference.
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Figure 4: Application to propane prices study in Section 6. Histogram (left) and box-
plot (right) for the demeaned weekly spot returns for propane 10/01/2007–04/12/2015,
Mount Belvieu TX.

The algorithm captures the heavy tails and the skewness in the returns, as can be
seen from the posterior means of α and β respectively (Table 2). The persistence in the
volatility is relatively high, indicating high relationship between volatility in successive
periods. A moderately varying latent process can be detected from the posterior distri-
bution of σ. Even though, the 95% credible interval for β contains positive values, the
posterior probability that the skewness is negative is P (β < 0|y1:T ) = 0.948.

Table 2: Summary of the posterior distribution for α, β, σ, μ, φ for the α-stable SVM
applied to weekly returns for propane.

Algorithm SF-PMwG DF-PMwG PMMH-ABC

Parameters Mean(SD) 95% CI Mean(SD) 95% CI Mean(SD) 95% CI

α 1.88 (0.05) (1.76, 1.98) 1.89 (0.06) (1.77, 1.99) 1.89 (0.06) (1.76, 1.98)
β −0.58 (0.31) (−0.98, 0.22) −0.56 (0.34) (−0.98, 0.31) −0.56 (0.31) (−0.97, 0.15)
σ 0.38 (0.07) (0.25, 0.55) 0.42 (0.08) (0.29, 0.61) 0.42 (0.08) (0.29, 0.62)
μ 2.19 (0.28) (1.62, 2.64) 2.18 (0.24) (1.67, 0.2.64) 2.31 (0.21) (1.86, 2.73)
φ 0.89 (0.04) (0.8, 0.96) 0.88 (0.05) (0.77, 0.95) 0.86 (0.06) (0.72, 0.95)

For the time period under consideration, the largest variability in propane prices
is observed during the financial crisis of 2008 (Figure 5). The α-stable SVM correctly
depicts those large changes in the returns as can be seen from the filtered volatility
estimates. Two other volatile periods are the winter of 2014 and 2015. They can be
attributed to price increases due to severe winter conditions.

In order to determine the quality of the fit of the α-stable SVM, and to compare it
to SVMs with Gaussian and Student’s t return errors, we use approximate sequential
Bayes factors. The Bayes factor for two competing models, a and b, is calculated via,
BFa,b = p(y1:t|Ma)/p(y1:t|Mb). The log Bayes factor for comparing the α-stable and
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Figure 5: Application to propane prices study in Section 6. Absolute weekly returns for
propane October 1, 2007–April 12, 2015 (left) and filtered volatility (right), exp (xt/2),
with the 95% CI (dashed-lines).

Gaussian SVM is BFα,Gauss = 20.68. The log Bayes factor between the α-stable and
the Student’s t SVM is BFα,t = 17.27.

7 Conclusion

In this article we present novel methods for filtering and estimation in state-space mod-
els, with a particular application to asymmetric, heavy-tailed α-stable stochastic volatil-
ity models. The α-stable stochastic volatility model does not exclude the possibility of
Gaussian returns, but allows for more flexible modeling. Wrongly assuming that the
returns are normally distributed can lead to underestimation of volatility. Therefore
the use of α-stable distribution allows for fewer distributional assumptions prior to
estimating the unobserved volatility.

We introduce an ABC based auxiliary particle filter, providing better proposals in a
sequential Monte Carlo framework. In particular, by pre-weighting the particles in ABC
based SMC using information from the data, we improve on the accuracy of the approx-
imation of the latent volatility states. Such a strategy can prove very useful especially
if there are heavy tails present in the data. Even though the proposed filter applies to
a richer class of state-space models, we show its application for the asymmetric, heavy-
tailed α-stable stochastic volatility model. It is shown through simulation studies that
APF-ABC has better performance than the method of Jasra et al. (2012).

We also propose a novel method for joint posterior estimation of the latent states
and parameters. Based on ideas from particle Markov chain Monte Carlo methods, we
develop a single filter particle Metropolis-within-Gibbs algorithm. The proposed SF-
PMwG algorithm is applied to an asymmetric α-stable stochastic volatility model. The
inability to express the p.d.f. for the returns for this class of volatility models, highlights
the necessity to develop better methods for filtering, such as the proposed APF-ABC.



48 Filtering and Estimation with Intractable Likelihoods

We find through a simulation study that the proposed SF-PMwG algorithm performs
similarly or better than the DF-PMwG of Mendes et al. (2015) and PMMH-ABC of
Jasra et al. (2013) under “reasonable” bandwidth values (e.g. εg ≤ 0.5). We apply the
single filter PMwG to weekly spot prices for propane for the time period 2007–2015.
The algorithm suggests that the returns are negatively skewed and heavy-tailed and
hence assuming Gaussian returns could be misleading and lead to underestimation of
the inherent returns deviations.

Some inherent drawbacks within PMCMC methods, including the single filter par-
ticle Metropolis-within-Gibbs algorithm, are the computational times required for the
chain to converge. One way to further increase the efficiency of our procedure could
be to employ other adaptive MH procedures in the PMMH step of SF-PMwG (see for
example, Dahlin et al., 2015). In addition, in the APF-ABC filter we use multinomial
resampling; however, it will be interesting to implement other resampling strategies (e.g.
systematic, residual etc.) and study their impact on the filter. We also plan to investi-
gate how to extend the methods proposed here to multivariate settings, accounting for
the presence of contemporaneous correlations (Chib et al., 2006).

Supplementary Material

Supplementary Material for Filtering and Estimation for a Class of Stochastic Volatility
Models with Intractable Likelihoods (DOI: 10.1214/18-BA1099SUPP; .pdf).
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