
Bayesian Analysis (2019) 14, Number 1, pp. 1–28

Bayesian Method for Causal Inference
in Spatially-Correlated Multivariate Time Series

Bo Ning∗, Subhashis Ghosal†, and Jewell Thomas‡,§

Abstract. Measuring the causal impact of an advertising campaign on sales is
an essential task for advertising companies. Challenges arise when companies run
advertising campaigns in multiple stores which are spatially correlated, and when
the sales data have a low signal-to-noise ratio which makes the advertising effects
hard to detect. This paper proposes a solution to address both of these challenges.
A novel Bayesian method is proposed to detect weaker impacts and a multivari-
ate structural time series model is used to capture the spatial correlation between
stores through placing a G-Wishart prior on the precision matrix. The new method
is to compare two posterior distributions of a latent variable—one obtained by us-
ing the observed data from the test stores and the other one obtained by using the
data from their counterfactual potential outcomes. The counterfactual potential
outcomes are estimated from the data of synthetic controls, each of which is a
linear combination of sales figures at many control stores over the causal period.
Control stores are selected using a revised Expectation-Maximization variable
selection (EMVS) method. A two-stage algorithm is proposed to estimate the pa-
rameters of the model. To prevent the prediction intervals from being explosive, a
stationarity constraint is imposed on the local linear trend of the model through a
recently proposed prior. The benefit of using this prior is discussed in this paper.
A detailed simulation study shows the effectiveness of using our proposed method
to detect weaker causal impact. The new method is applied to measure the causal
effect of an advertising campaign for a consumer product sold at stores of a large
national retail chain.
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1 Introduction

Advertising is thought to impact sales in markets. MaxPoint Interactive Inc. (Max-
Point), an online advertising company,1 is interested in measuring the sales increases
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associated with running advertising campaigns for products distributed through brick-
and-mortar retail stores.

The dataset provided by Maxpoint was obtained as follows: MaxPoint ran an adver-
tising campaign at 627 test stores across the United States. An additional 318 stores
were chosen as control stores. Control stores were not targeted in the advertising cam-
paign. The company collected weekly sales data from all of these stores for 36 weeks
before the campaign began and for the 10 weeks in which the campaign was conducted.
The time during which the campaign was conducted is known. The test stores and the
control stores were randomly selected from different economic regions across the U.S..
Figure 1 shows an example of the locations of stores in the State of Texas.2

Figure 1: An example of test and control store locations in the State of Texas (Google
Maps, 2017). The red dots represent the locations of the test stores; the blue dots
represent the locations of the control stores.

To the best of our knowledge, the work of Brodersen et al. (2015) is the most related
one to the present study. Their method can be described as follows. For each test store,
they first split its time series data into two parts: before and during a causal impact (in
our case, the impact is the advertising campaign). Then, they used the data collected
before the impact to predict the values during the causal period. At the same time, they
applied a stochastic search variable selection (SSVS) method to construct a synthetic
control for that store. The counterfactual potential outcomes (Rubin, 2005) are the sum
of the predicted values and the data from the synthetic control. Clearly, the potential
outcomes of the store exposed to advertising were the observed data. Finally, they
compared the difference between the two potential outcomes and took the average of
differences across different time points. The averaged difference is a commonly used
causal estimand that measures the temporal average treatment effect (Bojinov and
Shephard, 2017).

2Note: The locations of the stores shown in the figure are not associated with any real datasets
collected by MaxPoint.
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The method proposed by Brodersen et al. (2015) is novel and attractive; however,
it cannot directly apply to analyze our dataset due to the following three reasons: (1)
Many causal impacts in our dataset are weak. The causal estimand that Brodersen et al.
(2015) used often fails to detect them; (2) The test stores within an economic region
are spatially correlated as they share similar demographic information. Using Brodersen
et al. (2015)’s method would not allow to consider the spatial correlation between stores;
(3) The SSVS method is computationally slow because it requires sampling from a large
model space consisting of 2p possible combinations of p control stores. In the following,
we will discuss our proposed method for addressing these three difficulties.

First, we propose a new method for detecting weaker causal impacts. The method
compares two posterior distributions of the latent variables of the model, where one
distribution is computed by conditioning the observed data and the other one is com-
puted by conditioning the counterfactual potential outcomes. We use the one-sided
Kolmogorov–Smirnov (KS) distance to quantify the distance between the two posterior
distributions.

The new method can successfully detect weaker impacts because it compares two
potential outcomes at the latent variable level; while the commonly used method com-
pares them at the observation level. Since the observed data often contain “inconvenient”
components—such as seasonality and random errors—which inflate the uncertainty of
the estimated causal effect, the commonly used method may fail to detect weaker im-
pacts. In the simulation study, we show that the new method outperforms the commonly
used method even when the model is slightly misspecified.

The causal estimand in the new method is different from the causal estimand of
the commonly used method. The former one measures the temporal average treatment
effect using the KS distance between two posterior distributions and the latter measures
that effect using the difference between two potential outcomes. Formal definitions of
the two causal estimands are provided in Section 2.

Secondly, we use a multivariate version of a structural time series model (Harvey
and Peters, 1990) to model the sales data of test stores by allowing pooling of infor-
mation among those stores that locate in geographically contiguous economic regions.
This model enjoys a few advantages that make it especially suitable for our causal in-
ference framework. First, the model is flexible to adapt to different structures of the
latent process. Secondly, it can be written as a linear Gaussian state-space model and
exact posterior sampling methods can be carried out by applying the Kalman filter
and simulation smoother algorithm proposed by Durbin and Koopman (2002, 2012).
Thirdly, it is relatively easy to deal with missing data due to the use of the Kalman fil-
ter and backward smoothing (KFBS) algorithm. The imputing process can be naturally
incorporated into the Markov chain Monte Carlo (MCMC) loop.

Since test stores are correlated, the number of parameters in the covariance matrix
grows quadratically with the dimension. Consequently, there will not be enough data to
estimate all these parameters. In our approach, we reduce the number of parameters by
imposing sparsity based on a given spatial structure (Smith and Fahrmeir, 2007; Barber
and Drton, 2015; Li et al., 2015). We consider a graphical model structure for dependence
based on geographical distances between stores. If the distance between two stores is very



4 Bayesian Multivariate Time Series Causal Inference

large, we treat them conditionally independent given other stores. In terms of a graphical
model, this is equivalent to not put an edge between them. We denote the corresponding
graph by G. Note that G is given in our setting and is completely determined by the
chosen thresholding procedure. We use a graphical Wishart prior with respect to the
given graph G, in short a G-Wishart prior (Roverato, 2002), to impose sparsity on the
precision matrix. One advantage is that this prior is conjugate for a multivariate normal
distribution. If G is decomposable, sampling from a conjugate G-Wishart posterior is
relatively easy due to an available closed form expression for the normalizing constant in
the density (Lauritzen, 1996; Roverato, 2000, 2002). However, if G is non-decomposable,
the normalizing constant does not usually have a simple closed form (see however; Uhler
et al., 2017), and thus one cannot easily sample directly from its posterior. In such a
situation, an approximation for the normalizing constant is commonly used (Atay-Kayis
and Massam, 2005; Mitsakakis et al., 2011; Wang and Li, 2012; Khare et al., 2015). A
recent method introduced by Mohammadi and Wit (2015) is a birth-death Markov
chain Monte Carlo (BDMCMC) sampling method. It uses a trans-dimension MCMC
algorithm that transforms sampling of a high-dimensional matrix to lower dimensional
matrices, thus improving efficiency when working with large precision matrices.

In a multivariate state-space model, the time dynamics are described by a mul-
tivariate stochastic trend, usually an order-one vector autoregressive (VAR(1)) pro-
cess (de Jong, 1991; de Jong and Chu-Chun-Lin, 1994; Koopman, 1997; Durbin and
Koopman, 2002). To use a order p vector autoregression with order q moving average
(VARMA(p, q)) process, with p > 1, q ≥ 0, is also possible and the choice of p, q can be
made based on data (e.g., chosen by the Bayesian Information Criterion). However, the
larger the p and q are, the larger the number of parameters that need to be estimated.
For the sake of tractability, we treat the hidden process as a VAR(1) process throughout
the paper.

Putting stationarity constraints on the VAR(1) process is necessary to prevent the
prediction intervals from becoming too wide to be useful. However, constructing an
appropriate prior complying with the constraints is not straightforward. Gelfand et al.
(1992) proposed a naive approach that puts a conjugate prior on the vector autoregres-
sive parameter to generate samples and only keep the samples meeting the constraints.
However, it can be highly inefficient when many draws from the posterior correspond
to nonstationary processes. A simple remedy is to project these nonstationary draws
on the stationarity region to force them to meet the constraints (Gunn and Dunson,
2005). However, the projection method is somewhat unappealing from a Bayesian point
of view because it would make the majority of the projected draws have eigenvalues
lying on the boundary of the corresponding space (Galindo-Garre and Vermunt, 2006;
Roy et al., 2016). We instead follow the recently proposed method of Roy et al. (2016)
to decompose the matrix into several unrestricted parameters so that commonly used
priors can be put on those parameters. While conjugacy will no longer be possible,
efficient algorithms for drawing samples from the posterior distribution are available.

Thirdly, to accelerate the computational speed of selection control stores, we suggest
using a revised version of the Expectation-Maximization variable selection (EMVS)
method (Ročková and George, 2014). The model uses an Expectation-Maximization
(EM) algorithm that is faster and does not need to search 2p possible combinations.
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It is worth mentioning that there are many other popular methods for construct-
ing a synthetic control, such as the synthetic control method proposed by Abadie and
Gardeazabal (2003), the difference-in-differences method (Abadie, 2005; Bonhomme and
Sauder, 2011; Donald and Lang, 2007), and the matching method (Stuart, 2010). More-
over, Doudchenko and Imbens (2016) provided a nice discussion on the advantages and
disadvantages of each method. Unlike these methods, there are two advantages of using
our proposed method: It does not need to have a prior knowledge about the relevant con-
trol stores, the process of selecting control stores is completely driven by data and can be
easily incorporated into a Bayesian framework. It provides a natural model-based causal
inference by viewing counterfactual potential outcomes as missing values and generat-
ing predicting credible intervals from their posterior predictive distributions, and finally
providing a quantitative measure for the strength of the causal effect (Rubin, 2005).

We apply our method on both simulated datasets and the real dataset provided
by MaxPoint. In the simulation study, we compare the new method with the method
proposed by Brodersen et al. (2015).

The rest of the paper is organized as follows. Section 2 introduces causal assumptions
and causal estimands. Section 3 describes the model and the priors. Section 4 describes
posterior computation techniques. Section 5 introduces our proposed new approach to
infer causal effects in times series models. Simulation studies are conducted in Section 6.
In Section 7, the proposed method is applied on a real dataset from an advertising
campaign conducted by MaxPoint. Finally, Section 8 concludes with a discussion.

2 Causal assumptions and causal estimands

This section includes three parts. First, we will introduce the potential outcomes frame-
work. Secondly, we shall discuss three causal assumptions. Finally, we shall define two
causal estimands, one of them is new.

The potential outcomes framework is widely used in causal inference literature (Ru-
bin, 1974, 2005; Ding and Li, 2017). Potential outcomes are defined as the values of an
outcome variable at a future point in time after treatment under two different treatment
levels. Clearly, at most one of the potential outcomes for each unit can be observed, and
the rest are missing (Holland, 1986; Rubin, 1977; Imbens and Rubin, 2015). The missing
values can be predicted using statistical methods. In the paper, we predict the values
using the data from a synthetic control that is constructed from several control stores.

Based on the potential outcomes framework, we conduct the causal inference. There
are three assumptions need to make for conducting the inference. They are,

1. The stable unit treatment value assumption (SUTVA);

2. The strong ignorability assumption on the assignment mechanism;

3. The trend stays stable in the absence of treatment for each test store.
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The SUTVA contains two sub-assumptions: no interference between units and no
different versions of a treatment (Rubin, 1974). The first assumption is reasonable be-
cause the stores did not interact with each other after the advertising was assigned.
As Rosenbaum (2007) pointed out, “interference is distinct from statistical dependence
produced by pretreatment clustering.” Since the spatial correlation between test stores
is produced by pretreatment clustering, it is different from the interference between
stores. The second assumption is also sensible because we assume that there are no
multiple versions of the advertising campaign. For example, the advertising campaign
is not launched across multiple channels.

The strong ignorability assumption also contains two parts: unconfoundedness and
positivity (Ding and Li, 2017). Unconfoundedness means that the treatment is assigned
randomly and positivity means that the probability for each store being assigned is
positive. In our study, we assume the company randomly assigned advertising to stores
and each store has an equal probability of being assigned.

The last assumption says that the counterfactual potential outcomes in the absence
of the advertising in test stores are predictable.

Now, we shall introduce some notations before defining causal estimands. Let n be
the total number of test stores to which the advertising were assigned. The i-th test
store has pi control stores (stores did not assigned with the advertising), i = 1, . . . , n.
The total number of control stores are denoted as p, p =

∑n
i=1 pi. The length of the time

series data is T+P . Let 1, . . . , T be the periods before running the advertising campaign
and T + 1, . . . , T + P be the periods during the campaign. Let wt = (w1t, . . . , wn+p,t)

′

be a vector of treatment at time t = T + 1, . . . , T + P , with each wit being a binary
variable. The treatment assignment is time-invariant, so wt = w. For stores assigned
with advertising, we denote the sales value for the i-th store at times t as yit. Let
yobsit be the observed data and ycfit be the counterfactual potential outcomes which are
missing. We let Y obs

t = (yobs1t , . . . , yobsnt )′ and Y cf
t = (ycf1t, . . . , y

cf
nt)

′ respectively be the
observed and missing potential outcomes for n test stores at time t, t = 1, . . . , T + P .
Clearly, Y obs

t = Y cf
t when t = 1, . . . , T . We define Y obs

T+1:T+P = (Y obs
T+1, . . . ,Y

obs
T+P )

′

and Y cf
T+1:T+P = (Y cf

T+1, . . . ,Y
cf
T+P )

′.

We first define the causal estimand of a commonly used method. For the i-th test
store, the commonly used causal estimand is defined as

1

P

T+P∑
t=T+1

(
yobsit − ycfit

)
,

which is the temporal average treatment effects (Bojinov and Shephard, 2017) at P
time points. In our setting, the treatment effects for n test stores are defined as

1

P

T+P∑
t=T+1

(
Y obs

t − Y cf
t

)
. (1)

To introduce our new causal estimand, let xit be the data for the synthetic control
for the i-th test store at time t. Recall that the data of a synthetic control is a weighted
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sum of the sales from several control stores. Define X1:T+P = (X1, . . . ,XT+P ), where
Xt is an n×p matrix containing data from p control stores at time t. Let μit be a latent
variable of a model, which is of interest. Define μt = (μ1t, . . . ,μnt) which is an n × 1
vector. We let

p(

T+P∑
t=T+1

μt

∣∣Y obs
1:T+P ,X1:T+P ), (2)

be the posterior distribution of the latent variable conditional on Y obs
1:T+P and X1:T+P ,

and

p(
T+P∑

t=T+1

μt

∣∣Y obs
1:T ,Y

cf
T+1:T+P ,X1:T+P ), (3)

be the distribution conditional on Y cf
1:T+P and X1:T+P .

The new causal estimand is defined as the one-sided Kolmogorov–Smirnov (KS)
distance between the two distributions for i-th store, which can be expressed as

sup
x

[
F(

T+P∑
t=T+1

μit ≤ x
∣∣yobsi,1:T , y

cf
i,T+1:T+P , xi,1:T+P )

−F(

T+P∑
t=T+1

μit ≤ x
∣∣yobsi,1:T+P , xi,1:T+P )

]
,

where F(·) stands for the corresponding cumulative distribution function. In our setting,
since test stores are spatially correlated, the causal effect of the i-th test store is defined
as

sup
x

[
F(

T+P∑
t=T+1

μit ≤ x
∣∣Y obs

1:T ,Y
cf
T+1:T+P ,X1:T+P )

−F(

T+P∑
t=T+1

μit ≤ x
∣∣Y obs

1:T+P ,X1:T+P )
]
.

(4)

A larger value of the one-sided KS distance implies a potentially larger scale of causal
impact. An impact is declared to be significant if the one-sided KS distance is larger
than its corresponding threshold. The threshold is calculated based on several datasets
that are randomly drawn from the posterior predictive distribution of (3) (See Section 5
for more details.)

We would like to mention that although the proposed method is applied to a mul-
tivariate time series model in this paper, even in the context of a univariate model, the
idea of comparing posterior distributions of latent variables appears to be new. Gen-
erally speaking, this idea can be adopted into many other applications with different
Bayesian models as long as these models are described in terms of latent variables.



8 Bayesian Multivariate Time Series Causal Inference

3 Model and prior

3.1 Model

We consider a multivariate structural time series model given by (to simplify the nota-
tion, we use Y t instead of Y obs

t in the current and the following sections),

Y t = μt + δt +Xtβ + εt, (5)

where Y t, μt, δt and εt are n × 1 vectors standing for the response variable, trend,
seasonality and measurement error respectively. n is the number of test stores, Xt is
an n× p matrix containing data from p control stores at time t and β is a sparse p× 1
vector of regression coefficients, where p can be very large. We allow each response in
Y t to have different number of control stores, and write

Xt =

⎛⎜⎜⎜⎝
x11,t · · · x1p1,t 0 · · · 0 · · · 0 · · · 0
0 · · · 0 x21,t · · · x2p2,t · · · 0 · · · 0

. . .
. . .

. . .

0 · · · 0 0 · · · 0 · · · xn1,t · · · xnpn,t,

⎞⎟⎟⎟⎠ ,

with
∑n

i=1 pi = p. Let γ = (γ1, . . . , γp) be the indicator variable such that γj = 1 if and
only if βj �= 0. εt is an independent and identically distributed (i.i.d) error process.

The trend of the time series is modeled as

μt+1 = μt + τ t + ut, (6)

where τ t is viewed as a term replacing the slope of the linear trend at time t to allow
for a general trend, and ut is an i.i.d. error process. The process τ t can be modeled as
a stationary VAR(1) process, driven by the equation

τ t+1 = D +Φ(τ t −D) + vt, (7)

where D is an n× 1 vector and Φ is an n× n matrix of the coefficients of the VAR(1)
process with eigenvalues having modulus less than 1. If no stationarity restriction is
imposed on τ t, we model it by

τ t+1 = τ t + vt, (8)

where vt is an i.i.d. error process.

The seasonal component δt in (5) is assumed to follow the evolution equation

δt+1 = −
S−2∑
j=0

δt−j +wt, (9)

where S is the total length of a cycle and wt is an i.i.d. error process. For example,
for an annual dataset, S = 12 represents the monthly effect while S = 4 represents the
quarterly effect. This equation ensures that the summation of S time periods of each
variable has expectation zero.
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We assume that the residuals of (5)–(9) are mutually independent and time invariant,
and are distributed as multivariate normals with mean 0n×1 and covariance matrices
Σ, Σu, Σv and Σw respectively.

By denoting parameters αt = (μ′
t, τ

′
t, δ

′
t, · · · , δ′t−S+2)

′ and ηt = (u′
t,v

′
t,w

′
t)

′, the
model can be represented as a linear Gaussian state-space model

Y t = zαt +Xtβ + εt, (10)

αt+1 = c+ Tαt +Rηt, (11)

where z, c, T and R can be rearranged accordingly based on the model (5)–(9); and
εt ∼ N (0,Σ), η ∼ N (0,Q), Q = bdiag(Σu,Σv,Σw) are mutually independent; here
and below “bdiag” refers to a block-diagonal matrix with entries as specified. If τ t is a
nonstationary process in (7), then we set c = 0.

3.2 Prior

We will now discuss the priors for the parameters in the model. We separate the pa-
rameters into four blocks: the time varying parameter αt, the stationarity constraint
parameters D and Φ, the covariance matrices of the error terms Σ, Σu, Σv and Σw,
and the sparse regression parameter β.

For the time varying parameter, we give a prior α1 ∼ N (a,P ) with a is the mean
and P is the covariance matrix. For the covariance matrices of the errors, we choose
priors as follows:

Σ−1 ∼ WG(ν,H), Σ−1
u ∼ WG(ν, k

2
1(n+ 1)H),

Σ−1
v ∼ WG(ν, k

2
2(n+ 1)H), Σ−1

w ∼ WG(ν, k
2
3(n+ 1)H),

whereWG stands for a G-Wishart distribution. For the stationarity constraint parameter
D, we choose a conjugate prior D ∼ N (0, In).

Putting a prior on the stationarity constraint matrix of a univariate AR(1) process
is straightfoward. However, for the VAR(1) process in (7), the stationarity matrix Φ
has to meet the Schur-stability constraint (Roy et al., 2016), that is, it needs to satisfy
|λj(Φ)| < 1, j = 1, . . . , n, where λj stands for the jth eigenvalue. Thus the parameter
space of Φ is given by

Sn = {Φ ∈ R
n×n : |λj(Φ)| < 1, j = 1, . . . , n}. (12)

Clearly simply putting a conjugate matrix-normal prior on Φ does not guarantee that
all the sample draws are Schur-stable. We follow Roy et al. (2016)’s method of putting
priors on Φ through a representation as given below.

We first denote τ̃ t = τ t −D, then the Yule-Walker equation for τ̃ t is

U = ΦUΦ′ +Σv, (13)

where U = E(τ̃ tτ̃
′
t) is a symmetric matrix. Letting f(Φ,U) = U−ΦUΦ′, we have that

f(Φ,U) is a positive definite matrix if and only if Φ ∈ Sn (Stein, 1952). Furthermore,
we have the following proposition:
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Proposition 1. [Roy et al. (2016)] Given a positive definite matrix M , there exists
a positive matrix U , and a square matrix Φ ∈ Sn such that f(Φ,U) = M if and

only if U ≥ M and Φ = (U −M)1/2 OU−1/2 for an orthogonal matrix O with rank

r = rank(U −M), where (U −M)1/2 and U−1/2 are full column rank square root of
matrices (U −M) and U−1.

In view of Proposition 1, given Φ ∈ Sn and an arbitrary value of M , the solution
for U in (13) is given by

vec(U) = (In2 −Φ⊗Φ)−1vec(M). (14)

Letting V = U −M , we have Φ = V 1/2OU−1/2, where V is a positive definite matrix,
and O is an orthogonal matrix. The matrix V can be represented by the Cholesky
decomposition V = LΛL′, where L is a lower triangular matrix and Λ is a diagonal
matrix with positive entries. Thus the number of unknown parameters in V reduces to
n(n− 1)/2+n. The parameterO can be decomposed by using the Cayley representation

O = Eι · [(In −G)(In +G)−1]2 (15)

with Eι = In − 2ιe1e
′
1, ι ∈ {0, 1} and e1 = (1, 0, . . . , 0)′, where G is a skew-symmetric

matrix. Thus the number of parameters in O is n(n− 1)/2 + 1. By taking the log-
transform, the parameters in Λ can be made free of restrictions. Therefore there are
n2 unrestricted parameters in Φ plus one binary parameter. We put normal priors on
the n2 unrestricted parameters: the lower triangular elements of L, the log-transformed
diagonal elements of Λ and the lower triangular elements of G. For convenience, we
choose the same normal prior for those parameters and choose a binomial prior for the
binary parameter ι.

For the sparse regression parameter β, we chose a spike-and-slab prior with β ∼
N (0,Aγ), Aγ = diag(a1, . . . , ap) with ai = v0(1 − γi) + v1γi, where 0 ≤ v0 < v1,
diag refers to a diagonal matrix with entries as specified; π(γ|θ) = θ|γ|(1− θ)p−|γ| with
|γ| =

∑p
i=1 γi; θ ∼ Beta(ζ1, ζ2).

4 Posterior computation

We propose a two-stage estimation algorithm to estimate the parameters. In the first
stage, we adopt a fast variable selection method to obtain a point estimator for β. In
the second stage, we plug-in its estimated value and sample the remaining parameters
using an MCMC algorithm.

To conduct the variable selection on β, a popular choice would be using a SSVS
method (George and McCulloch, 1993). The algorithm searches for 2p possible combi-
nations of βi in β using Gibbs sampling under γ = 0 and γ = 1, i = 1, . . . , p. In the
multivariate setting, this method is computationally very challenging when p is large.
An alternative way is to use the EMVS method (Ročková and George, 2014). This
method uses the EM algorithm to maximize the posterior of β and thus obtain the
estimated model. It is computationally much faster than the SSVS method. Although
SSVS gives a fully Bayesian method quantifying the uncertainty of variable selection
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through posterior distributions, the approach is not scalable for our application which
involves a large sized data. Since quantifying uncertainty of variable selection is not an
essential goal, as variable selection is only an auxiliary tool here to aid inference, the
faster EMVS algorithm seems to be a pragmatic method to use in our application.

After obtaining β̂, we plug it into (10)–(11) and deduct Xtβ̂ from Y t. We denote

the new data as Ỹ t, and will work with the following model:

Ỹ t = zαt + εt,

αt+1 = c+ Tαt +Rηt.
(16)

In the MCMC step, we sample the parameters in the Model (16) from their corre-
sponding posteriors. Those parameters include: the time-varying parameters α1:T , the
stationarity constraint parameters D and Φ, the covariance matrices of the residuals
Σ−1, Σ−1

u , Σ−1
v , and Σ−1

w .

The details of the algorithm are presented in the supplementary material (Ning
et al., 2019a).

The proposed two-stage estimation algorithm is thus summarized as follows:

Stage 1: EMVS step. Choose initial values for β(0), a
∗(0)
1 and P

∗(0)
1 using the revised

EMVS algorithm to find the optimized value for β.

Stage 2: MCMC step. Given Ỹ t, we sample parameters using MCMC with the
following steps:

(a) Generate αt using the Kalman filter and simulation smoother method.

(b) Generate Φ using the Metropolis-Hastings algorithm.

(c) Generate D.

(d) Generate covariance matrices from their respective G-Wishart posterior den-
sities.

(e) Go to Step (a) and repeat until the chain converges.

Skip Step (b) and (c) if no stationarity restriction is imposed on τ t.

5 A new method to infer causality

In this section, we will introduce our new method to infer causality (in short, “the new
method”) along a commonly used method.

Recall the treatment effects of the commonly used method is defined in (1). Since∑T+P
t=T+1 Y

cf
t is an unobserved quantity, we replace it by its posterior samples from

p(
∑T+P

t=T+1 Y
cf
t |Y obs

1:T ,X1:T+P ).

The commonly used method may fail to detect even for a moderately sized impact
for two reasons. First, the prediction intervals increase linearly as the time lag increases.
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Secondly, the trends are the only latent variables would give a response to an impact,
including the random noise and the seasonality components would inflate the uncer-
tainty of the estimated effect. For the data have a low signal-to-noise ratio, this method
is which even harder to detect causal impacts.

We thus propose a new method by comparing only the posterior distributions of the
latent trend in the model given the observations and the data from counterfactuals. The
new method consists the following five steps:

Step 1: Applying the two-stage algorithm to obtain posterior samples for parameters
in the model using the data from the period without causal impacts.

Step 2: Based on those posterior samples, obtaining sample draws of Y cf
T+1:T+P

from its predictive posterior distribution p(Y cf
T+1:T+P |Y obs

1:T ,X1:T+P ).

Step 3: Generating k different datasets from counterfactual potential outcomes (in
short, “counterfactual datasets”) from the predictive posterior distribution, for the j-th

dataset, j ∈ {1, . . . , k}, denoted by Y
cf(j)
T+1:T+P . Then fitting each Y

cf(j)
T+1:T+P into the

model to obtain sample draws of the trend from its posterior distribution, which is

shown in (3) (here, we replace Y cf
T+1:T+P with Y

cf(j)
T+1:T+P ). Also, fitting the observed

data Y obs
1:T+P into the model and sampling from (2).

Step 4: Using the one-sided Kolmogorov–Smirnov (KS) distance to quantify the
difference between the posterior distributions of the trend given by the observed data
and the counterfactual datasets. The posterior distribution of the trend given by the
counterfactual datasets is obtained by stacking the sample draws estimated from all
the k simulated datasets. Then calculating the KS distance between the two posterior
distributions for each store as follows:

sup
x

[1
k

k∑
j=1

(
F(

T+P∑
t=T+1

μit ≤ x
∣∣Y obs

1:T ,Y
cf(j)
T+1:T+P ,X1:T+P )

)
−F(

T+P∑
t=T+1

μit ≤ x
∣∣Y obs

1:T+P ,X1:T+P )
]
,

(17)

where i = 1, . . . , n, and F(·) stands for the empirical distribution function of the ob-
tained MCMC samples.

Step 5: Calculating the k × (k − 1) pairwise one-sided KS distances between the
posterior distributions of the trends given by the k simulated counterfactual datasets,
that is to calculate the following expression

sup
x

[
F(

T+P∑
t=T+1

μit ≤ x
∣∣Y obs

1:T ,Y
cf(j)
T+1:T+P ,X1:T+P )

−F(

T+P∑
t=T+1

μit ≤ x
∣∣Y obs

1:T ,Y
cf(j′)
T+1:T+P ,X1:T+P )

]
,

(18)

where j, j′ = 1, . . . , k, j �= j′. Then, for each i, choosing the 95% upper percentile
among those distances as a threshold to decide whether the KS distance calculated
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from (17) is significant or not. If the KS distance is smaller than this threshold, then
the corresponding causal impact is declared not significant.

The use of a threshold is necessary, since the two posterior distributions of the trend
obtained under observed data and the data from the counterfactual are not exactly equal
even when there is no causal impact. Our method automatically selects a data-driven
threshold through a limited repeated sampling as in multiple imputations.

So far we described the commonly used method and the new method in the setting
where the period without a causal impact comes before that with the impact. However,
the new method can be extended to allow datasets in more general situations when: 1)
there are missing data from the period without causal impact; 2) the period without
causal impact comes after the period with a impact; 3) there are more than one periods
without causal impact, both before and after the period with a impact. This is because
the KFBS method is flexible to impute missing values at any positions in a times series
dataset.

6 Simulation study

In this section, we conduct a simulation study to compare the two different methods
introduced in the last section. To keep the analysis simple, we only consider the setting
that the period with causal impact follows that without the impact. We also conduct
convergence diagnostics for MCMC chains and a sensitivity analysis for the new method,
the results are shown in Section 4 of the supplementary material (Ning et al., 2019a).

6.1 Data generation and Bayesian estimation

We simulate five spatially correlated datasets, and assume the precision matrices in the
model have the adjacency matrix as follows:⎛⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

⎞⎟⎟⎟⎟⎠ , (19)

that is, we assume variables align in a line with each one only correlated with its nearest
neighbors. We generate daily time series for an arbitrary date range from January 1,
2016 to April 9, 2016, with a perturbation beginning on March 21, 2016. We specify
dates in the simulation to facilitate the description of the intervention period. We first
generate five multivariate datasets for test stores with varying levels of impact and label
them as Datasets 1–5.

For each Dataset i, i = 1, . . . , 5, the trend is generated from μit ∼ N (0.8μi,t−1, 0.1
2)

with μi0 = 1. The weekly components are generated from two sinusoids of the same
frequency 7 as follows:

δit = 0.1× cos(2πt/7) + 0.1× sin(2πt/7). (20)



14 Bayesian Multivariate Time Series Causal Inference

Additional datasets for 10 control stores are generated, each from an AR(1) process
with coefficient 0.6 and standard error 1. We let the first and second datasets to have
regression coefficients β1 = 1, β2 = 2 and let the rest to be 0. We then generate the resid-
uals εt in the observation equation from the multivariate normal distribution N (0,Σ)
with precision matrix having sparsity structure given by (19). We set the diagonal el-
ements for Σ−1 to 10, and its non-zero off-diagonal elements to 5. The simulated data
for test stores are the sum of the simulated values of μt, δt, Xtβ and εt. The causal
impacts are generated as follows: for each Dataset i, i = 1, . . . , 5, we add an impact

scale (i−1)
2 × (log 1, . . . , log 20) from March 21, 2016 to April 9, 2016. Clearly no causal

impact is added in Dataset 1.

We impose the graphical structure with adjacency matrix in (19) in both observed
and hidden processes in the model and then apply the two-stage algorithm to estimate
parameters. In Stage 1, we apply the revised EMVS algorithm. We choose the initial

values β(0) and a
∗(0)
1 to be the zero vectors and the first 15×15 elements of P

∗(0)
1 , which

correspond to the covariances of the trend, local trend and seasonality components, to

be a diagonal matrix. The remaining elements in P
∗(0)
1 are set to 0. We select 20 equally

spaced relatively small values for v0 from 10−6 to 0.02 and a relatively larger value for
v1, 10. For the prior of θ, we set ζ1 = ζ2 = 1. The maximum number of iterations of
the EMVS algorithm is chosen to be 50. We calculate the threshold of non-zero value
of βi from the inequality: p(γi = 1|βi,Y

∗
t ,X

∗
t ) > 0.5 (See the detailed discussions in

Ročková and George, 2014). Then the threshold can be expressed as

|βth
i | ≥

√
log(v0/v1) + 2 log(θ̂/(1− θ̂))

v−1
1 − v−1

0

,

where θ̂ is the maximized value obtained from the EMVS algorithm. Ročková and
George (2014) also suggested using a deterministic annealing variant of the EMVS
(DAEMVS) algorithm which maximizes

E(α∗
1:T ,γ)|·

[1
s
log π(α∗

1:T ,β,γ, θ,Φ,Σ,Q|Y ∗
t ,X

∗
t )

s | β(k), θ(k),Φ(k),Σ(k),Q(k)
]
, (21)

where 0 ≤ s ≤ 1. The parameter 1/s is known as a temperature function (Ueda and
Nakano, 1998). When the temperature is higher, that is when s → 0, the DAEMVS
algorithm has a higher chance to find a global mode and thus reduces the chance of
getting trapped at a local maximum.

Figure 2 compares the results for using EMVS and DAEMVS with s = 0.1 algo-
rithms. We plot β̂ and their thresholds based on 20 different values of v0 from 10−6

to 0.02. From the plot, the estimated values for β using both EMVS and DAEMVS
methods are close to their true values.

The true zero coefficients are estimated to be very close to 0. However, we observe
that the values of βth

i is larger by using the EMVS method compared to the DAEMVS

method. This is because in the region where v0 is less than 0.005, the θ̂ estimated from
EMVS is very close to 0, thus the negative value of log(θ̂/(1 − θ̂)) is very large and
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Figure 2: EMVS (left) and DAEMVS (with s = 0.1) (right) estimation of β based on the
simulated datasets. The dark blue lines are the parameters that have simulated values 2;
the light blue lines are the parameters that have simulated values 1 and the black lines
are the parameters that have simulated values 0. The red lines are the calculated βth

i

values, within the two red lines, the parameters should be considered as zero parameters.

the threshold becomes larger. Based on the simulation results, we use DAEMVS with
s = 0.1 throughout the rest of the paper.

The DAEMVS gives a smaller value of βth
i , yet the thresholds can distinguish the

true zero and non-zero coefficients in this case. Nevertheless it may miss a non-zero
coefficient if the coefficient is within the thresholds. In practice, since our goal is to
identify significant control variables and use them to build counterfactuals for a causal
inference, we may choose to include more variables than the threshold suggests provided
that the total number of included variables is still manageable.

Recall that in the Stage 1, we used a conjugate prior for vec(Φ) instead of the
originally proposed prior described in Section 1.3. Here, we want to make sure the
change of prior would not affect the results of β̂ too much. We conduct the analysis by
choosing two different values of the covariance matrix of the prior: I5 and 0.01×I5. We
found the estimates β̂s are almost identical to the estimated values shown in Figure 2.
We also consider using other two models: one ignores the stationarity constraint for τ t

(henceforth the “nonstationary model”); another ignores the time dependency of the
model (henceforth the “misspecified model”). To be more explicit, for the nonstaionary
model, we let the local linear trend follow (8). The misspecified model is given by
Y ∗

t = X∗
tβ+ ςt, with ςts are i.i.d random errors with multivariate normally distributed

and mean 0 by ignoring their dependency. We conduct DAEMVS with s = 0.1 for both
of the two models. In the nonstationary model, we choose a diffuse prior for α∗

1 and

change the covariance corresponding to the local linear trend in P
∗(0)
1 to be 106 × I5.

In the misspecified model, the M-step can be simplified to only updates for β, θ and
the covariance matrix of ςt. We plot the results into Figure 3. Comparing the results
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Figure 3: DAEMVS (with s = 0.1) estimation of β based on the simulated datasets using
the nonstationary model (left) and the misspecified model (right). The dark blue lines
are the parameters that have simulated values 2; the light blue lines are the parameters
that have simulated values 1 and the black lines are the parameters that have simulated
values 0. The red lines are the calculated βth

i values, within the two red lines, the
parameters should be considered as zero.

in Figure 3 with Figure 2, there are not much differences among the results obtained
using the three different models for estimating β.

In Stage 2, we plug-in β̂ and calculate Ỹ t in (16). We choose the prior for the rest
of parameters as follows: we let α1 ∼ N (0, I). If τ t is a nonstationarity process, the
initial condition is considered as a diffuse random variable with large variance (Durbin
and Koopman, 2002). Then we let the covariance matrix of τ t to be 106 × I5. We let
ν = 1, k1 = k2 = k3 = 0.1. We choose H = I5 and the priors for 25 parameters

decomposed from Φ to be N (0,
√
5
2
), and let ι ∼ Bernoulli(0.5). We run total 10,000

MCMC iterations with the first 2,000 draws as burn-in. An MCMC convergence diag-
nostic and a sensitive analysis of the model are conducted, we include their results in
the supplementary file.

6.2 Performance of the commonly used causal inference method

In this section, we study the performance of the commonly used method. The causal
effect is estimated by taking the difference between observed data during causal period
and the potential outcomes of counterfactuals during that period. In Stage 1, we use
the DAEMVS (s = 0.1) algorithm to estimate β̂ for the model (10)–(11). A stationarity
constraint is added on the local linear trend τ t. In Stage 2, we consider two different
settings for τ t: with and without adding the stationarity constraint. We choose Dataset
4 as an example and plot accuracy of the model based on the two different settings in
Figure 4. There are four subplots: the left two subplots are the results for the model
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Figure 4: Plot of the causal impact in Dataset 4 using models with a stationary and a
nonstationary local linear trend. (a) and (c) are the plots of estimation (before March 21,
2016) and prediction (after March 21, 2016) of Dataset 4 without stationarity constraint
(left) and with stationarity constraint (right). The gray line is the simulated dataset, the
blue line is the estimated posterior median of the dataset using the model, the dashed
blue line is the corresponding 95% credible and prediction intervals. (b) and (d) are the
plots of estimated causal impact by taking the difference between the observed data and
Bayesian estimates using the model with a nonstationary local linear trend (left) and
the model with a stationary local linear trend (right). The black line is the simulated
true impact, the blue line is the estimated median of the impact, the dashed blue lines
are the corresponding 95% credible and prediction intervals.

with a nonstationary local linear trend and the right two subplots are the results for the

model with a stationary local linear trend. Before the period with a causal impact, which

is March, 21, 2016, the estimated posterior medians and 95% credible intervals obtained

from the two models are close (see plots (b) and (d) in Figure 4); but their prediction

intervals during the period with a causal impact are quite different. In the model with

a nonstationary local linear trend, the prediction intervals are much wider and expand

more rapidly than those resulting from the model with a stationary local linear trend.

In the former case, the observed data during the campaign are fully contained inside the

prediction intervals and thus failed to detect a causal impact. However, the model with
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Simulated impact Nonstationary Stationary

Dataset 1 0.00 0.00 [−4.419, 4.425] 0.29 [−1.440, 1.996]
Dataset 2 1.06 0.64 [−3.989, 5.298] 1.07 [−0.648, 2.780]
Dataset 3 2.12 1.22 [−3.758, 5.965] 2.27 [0.399, 4.014]
Dataset 4 3.18 2.83 [−1.793, 7.575] 3.16 [1.500, 4.862]
Dataset 5 4.23 4.25 [−0.249, 8.771] 4.25 [2.520, 5.904]

Table 1: Posterior medians and 95% credible intervals of average causal impacts for
simulated datasets estimated using the multivariate models with a stationary and a
nonstationary local linear trend.

a stationary local linear trend gives only moderately increasing prediction intervals and
thus can detect the causal impact. Plots (b) and (d) shown in the bottom of Figure 4
are the estimated causal impact in each model for Dataset 4 calculated by taking the
difference between observed values and counterfacutal potential outcomes. In each plot,
the estimated causal impact medians are able to capture the shape of the simulated
causal impact. However, the prediction intervals in plot (b) contain the value 0 and
thus negate the impact. The shorter prediction intervals in plot (d) do not contain the
value 0, and thus indicate the existence of a impact.

To give an overall picture of the model fitting for the five simulated datasets, we sum-
marize the posterior medians and their 95% credible intervals of the estimated causal
impact for all the datasets in Table 1. In the model with a nonstationary local linear
trend, no impacts are detected for all the five datasets since their corresponding predic-
tion intervals all contain the value 0. In the model with a stationary local linear trend
on τ t, the impacts are successfully detected for the last three datasets. For Dataset 2,
it has a weaker impact. Its impact is not detected even after imposing the stationarity
constraint. Also, when the stationarity constraint is imposed, including the intercept
D in (7) helps give a robust long run prediction. Thus, from Table 1, we find that the
estimated medians using the model with a stationary local linear trend are closer to the
true impact compared with that obtained from using the model with a nonstationary
local linear trend.

In the setting where the sales in the test stores are spatially correlated, the use of
the multivariate model with a stationary local linear trend is necessary for obtaining
more accurate estimates for causal effects. We compare the results with a univariate
model which ignores the correlation between the five simulated datasets. We fit the
five datasets independently into that model. The model is the univariate version of
the model (10)–(11). In the univariate model, the errors εt, ut, vt and wt become
scalars. We denote σ2, σ2

u, σ
2
v and σ2

w as their corresponding variances. We choose their
priors as σ−2 ∼ Gamma( 0.12 , 0.1×SS

2 ), σ−2
u , σ−2

v , σ−2
w ∼ Gamma(0.01, 0.01 × SS), where

SS =
∑T

t=1(yt − ȳ)2/(T − 1) and ȳ =
∑T

t=1 yt/T . The parameters D and Φ in (7) also
become scalars and to be denoted by d and φ respectively. We give them the priors
d ∼ N (0, 0.12) and φ ∼ N (0, 0.12)1(−1,1).

In order to make the comparison between the multivariate model and the univariate
model meaningful, we plug-in the same β̂ obtained from Stage 1 for both models. We
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Simulated impact Stationary (univariate)

Dataset 1 0.00 0.17 [−2.197, 2.472]
Dataset 2 1.06 1.03 [−1.365, 3.473]
Dataset 3 2.12 2.16 [−0.370, 4.476]
Dataset 4 3.18 3.20 [0.821, 5.748]
Dataset 5 4.23 4.08 [1.564, 6.489]

Table 2: Posterior medians and 95% credible intervals of average causal impacts for
simulated datasets estimated using the univariate model.

conduct an MCMC algorithm for the five datasets separately using the univariate model
by sequentially sampling draws from the corresponding posterior distributions of α1:T ,
d, φ, σ2, σ2

u, σ
2
v and σ2

w. We run the MCMC algorithm for 10,000 iterations and treat the
first 2,000 as burn-in. The estimated causal impacts are shown in Table 2. By comparing
the results with the results in Table 1, the univariate model produces wider credible
intervals for all of datasets even though their posterior medians are close to the truth.
Thus the multivariate model with a stationary local linear trend is more accurate for
detecting a causal impact.

We conduct additional independent 10 simulation studies by generating datasets
using the same scheme which described above, but using different random number gen-
erators from the software. We conduct the same analysis for the 10 simulated studies
using the multivariate model with stationarity constraints. All of these studies show
that the commonly used method failed to detect causal effect for the second dataset,
which is the one with the smallest amount of simulated causal impact.

6.3 Performance of the new method to infer causality

In this section, we study the performance of the new method. We use the same simulated
data in Section 6.1. We calculate the one-sided KS distance in (17) and the threshold
in (18) for each i = 1, . . . , n. We also calculate the one-sided KS distances

sup
x

[1
k

k∑
j=1

(
F(

T+m∑
t=T+1

μit ≤ x|Y obs
1:T ,Y

cf(j)
T+1:T+m,X1:T+m)

)
−F(

T+m∑
t=T+1

μit ≤ x|Y obs
1:T+m,X1:T+m)

]
and the corresponding thresholds for m = 1 to m = P . This allows to see how the KS
distances grow over time.

We plot the results in Figure 5. There are five subplots in that figure with each
represents one simulated dataset. For each subplot, the red line represents the one-
sided KS distances between posteriors from a test store and its counterfactuals, and the
lightblue line represents its corresponding thresholds. The threshold is calculated based
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Figure 5: Results of applying the new method to detect causal impacts in Dataset 1,
. . . , Dataset 5 using the multivariate model with a stationary local linear trend during
the causal period from March, 22, 2016 to April, 9, 2016. In each subplot, the red line
gives the one-sided KS distances between two posterior distributions with one is given
the data of counterfactuals; the light blue line gives the corresponding thresholds.

on k = 30 simulated counterfactual datasets. In the plot, Dataset 1 is the only one
with the one-sided KS distances completely below the thresholds and it is the dataset
which does not receive any impacts. This suggests that our method has successfully
distinguished between impact and no impact in these datasets. For Dataset 2, the impact
at the early period is small, thus we observe the causal impact in the first three predicting
periods are not significant; however, the new method can detect the impact after the
fourth period.

We also summarized the results in Table 3. Compared with the results from the
commonly used method (see Table 1), the new method shows a significant improvement
in detecting causal impacts. From Dataset 3 to Dataset 5, the one-sided KS distances
are all above their corresponding thresholds. Also, as the impact grows stronger, we
observe that the distances becomes larger. The thresholds too increase along the time,
since the predicting intervals for the trends become wider.

To check the performance of the new method, we conduct 10 more simulation studies
using the data generated from the same model. Although the values of the one-sided
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Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

March, 22 KS distance 0.005 0.033 0.103 0.137 0.277
(1st day) Threshold 0.118 0.083 0.112 0.110 0.120

March, 31 KS distance 0.143 0.402 0.612 0.884 0.989
(10th day) Threshold 0.313 0.192 0.256 0.299 0.369

April, 9 KS distance 0.520 0.763 0.928 0.999 1.000
(20th day) Threshold 0.715 0.349 0.354 0.409 0.636

Table 3: Results of the one-sided KS distances and thresholds obtained by applying the
new method to detect causal impacts in Dataset 1, . . . , Dataset 5 using the multivariate
model with a stationary local linear trend. We only present the results at the dates
March 22, 2016, March 31, 2016 and April. 9, 2016 which correspond to the 1st day,
10th day and 20th day during the causal period.

KS distances and thresholds are not identical for each simulation, since the model is
highly flexible and the estimated trend is sensitive to local changes of a dataset, the
new method successfully detects the causal impacts in Dataset 2, . . . , Dataset 5.

We applied the new method to the univariate model, which is described in Sec-
tion 6.2, using the same simulated dataset. The graphical and tabular representations of
the results are presented in Section 3 of the supplementary material (Ning et al., 2019a).
We found that by comparing with the results obtained from the multivariate model (see
Figure 5), the thresholds are much larger among all the datasets. Recall that from Table
2, the credible intervals estimated using the commonly used method are wider. Thus
when we randomly draw samples from a counterfactual with a larger variance, the pos-
terior distributions for their trend are more apart. As a result, the pairwise one-sided
KS distances between the posterior distributions of the trends are larger. Even though
the thresholds are larger when using the univariate model, unlike the results obtained by
using the commonly used method, the new method can still detect the causal impact for
almost all the datasets which received an impact successfully, except for the very weak
impacts in Dataset 2 during the first three periods and Dataset 3 during the first period.

7 Application to a real dataset

In this section, we present the results of a real data analysis for measuring the causal
impact of an online advertising campaign (run by MaxPoint) for a consumer product
at a large national retail chain.

Due to commercial confidentiality, we do not show full details of the results, but
the following description explains how our method works in this real dataset. MaxPoint
targets this campaign at 627 test stores and 318 control stores spread out across the
country and collects weekly data throughout the campaign. We choose all the control
stores in the corresponding state for each dataset. If a state does not at all have control
stores, we remove such data from the analysis. In Stage 1, we use the DAEMVS (with
s = 0.1) algorithm to select the control stores for each test store. If for a test store, all
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the potential control stores are eliminated by the DAEMVS algorithm we also eliminate
that store from the causal analysis, because without building a counterfactual, the
causal inference cannot be conducted. After making the selection, we conduct the causal
analysis on 323 test stores in total. For each dataset, there are 46 weekly observations
in total with the last 10 observations occurring in the causal period. Since the length
before the causal period is only 35 per dataset, we have to separate these 323 stores into
smaller datasets and fit the model separately on them. As large national chain retailers
organize promotional and operations activity differently in each state, we treat stores in
different states as independent. State-wise splitting typically keeps the number of stores
less than 15. If one state has more than 15 stores, we split further into subregions to
meet the requirement. We further assume that the stores in two different subregions
behave independently. The regions are separated based on city boundaries. Within each
region, we assume that stores are connected with each other. This means that the
inverse covariance matrix (equivalently, the covariance matrix) follows a block-diagonal
structure with at most 15 nodes in a block.

We assume the three causal assumptions in Section 2 hold. The following table
summarizes the number of stores with significant causal effects from the advertising
campaign. From the table we found that the number of stores are increasing from the
first week to the last week. During the first five weeks, the number of stores that received
causal impact increased rapidly compared with that in the last five weeks.

1st week 2nd week 3rd week 4th week 5th week
Number of stores 23 44 55 62 73

6th week 7th week 8th week 9th week 10th week
Number of stores 72 77 78 82 84

Table 4: Number of test stores that received significant causal impacts for each week of
running the advertisement campaign by using the multivariate model with a stationary
local linear trend.

Not only the number of impacted stores increased during the advertising campaign
period (shown in Table 4), the magnitudes of the impacts in those stores also increased.
In Figure 6, we plot the estimated one-sided KS distances for stores along with their
locations at Weeks 2, 5 and 10. In each figure, we only plot the stores with significant
causal effects. The red dots represent the stores with the one-sided KS distances larger
than their corresponding thresholds, which suggests that those stores received significant
causal effects. The grey dots represent the stores that do not show significant causal
effects. We find that the magnitudes of the impacts for most of the stores have a larger
increase from the first five weeks compared with the last five weeks. Comparing the
plots of the fifth week and the tenth week, we find that only a few stores in California,
South Dakota, Ohio and Texas got increased causal effects.

We also conduct an analysis by assuming that the test stores are independent and
thus ignoring their spatial correlation. Table 5 lists the number of stores that received
significant causal effects. The numbers are smaller than those obtained using the mul-
tivariate model. This suggests most of the impacts are weak and the spatial correlation
between sales in different stores help detect the weaker impacts.
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Figure 6: Plot of the causal impacts at test stores at end of the second week (a), the
fifth week (b) and the last week (c) for an advertising campaign of a consumer product
at a large national retail chain. The impacts below their thresholds are set to zero. The
United States map is produced using Google Maps, 2017.

1st week 2nd week 3rd week 4th week 5th week
Number of stores 25 19 22 23 18

6th week 7th week 8th week 9th week 10th week
Number of stores 17 15 15 13 14

Table 5: Number of test stores that received significant causal impacts for each week of
running the advertisement campaign by using the univariate model.

8 Conclusion and discussion

In this paper, we proposed a novel causal inference method which compares the pos-
terior distributions of the latent trend conditional on two different sets of data: one is
the observed data which contain a causal effect; the other one is the data from a syn-
thetic control. We calculated the one-sided KS test statistics between the two posterior
distributions. A threshold was used to decide whether a causal impact is significant or
not. In the simulation study, we showed that our method can detect a smaller sized
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causal impact more efficiently compared with the commonly used method even when
the model is slightly misspecified. The new causal inference method is not restricted to
the specific structural time series model used in this paper and can be applied to many
other models in different applications.

We used a multivariate structural time series model to estimate the causal impact
of a stimulus on subjects such as an advertising campaign for each individual store.
Sales in those stores are spatially correlated. A Bayesian analysis was used to estimate
parameters in this model. We imposed sparsity on the precision matrix based on the
distance between each pair of stores. The sparsity was imposed through a G-Wishart
prior, where the graph G can be either decomposable or non-decomposable. We restricted
the hidden process τ t to be stationary in order to stabilize the prediction intervals. To
sample its time-varying variables, we used the Kalman filter and simulation smoother
algorithm. This algorithm can be used to impute missing values inside the MCMC loops.

We used the revised EMVS algorithm to select control stores. We also discussed
the advantage of using the DAEMVS algorithm which is a modified version of the
EMVS algorithm. Compared to the EMVS algorithm, the DAEMVS algorithm reduces
the chance of getting trapped at a local maximum. Both the EMVS and DAEMVS
algorithms are computationally much faster than the sampling based method like SSVS.
Since the EMVS algorithms cannot be incorporated into MCMC loops, we proposed a
two-stage algorithm to estimate parameters. In Stage 1, we used the DAEMVS to obtain
β̂; in Stage 2, we plugged-in β̂ and used an MCMC algorithm to obtain posterior
distributions of the remaining parameters.

We compared the multivariate model with the univariate model which assumes in-
dependence between responses based on simulated datasets. The results indicate that
the univariate model gives wider credible intervals (if using the commonly used method)
and larger threshold (if using the new method) than the multivariate model. Thus in-
corporating of the spatial relationships between test stores is beneficial.

Finally, we analyzed a real dataset on sales data of products distributed through
brick and mortar retail stores for an advertising campaign run by MaxPoint. Even
though, due to commercial confidentiality, we did not provide the full details of the
results, the summarization tables of the number of stores that received significant impact
suggests the effectiveness of using the new causal inference method.

Supplementary Material

Supplement to “Bayesian method for causal inference in spatially-correlated multivari-
ate time series” (DOI: 10.1214/18-BA1102SUPPA; .pdf). This supplementary material
contains five sections. Sections 1 and 2 provide the details on deriving the two-stage
algorithm and the revised EMVS algorithm. Section 3 provides graphical and tabular
representations of the results of the new method to infer causality using the univariate
model. Section 4 provides model checking results. Section 5 describes the Kalman filter
and backward smoothing algorithm.

https://doi.org/10.1214/18-BA1102SUPPA
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R code for “Bayesian method for causal inference in spatially-correlated multivariate
time series” (DOI: 10.1214/18-BA1102SUPPB; .zip). This supplementary material in-
cludes the original Bayesian multivariate time series model code written in R (Ning
et al., 2019b). The code is also available on the website: https://github.com/Bo-Ning/
Bayesian-multivariate-time-series-causal-inference.
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